1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.hardware;
18 
19 /**
20  * This class represents a {@link android.hardware.Sensor Sensor} event and
21  * holds information such as the sensor's type, the time-stamp, accuracy and of
22  * course the sensor's {@link SensorEvent#values data}.
23  *
24  * <p>
25  * <u>Definition of the coordinate system used by the SensorEvent API.</u>
26  * </p>
27  *
28  * <p>
29  * The coordinate-system is defined relative to the screen of the phone in its
30  * default orientation. The axes are not swapped when the device's screen
31  * orientation changes.
32  * </p>
33  *
34  * <p>
35  * The X axis is horizontal and points to the right, the Y axis is vertical and
36  * points up and the Z axis points towards the outside of the front face of the
37  * screen. In this system, coordinates behind the screen have negative Z values.
38  * </p>
39  *
40  * <p>
41  * <center><img src="../../../images/axis_device.png"
42  * alt="Sensors coordinate-system diagram." border="0" /></center>
43  * </p>
44  *
45  * <p>
46  * <b>Note:</b> This coordinate system is different from the one used in the
47  * Android 2D APIs where the origin is in the top-left corner.
48  * </p>
49  *
50  * @see SensorManager
51  * @see SensorEvent
52  * @see Sensor
53  *
54  */
55 
56 public class SensorEvent {
57     /**
58      * <p>
59      * The length and contents of the {@link #values values} array depends on
60      * which {@link android.hardware.Sensor sensor} type is being monitored (see
61      * also {@link SensorEvent} for a definition of the coordinate system used).
62      * </p>
63      *
64      * <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER
65      * Sensor.TYPE_ACCELEROMETER}:</h4> All values are in SI units (m/s^2)
66      *
67      * <ul>
68      * <li> values[0]: Acceleration minus Gx on the x-axis </li>
69      * <li> values[1]: Acceleration minus Gy on the y-axis </li>
70      * <li> values[2]: Acceleration minus Gz on the z-axis </li>
71      * </ul>
72      *
73      * <p>
74      * A sensor of this type measures the acceleration applied to the device
75      * (<b>Ad</b>). Conceptually, it does so by measuring forces applied to the
76      * sensor itself (<b>Fs</b>) using the relation:
77      * </p>
78      *
79      * <b><center>Ad = - &#8721;Fs / mass</center></b>
80      *
81      * <p>
82      * In particular, the force of gravity is always influencing the measured
83      * acceleration:
84      * </p>
85      *
86      * <b><center>Ad = -g - &#8721;F / mass</center></b>
87      *
88      * <p>
89      * For this reason, when the device is sitting on a table (and obviously not
90      * accelerating), the accelerometer reads a magnitude of <b>g</b> = 9.81
91      * m/s^2
92      * </p>
93      *
94      * <p>
95      * Similarly, when the device is in free-fall and therefore dangerously
96      * accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
97      * magnitude of 0 m/s^2.
98      * </p>
99      *
100      * <p>
101      * It should be apparent that in order to measure the real acceleration of
102      * the device, the contribution of the force of gravity must be eliminated.
103      * This can be achieved by applying a <i>high-pass</i> filter. Conversely, a
104      * <i>low-pass</i> filter can be used to isolate the force of gravity.
105      * </p>
106      *
107      * <pre class="prettyprint">
108      *
109      *     public void onSensorChanged(SensorEvent event)
110      *     {
111      *          // alpha is calculated as t / (t + dT)
112      *          // with t, the low-pass filter's time-constant
113      *          // and dT, the event delivery rate
114      *
115      *          final float alpha = 0.8;
116      *
117      *          gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
118      *          gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
119      *          gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
120      *
121      *          linear_acceleration[0] = event.values[0] - gravity[0];
122      *          linear_acceleration[1] = event.values[1] - gravity[1];
123      *          linear_acceleration[2] = event.values[2] - gravity[2];
124      *     }
125      * </pre>
126      *
127      * <p>
128      * <u>Examples</u>:
129      * <ul>
130      * <li>When the device lies flat on a table and is pushed on its left side
131      * toward the right, the x acceleration value is positive.</li>
132      *
133      * <li>When the device lies flat on a table, the acceleration value is
134      * +9.81, which correspond to the acceleration of the device (0 m/s^2) minus
135      * the force of gravity (-9.81 m/s^2).</li>
136      *
137      * <li>When the device lies flat on a table and is pushed toward the sky
138      * with an acceleration of A m/s^2, the acceleration value is equal to
139      * A+9.81 which correspond to the acceleration of the device (+A m/s^2)
140      * minus the force of gravity (-9.81 m/s^2).</li>
141      * </ul>
142      *
143      *
144      * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
145      * Sensor.TYPE_MAGNETIC_FIELD}:</h4>
146      * All values are in micro-Tesla (uT) and measure the ambient magnetic field
147      * in the X, Y and Z axis.
