1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36
37 #include "src/arm/assembler-arm.h"
38
39 #if V8_TARGET_ARCH_ARM
40
41 #include "src/arm/assembler-arm-inl.h"
42 #include "src/base/bits.h"
43 #include "src/base/cpu.h"
44 #include "src/macro-assembler.h"
45
46 namespace v8 {
47 namespace internal {
48
49 // Get the CPU features enabled by the build. For cross compilation the
50 // preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
51 // can be defined to enable ARMv7 and VFPv3 instructions when building the
52 // snapshot.
CpuFeaturesImpliedByCompiler()53 static unsigned CpuFeaturesImpliedByCompiler() {
54 unsigned answer = 0;
55 #ifdef CAN_USE_ARMV8_INSTRUCTIONS
56 if (FLAG_enable_armv8) {
57 answer |= 1u << ARMv8;
58 // ARMv8 always features VFP and NEON.
59 answer |= 1u << ARMv7 | 1u << VFP3 | 1u << NEON | 1u << VFP32DREGS;
60 answer |= 1u << SUDIV | 1u << MLS;
61 }
62 #endif // CAN_USE_ARMV8_INSTRUCTIONS
63 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
64 if (FLAG_enable_armv7) answer |= 1u << ARMv7;
65 #endif // CAN_USE_ARMV7_INSTRUCTIONS
66 #ifdef CAN_USE_VFP3_INSTRUCTIONS
67 if (FLAG_enable_vfp3) answer |= 1u << VFP3 | 1u << ARMv7;
68 #endif // CAN_USE_VFP3_INSTRUCTIONS
69 #ifdef CAN_USE_VFP32DREGS
70 if (FLAG_enable_32dregs) answer |= 1u << VFP32DREGS;
71 #endif // CAN_USE_VFP32DREGS
72 #ifdef CAN_USE_NEON
73 if (FLAG_enable_neon) answer |= 1u << NEON;
74 #endif // CAN_USE_VFP32DREGS
75 if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) {
76 answer |= 1u << UNALIGNED_ACCESSES;
77 }
78
79 return answer;
80 }
81
82
ProbeImpl(bool cross_compile)83 void CpuFeatures::ProbeImpl(bool cross_compile) {
84 supported_ |= CpuFeaturesImpliedByCompiler();
85 cache_line_size_ = 64;
86
87 // Only use statically determined features for cross compile (snapshot).
88 if (cross_compile) return;
89
90 #ifndef __arm__
91 // For the simulator build, use whatever the flags specify.
92 if (FLAG_enable_armv8) {
93 supported_ |= 1u << ARMv8;
94 // ARMv8 always features VFP and NEON.
95 supported_ |= 1u << ARMv7 | 1u << VFP3 | 1u << NEON | 1u << VFP32DREGS;
96 supported_ |= 1u << SUDIV | 1u << MLS;
97 if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
98 }
99 if (FLAG_enable_armv7) {
100 supported_ |= 1u << ARMv7;
101 if (FLAG_enable_vfp3) supported_ |= 1u << VFP3;
102 if (FLAG_enable_neon) supported_ |= 1u << NEON | 1u << VFP32DREGS;
103 if (FLAG_enable_sudiv) supported_ |= 1u << SUDIV;
104 if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
105 if (FLAG_enable_32dregs) supported_ |= 1u << VFP32DREGS;
106 }
107 if (FLAG_enable_mls) supported_ |= 1u << MLS;
108 if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
109
110 #else // __arm__
111 // Probe for additional features at runtime.
112 base::CPU cpu;
113 if (FLAG_enable_vfp3 && cpu.has_vfp3()) {
114 // This implementation also sets the VFP flags if runtime
115 // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
116 // 0406B, page A1-6.
117 supported_ |= 1u << VFP3 | 1u << ARMv7;
118 }
119
120 if (FLAG_enable_neon && cpu.has_neon()) supported_ |= 1u << NEON;
121 if (FLAG_enable_sudiv && cpu.has_idiva()) supported_ |= 1u << SUDIV;
122 if (FLAG_enable_mls && cpu.has_thumb2()) supported_ |= 1u << MLS;
123
124 if (cpu.architecture() >= 7) {
125 if (FLAG_enable_armv7) supported_ |= 1u << ARMv7;
126 if (FLAG_enable_armv8 && cpu.architecture() >= 8) {
127 supported_ |= 1u << ARMv8;
128 }
129 if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
130 // Use movw/movt for QUALCOMM ARMv7 cores.
131 if (FLAG_enable_movw_movt && cpu.implementer() == base::CPU::QUALCOMM) {
132 supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
133 }
134 }
135
136 // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines.
137 if (cpu.implementer() == base::CPU::ARM &&
138 (cpu.part() == base::CPU::ARM_CORTEX_A5 ||
139 cpu.part() == base::CPU::ARM_CORTEX_A9)) {
140 cache_line_size_ = 32;
141 }
142
143 if (FLAG_enable_32dregs && cpu.has_vfp3_d32()) supported_ |= 1u << VFP32DREGS;
144
145 if (cpu.implementer() == base::CPU::NVIDIA &&
146 cpu.variant() == base::CPU::NVIDIA_DENVER &&
147 cpu.part() <= base::CPU::NVIDIA_DENVER_V10) {
148 supported_ |= 1u << COHERENT_CACHE;
149 }
150 #endif
151
152 DCHECK(!IsSupported(VFP3) || IsSupported(ARMv7));
153 }
154
155
PrintTarget()156 void CpuFeatures::PrintTarget() {
157 const char* arm_arch = NULL;
158 const char* arm_target_type = "";
159 const char* arm_no_probe = "";
160 const char* arm_fpu = "";
161 const char* arm_thumb = "";
162 const char* arm_float_abi = NULL;
163
164 #if !defined __arm__
165 arm_target_type = " simulator";
166 #endif
167
168 #if defined ARM_TEST_NO_FEATURE_PROBE
169 arm_no_probe = " noprobe";
170 #endif
171
172 #if defined CAN_USE_ARMV8_INSTRUCTIONS
173 arm_arch = "arm v8";
174 #elif defined CAN_USE_ARMV7_INSTRUCTIONS
175 arm_arch = "arm v7";
176 #else
177 arm_arch = "arm v6";
178 #endif
179
180 #if defined CAN_USE_NEON
181 arm_fpu = " neon";
182 #elif defined CAN_USE_VFP3_INSTRUCTIONS
183 # if defined CAN_USE_VFP32DREGS
184 arm_fpu = " vfp3";
185 # else
186 arm_fpu = " vfp3-d16";
187 # endif
188 #else
189 arm_fpu = " vfp2";
190 #endif
191
192 #ifdef __arm__
193 arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp";
194 #elif USE_EABI_HARDFLOAT
195 arm_float_abi = "hard";
196 #else
197 arm_float_abi = "softfp";
198 #endif
199
200 #if defined __arm__ && (defined __thumb__) || (defined __thumb2__)
201 arm_thumb = " thumb";
202 #endif
203
204 printf("target%s%s %s%s%s %s\n",
205 arm_target_type, arm_no_probe, arm_arch, arm_fpu, arm_thumb,
206 arm_float_abi);
207 }
208
209
PrintFeatures()210 void CpuFeatures::PrintFeatures() {
211 printf(
212 "ARMv8=%d ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d MLS=%d"
213 "UNALIGNED_ACCESSES=%d MOVW_MOVT_IMMEDIATE_LOADS=%d COHERENT_CACHE=%d",
214 CpuFeatures::IsSupported(ARMv8),
215 CpuFeatures::IsSupported(ARMv7),
216 CpuFeatures::IsSupported(VFP3),
217 CpuFeatures::IsSupported(VFP32DREGS),
218 CpuFeatures::IsSupported(NEON),
219 CpuFeatures::IsSupported(SUDIV),
220 CpuFeatures::IsSupported(MLS),
221 CpuFeatures::IsSupported(UNALIGNED_ACCESSES),
222 CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS),
223 CpuFeatures::IsSupported(COHERENT_CACHE));
224 #ifdef __arm__
225 bool eabi_hardfloat = base::OS::ArmUsingHardFloat();
226 #elif USE_EABI_HARDFLOAT
227 bool eabi_hardfloat = true;
228 #else
229 bool eabi_hardfloat = false;
230 #endif
231 printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat);
232 }
233
234
235 // -----------------------------------------------------------------------------
236 // Implementation of RelocInfo
237
238 // static
239 const int RelocInfo::kApplyMask = 0;
240
241
IsCodedSpecially()242 bool RelocInfo::IsCodedSpecially() {
243 // The deserializer needs to know whether a pointer is specially coded. Being
244 // specially coded on ARM means that it is a movw/movt instruction, or is an
245 // embedded constant pool entry. These only occur if
246 // FLAG_enable_embedded_constant_pool is true.
