1 /* `a.out' object-file definitions, including extensions to 64-bit fields
2 
3    Copyright (C) 1999-2014 Free Software Foundation, Inc.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program; if not, write to the Free Software
17    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
18    MA 02110-1301, USA.  */
19 
20 #ifndef __A_OUT_64_H__
21 #define __A_OUT_64_H__
22 
23 #ifndef BYTES_IN_WORD
24 #define BYTES_IN_WORD 4
25 #endif
26 
27 /* This is the layout on disk of the 32-bit or 64-bit exec header.  */
28 
29 #ifndef external_exec
30 struct external_exec
31 {
32   bfd_byte e_info[4];		    /* Magic number and stuff.  */
33   bfd_byte e_text[BYTES_IN_WORD];   /* Length of text section in bytes.  */
34   bfd_byte e_data[BYTES_IN_WORD];   /* Length of data section in bytes.  */
35   bfd_byte e_bss[BYTES_IN_WORD];    /* Length of bss area in bytes.  */
36   bfd_byte e_syms[BYTES_IN_WORD];   /* Length of symbol table in bytes.  */
37   bfd_byte e_entry[BYTES_IN_WORD];  /* Start address.  */
38   bfd_byte e_trsize[BYTES_IN_WORD]; /* Length of text relocation info.  */
39   bfd_byte e_drsize[BYTES_IN_WORD]; /* Length of data relocation info.  */
40 };
41 
42 #define	EXEC_BYTES_SIZE	(4 + BYTES_IN_WORD * 7)
43 
44 /* Magic numbers for a.out files.  */
45 
46 #if ARCH_SIZE==64
47 #define OMAGIC 0x1001		/* Code indicating object file.  */
48 #define ZMAGIC 0x1002		/* Code indicating demand-paged executable.  */
49 #define NMAGIC 0x1003		/* Code indicating pure executable.  */
50 
51 /* There is no 64-bit QMAGIC as far as I know.  */
52 
53 #define N_BADMAG(x)	  (N_MAGIC(x) != OMAGIC		\
54 			&& N_MAGIC(x) != NMAGIC		\
55   			&& N_MAGIC(x) != ZMAGIC)
56 #else
57 #define OMAGIC 0407		/* Object file or impure executable.  */
58 #define NMAGIC 0410		/* Code indicating pure executable.  */
59 #define ZMAGIC 0413		/* Code indicating demand-paged executable.  */
60 #define BMAGIC 0415		/* Used by a b.out object.  */
61 
62 /* This indicates a demand-paged executable with the header in the text.
63    It is used by 386BSD (and variants) and Linux, at least.  */
64 #ifndef QMAGIC
65 #define QMAGIC 0314
66 #endif
67 # ifndef N_BADMAG
68 #  define N_BADMAG(x)	  (N_MAGIC(x) != OMAGIC		\
69 			&& N_MAGIC(x) != NMAGIC		\
70   			&& N_MAGIC(x) != ZMAGIC \
71 		        && N_MAGIC(x) != QMAGIC)
72 # endif /* N_BADMAG */
73 #endif
74 
75 #endif
76 
77 #ifdef QMAGIC
78 #define N_IS_QMAGIC(x) (N_MAGIC (x) == QMAGIC)
79 #else
80 #define N_IS_QMAGIC(x) (0)
81 #endif
82 
83 /* The difference between TARGET_PAGE_SIZE and N_SEGSIZE is that TARGET_PAGE_SIZE is
84    the finest granularity at which you can page something, thus it
85    controls the padding (if any) before the text segment of a ZMAGIC
86    file.  N_SEGSIZE is the resolution at which things can be marked as
87    read-only versus read/write, so it controls the padding between the
88    text segment and the data segment (in memory; on disk the padding
89    between them is TARGET_PAGE_SIZE).  TARGET_PAGE_SIZE and N_SEGSIZE are the same
90    for most machines, but different for sun3.  */
91 
92 /* By default, segment size is constant.  But some machines override this
93    to be a function of the a.out header (e.g. machine type).  */
94 
95 #ifndef	N_SEGSIZE
96 #define	N_SEGSIZE(x)	SEGMENT_SIZE
97 #endif
98 
99 /* Virtual memory address of the text section.
100    This is getting very complicated.  A good reason to discard a.out format
101    for something that specifies these fields explicitly.  But til then...