148      *
149      * <h4>{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:
150      * </h4> All values are in radians/second and measure the rate of rotation
151      * around the device's local X, Y and Z axis. The coordinate system is the
152      * same as is used for the acceleration sensor. Rotation is positive in the
153      * counter-clockwise direction. That is, an observer looking from some
154      * positive location on the x, y or z axis at a device positioned on the
155      * origin would report positive rotation if the device appeared to be
156      * rotating counter clockwise. Note that this is the standard mathematical
157      * definition of positive rotation and does not agree with the definition of
158      * roll given earlier.
159      * <ul>
160      * <li> values[0]: Angular speed around the x-axis </li>
161      * <li> values[1]: Angular speed around the y-axis </li>
162      * <li> values[2]: Angular speed around the z-axis </li>
163      * </ul>
164      * <p>
165      * Typically the output of the gyroscope is integrated over time to
166      * calculate a rotation describing the change of angles over the time step,
167      * for example:
168      * </p>
169      *
170      * <pre class="prettyprint">
171      *     private static final float NS2S = 1.0f / 1000000000.0f;
172      *     private final float[] deltaRotationVector = new float[4]();
173      *     private float timestamp;
174      *
175      *     public void onSensorChanged(SensorEvent event) {
176      *          // This time step's delta rotation to be multiplied by the current rotation
177      *          // after computing it from the gyro sample data.
178      *          if (timestamp != 0) {
179      *              final float dT = (event.timestamp - timestamp) * NS2S;
180      *              // Axis of the rotation sample, not normalized yet.
181      *              float axisX = event.values[0];
182      *              float axisY = event.values[1];
183      *              float axisZ = event.values[2];
184      *
185      *              // Calculate the angular speed of the sample
186      *              float omegaMagnitude = sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
187      *
188      *              // Normalize the rotation vector if it's big enough to get the axis
189      *              if (omegaMagnitude > EPSILON) {
190      *                  axisX /= omegaMagnitude;
191      *                  axisY /= omegaMagnitude;
192      *                  axisZ /= omegaMagnitude;
193      *              }
194      *
195      *              // Integrate around this axis with the angular speed by the time step
196      *              // in order to get a delta rotation from this sample over the time step
197      *              // We will convert this axis-angle representation of the delta rotation
198      *              // into a quaternion before turning it into the rotation matrix.
199      *              float thetaOverTwo = omegaMagnitude * dT / 2.0f;
200      *              float sinThetaOverTwo = sin(thetaOverTwo);
201      *              float cosThetaOverTwo = cos(thetaOverTwo);
202      *              deltaRotationVector[0] = sinThetaOverTwo * axisX;
203      *              deltaRotationVector[1] = sinThetaOverTwo * axisY;
204      *              deltaRotationVector[2] = sinThetaOverTwo * axisZ;
205      *              deltaRotationVector[3] = cosThetaOverTwo;
206      *          }
207      *          timestamp = event.timestamp;
208      *          float[] deltaRotationMatrix = new float[9];
209      *          SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
210      *          // User code should concatenate the delta rotation we computed with the current rotation
211      *          // in order to get the updated rotation.
212      *          // rotationCurrent = rotationCurrent * deltaRotationMatrix;
213      *     }
214      * </pre>
215      * <p>
216      * In practice, the gyroscope noise and offset will introduce some errors
217      * which need to be compensated for. This is usually done using the
218      * information from other sensors, but is beyond the scope of this document.
