1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 x87 FPU instruction set, defining the
11// instructions, and properties of the instructions which are needed for code
12// generation, machine code emission, and analysis.
13//
14//===----------------------------------------------------------------------===//
15
16//===----------------------------------------------------------------------===//
17// FPStack specific DAG Nodes.
18//===----------------------------------------------------------------------===//
19
20def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
21                                           SDTCisVT<1, f80>]>;
22def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
23                                           SDTCisPtrTy<1>,
24                                           SDTCisVT<2, OtherVT>]>;
25def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
26                                           SDTCisPtrTy<1>,
27                                           SDTCisVT<2, OtherVT>]>;
28def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
29                                           SDTCisVT<2, OtherVT>]>;
30def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
31def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
32
33def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
34
35def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
36                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
37def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
38                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
39                              SDNPMemOperand]>;
40def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
41                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
42def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
43                             [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
44                              SDNPMemOperand]>;
45def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
46def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
47                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
48def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
49                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
50def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
51                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
52def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
53                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
54                              SDNPMemOperand]>;
55
56//===----------------------------------------------------------------------===//
57// FPStack pattern fragments
58//===----------------------------------------------------------------------===//
59
60def fpimm0 : PatLeaf<(fpimm), [{
61  return N->isExactlyValue(+0.0);
62}]>;
63
64def fpimmneg0 : PatLeaf<(fpimm), [{
65  return N->isExactlyValue(-0.0);
66}]>;
67
68def fpimm1 : PatLeaf<(fpimm), [{
69  return N->isExactlyValue(+1.0);
70}]>;
71
72def fpimmneg1 : PatLeaf<(fpimm), [{
73  return N->isExactlyValue(-1.0);
74}]>;
75
76// Some 'special' instructions
77let usesCustomInserter = 1 in {  // Expanded after instruction selection.
78  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
79                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
80  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
81                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
82  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
83                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
84  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
85                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
86  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
87                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
88  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
89                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
90  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
91                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
92  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
93                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
94  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
95                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
96}
97
98// All FP Stack operations are represented with four instructions here.  The
99// first three instructions, generated by the instruction selector, use "RFP32"
100// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
101// 64-bit or 80-bit floating point values.  These sizes apply to the values,
102// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
103// copied to each other without losing information.  These instructions are all
104// pseudo instructions and use the "_Fp" suffix.
105// In some cases there are additional variants with a mixture of different
106// register sizes.
107// The second instruction is defined with FPI, which is the actual instruction
108// emitted by the assembler.  These use "RST" registers, although frequently
109// the actual register(s) used are implicit.  These are always 80 bits.
110// The FP stackifier pass converts one to the other after register allocation
111// occurs.
112//
113// Note that the FpI instruction should have instruction selection info (e.g.
114// a pattern) and the FPI instruction should have emission info (e.g. opcode
115// encoding and asm printing info).
116
117// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
118// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
119// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
120// f80 instructions cannot use SSE and use neither of these.
121class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
122  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
123class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
124  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
125
126// Factoring for arithmetic.
127multiclass FPBinary_rr<SDNode OpNode> {
128// Register op register -> register
129// These are separated out because they have no reversed form.
130def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
131                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
132def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
133                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
134def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
135                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
136}
137// The FopST0 series are not included here because of the irregularities
138// in where the 'r' goes in assembly output.
139// These instructions cannot address 80-bit memory.