247 return FLAG_enable_embedded_constant_pool;
248 }
249
250
IsInConstantPool()251 bool RelocInfo::IsInConstantPool() {
252 return Assembler::is_constant_pool_load(pc_);
253 }
254
255
256 // -----------------------------------------------------------------------------
257 // Implementation of Operand and MemOperand
258 // See assembler-arm-inl.h for inlined constructors
259
Operand(Handle<Object> handle)260 Operand::Operand(Handle<Object> handle) {
261 AllowDeferredHandleDereference using_raw_address;
262 rm_ = no_reg;
263 // Verify all Objects referred by code are NOT in new space.
264 Object* obj = *handle;
265 if (obj->IsHeapObject()) {
266 DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
267 imm32_ = reinterpret_cast<intptr_t>(handle.location());
268 rmode_ = RelocInfo::EMBEDDED_OBJECT;
269 } else {
270 // no relocation needed
271 imm32_ = reinterpret_cast<intptr_t>(obj);
272 rmode_ = RelocInfo::NONE32;
273 }
274 }
275
276
Operand(Register rm,ShiftOp shift_op,int shift_imm)277 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
278 DCHECK(is_uint5(shift_imm));
279
280 rm_ = rm;
281 rs_ = no_reg;
282 shift_op_ = shift_op;
283 shift_imm_ = shift_imm & 31;
284
285 if ((shift_op == ROR) && (shift_imm == 0)) {
286 // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode
287 // RRX as ROR #0 (See below).
288 shift_op = LSL;
289 } else if (shift_op == RRX) {
290 // encoded as ROR with shift_imm == 0
291 DCHECK(shift_imm == 0);
292 shift_op_ = ROR;
293 shift_imm_ = 0;
294 }
295 }
296
297
Operand(Register rm,ShiftOp shift_op,Register rs)298 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
299 DCHECK(shift_op != RRX);
300 rm_ = rm;
301 rs_ = no_reg;
302 shift_op_ = shift_op;
303 rs_ = rs;
304 }
305
306
MemOperand(Register rn,int32_t offset,AddrMode am)307 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
308 rn_ = rn;
309 rm_ = no_reg;
310 offset_ = offset;
311 am_ = am;
312
313 // Accesses below the stack pointer are not safe, and are prohibited by the
314 // ABI. We can check obvious violations here.
315 if (rn.is(sp)) {
316 if (am == Offset) DCHECK_LE(0, offset);
317 if (am == NegOffset) DCHECK_GE(0, offset);
318 }
319 }
320
321
MemOperand(Register rn,Register rm,AddrMode am)322 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
323 rn_ = rn;
324 rm_ = rm;
325 shift_op_ = LSL;
326 shift_imm_ = 0;
327 am_ = am;
328 }
329
330
MemOperand(Register rn,Register rm,ShiftOp shift_op,int shift_imm,AddrMode am)331 MemOperand::MemOperand(Register rn, Register rm,
332 ShiftOp shift_op, int shift_imm, AddrMode am) {
333 DCHECK(is_uint5(shift_imm));
334 rn_ = rn;
335 rm_ = rm;
336 shift_op_ = shift_op;
337 shift_imm_ = shift_imm & 31;
338 am_ = am;
339 }
340
341
NeonMemOperand(Register rn,AddrMode am,int align)342 NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) {
343 DCHECK((am == Offset) || (am == PostIndex));
344 rn_ = rn;
345 rm_ = (am == Offset) ? pc : sp;
346 SetAlignment(align);
347 }
348
349
NeonMemOperand(Register rn,Register rm,int align)350 NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) {
351 rn_ = rn;
352 rm_ = rm;
353 SetAlignment(align);
354 }
355
356
SetAlignment(int align)357 void NeonMemOperand::SetAlignment(int align) {
358 switch (align) {
359 case 0:
360 align_ = 0;
361 break;
362 case 64:
363 align_ = 1;
364 break;
365 case 128:
366 align_ = 2;
367 break;
368 case 256:
369 align_ = 3;
370 break;
371 default:
372 UNREACHABLE();
373 align_ = 0;
374 break;
375 }
376 }
377
378
NeonListOperand(DoubleRegister base,int registers_count)379 NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) {
380 base_ = base;
381 switch (registers_count) {
382 case 1:
383 type_ = nlt_1;
384 break;
385 case 2:
386 type_ = nlt_2;
387 break;
388 case 3:
389 type_ = nlt_3;
390 break;
391 case 4:
392 type_ = nlt_4;
393 break;
394 default:
395 UNREACHABLE();
396 type_ = nlt_1;
397 break;
398 }
399 }
400
401
402 // -----------------------------------------------------------------------------
403 // Specific instructions, constants, and masks.
404
405 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
406 // register r is not encoded.
407 const Instr kPushRegPattern =
408 al | B26 | 4 | NegPreIndex | Register::kCode_sp * B16;
409 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
410 // register r is not encoded.
411 const Instr kPopRegPattern =
412 al | B26 | L | 4 | PostIndex | Register::kCode_sp * B16;
413 // ldr rd, [pc, #offset]
414 const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
415 const Instr kLdrPCImmedPattern = 5 * B24 | L | Register::kCode_pc * B16;
416 // ldr rd, [pp, #offset]
417 const Instr kLdrPpImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
418 const Instr kLdrPpImmedPattern = 5 * B24 | L | Register::kCode_r8 * B16;
419 // ldr rd, [pp, rn]
420 const Instr kLdrPpRegMask = 15 * B24 | 7 * B20 | 15 * B16;
421 const Instr kLdrPpRegPattern = 7 * B24 | L | Register::kCode_r8 * B16;
422 // vldr dd, [pc, #offset]
423 const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
424 const Instr kVldrDPCPattern = 13 * B24 | L | Register::kCode_pc * B16 | 11 * B8;
425 // vldr dd, [pp, #offset]
426 const Instr kVldrDPpMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
427 const Instr kVldrDPpPattern = 13 * B24 | L | Register::kCode_r8 * B16 | 11 * B8;
428 // blxcc rm
429 const Instr kBlxRegMask =
430 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
431 const Instr kBlxRegPattern =
432 B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
433 const Instr kBlxIp = al | kBlxRegPattern | ip.code();
434 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
435 const Instr kMovMvnPattern = 0xd * B21;
436 const Instr kMovMvnFlip = B22;
437 const Instr kMovLeaveCCMask = 0xdff * B16;
438 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
439 const Instr kMovwPattern = 0x30 * B20;
440 const Instr kMovtPattern = 0x34 * B20;
441 const Instr kMovwLeaveCCFlip = 0x5 * B21;
442 const Instr kMovImmedMask = 0x7f * B21;
443 const Instr kMovImmedPattern = 0x1d * B21;
444 const Instr kOrrImmedMask = 0x7f * B21;
445 const Instr kOrrImmedPattern = 0x1c * B21;
446 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
447 const Instr kCmpCmnPattern = 0x15 * B20;
448 const Instr kCmpCmnFlip = B21;
449 const Instr kAddSubFlip = 0x6 * B21;
450 const Instr kAndBicFlip = 0xe * B21;
451
452 // A mask for the Rd register for push, pop, ldr, str instructions.