102 
103    * OMAGIC and NMAGIC files:
104        (object files: text for "relocatable addr 0" right after the header)
105        start at 0, offset is EXEC_BYTES_SIZE, size as stated.
106    * The text address, offset, and size of ZMAGIC files depend
107      on the entry point of the file:
108      * entry point below TEXT_START_ADDR:
109        (hack for SunOS shared libraries)
110        start at 0, offset is 0, size as stated.
111      * If N_HEADER_IN_TEXT(x) is true (which defaults to being the
112        case when the entry point is EXEC_BYTES_SIZE or further into a page):
113        no padding is needed; text can start after exec header.  Sun
114        considers the text segment of such files to include the exec header;
115        for BFD's purposes, we don't, which makes more work for us.
116        start at TEXT_START_ADDR + EXEC_BYTES_SIZE, offset is EXEC_BYTES_SIZE,
117        size as stated minus EXEC_BYTES_SIZE.
118      * If N_HEADER_IN_TEXT(x) is false (which defaults to being the case when
119        the entry point is less than EXEC_BYTES_SIZE into a page (e.g. page
120        aligned)): (padding is needed so that text can start at a page boundary)
121        start at TEXT_START_ADDR, offset TARGET_PAGE_SIZE, size as stated.
122 
123     Specific configurations may want to hardwire N_HEADER_IN_TEXT,
124     for efficiency or to allow people to play games with the entry point.
125     In that case, you would #define N_HEADER_IN_TEXT(x) as 1 for sunos,
126     and as 0 for most other hosts (Sony News, Vax Ultrix, etc).
127     (Do this in the appropriate bfd target file.)
128     (The default is a heuristic that will break if people try changing
129     the entry point, perhaps with the ld -e flag.)
130 
131     * QMAGIC is always like a ZMAGIC for which N_HEADER_IN_TEXT is true,
132     and for which the starting address is TARGET_PAGE_SIZE (or should this be
133     SEGMENT_SIZE?) (TEXT_START_ADDR only applies to ZMAGIC, not to QMAGIC).  */
134 
135 /* This macro is only relevant for ZMAGIC files; QMAGIC always has the header
136    in the text.  */
137 #ifndef N_HEADER_IN_TEXT
138 #define N_HEADER_IN_TEXT(x) \
139   (((x).a_entry & (TARGET_PAGE_SIZE-1)) >= EXEC_BYTES_SIZE)
140 #endif
141 
142 /* Sun shared libraries, not linux.  This macro is only relevant for ZMAGIC
143    files.  */
144 #ifndef N_SHARED_LIB
145 #define N_SHARED_LIB(x) (0)
146 #endif
147 
148 /* Returning 0 not TEXT_START_ADDR for OMAGIC and NMAGIC is based on
149    the assumption that we are dealing with a .o file, not an
150    executable.  This is necessary for OMAGIC (but means we don't work
151    right on the output from ld -N); more questionable for NMAGIC.  */
152 
153 #ifndef N_TXTADDR
154 #define N_TXTADDR(x) \
155     (/* The address of a QMAGIC file is always one page in,		\
156         with the header in the text.  */				\
157      N_IS_QMAGIC (x)							\
158      ? (bfd_vma) TARGET_PAGE_SIZE + EXEC_BYTES_SIZE			\
159      : (N_MAGIC (x) != ZMAGIC						\
160 	? (bfd_vma) 0	/* Object file or NMAGIC.  */			\
161 	: (N_SHARED_LIB (x)						\
162 	   ? (bfd_vma) 0						\
163 	   : (N_HEADER_IN_TEXT (x)					\
164 	      ? (bfd_vma) TEXT_START_ADDR + EXEC_BYTES_SIZE		\
165 	      : (bfd_vma) TEXT_START_ADDR))))
166 #endif
167 
168 /* If N_HEADER_IN_TEXT is not true for ZMAGIC, there is some padding
169    to make the text segment start at a certain boundary.  For most
170    systems, this boundary is TARGET_PAGE_SIZE.  But for Linux, in the
171    time-honored tradition of crazy ZMAGIC hacks, it is 1024 which is
172    not what TARGET_PAGE_SIZE needs to be for QMAGIC.  */
173 
174 #ifndef ZMAGIC_DISK_BLOCK_SIZE
175 #define ZMAGIC_DISK_BLOCK_SIZE TARGET_PAGE_SIZE
176 #endif
177 
178 #define N_DISK_BLOCK_SIZE(x) \