140multiclass FPBinary<SDNode OpNode, Format fp, string asmstring,
141                    bit Forward = 1> {
142// ST(0) = ST(0) + [mem]
143def _Fp32m  : FpIf32<(outs RFP32:$dst),
144                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
145                  [!if(Forward,
146                       (set RFP32:$dst,
147                        (OpNode RFP32:$src1, (loadf32 addr:$src2))),
148                       (set RFP32:$dst,
149                        (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
150def _Fp64m  : FpIf64<(outs RFP64:$dst),
151                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
152                  [!if(Forward,
153                       (set RFP64:$dst,
154                        (OpNode RFP64:$src1, (loadf64 addr:$src2))),
155                       (set RFP64:$dst,
156                        (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
157def _Fp64m32: FpIf64<(outs RFP64:$dst),
158                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
159                  [!if(Forward,
160                       (set RFP64:$dst,
161                        (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
162                       (set RFP64:$dst,
163                        (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
164def _Fp80m32: FpI_<(outs RFP80:$dst),
165                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
166                  [!if(Forward,
167                       (set RFP80:$dst,
168                        (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
169                       (set RFP80:$dst,
170                        (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
171def _Fp80m64: FpI_<(outs RFP80:$dst),
172                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
173                  [!if(Forward,
174                       (set RFP80:$dst,
175                        (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
176                       (set RFP80:$dst,
177                        (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
178let mayLoad = 1 in
179def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
180                 !strconcat("f", asmstring, "{s}\t$src")>;
181let mayLoad = 1 in
182def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
183                 !strconcat("f", asmstring, "{l}\t$src")>;
184// ST(0) = ST(0) + [memint]
185def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
186                       OneArgFPRW,
187                       [!if(Forward,
188                            (set RFP32:$dst,
189                             (OpNode RFP32:$src1, (X86fild addr:$src2, i16))),
190                            (set RFP32:$dst,
191                             (OpNode (X86fild addr:$src2, i16), RFP32:$src1)))]>;
192def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
193                       OneArgFPRW,
194                       [!if(Forward,
195                            (set RFP32:$dst,
196                             (OpNode RFP32:$src1, (X86fild addr:$src2, i32))),
197                            (set RFP32:$dst,
198                             (OpNode (X86fild addr:$src2, i32), RFP32:$src1)))]>;
199def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
200                       OneArgFPRW,
201                       [!if(Forward,
202                            (set RFP64:$dst,
203                             (OpNode RFP64:$src1, (X86fild addr:$src2, i16))),
204                            (set RFP64:$dst,
205                             (OpNode (X86fild addr:$src2, i16), RFP64:$src1)))]>;
206def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
207                       OneArgFPRW,
208                       [!if(Forward,
209                            (set RFP64:$dst,
210                             (OpNode RFP64:$src1, (X86fild addr:$src2, i32))),
211                            (set RFP64:$dst,
212                             (OpNode (X86fild addr:$src2, i32), RFP64:$src1)))]>;
213def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
214                     OneArgFPRW,
215                     [!if(Forward,
216                          (set RFP80:$dst,
217                           (OpNode RFP80:$src1, (X86fild addr:$src2, i16))),
218                          (set RFP80:$dst,
219                           (OpNode (X86fild addr:$src2, i16), RFP80:$src1)))]>;
220def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
221                     OneArgFPRW,
222                     [!if(Forward,
223                          (set RFP80:$dst,
224                           (OpNode RFP80:$src1, (X86fild addr:$src2, i32))),
225                          (set RFP80:$dst,
226                           (OpNode (X86fild addr:$src2, i32), RFP80:$src1)))]>;
227let mayLoad = 1 in
228def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
229                  !strconcat("fi", asmstring, "{s}\t$src")>;
230let mayLoad = 1 in
231def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
232                  !strconcat("fi", asmstring, "{l}\t$src")>;
233}
234
235let Defs = [FPSW] in {
236// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
237// resources.
238defm ADD : FPBinary_rr<fadd>;
239defm SUB : FPBinary_rr<fsub>;
240defm MUL : FPBinary_rr<fmul>;
241defm DIV : FPBinary_rr<fdiv>;
242// Sets the scheduling resources for the actual NAME#_F<size>m defintions.
243let SchedRW = [WriteFAddLd] in {
244defm ADD : FPBinary<fadd, MRM0m, "add">;
245defm SUB : FPBinary<fsub, MRM4m, "sub">;
246defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>;
247}
248let SchedRW = [WriteFMulLd] in {
249defm MUL : FPBinary<fmul, MRM1m, "mul">;
250}
251let SchedRW = [WriteFDivLd] in {
252defm DIV : FPBinary<fdiv, MRM6m, "div">;
253defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>;
254}
255}
256
257class FPST0rInst<Format fp, string asm>
258  : FPI<0xD8, fp, (outs), (ins RST:$op), asm>;
259class FPrST0Inst<Format fp, string asm>
260  : FPI<0xDC, fp, (outs), (ins RST:$op), asm>;
261class FPrST0PInst<Format fp, string asm>
262  : FPI<0xDE, fp, (outs), (ins RST:$op), asm>;
263
264// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
265// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
266// we have to put some 'r's in and take them out of weird places.