453 const Instr kLdrRegFpOffsetPattern =
454 al | B26 | L | Offset | Register::kCode_fp * B16;
455 const Instr kStrRegFpOffsetPattern =
456 al | B26 | Offset | Register::kCode_fp * B16;
457 const Instr kLdrRegFpNegOffsetPattern =
458 al | B26 | L | NegOffset | Register::kCode_fp * B16;
459 const Instr kStrRegFpNegOffsetPattern =
460 al | B26 | NegOffset | Register::kCode_fp * B16;
461 const Instr kLdrStrInstrTypeMask = 0xffff0000;
462
463
Assembler(Isolate * isolate,void * buffer,int buffer_size)464 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
465 : AssemblerBase(isolate, buffer, buffer_size),
466 recorded_ast_id_(TypeFeedbackId::None()),
467 pending_32_bit_constants_(&pending_32_bit_constants_buffer_[0]),
468 pending_64_bit_constants_(&pending_64_bit_constants_buffer_[0]),
469 constant_pool_builder_(kLdrMaxReachBits, kVldrMaxReachBits),
470 positions_recorder_(this) {
471 reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
472 num_pending_32_bit_constants_ = 0;
473 num_pending_64_bit_constants_ = 0;
474 next_buffer_check_ = 0;
475 const_pool_blocked_nesting_ = 0;
476 no_const_pool_before_ = 0;
477 first_const_pool_32_use_ = -1;
478 first_const_pool_64_use_ = -1;
479 last_bound_pos_ = 0;
480 ClearRecordedAstId();
481 }
482
483
~Assembler()484 Assembler::~Assembler() {
485 DCHECK(const_pool_blocked_nesting_ == 0);
486 if (pending_32_bit_constants_ != &pending_32_bit_constants_buffer_[0]) {
487 delete[] pending_32_bit_constants_;
488 }
489 if (pending_64_bit_constants_ != &pending_64_bit_constants_buffer_[0]) {
490 delete[] pending_64_bit_constants_;
491 }
492 }
493
494
GetCode(CodeDesc * desc)495 void Assembler::GetCode(CodeDesc* desc) {
496 reloc_info_writer.Finish();
497
498 // Emit constant pool if necessary.
499 int constant_pool_offset = 0;
500 if (FLAG_enable_embedded_constant_pool) {
501 constant_pool_offset = EmitEmbeddedConstantPool();
502 } else {
503 CheckConstPool(true, false);
504 DCHECK(num_pending_32_bit_constants_ == 0);
505 DCHECK(num_pending_64_bit_constants_ == 0);
506 }
507 // Set up code descriptor.
508 desc->buffer = buffer_;
509 desc->buffer_size = buffer_size_;
510 desc->instr_size = pc_offset();
511 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
512 desc->constant_pool_size =
513 (constant_pool_offset ? desc->instr_size - constant_pool_offset : 0);
514 desc->origin = this;
515 }
516
517
Align(int m)518 void Assembler::Align(int m) {
519 DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
520 DCHECK((pc_offset() & (kInstrSize - 1)) == 0);
521 while ((pc_offset() & (m - 1)) != 0) {
522 nop();
523 }
524 }
525
526
CodeTargetAlign()527 void Assembler::CodeTargetAlign() {
528 // Preferred alignment of jump targets on some ARM chips.
529 Align(8);
530 }
531
532
GetCondition(Instr instr)533 Condition Assembler::GetCondition(Instr instr) {
534 return Instruction::ConditionField(instr);
535 }
536
537
IsBranch(Instr instr)538 bool Assembler::IsBranch(Instr instr) {
539 return (instr & (B27 | B25)) == (B27 | B25);
540 }
541
542
GetBranchOffset(Instr instr)543 int Assembler::GetBranchOffset(Instr instr) {
544 DCHECK(IsBranch(instr));
545 // Take the jump offset in the lower 24 bits, sign extend it and multiply it
546 // with 4 to get the offset in bytes.
547 return ((instr & kImm24Mask) << 8) >> 6;
548 }
549
550
IsLdrRegisterImmediate(Instr instr)551 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
552 return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
553 }
554
555
IsVldrDRegisterImmediate(Instr instr)556 bool Assembler::IsVldrDRegisterImmediate(Instr instr) {
557 return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8);
558 }
559
560
GetLdrRegisterImmediateOffset(Instr instr)561 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
562 DCHECK(IsLdrRegisterImmediate(instr));
563 bool positive = (instr & B23) == B23;
564 int offset = instr & kOff12Mask; // Zero extended offset.
565 return positive ? offset : -offset;
566 }
567
568
GetVldrDRegisterImmediateOffset(Instr instr)569 int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) {
570 DCHECK(IsVldrDRegisterImmediate(instr));
571 bool positive = (instr & B23) == B23;
572 int offset = instr & kOff8Mask; // Zero extended offset.
573 offset <<= 2;
574 return positive ? offset : -offset;
575 }
576
577
SetLdrRegisterImmediateOffset(Instr instr,int offset)578 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
579 DCHECK(IsLdrRegisterImmediate(instr));
580 bool positive = offset >= 0;
581 if (!positive) offset = -offset;
582 DCHECK(is_uint12(offset));
583 // Set bit indicating whether the offset should be added.
584 instr = (instr & ~B23) | (positive ? B23 : 0);
585 // Set the actual offset.
586 return (instr & ~kOff12Mask) | offset;
587 }
588
589
SetVldrDRegisterImmediateOffset(Instr instr,int offset)590 Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) {
591 DCHECK(IsVldrDRegisterImmediate(instr));
592 DCHECK((offset & ~3) == offset); // Must be 64-bit aligned.
593 bool positive = offset >= 0;
594 if (!positive) offset = -offset;
595 DCHECK(is_uint10(offset));
596 // Set bit indicating whether the offset should be added.
597 instr = (instr & ~B23) | (positive ? B23 : 0);
598 // Set the actual offset. Its bottom 2 bits are zero.
599 return (instr & ~kOff8Mask) | (offset >> 2);
600 }
601
602
IsStrRegisterImmediate(Instr instr)603 bool Assembler::IsStrRegisterImmediate(Instr instr) {
604 return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
605 }
606
607
SetStrRegisterImmediateOffset(Instr instr,int offset)608 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
609 DCHECK(IsStrRegisterImmediate(instr));
610 bool positive = offset >= 0;
611 if (!positive) offset = -offset;
612 DCHECK(is_uint12(offset));
613 // Set bit indicating whether the offset should be added.
614 instr = (instr & ~B23) | (positive ? B23 : 0);
615 // Set the actual offset.
616 return (instr & ~kOff12Mask) | offset;
617 }
618
619
IsAddRegisterImmediate(Instr instr)620 bool Assembler::IsAddRegisterImmediate(Instr instr) {
621 return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
622 }
623
624
SetAddRegisterImmediateOffset(Instr instr,int offset)625 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
626 DCHECK(IsAddRegisterImmediate(instr));
627 DCHECK(offset >= 0);
628 DCHECK(is_uint12(offset));
629 // Set the offset.