179   (N_MAGIC(x) == ZMAGIC ? ZMAGIC_DISK_BLOCK_SIZE : TARGET_PAGE_SIZE)
180 
181 /* Offset in an a.out of the start of the text section. */
182 #ifndef N_TXTOFF
183 #define N_TXTOFF(x)							\
184     (/* For {O,N,Q}MAGIC, no padding.  */				\
185      N_MAGIC (x) != ZMAGIC						\
186      ? EXEC_BYTES_SIZE							\
187      : (N_SHARED_LIB (x)						\
188 	? 0								\
189 	: (N_HEADER_IN_TEXT (x)						\
190 	   ? EXEC_BYTES_SIZE		/* No padding.  */		\
191 	   : ZMAGIC_DISK_BLOCK_SIZE	/* A page of padding.  */)))
192 #endif
193 /* Size of the text section.  It's always as stated, except that we
194    offset it to `undo' the adjustment to N_TXTADDR and N_TXTOFF
195    for ZMAGIC files that nominally include the exec header
196    as part of the first page of text.  (BFD doesn't consider the
197    exec header to be part of the text segment.)  */
198 #ifndef N_TXTSIZE
199 #define	N_TXTSIZE(x) \
200   (/* For QMAGIC, we don't consider the header part of the text section.  */\
201    N_IS_QMAGIC (x)							\
202    ? (x).a_text - EXEC_BYTES_SIZE					\
203    : ((N_MAGIC (x) != ZMAGIC || N_SHARED_LIB (x))			\
204       ? (x).a_text							\
205       : (N_HEADER_IN_TEXT (x)						\
206 	 ? (x).a_text - EXEC_BYTES_SIZE	/* No padding.  */		\
207 	 : (x).a_text			/* A page of padding.  */ )))
208 #endif
209 /* The address of the data segment in virtual memory.
210    It is the text segment address, plus text segment size, rounded
211    up to a N_SEGSIZE boundary for pure or pageable files.  */
212 #ifndef N_DATADDR
213 #define N_DATADDR(x) \
214   (N_MAGIC (x) == OMAGIC						\
215    ? (N_TXTADDR (x) + N_TXTSIZE (x))					\
216    : (N_SEGSIZE (x) + ((N_TXTADDR (x) + N_TXTSIZE (x) - 1)		\
217 		       & ~ (bfd_vma) (N_SEGSIZE (x) - 1))))
218 #endif
219 /* The address of the BSS segment -- immediately after the data segment.  */
220 
221 #define N_BSSADDR(x)	(N_DATADDR (x) + (x).a_data)
222 
223 /* Offsets of the various portions of the file after the text segment.  */
224 
225 /* For {Q,Z}MAGIC, there is padding to make the data segment start on
226    a page boundary.  Most of the time the a_text field (and thus
227    N_TXTSIZE) already contains this padding.  It is possible that for
228    BSDI and/or 386BSD it sometimes doesn't contain the padding, and
229    perhaps we should be adding it here.  But this seems kind of
230    questionable and probably should be BSDI/386BSD-specific if we do
231    do it.
232 
233    For NMAGIC (at least for hp300 BSD, probably others), there is
234    padding in memory only, not on disk, so we must *not* ever pad here
235    for NMAGIC.  */
236 
237 #ifndef N_DATOFF
238 #define N_DATOFF(x)	(N_TXTOFF (x) + N_TXTSIZE (x))
239 #endif
240 #ifndef N_TRELOFF
241 #define N_TRELOFF(x)	(N_DATOFF (x) + (x).a_data)
242 #endif
243 #ifndef N_DRELOFF
244 #define N_DRELOFF(x)	(N_TRELOFF (x) + (x).a_trsize)
245 #endif
246 #ifndef N_SYMOFF
247 #define N_SYMOFF(x)	(N_DRELOFF (x) + (x).a_drsize)
248 #endif
249 #ifndef N_STROFF
250 #define N_STROFF(x)	(N_SYMOFF (x) + (x).a_syms)
251 #endif
252 
253 /* Symbols */
254 #ifndef external_nlist
255 struct external_nlist
256 {
257   bfd_byte e_strx[BYTES_IN_WORD];	/* Index into string table of name.  */
258   bfd_byte e_type[1];			/* Type of symbol.  */
259   bfd_byte e_other[1];			/* Misc info (usually empty).  */
260   bfd_byte e_desc[2];			/* Description field.  */
261   bfd_byte e_value[BYTES_IN_WORD];	/* Value of symbol.  */
262 };
263 #define EXTERNAL_NLIST_SIZE (BYTES_IN_WORD+4+BYTES_IN_WORD)
264 #endif
265 
266 struct internal_nlist
267 {
268   unsigned long n_strx;			/* Index into string table of name.  */
269   unsigned char n_type;			/* Type of symbol.  */
270   unsigned char n_other;		/* Misc info (usually empty).  */