267let SchedRW = [WriteFAdd] in {
268def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t$op">;
269def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">;
270def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t$op">;
271def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t$op">;
272def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">;
273def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t$op">;
274def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t$op">;
275def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">;
276def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">;
277} // SchedRW
278let SchedRW = [WriteFMul] in {
279def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t$op">;
280def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">;
281def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t$op">;
282} // SchedRW
283let SchedRW = [WriteFDiv] in {
284def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t$op">;
285def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">;
286def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">;
287def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t$op">;
288def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">;
289def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">;
290} // SchedRW
291
292def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
293def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
294
295// Unary operations.
296multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
297def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
298                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
299def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
300                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
301def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
302                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
303def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
304}
305
306let Defs = [FPSW] in {
307defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
308defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
309let SchedRW = [WriteFSqrt] in {
310defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
311}
312defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
313defm COS : FPUnary<fcos, MRM_FF, "fcos">;
314
315let hasSideEffects = 0 in {
316def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
317def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
318def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
319}
320def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
321} // Defs = [FPSW]
322
323// Versions of FP instructions that take a single memory operand.  Added for the
324//   disassembler; remove as they are included with patterns elsewhere.
325def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
326def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
327
328def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
329def FSTENVm  : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">;
330
331def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
332def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
333
334def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
335def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
336
337def FRSTORm  : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
338def FSAVEm   : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">;
339def FNSTSWm  : FPI<0xDD, MRM7m, (outs i16mem:$dst), (ins), "fnstsw\t$dst">;
340
341def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
342def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
343
344def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
345def FBSTPm   : FPI<0xDF, MRM6m, (outs f80mem:$dst), (ins), "fbstp\t$dst">;
346
347// Floating point cmovs.
348class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
349  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
350class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
351  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
352
353multiclass FPCMov<PatLeaf cc> {
354  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
355                       CondMovFP,
356                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
357                                        cc, EFLAGS))]>;
358  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
359                       CondMovFP,
360                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
361                                        cc, EFLAGS))]>;
362  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
363                     CondMovFP,
364                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
365                                        cc, EFLAGS))]>,
366                                        Requires<[HasCMov]>;
367}
368
369let Defs = [FPSW] in {
370let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
371defm CMOVB  : FPCMov<X86_COND_B>;
372defm CMOVBE : FPCMov<X86_COND_BE>;
373defm CMOVE  : FPCMov<X86_COND_E>;
374defm CMOVP  : FPCMov<X86_COND_P>;
375defm CMOVNB : FPCMov<X86_COND_AE>;
376defm CMOVNBE: FPCMov<X86_COND_A>;
377defm CMOVNE : FPCMov<X86_COND_NE>;
378defm CMOVNP : FPCMov<X86_COND_NP>;
379} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
380
381let Predicates = [HasCMov] in {
382// These are not factored because there's no clean way to pass DA/DB.
383def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RST:$op),
384                  "fcmovb\t{$op, %st(0)|st(0), $op}">;
385def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RST:$op),
386                  "fcmovbe\t{$op, %st(0)|st(0), $op}">;
387def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RST:$op),
388                  "fcmove\t{$op, %st(0)|st(0), $op}">;
389def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RST:$op),
390                  "fcmovu\t{$op, %st(0)|st(0), $op}">;
391def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RST:$op),
392                  "fcmovnb\t{$op, %st(0)|st(0), $op}">;
393def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RST:$op),
394                  "fcmovnbe\t{$op, %st(0)|st(0), $op}">;
395def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RST:$op),
396                  "fcmovne\t{$op, %st(0)|st(0), $op}">;
397def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RST:$op),
398                  "fcmovnu\t{$op, %st(0)|st(0), $op}">;
399} // Predicates = [HasCMov]
400
401// Floating point loads & stores.