219      * </p>
220      * <h4>{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:</h4>
221      * <ul>
222      * <li>values[0]: Ambient light level in SI lux units </li>
223      * </ul>
224      *
225      * <h4>{@link android.hardware.Sensor#TYPE_PRESSURE Sensor.TYPE_PRESSURE}:</h4>
226      * <ul>
227      * <li>values[0]: Atmospheric pressure in hPa (millibar) </li>
228      * </ul>
229      *
230      * <h4>{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
231      * </h4>
232      *
233      * <ul>
234      * <li>values[0]: Proximity sensor distance measured in centimeters </li>
235      * </ul>
236      *
237      * <p>
238      * <b>Note:</b> Some proximity sensors only support a binary <i>near</i> or
239      * <i>far</i> measurement. In this case, the sensor should report its
240      * {@link android.hardware.Sensor#getMaximumRange() maximum range} value in
241      * the <i>far</i> state and a lesser value in the <i>near</i> state.
242      * </p>
243      *
244      *  <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
245      *  <p>A three dimensional vector indicating the direction and magnitude of gravity.  Units
246      *  are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
247      *  <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be identical
248      *  to that of the accelerometer.</p>
249      *
250      *  <h4>{@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:</h4>
251      *  A three dimensional vector indicating acceleration along each device axis, not including
252      *  gravity.  All values have units of m/s^2.  The coordinate system is the same as is used by the
253      *  acceleration sensor.
254      *  <p>The output of the accelerometer, gravity and  linear-acceleration sensors must obey the
255      *  following relation:</p>
256      *   <p><ul>acceleration = gravity + linear-acceleration</ul></p>
257      *
258      *  <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
259      *  <p>The rotation vector represents the orientation of the device as a combination of an <i>angle</i>
260      *  and an <i>axis</i>, in which the device has rotated through an angle &#952 around an axis
261      *  &lt;x, y, z>.</p>
262      *  <p>The three elements of the rotation vector are
263      *  &lt;x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>, such that the magnitude of the rotation
264      *  vector is equal to sin(&#952/2), and the direction of the rotation vector is equal to the
265      *  direction of the axis of rotation.</p>
266      *  </p>The three elements of the rotation vector are equal to
267      *  the last three components of a <b>unit</b> quaternion
268      *  &lt;cos(&#952/2), x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>.</p>
269      *  <p>Elements of the rotation vector are unitless.
270      *  The x,y, and z axis are defined in the same way as the acceleration
271      *  sensor.</p>
272      *  The reference coordinate system is defined as a direct orthonormal basis,
273      *  where:
274      * </p>
275      *
276      * <ul>
277      * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
278      * the ground at the device's current location and roughly points East).</li>
279      * <li>Y is tangential to the ground at the device's current location and
280      * points towards magnetic north.</li>
281      * <li>Z points towards the sky and is perpendicular to the ground.</li>
282      * </ul>
283      *
284      * <p>
285      * <center><img src="../../../images/axis_globe.png"
286      * alt="World coordinate-system diagram." border="0" /></center>
287      * </p>
288      *
289      * <ul>
290      * <li> values[0]: x*sin(&#952/2) </li>
291      * <li> values[1]: y*sin(&#952/2) </li>
292      * <li> values[2]: z*sin(&#952/2) </li>
293      * <li> values[3]: cos(&#952/2) </li>
294      * <li> values[4]: estimated heading Accuracy (in radians) (-1 if unavailable)</li>
295      * </ul>
296      * <p> values[3], originally optional, will always be present from SDK Level 18 onwards.
297      * values[4] is a new value that has been added in SDK Level 18.
298      * </p>
299      *
300      * <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
301      * Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
302      *
303      * <ul>
304      * <li> values[0]: Azimuth, angle between the magnetic north direction and the
305      * y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
306      * 270=West
307      * </p>
308      *
309      * <p>
310      * values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
311      * values when the z-axis moves <b>toward</b> the y-axis.
312      * </p>
313      *
314      * <p>
315      * values[2]: Roll, rotation around the y-axis (-90 to 90)
316      * increasing as the device moves clockwise.
317      * </p>
318      * </ul>
319      *
320      * <p>
321      * <b>Note:</b> This definition is different from <b>yaw, pitch and roll</b>
322      * used in aviation where the X axis is along the long side of the plane
323      * (tail to nose).