630 return (instr & ~kOff12Mask) | offset;
631 }
632
633
GetRd(Instr instr)634 Register Assembler::GetRd(Instr instr) {
635 Register reg;
636 reg.reg_code = Instruction::RdValue(instr);
637 return reg;
638 }
639
640
GetRn(Instr instr)641 Register Assembler::GetRn(Instr instr) {
642 Register reg;
643 reg.reg_code = Instruction::RnValue(instr);
644 return reg;
645 }
646
647
GetRm(Instr instr)648 Register Assembler::GetRm(Instr instr) {
649 Register reg;
650 reg.reg_code = Instruction::RmValue(instr);
651 return reg;
652 }
653
654
GetConsantPoolLoadPattern()655 Instr Assembler::GetConsantPoolLoadPattern() {
656 if (FLAG_enable_embedded_constant_pool) {
657 return kLdrPpImmedPattern;
658 } else {
659 return kLdrPCImmedPattern;
660 }
661 }
662
663
GetConsantPoolLoadMask()664 Instr Assembler::GetConsantPoolLoadMask() {
665 if (FLAG_enable_embedded_constant_pool) {
666 return kLdrPpImmedMask;
667 } else {
668 return kLdrPCImmedMask;
669 }
670 }
671
672
IsPush(Instr instr)673 bool Assembler::IsPush(Instr instr) {
674 return ((instr & ~kRdMask) == kPushRegPattern);
675 }
676
677
IsPop(Instr instr)678 bool Assembler::IsPop(Instr instr) {
679 return ((instr & ~kRdMask) == kPopRegPattern);
680 }
681
682
IsStrRegFpOffset(Instr instr)683 bool Assembler::IsStrRegFpOffset(Instr instr) {
684 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
685 }
686
687
IsLdrRegFpOffset(Instr instr)688 bool Assembler::IsLdrRegFpOffset(Instr instr) {
689 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
690 }
691
692
IsStrRegFpNegOffset(Instr instr)693 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
694 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
695 }
696
697
IsLdrRegFpNegOffset(Instr instr)698 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
699 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
700 }
701
702
IsLdrPcImmediateOffset(Instr instr)703 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
704 // Check the instruction is indeed a
705 // ldr<cond> <Rd>, [pc +/- offset_12].
706 return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern;
707 }
708
709
IsLdrPpImmediateOffset(Instr instr)710 bool Assembler::IsLdrPpImmediateOffset(Instr instr) {
711 // Check the instruction is indeed a
712 // ldr<cond> <Rd>, [pp +/- offset_12].
713 return (instr & kLdrPpImmedMask) == kLdrPpImmedPattern;
714 }
715
716
IsLdrPpRegOffset(Instr instr)717 bool Assembler::IsLdrPpRegOffset(Instr instr) {
718 // Check the instruction is indeed a
719 // ldr<cond> <Rd>, [pp, +/- <Rm>].
720 return (instr & kLdrPpRegMask) == kLdrPpRegPattern;
721 }
722
723
GetLdrPpRegOffsetPattern()724 Instr Assembler::GetLdrPpRegOffsetPattern() { return kLdrPpRegPattern; }
725
726
IsVldrDPcImmediateOffset(Instr instr)727 bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
728 // Check the instruction is indeed a
729 // vldr<cond> <Dd>, [pc +/- offset_10].
730 return (instr & kVldrDPCMask) == kVldrDPCPattern;
731 }
732
733
IsVldrDPpImmediateOffset(Instr instr)734 bool Assembler::IsVldrDPpImmediateOffset(Instr instr) {
735 // Check the instruction is indeed a
736 // vldr<cond> <Dd>, [pp +/- offset_10].
737 return (instr & kVldrDPpMask) == kVldrDPpPattern;
738 }
739
740
IsBlxReg(Instr instr)741 bool Assembler::IsBlxReg(Instr instr) {
742 // Check the instruction is indeed a
743 // blxcc <Rm>
744 return (instr & kBlxRegMask) == kBlxRegPattern;
745 }
746
747
IsBlxIp(Instr instr)748 bool Assembler::IsBlxIp(Instr instr) {
749 // Check the instruction is indeed a
750 // blx ip
751 return instr == kBlxIp;
752 }
753
754
IsTstImmediate(Instr instr)755 bool Assembler::IsTstImmediate(Instr instr) {
756 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
757 (I | TST | S);
758 }
759
760
IsCmpRegister(Instr instr)761 bool Assembler::IsCmpRegister(Instr instr) {
762 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
763 (CMP | S);
764 }
765
766
IsCmpImmediate(Instr instr)767 bool Assembler::IsCmpImmediate(Instr instr) {
768 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
769 (I | CMP | S);
770 }
771
772
GetCmpImmediateRegister(Instr instr)773 Register Assembler::GetCmpImmediateRegister(Instr instr) {
774 DCHECK(IsCmpImmediate(instr));
775 return GetRn(instr);
776 }
777
778
GetCmpImmediateRawImmediate(Instr instr)779 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
780 DCHECK(IsCmpImmediate(instr));
781 return instr & kOff12Mask;
782 }
783
784
785 // Labels refer to positions in the (to be) generated code.
786 // There are bound, linked, and unused labels.
787 //
788 // Bound labels refer to known positions in the already
789 // generated code. pos() is the position the label refers to.
790 //
791 // Linked labels refer to unknown positions in the code
792 // to be generated; pos() is the position of the last
793 // instruction using the label.
794 //
795 // The linked labels form a link chain by making the branch offset
796 // in the instruction steam to point to the previous branch
797 // instruction using the same label.
798 //
799 // The link chain is terminated by a branch offset pointing to the
800 // same position.
801
802
target_at(int pos)803 int Assembler::target_at(int pos) {
804 Instr instr = instr_at(pos);
805 if (is_uint24(instr)) {
806 // Emitted link to a label, not part of a branch.
807 return instr;
808 }
809 DCHECK_EQ(5 * B25, instr & 7 * B25); // b, bl, or blx imm24
810 int imm26 = ((instr & kImm24Mask) << 8) >> 6;
811 if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
812 ((instr & B24) != 0)) {
813 // blx uses bit 24 to encode bit 2 of imm26
814 imm26 += 2;
815 }
816 return pos + kPcLoadDelta + imm26;
817 }
818
819
target_at_put(int pos,int target_pos)820 void Assembler::target_at_put(int pos, int target_pos) {
821 Instr instr = instr_at(pos);
822 if (is_uint24(instr)) {
823 DCHECK(target_pos == pos || target_pos >= 0);
824 // Emitted link to a label, not part of a branch.
825 // Load the position of the label relative to the generated code object
826 // pointer in a register.
827
828 // Here are the instructions we need to emit:
829 // For ARMv7: target24 => target16_1:target16_0
830 // movw dst, #target16_0
831 // movt dst, #target16_1
832 // For ARMv6: target24 => target8_2:target8_1:target8_0
833 // mov dst, #target8_0
834 // orr dst, dst, #target8_1 << 8
835 // orr dst, dst, #target8_2 << 16
836
837 // We extract the destination register from the emitted nop instruction.
838 Register dst = Register::from_code(
839 Instruction::RmValue(instr_at(pos + kInstrSize)));
840 DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code()));
841 uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
842 DCHECK(is_uint24(target24));
843 if (is_uint8(target24)) {
844 // If the target fits in a byte then only patch with a mov
845 // instruction.
846 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos), 1,
847 CodePatcher::DONT_FLUSH);
848 patcher.masm()->mov(dst, Operand(target24));
849 } else {
850 uint16_t target16_0 = target24 & kImm16Mask;
851 uint16_t target16_1 = target24 >> 16;
852 if (CpuFeatures::IsSupported(ARMv7)) {
853 // Patch with movw/movt.
854 if (target16_1 == 0) {
855 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
856 1, CodePatcher::DONT_FLUSH);
857 patcher.masm()->movw(dst, target16_0);
858 } else {
859 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
860 2, CodePatcher::DONT_FLUSH);
861 patcher.masm()->movw(dst, target16_0);
862 patcher.masm()->movt(dst, target16_1);
863 }
864 } else {
865 // Patch with a sequence of mov/orr/orr instructions.
