1; RUN: llc -march=mips -relocation-model=static -mattr=+soft-float < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32BE %s 2; RUN: llc -march=mipsel -relocation-model=static -mattr=+soft-float < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32LE %s 3 4; RUN-TODO: llc -march=mips64 -relocation-model=static -mattr=+soft-float -target-abi o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s 5; RUN-TODO: llc -march=mips64el -relocation-model=static -mattr=+soft-float -target-abi o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s 6 7; RUN: llc -march=mips64 -relocation-model=static -mattr=+soft-float -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s 8; RUN: llc -march=mips64el -relocation-model=static -mattr=+soft-float -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s 9 10; RUN: llc -march=mips64 -relocation-model=static -mattr=+soft-float -target-abi n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s 11; RUN: llc -march=mips64el -relocation-model=static -mattr=+soft-float -target-abi n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s 12 13; Test the floating point arguments for all ABI's and byte orders as specified 14; by section 5 of MD00305 (MIPS ABIs Described). 15; 16; N32/N64 are identical in this area so their checks have been combined into 17; the 'NEW' prefix (the N stands for New). 18 19@bytes = global [11 x i8] zeroinitializer 20@dwords = global [11 x i64] zeroinitializer 21@floats = global [11 x float] zeroinitializer 22@doubles = global [11 x double] zeroinitializer 23 24define void @double_args(double %a, double %b, double %c, double %d, double %e, 25 double %f, double %g, double %h, double %i) nounwind { 26entry: 27 %0 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1 28 store volatile double %a, double* %0 29 %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 2 30 store volatile double %b, double* %1 31 %2 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 3 32 store volatile double %c, double* %2 33 %3 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 4 34 store volatile double %d, double* %3 35 %4 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 5 36 store volatile double %e, double* %4 37 %5 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 6 38 store volatile double %f, double* %5 39 %6 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 7 40 store volatile double %g, double* %6 41 %7 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 8 42 store volatile double %h, double* %7 43 %8 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 9 44 store volatile double %i, double* %8 45 ret void 46} 47 48; ALL-LABEL: double_args: 49; We won't test the way the global address is calculated in this test. This is 50; just to get the register number for the other checks. 51; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles) 52; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)( 53 54; The first four arguments are the same in O32/N32/N64. 55; The first argument is floating point but soft-float is enabled so floating 56; point registers are not used. 57; O32-DAG: sw $4, 8([[R2]]) 58; O32-DAG: sw $5, 12([[R2]]) 59; NEW-DAG: sd $4, 8([[R2]]) 60 61; O32-DAG: sw $6, 16([[R2]]) 62; O32-DAG: sw $7, 20([[R2]]) 63; NEW-DAG: sd $5, 16([[R2]]) 64 65; O32 has run out of argument registers and starts using the stack 66; O32-DAG: lw [[R3:\$([0-9]+|gp)]], 24($sp) 67; O32-DAG: lw [[R4:\$([0-9]+|gp)]], 28($sp) 68; O32-DAG: sw [[R3]], 24([[R2]]) 69; O32-DAG: sw [[R4]], 28([[R2]]) 70; NEW-DAG: sd $6, 24([[R2]]) 71 72; O32-DAG: lw [[R3:\$([0-9]+|gp)]], 32($sp) 73; O32-DAG: lw [[R4:\$([0-9]+|gp)]], 36($sp) 74; O32-DAG: sw [[R3]], 32([[R2]]) 75; O32-DAG: sw [[R4]], 36([[R2]]) 76; NEW-DAG: sd $7, 32([[R2]]) 77 78; O32-DAG: lw [[R3:\$([0-9]+|gp)]], 40($sp) 79; O32-DAG: lw [[R4:\$([0-9]+|gp)]], 44($sp) 80; O32-DAG: sw [[R3]], 40([[R2]]) 81; O32-DAG: sw [[R4]], 44([[R2]]) 82; NEW-DAG: sd $8, 40([[R2]]) 83 84; O32-DAG: lw [[R3:\$([0-9]+|gp)]], 48($sp) 85; O32-DAG: lw [[R4:\$([0-9]+|gp)]], 52($sp) 86; O32-DAG: sw [[R3]], 48([[R2]]) 87; O32-DAG: sw [[R4]], 52([[R2]]) 88; NEW-DAG: sd $9, 48([[R2]]) 89 90; O32-DAG: lw [[R3:\$([0-9]+|gp)]], 56($sp) 91; O32-DAG: lw [[R4:\$([0-9]+|gp)]], 60($sp) 92; O32-DAG: sw [[R3]], 56([[R2]]) 93; O32-DAG: sw [[R4]], 60([[R2]]) 94; NEW-DAG: sd $10, 56([[R2]]) 95 96; N32/N64 have run out of registers and starts using the stack too 97; O32-DAG: lw [[R3:\$[0-9]+]], 64($sp) 98; O32-DAG: lw [[R4:\$[0-9]+]], 68($sp) 99; O32-DAG: sw [[R3]], 64([[R2]]) 100; O32-DAG: sw [[R4]], 68([[R2]]) 101; NEW-DAG: ld [[R3:\$[0-9]+]], 0($sp) 102; NEW-DAG: sd $11, 64([[R2]]) 103 104define void @float_args(float %a, float %b, float %c, float %d, float %e, 105 float %f, float %g, float %h, float %i, float %j) 106 nounwind { 107entry: 108 %0 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1 