324      * </p>
325      *
326      * <p>
327      * <b>Note:</b> This sensor type exists for legacy reasons, please use
328      * {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR
329      * rotation vector sensor type} and
330      * {@link android.hardware.SensorManager#getRotationMatrix
331      * getRotationMatrix()} in conjunction with
332      * {@link android.hardware.SensorManager#remapCoordinateSystem
333      * remapCoordinateSystem()} and
334      * {@link android.hardware.SensorManager#getOrientation getOrientation()} to
335      * compute these values instead.
336      * </p>
337      *
338      * <p>
339      * <b>Important note:</b> For historical reasons the roll angle is positive
340      * in the clockwise direction (mathematically speaking, it should be
341      * positive in the counter-clockwise direction).
342      * </p>
343      *
344      * <h4>{@link android.hardware.Sensor#TYPE_RELATIVE_HUMIDITY
345      * Sensor.TYPE_RELATIVE_HUMIDITY}:</h4>
346      * <ul>
347      * <li> values[0]: Relative ambient air humidity in percent </li>
348      * </ul>
349      * <p>
350      * When relative ambient air humidity and ambient temperature are
351      * measured, the dew point and absolute humidity can be calculated.
352      * </p>
353      * <u>Dew Point</u>
354      * <p>
355      * The dew point is the temperature to which a given parcel of air must be
356      * cooled, at constant barometric pressure, for water vapor to condense
357      * into water.
358      * </p>
359      * <center><pre>
360      *                    ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)
361      * t<sub>d</sub>(t,RH) = T<sub>n</sub> &#183; ------------------------------
362      *                 m - [ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)]
363      * </pre></center>
364      * <dl>
365      * <dt>t<sub>d</sub></dt> <dd>dew point temperature in &deg;C</dd>
366      * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
367      * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
368      * <dt>m</dt>             <dd>17.62</dd>
369      * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
370      * </dl>
371      * <p>for example:</p>
372      * <pre class="prettyprint">
373      * h = Math.log(rh / 100.0) + (17.62 * t) / (243.12 + t);
374      * td = 243.12 * h / (17.62 - h);
375      * </pre>
376      * <u>Absolute Humidity</u>
377      * <p>
378      * The absolute humidity is the mass of water vapor in a particular volume
379      * of dry air. The unit is g/m<sup>3</sup>.
380      * </p>
381      * <center><pre>
382      *                    RH/100%&#183;A&#183;exp(m&#183;t/(T<sub>n</sub>+t))
383      * d<sub>v</sub>(t,RH) = 216.7 &#183; -------------------------
384      *                           273.15 + t
385      * </pre></center>
386      * <dl>
387      * <dt>d<sub>v</sub></dt> <dd>absolute humidity in g/m<sup>3</sup></dd>
388      * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
389      * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
390      * <dt>m</dt>             <dd>17.62</dd>
391      * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
392      * <dt>A</dt>             <dd>6.112 hPa</dd>
393      * </dl>
394      * <p>for example:</p>
395      * <pre class="prettyprint">
396      * dv = 216.7 *
397      * (rh / 100.0 * 6.112 * Math.exp(17.62 * t / (243.12 + t)) / (273.15 + t));
398      * </pre>
399      *
400      * <h4>{@link android.hardware.Sensor#TYPE_AMBIENT_TEMPERATURE Sensor.TYPE_AMBIENT_TEMPERATURE}:
401      * </h4>
402      *
403      * <ul>
404      * <li> values[0]: ambient (room) temperature in degree Celsius.</li>
405      * </ul>
406      *
407      *
408      * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD_UNCALIBRATED
409      * Sensor.TYPE_MAGNETIC_FIELD_UNCALIBRATED}:</h4>
410      * Similar to {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD},
411      * but the hard iron calibration is reported separately instead of being included
412      * in the measurement. Factory calibration and temperature compensation will still
413      * be applied to the "uncalibrated" measurement. Assumptions that the magnetic field
414      * is due to the Earth's poles is avoided.
415      * <p>
416      * The values array is shown below:
417      * <ul>
418      * <li> values[0] = x_uncalib </li>
419      * <li> values[1] = y_uncalib </li>
420      * <li> values[2] = z_uncalib </li>
421      * <li> values[3] = x_bias </li>
422      * <li> values[4] = y_bias </li>
423      * <li> values[5] = z_bias </li>
424      * </ul>
425      * </p>
426      * <p>
427      * x_uncalib, y_uncalib, z_uncalib are the measured magnetic field in X, Y, Z axes.