271   unsigned short n_desc;		/* Description field.  */
272   bfd_vma n_value;			/* Value of symbol.  */
273 };
274 
275 /* The n_type field is the symbol type, containing:  */
276 
277 #define N_UNDF	0	/* Undefined symbol.  */
278 #define N_ABS 	2	/* Absolute symbol -- defined at particular addr.  */
279 #define N_TEXT 	4	/* Text sym -- defined at offset in text seg.  */
280 #define N_DATA 	6	/* Data sym -- defined at offset in data seg.  */
281 #define N_BSS 	8	/* BSS  sym -- defined at offset in zero'd seg.  */
282 #define	N_COMM	0x12	/* Common symbol (visible after shared lib dynlink).  */
283 #define N_FN	0x1f	/* File name of .o file.  */
284 #define	N_FN_SEQ 0x0C	/* N_FN from Sequent compilers (sigh).  */
285 /* Note: N_EXT can only be usefully OR-ed with N_UNDF, N_ABS, N_TEXT,
286    N_DATA, or N_BSS.  When the low-order bit of other types is set,
287    (e.g. N_WARNING versus N_FN), they are two different types.  */
288 #define N_EXT 	1	/* External symbol (as opposed to local-to-this-file).  */
289 #define N_TYPE  0x1e
290 #define N_STAB 	0xe0	/* If any of these bits are on, it's a debug symbol.  */
291 
292 #define N_INDR 0x0a
293 
294 /* The following symbols refer to set elements.
295    All the N_SET[ATDB] symbols with the same name form one set.
296    Space is allocated for the set in the text section, and each set
297    elements value is stored into one word of the space.
298    The first word of the space is the length of the set (number of elements).
299 
300    The address of the set is made into an N_SETV symbol
301    whose name is the same as the name of the set.
302    This symbol acts like a N_DATA global symbol
303    in that it can satisfy undefined external references.  */
304 
305 /* These appear as input to LD, in a .o file.  */
306 #define	N_SETA	0x14		/* Absolute set element symbol.  */
307 #define	N_SETT	0x16		/* Text set element symbol.  */
308 #define	N_SETD	0x18		/* Data set element symbol.  */
309 #define	N_SETB	0x1A		/* Bss set element symbol.  */
310 
311 /* This is output from LD.  */
312 #define N_SETV	0x1C		/* Pointer to set vector in data area.  */
313 
314 /* Warning symbol. The text gives a warning message, the next symbol
315    in the table will be undefined. When the symbol is referenced, the
316    message is printed.  */
317 
318 #define	N_WARNING 0x1e
319 
320 /* Weak symbols.  These are a GNU extension to the a.out format.  The
321    semantics are those of ELF weak symbols.  Weak symbols are always
322    externally visible.  The N_WEAK? values are squeezed into the
323    available slots.  The value of a N_WEAKU symbol is 0.  The values
324    of the other types are the definitions.  */
325 #define N_WEAKU	0x0d		/* Weak undefined symbol.  */
326 #define N_WEAKA 0x0e		/* Weak absolute symbol.  */
327 #define N_WEAKT 0x0f		/* Weak text symbol.  */
328 #define N_WEAKD 0x10		/* Weak data symbol.  */
329 #define N_WEAKB 0x11		/* Weak bss symbol.  */
330 
331 /* Relocations
332 
333   There	are two types of relocation flavours for a.out systems,
334   standard and extended. The standard form is used on systems where the
335   instruction has room for all the bits of an offset to the operand, whilst
336   the extended form is used when an address operand has to be split over n
337   instructions. Eg, on the 68k, each move instruction can reference
338   the target with a displacement of 16 or 32 bits. On the sparc, move
339   instructions use an offset of 14 bits, so the offset is stored in
340   the reloc field, and the data in the section is ignored.  */
341 
342 /* This structure describes a single relocation to be performed.
343    The text-relocation section of the file is a vector of these structures,
344    all of which apply to the text section.