109 store volatile float %a, float* %0 110 %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 2 111 store volatile float %b, float* %1 112 %2 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 3 113 store volatile float %c, float* %2 114 %3 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 4 115 store volatile float %d, float* %3 116 %4 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 5 117 store volatile float %e, float* %4 118 %5 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 6 119 store volatile float %f, float* %5 120 %6 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 7 121 store volatile float %g, float* %6 122 %7 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 8 123 store volatile float %h, float* %7 124 %8 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 9 125 store volatile float %i, float* %8 126 %9 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 10 127 store volatile float %j, float* %9 128 ret void 129} 130 131; ALL-LABEL: float_args: 132; We won't test the way the global address is calculated in this test. This is 133; just to get the register number for the other checks. 134; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats) 135; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(floats)( 136 137; The first four arguments are the same in O32/N32/N64. 138; The first argument is floating point but soft-float is enabled so floating 139; point registers are not used. 140; MD00305 and GCC disagree on this one. MD00305 says that floats are treated 141; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte 142; aligned and occupying one slot. We'll use GCC's definition. 143; ALL-DAG: sw $4, 4([[R2]]) 144; ALL-DAG: sw $5, 8([[R2]]) 145; ALL-DAG: sw $6, 12([[R2]]) 146; ALL-DAG: sw $7, 16([[R2]]) 147 148; O32 has run out of argument registers and starts using the stack 149; O32-DAG: lw [[R3:\$[0-9]+]], 16($sp) 150; O32-DAG: sw [[R3]], 20([[R2]]) 151; NEW-DAG: sw $8, 20([[R2]]) 152 153; O32-DAG: lw [[R3:\$[0-9]+]], 20($sp) 154; O32-DAG: sw [[R3]], 24([[R2]]) 155; NEW-DAG: sw $9, 24([[R2]]) 156 157; O32-DAG: lw [[R3:\$[0-9]+]], 24($sp) 158; O32-DAG: sw [[R3]], 28([[R2]]) 159; NEW-DAG: sw $10, 28([[R2]]) 160 161; O32-DAG: lw [[R3:\$[0-9]+]], 28($sp) 162; O32-DAG: sw [[R3]], 32([[R2]]) 163; NEW-DAG: sw $11, 32([[R2]]) 164 165; N32/N64 have run out of registers and start using the stack too 166; O32-DAG: lw [[R3:\$[0-9]+]], 32($sp) 167; O32-DAG: sw [[R3]], 36([[R2]]) 168; NEW-DAG: lw [[R3:\$[0-9]+]], 0($sp) 169; NEW-DAG: sw [[R3]], 36([[R2]]) 170 171define void @double_arg2(i8 %a, double %b) nounwind { 172entry: 173 %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1 174 store volatile i8 %a, i8* %0 175 %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1 176 store volatile double %b, double* %1 177 ret void 178} 179 180; ALL-LABEL: double_arg2: 181; We won't test the way the global address is calculated in this test. This is 182; just to get the register number for the other checks. 183; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes) 184; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)( 185; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles) 186; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)( 187 188; The first four arguments are the same in O32/N32/N64. 189; The first argument isn't floating point so floating point registers are not 190; used. 191; The second slot is insufficiently aligned for double on O32 so it is skipped. 192; Also, double occupies two slots on O32 and only one for N32/N64. 193; ALL-DAG: sb $4, 1([[R1]]) 194; O32-DAG: sw $6, 8([[R2]]) 195; O32-DAG: sw $7, 12([[R2]]) 196; NEW-DAG: sd $5, 8([[R2]]) 197 198define void @float_arg2(i8 signext %a, float %b) nounwind { 199entry: 200 %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1 201 store volatile i8 %a, i8* %0 202 %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1 203 store volatile float %b, float* %1 204 ret void 205} 206 207; ALL-LABEL: float_arg2: 208; We won't test the way the global address is calculated in this test. This is 209; just to get the register number for the other checks. 210; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes) 211; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)( 212; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats) 213; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(floats)( 214 215; The first four arguments are the same in O32/N32/N64. 216; The first argument isn't floating point so floating point registers are not 217; used. 218; MD00305 and GCC disagree on this one. MD00305 says that floats are treated 219; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte 220; aligned and occupying one slot. We'll use GCC's definition. 221; ALL-DAG: sb $4, 1([[R1]]) 222; ALL-DAG: sw $5, 4([[R2]]) 223