428      * Soft iron and temperature calibrations are applied. But the hard iron
429      * calibration is not applied. The values are in micro-Tesla (uT).
430      * </p>
431      * <p>
432      * x_bias, y_bias, z_bias give the iron bias estimated in X, Y, Z axes.
433      * Each field is a component of the estimated hard iron calibration.
434      * The values are in micro-Tesla (uT).
435      * </p>
436      * <p> Hard iron - These distortions arise due to the magnetized iron, steel or permanent
437      * magnets on the device.
438      * Soft iron - These distortions arise due to the interaction with the earth's magnetic
439      * field.
440      * </p>
441      * <h4> {@link android.hardware.Sensor#TYPE_GAME_ROTATION_VECTOR}:</h4>
442      * Identical to {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR} except that it
443      * doesn't use the geomagnetic field. Therefore the Y axis doesn't
444      * point north, but instead to some other reference, that reference is
445      * allowed to drift by the same order of magnitude as the gyroscope
446      * drift around the Z axis.
447      * <p>
448      * In the ideal case, a phone rotated and returning to the same real-world
449      * orientation will report the same game rotation vector
450      * (without using the earth's geomagnetic field). However, the orientation
451      * may drift somewhat over time. See {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR}
452      * for a detailed description of the values. This sensor will not have
453      * the estimated heading accuracy value.
454      * </p>
455      *
456      * <h4> {@link android.hardware.Sensor#TYPE_GYROSCOPE_UNCALIBRATED
457      * Sensor.TYPE_GYROSCOPE_UNCALIBRATED}:</h4>
458      * All values are in radians/second and measure the rate of rotation
459      * around the X, Y and Z axis. An estimation of the drift on each axis is
460      * reported as well.
461      * <p>
462      * No gyro-drift compensation is performed. Factory calibration and temperature
463      * compensation is still applied to the rate of rotation (angular speeds).
464      * </p>
465      * <p>
466      * The coordinate system is the same as is used for the
467      * {@link android.hardware.Sensor#TYPE_ACCELEROMETER}
468      * Rotation is positive in the counter-clockwise direction (right-hand rule).
469      * That is, an observer looking from some positive location on the x, y or z axis
470      * at a device positioned on the origin would report positive rotation if the device
471      * appeared to be rotating counter clockwise.
472      * The range would at least be 17.45 rad/s (ie: ~1000 deg/s).
473      * <ul>
474      * <li> values[0] : angular speed (w/o drift compensation) around the X axis in rad/s </li>
475      * <li> values[1] : angular speed (w/o drift compensation) around the Y axis in rad/s </li>
476      * <li> values[2] : angular speed (w/o drift compensation) around the Z axis in rad/s </li>
477      * <li> values[3] : estimated drift around X axis in rad/s </li>
478      * <li> values[4] : estimated drift around Y axis in rad/s </li>
479      * <li> values[5] : estimated drift around Z axis in rad/s </li>
480      * </ul>
481      * </p>
482      * <p><b>Pro Tip:</b> Always use the length of the values array while performing operations
483      * on it. In earlier versions, this used to be always 3 which has changed now. </p>
484      *
485      * @see GeomagneticField
486      *
487      * <h4> {@link android.hardware.Sensor#TYPE_DEVICE_ORIENTATION
488      * Sensor.TYPE_DEVICE_ORIENTATION}:</h4>
489      * The current device orientation will be available in values[0]. The only
490      * available values are:
491      * <ul>
492      * <li> 0: device is in default orientation (Y axis is vertical and points up)
493      * <li> 1: device is rotated 90 degrees counter-clockwise from default
494      *         orientation (X axis is vertical and points up)
495      * <li> 2: device is rotated 180 degrees from default orientation (Y axis is
496      *         vertical and points down)
497      * <li> 3: device is rotated 90 degrees clockwise from default orientation (X axis
498      *         is vertical and points down)
499      * </ul>
500      *
501      *   <h4>{@link android.hardware.Sensor#TYPE_POSE_6DOF
502      * Sensor.TYPE_POSE_6DOF}:</h4>
503      *
504      * A TYPE_POSE_6DOF event consists of a rotation expressed as a quaternion and a translation
505      * expressed in SI units. The event also contains a delta rotation and translation that show
506      * how the device?s pose has changed since the previous sequence numbered pose.