866 uint8_t target8_0 = target16_0 & kImm8Mask;
867 uint8_t target8_1 = target16_0 >> 8;
868 uint8_t target8_2 = target16_1 & kImm8Mask;
869 if (target8_2 == 0) {
870 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
871 2, CodePatcher::DONT_FLUSH);
872 patcher.masm()->mov(dst, Operand(target8_0));
873 patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
874 } else {
875 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
876 3, CodePatcher::DONT_FLUSH);
877 patcher.masm()->mov(dst, Operand(target8_0));
878 patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
879 patcher.masm()->orr(dst, dst, Operand(target8_2 << 16));
880 }
881 }
882 }
883 return;
884 }
885 int imm26 = target_pos - (pos + kPcLoadDelta);
886 DCHECK_EQ(5 * B25, instr & 7 * B25); // b, bl, or blx imm24
887 if (Instruction::ConditionField(instr) == kSpecialCondition) {
888 // blx uses bit 24 to encode bit 2 of imm26
889 DCHECK_EQ(0, imm26 & 1);
890 instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1) * B24;
891 } else {
892 DCHECK_EQ(0, imm26 & 3);
893 instr &= ~kImm24Mask;
894 }
895 int imm24 = imm26 >> 2;
896 DCHECK(is_int24(imm24));
897 instr_at_put(pos, instr | (imm24 & kImm24Mask));
898 }
899
900
print(Label * L)901 void Assembler::print(Label* L) {
902 if (L->is_unused()) {
903 PrintF("unused label\n");
904 } else if (L->is_bound()) {
905 PrintF("bound label to %d\n", L->pos());
906 } else if (L->is_linked()) {
907 Label l = *L;
908 PrintF("unbound label");
909 while (l.is_linked()) {
910 PrintF("@ %d ", l.pos());
911 Instr instr = instr_at(l.pos());
912 if ((instr & ~kImm24Mask) == 0) {
913 PrintF("value\n");
914 } else {
915 DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx
916 Condition cond = Instruction::ConditionField(instr);
917 const char* b;
918 const char* c;
919 if (cond == kSpecialCondition) {
920 b = "blx";
921 c = "";
922 } else {
923 if ((instr & B24) != 0)
924 b = "bl";
925 else
926 b = "b";
927
928 switch (cond) {
929 case eq: c = "eq"; break;
930 case ne: c = "ne"; break;
931 case hs: c = "hs"; break;
932 case lo: c = "lo"; break;
933 case mi: c = "mi"; break;
934 case pl: c = "pl"; break;
935 case vs: c = "vs"; break;
936 case vc: c = "vc"; break;
937 case hi: c = "hi"; break;
938 case ls: c = "ls"; break;
939 case ge: c = "ge"; break;
940 case lt: c = "lt"; break;
941 case gt: c = "gt"; break;
942 case le: c = "le"; break;
943 case al: c = ""; break;
944 default:
945 c = "";
946 UNREACHABLE();
947 }
948 }
949 PrintF("%s%s\n", b, c);
950 }
951 next(&l);
952 }
953 } else {
954 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
955 }
956 }
957
958
bind_to(Label * L,int pos)959 void Assembler::bind_to(Label* L, int pos) {
960 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
961 while (L->is_linked()) {
962 int fixup_pos = L->pos();
963 next(L); // call next before overwriting link with target at fixup_pos
964 target_at_put(fixup_pos, pos);
965 }
966 L->bind_to(pos);
967
968 // Keep track of the last bound label so we don't eliminate any instructions
969 // before a bound label.
970 if (pos > last_bound_pos_)
971 last_bound_pos_ = pos;
972 }
973
974
bind(Label * L)975 void Assembler::bind(Label* L) {
976 DCHECK(!L->is_bound()); // label can only be bound once
977 bind_to(L, pc_offset());
978 }
979
980
next(Label * L)981 void Assembler::next(Label* L) {
982 DCHECK(L->is_linked());
983 int link = target_at(L->pos());
984 if (link == L->pos()) {
985 // Branch target points to the same instuction. This is the end of the link
986 // chain.
987 L->Unuse();
988 } else {
989 DCHECK(link >= 0);
990 L->link_to(link);
991 }
992 }
993
994
995 // Low-level code emission routines depending on the addressing mode.
996 // If this returns true then you have to use the rotate_imm and immed_8
997 // that it returns, because it may have already changed the instruction
998 // to match them!
fits_shifter(uint32_t imm32,uint32_t * rotate_imm,uint32_t * immed_8,Instr * instr)999 static bool fits_shifter(uint32_t imm32,
1000 uint32_t* rotate_imm,
1001 uint32_t* immed_8,
1002 Instr* instr) {
1003 // imm32 must be unsigned.
1004 for (int rot = 0; rot < 16; rot++) {
1005 uint32_t imm8 = base::bits::RotateLeft32(imm32, 2 * rot);
1006 if ((imm8 <= 0xff)) {
1007 *rotate_imm = rot;
1008 *immed_8 = imm8;
1009 return true;
1010 }
1011 }
1012 // If the opcode is one with a complementary version and the complementary
1013 // immediate fits, change the opcode.
1014 if (instr != NULL) {
1015 if ((*instr & kMovMvnMask) == kMovMvnPattern) {
1016 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
1017 *instr ^= kMovMvnFlip;
1018 return true;
1019 } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
1020 if (CpuFeatures::IsSupported(ARMv7)) {
1021 if (imm32 < 0x10000) {
1022 *instr ^= kMovwLeaveCCFlip;
1023 *instr |= Assembler::EncodeMovwImmediate(imm32);
1024 *rotate_imm = *immed_8 = 0; // Not used for movw.
1025 return true;
1026 }
1027 }
1028 }
1029 } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
1030 if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
1031 *instr ^= kCmpCmnFlip;
1032 return true;
1033 }
1034 } else {
1035 Instr alu_insn = (*instr & kALUMask);
1036 if (alu_insn == ADD ||
1037 alu_insn == SUB) {
1038 if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
1039 *instr ^= kAddSubFlip;
1040 return true;
1041 }
1042 } else if (alu_insn == AND ||
1043 alu_insn == BIC) {
1044 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
1045 *instr ^= kAndBicFlip;
1046 return true;
1047 }
1048 }
1049 }
1050 }
1051 return false;
1052 }
1053
1054
1055 // We have to use the temporary register for things that can be relocated even
1056 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
1057 // space. There is no guarantee that the relocated location can be similarly
1058 // encoded.
must_output_reloc_info(const Assembler * assembler) const1059 bool Operand::must_output_reloc_info(const Assembler* assembler) const {
1060 if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
1061 if (assembler != NULL && assembler->predictable_code_size()) return true;
1062 return assembler->serializer_enabled();
1063 } else if (RelocInfo::IsNone(rmode_)) {
1064 return false;
1065 }
1066 return true;
1067 }
1068
1069
use_mov_immediate_load(const Operand & x,const Assembler * assembler)1070 static bool use_mov_immediate_load(const Operand& x,
1071 const Assembler* assembler) {
1072 if (FLAG_enable_embedded_constant_pool && assembler != NULL &&
1073 !assembler->is_constant_pool_available()) {
1074 return true;
1075 } else if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
1076 (assembler == NULL || !assembler->predictable_code_size())) {
1077 // Prefer movw / movt to constant pool if it is more efficient on the CPU.
1078 return true;
1079 } else if (x.must_output_reloc_info(assembler)) {
1080 // Prefer constant pool if data is likely to be patched.
1081 return false;
1082 } else {
1083 // Otherwise, use immediate load if movw / movt is available.
1084 return CpuFeatures::IsSupported(ARMv7);
1085 }
1086 }
1087
1088
instructions_required(const Assembler * assembler,Instr instr) const1089 int Operand::instructions_required(const Assembler* assembler,
1090 Instr instr) const {
1091 if (rm_.is_valid()) return 1;
1092 uint32_t dummy1, dummy2;
1093 if (must_output_reloc_info(assembler) ||
1094 !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
1095 // The immediate operand cannot be encoded as a shifter operand, or use of
1096 // constant pool is required. First account for the instructions required
1097 // for the constant pool or immediate load
1098 int instructions;
1099 if (use_mov_immediate_load(*this, assembler)) {
1100 // A movw / movt or mov / orr immediate load.