345    Likewise, the data-relocation section applies to the data section.  */
346 
347 struct reloc_std_external
348 {
349   bfd_byte r_address[BYTES_IN_WORD];	/* Offset of of data to relocate.  */
350   bfd_byte r_index[3];			/* Symbol table index of symbol.  */
351   bfd_byte r_type[1];			/* Relocation type.  */
352 };
353 
354 #define	RELOC_STD_BITS_PCREL_BIG	((unsigned int) 0x80)
355 #define	RELOC_STD_BITS_PCREL_LITTLE	((unsigned int) 0x01)
356 
357 #define	RELOC_STD_BITS_LENGTH_BIG	((unsigned int) 0x60)
358 #define	RELOC_STD_BITS_LENGTH_SH_BIG	5
359 #define	RELOC_STD_BITS_LENGTH_LITTLE	((unsigned int) 0x06)
360 #define	RELOC_STD_BITS_LENGTH_SH_LITTLE	1
361 
362 #define	RELOC_STD_BITS_EXTERN_BIG	((unsigned int) 0x10)
363 #define	RELOC_STD_BITS_EXTERN_LITTLE	((unsigned int) 0x08)
364 
365 #define	RELOC_STD_BITS_BASEREL_BIG	((unsigned int) 0x08)
366 #define	RELOC_STD_BITS_BASEREL_LITTLE	((unsigned int) 0x10)
367 
368 #define	RELOC_STD_BITS_JMPTABLE_BIG	((unsigned int) 0x04)
369 #define	RELOC_STD_BITS_JMPTABLE_LITTLE	((unsigned int) 0x20)
370 
371 #define	RELOC_STD_BITS_RELATIVE_BIG	((unsigned int) 0x02)
372 #define	RELOC_STD_BITS_RELATIVE_LITTLE	((unsigned int) 0x40)
373 
374 #define	RELOC_STD_SIZE	(BYTES_IN_WORD + 3 + 1)		/* Bytes per relocation entry.  */
375 
376 struct reloc_std_internal
377 {
378   bfd_vma r_address;		/* Address (within segment) to be relocated.  */
379   /* The meaning of r_symbolnum depends on r_extern.  */
380   unsigned int r_symbolnum:24;
381   /* Nonzero means value is a pc-relative offset
382      and it should be relocated for changes in its own address
383      as well as for changes in the symbol or section specified.  */
384   unsigned int r_pcrel:1;
385   /* Length (as exponent of 2) of the field to be relocated.
386      Thus, a value of 2 indicates 1<<2 bytes.  */
387   unsigned int r_length:2;
388   /* 1 => relocate with value of symbol.
389      r_symbolnum is the index of the symbol
390      in files the symbol table.
391      0 => relocate with the address of a segment.
392      r_symbolnum is N_TEXT, N_DATA, N_BSS or N_ABS
393      (the N_EXT bit may be set also, but signifies nothing).  */
394   unsigned int r_extern:1;
395   /* The next three bits are for SunOS shared libraries, and seem to
396      be undocumented.  */
397   unsigned int r_baserel:1;	/* Linkage table relative.  */
398   unsigned int r_jmptable:1;	/* pc-relative to jump table.  */
399   unsigned int r_relative:1;	/* "relative relocation".  */
400   /* unused */
401   unsigned int r_pad:1;		/* Padding -- set to zero.  */
402 };
403 
404 
405 /* EXTENDED RELOCS.   */
406 
407 struct reloc_ext_external
408 {
409   bfd_byte r_address[BYTES_IN_WORD];	/* Offset of of data to relocate.  */
410   bfd_byte r_index[3];			/* Symbol table index of symbol.  */
411   bfd_byte r_type[1];			/* Relocation type.  */
412   bfd_byte r_addend[BYTES_IN_WORD];	/* Datum addend.  */
413 };
414 
415 #ifndef RELOC_EXT_BITS_EXTERN_BIG
416 #define	RELOC_EXT_BITS_EXTERN_BIG	((unsigned int) 0x80)
417 #endif
418 
419 #ifndef RELOC_EXT_BITS_EXTERN_LITTLE
420 #define	RELOC_EXT_BITS_EXTERN_LITTLE	((unsigned int) 0x01)
421 #endif
422 