507      * The event uses the cannonical Android Sensor axes.
508      *
509      *
510      * <ul>
511      * <li> values[0]: x*sin(&#952/2) </li>
512      * <li> values[1]: y*sin(&#952/2) </li>
513      * <li> values[2]: z*sin(&#952/2) </li>
514      * <li> values[3]: cos(&#952/2)   </li>
515      *
516      *
517      * <li> values[4]: Translation along x axis from an arbitrary origin. </li>
518      * <li> values[5]: Translation along y axis from an arbitrary origin. </li>
519      * <li> values[6]: Translation along z axis from an arbitrary origin. </li>
520      *
521      * <li> values[7]:  Delta quaternion rotation x*sin(&#952/2) </li>
522      * <li> values[8]:  Delta quaternion rotation y*sin(&#952/2) </li>
523      * <li> values[9]:  Delta quaternion rotation z*sin(&#952/2) </li>
524      * <li> values[10]: Delta quaternion rotation cos(&#952/2) </li>
525      *
526      * <li> values[11]: Delta translation along x axis. </li>
527      * <li> values[12]: Delta translation along y axis. </li>
528      * <li> values[13]: Delta translation along z axis. </li>
529      *
530      * <li> values[14]: Sequence number </li>
531      *
532      * </ul>
533      *
534      *   <h4>{@link android.hardware.Sensor#TYPE_STATIONARY_DETECT
535      * Sensor.TYPE_STATIONARY_DETECT}:</h4>
536      *
537      * A TYPE_STATIONARY_DETECT event is produced if the device has been
538      * stationary for at least 5 seconds with a maximal latency of 5
539      * additional seconds. ie: it may take up anywhere from 5 to 10 seconds
540      * afte the device has been at rest to trigger this event.
541      *
542      * The only allowed value is 1.0.
543      *
544      * <ul>
545      *  <li> values[0]: 1.0 </li>
546      * </ul>
547      *
548      *   <h4>{@link android.hardware.Sensor#TYPE_MOTION_DETECT
549      * Sensor.TYPE_MOTION_DETECT}:</h4>
550      *
551      * A TYPE_MOTION_DETECT event is produced if the device has been in
552      * motion  for at least 5 seconds with a maximal latency of 5
553      * additional seconds. ie: it may take up anywhere from 5 to 10 seconds
554      * afte the device has been at rest to trigger this event.
555      *
556      * The only allowed value is 1.0.
557      *
558      * <ul>
559      *  <li> values[0]: 1.0 </li>
560      * </ul>
561      *
562      *   <h4>{@link android.hardware.Sensor#TYPE_HEART_BEAT
563      * Sensor.TYPE_HEART_BEAT}:</h4>
564      *
565      * A sensor of this type returns an event everytime a hear beat peak is
566      * detected.
567      *
568      * Peak here ideally corresponds to the positive peak in the QRS complex of
569      * an ECG signal.
570      *
571      * <ul>
572      *  <li> values[0]: confidence</li>
573      * </ul>
574      *
575      * <p>
576      * A confidence value of 0.0 indicates complete uncertainty - that a peak
577      * is as likely to be at the indicated timestamp as anywhere else.
578      * A confidence value of 1.0 indicates complete certainly - that a peak is
579      * completely unlikely to be anywhere else on the QRS complex.
580      * </p>
581      */
582     public final float[] values;
583 
584     /**
585      * The sensor that generated this event. See
586      * {@link android.hardware.SensorManager SensorManager} for details.
587      */
588     public Sensor sensor;
589 
590     /**
591      * The accuracy of this event. See {@link android.hardware.SensorManager
592      * SensorManager} for details.
593      */
594     public int accuracy;
595 
596     /**
597      * The time in nanosecond at which the event happened
598      */
599     public long timestamp;
600 
SensorEvent(int valueSize)601     SensorEvent(int valueSize) {
602         values = new float[valueSize];
603     }
604 }
605