1101 instructions = CpuFeatures::IsSupported(ARMv7) ? 2 : 4;
1102 } else if (assembler != NULL &&
1103 assembler->ConstantPoolAccessIsInOverflow()) {
1104 // An overflowed constant pool load.
1105 instructions = CpuFeatures::IsSupported(ARMv7) ? 3 : 5;
1106 } else {
1107 // A small constant pool load.
1108 instructions = 1;
1109 }
1110
1111 if ((instr & ~kCondMask) != 13 * B21) { // mov, S not set
1112 // For a mov or mvn instruction which doesn't set the condition
1113 // code, the constant pool or immediate load is enough, otherwise we need
1114 // to account for the actual instruction being requested.
1115 instructions += 1;
1116 }
1117 return instructions;
1118 } else {
1119 // No use of constant pool and the immediate operand can be encoded as a
1120 // shifter operand.
1121 return 1;
1122 }
1123 }
1124
1125
move_32_bit_immediate(Register rd,const Operand & x,Condition cond)1126 void Assembler::move_32_bit_immediate(Register rd,
1127 const Operand& x,
1128 Condition cond) {
1129 uint32_t imm32 = static_cast<uint32_t>(x.imm32_);
1130 if (x.must_output_reloc_info(this)) {
1131 RecordRelocInfo(x.rmode_);
1132 }
1133
1134 if (use_mov_immediate_load(x, this)) {
1135 Register target = rd.code() == pc.code() ? ip : rd;
1136 if (CpuFeatures::IsSupported(ARMv7)) {
1137 if (!FLAG_enable_embedded_constant_pool &&
1138 x.must_output_reloc_info(this)) {
1139 // Make sure the movw/movt doesn't get separated.
1140 BlockConstPoolFor(2);
1141 }
1142 movw(target, imm32 & 0xffff, cond);
1143 movt(target, imm32 >> 16, cond);
1144 } else {
1145 DCHECK(FLAG_enable_embedded_constant_pool);
1146 mov(target, Operand(imm32 & kImm8Mask), LeaveCC, cond);
1147 orr(target, target, Operand(imm32 & (kImm8Mask << 8)), LeaveCC, cond);
1148 orr(target, target, Operand(imm32 & (kImm8Mask << 16)), LeaveCC, cond);
1149 orr(target, target, Operand(imm32 & (kImm8Mask << 24)), LeaveCC, cond);
1150 }
1151 if (target.code() != rd.code()) {
1152 mov(rd, target, LeaveCC, cond);
1153 }
1154 } else {
1155 DCHECK(!FLAG_enable_embedded_constant_pool || is_constant_pool_available());
1156 ConstantPoolEntry::Access access =
1157 ConstantPoolAddEntry(pc_offset(), x.rmode_, x.imm32_);
1158 if (access == ConstantPoolEntry::OVERFLOWED) {
1159 DCHECK(FLAG_enable_embedded_constant_pool);
1160 Register target = rd.code() == pc.code() ? ip : rd;
1161 // Emit instructions to load constant pool offset.
1162 if (CpuFeatures::IsSupported(ARMv7)) {
1163 movw(target, 0, cond);
1164 movt(target, 0, cond);
1165 } else {
1166 mov(target, Operand(0), LeaveCC, cond);
1167 orr(target, target, Operand(0), LeaveCC, cond);
1168 orr(target, target, Operand(0), LeaveCC, cond);
1169 orr(target, target, Operand(0), LeaveCC, cond);
1170 }
1171 // Load from constant pool at offset.
1172 ldr(rd, MemOperand(pp, target), cond);
1173 } else {
1174 DCHECK(access == ConstantPoolEntry::REGULAR);
1175 ldr(rd, MemOperand(FLAG_enable_embedded_constant_pool ? pp : pc, 0),
1176 cond);
1177 }
1178 }
1179 }
1180
1181
addrmod1(Instr instr,Register rn,Register rd,const Operand & x)1182 void Assembler::addrmod1(Instr instr,
1183 Register rn,
1184 Register rd,
1185 const Operand& x) {
1186 CheckBuffer();
1187 DCHECK((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
1188 if (!x.rm_.is_valid()) {
1189 // Immediate.
1190 uint32_t rotate_imm;
1191 uint32_t immed_8;
1192 if (x.must_output_reloc_info(this) ||
1193 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
1194 // The immediate operand cannot be encoded as a shifter operand, so load
1195 // it first to register ip and change the original instruction to use ip.
1196 // However, if the original instruction is a 'mov rd, x' (not setting the
1197 // condition code), then replace it with a 'ldr rd, [pc]'.
1198 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
1199 Condition cond = Instruction::ConditionField(instr);
1200 if ((instr & ~kCondMask) == 13*B21) { // mov, S not set
1201 move_32_bit_immediate(rd, x, cond);
1202 } else {
1203 mov(ip, x, LeaveCC, cond);
1204 addrmod1(instr, rn, rd, Operand(ip));
1205 }
1206 return;
1207 }
1208 instr |= I | rotate_imm*B8 | immed_8;
1209 } else if (!x.rs_.is_valid()) {
1210 // Immediate shift.
1211 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
1212 } else {
1213 // Register shift.
1214 DCHECK(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
1215 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
1216 }
1217 emit(instr | rn.code()*B16 | rd.code()*B12);
1218 if (rn.is(pc) || x.rm_.is(pc)) {
1219 // Block constant pool emission for one instruction after reading pc.
1220 BlockConstPoolFor(1);
1221 }
1222 }
1223
1224
addrmod2(Instr instr,Register rd,const MemOperand & x)1225 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
1226 DCHECK((instr & ~(kCondMask | B | L)) == B26);
1227 int am = x.am_;
1228 if (!x.rm_.is_valid()) {
1229 // Immediate offset.
1230 int offset_12 = x.offset_;
1231 if (offset_12 < 0) {
1232 offset_12 = -offset_12;
1233 am ^= U;
1234 }
1235 if (!is_uint12(offset_12)) {
1236 // Immediate offset cannot be encoded, load it first to register ip
1237 // rn (and rd in a load) should never be ip, or will be trashed.
1238 DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1239 mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
1240 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
1241 return;
1242 }
1243 DCHECK(offset_12 >= 0); // no masking needed
1244 instr |= offset_12;
1245 } else {
1246 // Register offset (shift_imm_ and shift_op_ are 0) or scaled
1247 // register offset the constructors make sure than both shift_imm_
1248 // and shift_op_ are initialized.
1249 DCHECK(!x.rm_.is(pc));
1250 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
1251 }
1252 DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
1253 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
1254 }
1255
1256
addrmod3(Instr instr,Register rd,const MemOperand & x)1257 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
1258 DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
1259 DCHECK(x.rn_.is_valid());
1260 int am = x.am_;
1261 if (!x.rm_.is_valid()) {
1262 // Immediate offset.
1263 int offset_8 = x.offset_;
1264 if (offset_8 < 0) {
1265 offset_8 = -offset_8;
1266 am ^= U;
1267 }
1268 if (!is_uint8(offset_8)) {
1269 // Immediate offset cannot be encoded, load it first to register ip
1270 // rn (and rd in a load) should never be ip, or will be trashed.
1271 DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1272 mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
1273 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
1274 return;
1275 }
1276 DCHECK(offset_8 >= 0); // no masking needed
1277 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
1278 } else if (x.shift_imm_ != 0) {
1279 // Scaled register offset not supported, load index first
1280 // rn (and rd in a load) should never be ip, or will be trashed.
1281 DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1282 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
1283 Instruction::ConditionField(instr));
1284 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
1285 return;
1286 } else {
1287 // Register offset.
