1 #include <Eigen/Sparse>
2 #include <vector>
3 
4 typedef Eigen::SparseMatrix<double> SpMat; // declares a column-major sparse matrix type of double
5 typedef Eigen::Triplet<double> T;
6 
7 void buildProblem(std::vector<T>& coefficients, Eigen::VectorXd& b, int n);
8 void saveAsBitmap(const Eigen::VectorXd& x, int n, const char* filename);
9 
main(int argc,char ** argv)10 int main(int argc, char** argv)
11 {
12   int n = 300;  // size of the image
13   int m = n*n;  // number of unknows (=number of pixels)
14 
15   // Assembly:
16   std::vector<T> coefficients;            // list of non-zeros coefficients
17   Eigen::VectorXd b(m);                   // the right hand side-vector resulting from the constraints
18   buildProblem(coefficients, b, n);
19 
20   SpMat A(m,m);
21   A.setFromTriplets(coefficients.begin(), coefficients.end());
22 
23   // Solving:
24   Eigen::SimplicialCholesky<SpMat> chol(A);  // performs a Cholesky factorization of A
25   Eigen::VectorXd x = chol.solve(b);         // use the factorization to solve for the given right hand side
26 
27   // Export the result to a file:
28   saveAsBitmap(x, n, argv[1]);
29 
30   return 0;
31 }
32 
33