402let canFoldAsLoad = 1 in {
403def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
404                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
405let isReMaterializable = 1 in
406  def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
407                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
408def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
409                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
410}
411def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
412                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
413def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
414                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
415def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
416                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
417def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
418                  [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
419def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
420                  [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
421def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
422                  [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
423def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
424                  [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
425def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
426                  [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
427def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
428                  [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
429def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
430                  [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
431def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
432                  [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
433def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
434                  [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
435
436def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
437                  [(store RFP32:$src, addr:$op)]>;
438def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
439                  [(truncstoref32 RFP64:$src, addr:$op)]>;
440def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
441                  [(store RFP64:$src, addr:$op)]>;
442def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
443                  [(truncstoref32 RFP80:$src, addr:$op)]>;
444def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
445                  [(truncstoref64 RFP80:$src, addr:$op)]>;
446// FST does not support 80-bit memory target; FSTP must be used.
447
448let mayStore = 1, hasSideEffects = 0 in {
449def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
450def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
451def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
452def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
453def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
454}
455def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
456                    [(store RFP80:$src, addr:$op)]>;
457let mayStore = 1, hasSideEffects = 0 in {
458def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
459def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
460def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
461def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
462def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
463def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
464def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
465def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
466def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
467}
468
469let mayLoad = 1, SchedRW = [WriteLoad] in {
470def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src",
471                    IIC_FLD>;
472def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src",
473                    IIC_FLD>;
474def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src",
475                    IIC_FLD80>;
476def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src",
477                    IIC_FILD>;
478def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src",
479                    IIC_FILD>;
480def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src",
481                    IIC_FILD>;
482}
483let mayStore = 1, SchedRW = [WriteStore] in {
484def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst",
485                    IIC_FST>;
486def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst",
487                    IIC_FST>;
488def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst",
489                    IIC_FST>;
490def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst",
491                    IIC_FST>;
492def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst",
493                    IIC_FST80>;
494def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst",
495                    IIC_FIST>;
496def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst",
497                    IIC_FIST>;
498def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst",
499                    IIC_FIST>;
500def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst",
501                    IIC_FIST>;
502def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst",
503                    IIC_FIST>;
504}
505
506// FISTTP requires SSE3 even though it's a FPStack op.
507let Predicates = [HasSSE3] in {
508def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
509                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
510def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
511                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
512def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
513                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
514def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
515                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
516def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
517                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
518def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
519                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
520def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
521                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
522def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
523                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
524def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
525                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
526} // Predicates = [HasSSE3]
527
528let mayStore = 1, SchedRW = [WriteStore] in {
529def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
530  IIC_FST>;
531def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
532  IIC_FST>;
533def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
534  "fisttp{ll}\t$dst", IIC_FST>;
535}
536
537// FP Stack manipulation instructions.
538let SchedRW = [WriteMove] in {
539def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op", IIC_FLD>;
540def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op", IIC_FST>;
541def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op", IIC_FST>;
542def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op", IIC_FXCH>;
543}
544
545// Floating point constant loads.
546let isReMaterializable = 1 in {
547def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
548                [(set RFP32:$dst, fpimm0)]>;
549def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
550                [(set RFP32:$dst, fpimm1)]>;
551def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
552                [(set RFP64:$dst, fpimm0)]>;
553def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
554                [(set RFP64:$dst, fpimm1)]>;
555def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
556                [(set RFP80:$dst, fpimm0)]>;
557def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
558                [(set RFP80:$dst, fpimm1)]>;
559}
560
561let SchedRW = [WriteZero] in {
562def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz", IIC_FLDZ>;
563def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1", IIC_FIST>;
564}
565
566// Floating point compares.
567let SchedRW = [WriteFAdd] in {
568def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
569                        [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
570def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
571                        [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
572def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
573                        [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
574} // SchedRW
575} // Defs = [FPSW]
576
577let SchedRW = [WriteFAdd] in {
578// CC = ST(0) cmp ST(i)
579let Defs = [EFLAGS, FPSW] in {
580def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
581                  [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
582def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
583                  [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
584def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
585                  [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
586}
587
588let Defs = [FPSW], Uses = [ST0] in {
589def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
590                    (outs), (ins RST:$reg), "fucom\t$reg", IIC_FUCOM>;
591def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
592                    (outs), (ins RST:$reg), "fucomp\t$reg", IIC_FUCOM>;
593def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
594                    (outs), (ins), "fucompp", IIC_FUCOM>;
595}
596
597let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
598def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
599                    (outs), (ins RST:$reg), "fucomi\t$reg", IIC_FUCOMI>;
600def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
601                    (outs), (ins RST:$reg), "fucompi\t$reg", IIC_FUCOMI>;
602}
603
604let Defs = [EFLAGS, FPSW] in {
605def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg),
606                  "fcomi\t$reg", IIC_FCOMI>;
607def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg),
608                   "fcompi\t$reg", IIC_FCOMI>;
609}
610} // SchedRW
611
612// Floating point flag ops.