1288 DCHECK((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
1289 instr |= x.rm_.code();
1290 }
1291 DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
1292 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
1293 }
1294
1295
addrmod4(Instr instr,Register rn,RegList rl)1296 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
1297 DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27);
1298 DCHECK(rl != 0);
1299 DCHECK(!rn.is(pc));
1300 emit(instr | rn.code()*B16 | rl);
1301 }
1302
1303
addrmod5(Instr instr,CRegister crd,const MemOperand & x)1304 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
1305 // Unindexed addressing is not encoded by this function.
1306 DCHECK_EQ((B27 | B26),
1307 (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
1308 DCHECK(x.rn_.is_valid() && !x.rm_.is_valid());
1309 int am = x.am_;
1310 int offset_8 = x.offset_;
1311 DCHECK((offset_8 & 3) == 0); // offset must be an aligned word offset
1312 offset_8 >>= 2;
1313 if (offset_8 < 0) {
1314 offset_8 = -offset_8;
1315 am ^= U;
1316 }
1317 DCHECK(is_uint8(offset_8)); // unsigned word offset must fit in a byte
1318 DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
1319
1320 // Post-indexed addressing requires W == 1; different than in addrmod2/3.
1321 if ((am & P) == 0)
1322 am |= W;
1323
1324 DCHECK(offset_8 >= 0); // no masking needed
1325 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
1326 }
1327
1328
branch_offset(Label * L)1329 int Assembler::branch_offset(Label* L) {
1330 int target_pos;
1331 if (L->is_bound()) {
1332 target_pos = L->pos();
1333 } else {
1334 if (L->is_linked()) {
1335 // Point to previous instruction that uses the link.
1336 target_pos = L->pos();
1337 } else {
1338 // First entry of the link chain points to itself.
1339 target_pos = pc_offset();
1340 }
1341 L->link_to(pc_offset());
1342 }
1343
1344 // Block the emission of the constant pool, since the branch instruction must
1345 // be emitted at the pc offset recorded by the label.
1346 if (!is_const_pool_blocked()) BlockConstPoolFor(1);
1347
1348 return target_pos - (pc_offset() + kPcLoadDelta);
1349 }
1350
1351
1352 // Branch instructions.
b(int branch_offset,Condition cond)1353 void Assembler::b(int branch_offset, Condition cond) {
1354 DCHECK((branch_offset & 3) == 0);
1355 int imm24 = branch_offset >> 2;
1356 CHECK(is_int24(imm24));
1357 emit(cond | B27 | B25 | (imm24 & kImm24Mask));
1358
1359 if (cond == al) {
1360 // Dead code is a good location to emit the constant pool.
1361 CheckConstPool(false, false);
1362 }
1363 }
1364
1365
bl(int branch_offset,Condition cond)1366 void Assembler::bl(int branch_offset, Condition cond) {
1367 positions_recorder()->WriteRecordedPositions();
1368 DCHECK((branch_offset & 3) == 0);
1369 int imm24 = branch_offset >> 2;
1370 CHECK(is_int24(imm24));
1371 emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
1372 }
1373
1374
blx(int branch_offset)1375 void Assembler::blx(int branch_offset) { // v5 and above
1376 positions_recorder()->WriteRecordedPositions();
1377 DCHECK((branch_offset & 1) == 0);
1378 int h = ((branch_offset & 2) >> 1)*B24;
1379 int imm24 = branch_offset >> 2;
1380 CHECK(is_int24(imm24));
1381 emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
1382 }
1383
1384
blx(Register target,Condition cond)1385 void Assembler::blx(Register target, Condition cond) { // v5 and above
1386 positions_recorder()->WriteRecordedPositions();
1387 DCHECK(!target.is(pc));
1388 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
1389 }
1390
1391
bx(Register target,Condition cond)1392 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
1393 positions_recorder()->WriteRecordedPositions();
1394 DCHECK(!target.is(pc)); // use of pc is actually allowed, but discouraged
1395 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
1396 }
1397
1398
b(Label * L,Condition cond)1399 void Assembler::b(Label* L, Condition cond) {
1400 CheckBuffer();
1401 b(branch_offset(L), cond);
1402 }
1403
1404
bl(Label * L,Condition cond)1405 void Assembler::bl(Label* L, Condition cond) {
1406 CheckBuffer();
1407 bl(branch_offset(L), cond);
1408 }
1409
1410
blx(Label * L)1411 void Assembler::blx(Label* L) {
1412 CheckBuffer();
1413 blx(branch_offset(L));
1414 }
1415
1416
1417 // Data-processing instructions.
1418
and_(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1419 void Assembler::and_(Register dst, Register src1, const Operand& src2,
1420 SBit s, Condition cond) {
1421 addrmod1(cond | AND | s, src1, dst, src2);
1422 }
1423
1424
eor(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1425 void Assembler::eor(Register dst, Register src1, const Operand& src2,
1426 SBit s, Condition cond) {
1427 addrmod1(cond | EOR | s, src1, dst, src2);
1428 }
1429
1430
sub(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1431 void Assembler::sub(Register dst, Register src1, const Operand& src2,
1432 SBit s, Condition cond) {
1433 addrmod1(cond | SUB | s, src1, dst, src2);
1434 }
1435
1436
rsb(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1437 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
1438 SBit s, Condition cond) {
1439 addrmod1(cond | RSB | s, src1, dst, src2);
1440 }
1441
1442
add(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1443 void Assembler::add(Register dst, Register src1, const Operand& src2,
1444 SBit s, Condition cond) {
1445 addrmod1(cond | ADD | s, src1, dst, src2);
1446 }
1447
1448
adc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1449 void Assembler::adc(Register dst, Register src1, const Operand& src2,
1450 SBit s, Condition cond) {
1451 addrmod1(cond | ADC | s, src1, dst, src2);
1452 }
1453
1454
sbc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1455 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
1456 SBit s, Condition cond) {
1457 addrmod1(cond | SBC | s, src1, dst, src2);
1458 }
1459
1460
rsc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1461 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
1462 SBit s, Condition cond) {
1463 addrmod1(cond | RSC | s, src1, dst, src2);
1464 }
1465
1466
tst(Register src1,const Operand & src2,Condition cond)1467 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
1468 addrmod1(cond | TST | S, src1, r0, src2);
1469 }
1470
1471
teq(Register src1,const Operand & src2,Condition cond)1472 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
1473 addrmod1(cond | TEQ | S, src1, r0, src2);
1474 }
1475
1476
cmp(Register src1,const Operand & src2,Condition cond)1477 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
1478 addrmod1(cond | CMP | S, src1, r0, src2);
1479 }
1480
1481
cmp_raw_immediate(Register src,int raw_immediate,Condition cond)1482 void Assembler::cmp_raw_immediate(
1483 Register src, int raw_immediate, Condition cond) {
1484 DCHECK(is_uint12(raw_immediate));
1485 emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
1486 }
1487
1488
cmn(Register src1,const Operand & src2,Condition cond)1489 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
1490 addrmod1(cond | CMN | S, src1, r0, src2);
1491 }
1492
1493
orr(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1494 void Assembler::orr(Register dst, Register src1, const Operand& src2,
1495 SBit s, Condition cond) {
1496 addrmod1(cond | ORR | s, src1, dst, src2);
1497 }
1498
1499
mov(Register dst,const Operand & src,SBit s,Condition cond)1500 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
1501 if (dst.is(pc)) {
1502 positions_recorder()->WriteRecordedPositions();
1503 }
1504 // Don't allow nop instructions in the form mov rn, rn to be generated using
1505 // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
1506 // or MarkCode(int/NopMarkerTypes) pseudo instructions.
1507 DCHECK(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
1508 addrmod1(cond | MOV | s, r0, dst, src);
1509 }
1510
1511
mov_label_offset(Register dst,Label * label)1512 void Assembler::mov_label_offset(Register dst, Label* label) {
1513 if (label->is_bound()) {
1514 mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag)));
1515 } else {
1516 // Emit the link to the label in the code stream followed by extra nop
1517 // instructions.