423 #ifndef RELOC_EXT_BITS_TYPE_BIG
424 #define	RELOC_EXT_BITS_TYPE_BIG		((unsigned int) 0x1F)
425 #endif
426 
427 #ifndef RELOC_EXT_BITS_TYPE_SH_BIG
428 #define	RELOC_EXT_BITS_TYPE_SH_BIG	0
429 #endif
430 
431 #ifndef RELOC_EXT_BITS_TYPE_LITTLE
432 #define	RELOC_EXT_BITS_TYPE_LITTLE	((unsigned int) 0xF8)
433 #endif
434 
435 #ifndef RELOC_EXT_BITS_TYPE_SH_LITTLE
436 #define	RELOC_EXT_BITS_TYPE_SH_LITTLE	3
437 #endif
438 
439 /* Bytes per relocation entry.  */
440 #define	RELOC_EXT_SIZE	(BYTES_IN_WORD + 3 + 1 + BYTES_IN_WORD)
441 
442 enum reloc_type
443 {
444   /* Simple relocations.  */
445   RELOC_8,			/* data[0:7] = addend + sv 		*/
446   RELOC_16,			/* data[0:15] = addend + sv 		*/
447   RELOC_32,			/* data[0:31] = addend + sv 		*/
448   /* PC-rel displacement.  */
449   RELOC_DISP8,			/* data[0:7] = addend - pc + sv 	*/
450   RELOC_DISP16,			/* data[0:15] = addend - pc + sv 	*/
451   RELOC_DISP32,			/* data[0:31] = addend - pc + sv 	*/
452   /* Special.  */
453   RELOC_WDISP30,		/* data[0:29] = (addend + sv - pc)>>2 	*/
454   RELOC_WDISP22,		/* data[0:21] = (addend + sv - pc)>>2 	*/
455   RELOC_HI22,			/* data[0:21] = (addend + sv)>>10 	*/
456   RELOC_22,			/* data[0:21] = (addend + sv) 		*/
457   RELOC_13,			/* data[0:12] = (addend + sv)		*/
458   RELOC_LO10,			/* data[0:9] = (addend + sv)		*/
459   RELOC_SFA_BASE,
460   RELOC_SFA_OFF13,
461   /* P.I.C. (base-relative).  */
462   RELOC_BASE10,  		/* Not sure - maybe we can do this the */
463   RELOC_BASE13,			/* right way now */
464   RELOC_BASE22,
465   /* For some sort of pc-rel P.I.C. (?)  */
466   RELOC_PC10,
467   RELOC_PC22,
468   /* P.I.C. jump table.  */
469   RELOC_JMP_TBL,
470   /* Reputedly for shared libraries somehow.  */
471   RELOC_SEGOFF16,
472   RELOC_GLOB_DAT,
473   RELOC_JMP_SLOT,
474   RELOC_RELATIVE,
475 
476   RELOC_11,
477   RELOC_WDISP2_14,
478   RELOC_WDISP19,
479   RELOC_HHI22,			/* data[0:21] = (addend + sv) >> 42     */
480   RELOC_HLO10,			/* data[0:9] = (addend + sv) >> 32      */
481 
482   /* 29K relocation types.  */
483   RELOC_JUMPTARG,
484   RELOC_CONST,
485   RELOC_CONSTH,
486 
487   /* All the new ones I can think of, for sparc v9.  */
488   RELOC_64,			/* data[0:63] = addend + sv 		*/
489   RELOC_DISP64,			/* data[0:63] = addend - pc + sv 	*/
490   RELOC_WDISP21,		/* data[0:20] = (addend + sv - pc)>>2 	*/
491   RELOC_DISP21,			/* data[0:20] = addend - pc + sv        */
492   RELOC_DISP14,			/* data[0:13] = addend - pc + sv 	*/
493   /* Q .
494      What are the other ones,
495      Since this is a clean slate, can we throw away the ones we dont
496      understand ? Should we sort the values ? What about using a
497      microcode format like the 68k ?  */
498   NO_RELOC
499   };
500 
501 
502 struct reloc_internal
503 {
504   bfd_vma r_address;		/* Offset of of data to relocate.  */
505   long	r_index;		/* Symbol table index of symbol.  */
506   enum reloc_type r_type;	/* Relocation type.  */
507   bfd_vma r_addend;		/* Datum addend.  */
508 };
509 
510 /* Q.
511    Should the length of the string table be 4 bytes or 8 bytes ?
512 
513    Q.
514    What about archive indexes ?  */
515 
516 #endif				/* __A_OUT_64_H__ */
517