613let SchedRW = [WriteALU] in {
614let Defs = [AX], Uses = [FPSW] in
615def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
616                  (outs), (ins), "fnstsw\t{%ax|ax}",
617                  [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>;
618
619def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
620                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
621                  [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>;
622} // SchedRW
623let mayLoad = 1 in
624def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
625                  (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>,
626                Sched<[WriteLoad]>;
627
628// FPU control instructions
629let SchedRW = [WriteMicrocoded] in {
630let Defs = [FPSW] in
631def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", [], IIC_FNINIT>;
632def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg),
633                "ffree\t$reg", IIC_FFREE>;
634// Clear exceptions
635
636let Defs = [FPSW] in
637def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", [], IIC_FNCLEX>;
638} // SchedRW
639
640// Operandless floating-point instructions for the disassembler.
641let SchedRW = [WriteMicrocoded] in {
642def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>;
643
644def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", [], IIC_FNOP>;
645def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", [], IIC_FXAM>;
646def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", [], IIC_FLDL>;
647def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", [], IIC_FLDL>;
648def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", [], IIC_FLDL>;
649def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", [], IIC_FLDL>;
650def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", [], IIC_FLDL>;
651def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", [], IIC_F2XM1>;
652def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", [], IIC_FYL2X>;
653def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", [], IIC_FPTAN>;
654def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", [], IIC_FPATAN>;
655def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", [], IIC_FXTRACT>;
656def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", [], IIC_FPREM1>;
657def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", [], IIC_FPSTP>;
658def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", [], IIC_FPSTP>;
659def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", [], IIC_FPREM>;
660def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>;
661def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", [], IIC_FSINCOS>;
662def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", [], IIC_FRNDINT>;
663def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", [], IIC_FSCALE>;
664def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", [], IIC_FCOMPP>;
665
666let Predicates = [HasFXSR] in {
667  def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaque512mem:$dst),
668                 "fxsave\t$dst", [(int_x86_fxsave addr:$dst)], IIC_FXSAVE>, TB;
669  def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaque512mem:$dst),
670                    "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)],
671                    IIC_FXSAVE>, TB, Requires<[In64BitMode]>;
672  def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
673                "fxrstor\t$src", [(int_x86_fxrstor addr:$src)], IIC_FXRSTOR>, TB;
674  def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
675                     "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)],
676                     IIC_FXRSTOR>, TB, Requires<[In64BitMode]>;
677} // Predicates = [FeatureFXSR]
678} // SchedRW
679
680//===----------------------------------------------------------------------===//
681// Non-Instruction Patterns
682//===----------------------------------------------------------------------===//
683
684// Required for RET of f32 / f64 / f80 values.
685def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
686def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
687def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
688
689// Required for CALL which return f32 / f64 / f80 values.
690def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
691def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
692                                                          RFP64:$src)>;
693def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
694def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
695                                                          RFP80:$src)>;
696def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
697                                                          RFP80:$src)>;
698def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
699                                                         RFP80:$src)>;
700
701// Floating point constant -0.0 and -1.0
702def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
703def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
704def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
705def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
706def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
707def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
708
709// Used to conv. i64 to f64 since there isn't a SSE version.
710def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
711
712// FP extensions map onto simple pseudo-value conversions if they are to/from
713// the FP stack.
714def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
715          Requires<[FPStackf32]>;
716def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
717           Requires<[FPStackf32]>;
718def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
719           Requires<[FPStackf64]>;
720
721// FP truncations map onto simple pseudo-value conversions if they are to/from
722// the FP stack.  We have validated that only value-preserving truncations make
723// it through isel.
724def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
725          Requires<[FPStackf32]>;
726def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
727           Requires<[FPStackf32]>;
728def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
729           Requires<[FPStackf64]>;
730