1518 // If the label is not linked, then start a new link chain by linking it to
1519 // itself, emitting pc_offset().
1520 int link = label->is_linked() ? label->pos() : pc_offset();
1521 label->link_to(pc_offset());
1522
1523 // When the label is bound, these instructions will be patched with a
1524 // sequence of movw/movt or mov/orr/orr instructions. They will load the
1525 // destination register with the position of the label from the beginning
1526 // of the code.
1527 //
1528 // The link will be extracted from the first instruction and the destination
1529 // register from the second.
1530 // For ARMv7:
1531 // link
1532 // mov dst, dst
1533 // For ARMv6:
1534 // link
1535 // mov dst, dst
1536 // mov dst, dst
1537 //
1538 // When the label gets bound: target_at extracts the link and target_at_put
1539 // patches the instructions.
1540 CHECK(is_uint24(link));
1541 BlockConstPoolScope block_const_pool(this);
1542 emit(link);
1543 nop(dst.code());
1544 if (!CpuFeatures::IsSupported(ARMv7)) {
1545 nop(dst.code());
1546 }
1547 }
1548 }
1549
1550
movw(Register reg,uint32_t immediate,Condition cond)1551 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
1552 DCHECK(CpuFeatures::IsSupported(ARMv7));
1553 emit(cond | 0x30*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1554 }
1555
1556
movt(Register reg,uint32_t immediate,Condition cond)1557 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
1558 DCHECK(CpuFeatures::IsSupported(ARMv7));
1559 emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1560 }
1561
1562
bic(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1563 void Assembler::bic(Register dst, Register src1, const Operand& src2,
1564 SBit s, Condition cond) {
1565 addrmod1(cond | BIC | s, src1, dst, src2);
1566 }
1567
1568
mvn(Register dst,const Operand & src,SBit s,Condition cond)1569 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
1570 addrmod1(cond | MVN | s, r0, dst, src);
1571 }
1572
1573
1574 // Multiply instructions.
mla(Register dst,Register src1,Register src2,Register srcA,SBit s,Condition cond)1575 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
1576 SBit s, Condition cond) {
1577 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1578 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
1579 src2.code()*B8 | B7 | B4 | src1.code());
1580 }
1581
1582
mls(Register dst,Register src1,Register src2,Register srcA,Condition cond)1583 void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
1584 Condition cond) {
1585 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1586 DCHECK(IsEnabled(MLS));
1587 emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
1588 src2.code()*B8 | B7 | B4 | src1.code());
1589 }
1590
1591
sdiv(Register dst,Register src1,Register src2,Condition cond)1592 void Assembler::sdiv(Register dst, Register src1, Register src2,
1593 Condition cond) {
1594 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1595 DCHECK(IsEnabled(SUDIV));
1596 emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
1597 src2.code()*B8 | B4 | src1.code());
1598 }
1599
1600
udiv(Register dst,Register src1,Register src2,Condition cond)1601 void Assembler::udiv(Register dst, Register src1, Register src2,
1602 Condition cond) {
1603 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1604 DCHECK(IsEnabled(SUDIV));
1605 emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xf * B12 |
1606 src2.code() * B8 | B4 | src1.code());
1607 }
1608
1609
mul(Register dst,Register src1,Register src2,SBit s,Condition cond)1610 void Assembler::mul(Register dst, Register src1, Register src2, SBit s,
1611 Condition cond) {
1612 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1613 // dst goes in bits 16-19 for this instruction!
1614 emit(cond | s | dst.code() * B16 | src2.code() * B8 | B7 | B4 | src1.code());
1615 }
1616
1617
smmla(Register dst,Register src1,Register src2,Register srcA,Condition cond)1618 void Assembler::smmla(Register dst, Register src1, Register src2, Register srcA,
1619 Condition cond) {
1620 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1621 emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 |
1622 srcA.code() * B12 | src2.code() * B8 | B4 | src1.code());
1623 }
1624
1625
smmul(Register dst,Register src1,Register src2,Condition cond)1626 void Assembler::smmul(Register dst, Register src1, Register src2,
1627 Condition cond) {
1628 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1629 emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 | 0xf * B12 |
1630 src2.code() * B8 | B4 | src1.code());
1631 }
1632
1633
smlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1634 void Assembler::smlal(Register dstL,
1635 Register dstH,
1636 Register src1,
1637 Register src2,
1638 SBit s,
1639 Condition cond) {
1640 DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1641 DCHECK(!dstL.is(dstH));
1642 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1643 src2.code()*B8 | B7 | B4 | src1.code());
1644 }
1645
1646
smull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1647 void Assembler::smull(Register dstL,
1648 Register dstH,
1649 Register src1,
1650 Register src2,
1651 SBit s,
1652 Condition cond) {
1653 DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1654 DCHECK(!dstL.is(dstH));
1655 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
1656 src2.code()*B8 | B7 | B4 | src1.code());
1657 }
1658
1659
umlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1660 void Assembler::umlal(Register dstL,
1661 Register dstH,
1662 Register src1,
1663 Register src2,
1664 SBit s,
1665 Condition cond) {
1666 DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1667 DCHECK(!dstL.is(dstH));
1668 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1669 src2.code()*B8 | B7 | B4 | src1.code());
1670 }
1671
1672
umull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1673 void Assembler::umull(Register dstL,
1674 Register dstH,
1675 Register src1,
1676 Register src2,
1677 SBit s,
1678 Condition cond) {
1679 DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1680 DCHECK(!dstL.is(dstH));
1681 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
1682 src2.code()*B8 | B7 | B4 | src1.code());
1683 }
1684
1685
1686 // Miscellaneous arithmetic instructions.
clz(Register dst,Register src,Condition cond)1687 void Assembler::clz(Register dst, Register src, Condition cond) {
1688 // v5 and above.
1689 DCHECK(!dst.is(pc) && !src.is(pc));
1690 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
1691 15*B8 | CLZ | src.code());
1692 }
1693
1694
1695 // Saturating instructions.
1696
1697 // Unsigned saturate.
usat(Register dst,int satpos,const Operand & src,Condition cond)1698 void Assembler::usat(Register dst,
1699 int satpos,
1700 const Operand& src,
1701 Condition cond) {
1702 // v6 and above.
1703 DCHECK(CpuFeatures::IsSupported(ARMv7));
1704 DCHECK(!dst.is(pc) && !src.rm_.is(pc));
1705 DCHECK((satpos >= 0) && (satpos <= 31));
1706 DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
1707 DCHECK(src.rs_.is(no_reg));
1708
1709 int sh = 0;
1710 if (src.shift_op_ == ASR) {
1711 sh = 1;
1712 }
1713
1714 emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
1715 src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
1716 }
1717
1718
1719 // Bitfield manipulation instructions.
1720
1721 // Unsigned bit field extract.
1722 // Extracts #width adjacent bits from position #lsb in a register, and
1723 // writes them to the low bits of a destination register.
1724 // ubfx dst, src, #lsb, #width
ubfx(Register dst,Register src,int lsb,int width,Condition cond)1725 void Assembler::ubfx(Register dst,
1726 Register src,
1727 int lsb,
1728 int width,
1729 Condition cond) {
1730 // v7 and above.
1731 DCHECK(CpuFeatures::IsSupported(ARMv7));
1732 DCHECK(!dst.is(pc) && !src.is(pc));
1733 DCHECK((lsb >= 0) && (lsb <= 31));
1734 DCHECK((width >= 1) && (width <= (32 - lsb)));
1735 emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
1736 lsb*B7 | B6 | B4 | src.code());
1737 }
1738
1739
1740 // Signed bit field extract.
1741 // Extracts #width adjacent bits from position #lsb in a register, and
1742 // writes them to the low bits of a destination register. The extracted
1743 // value is sign extended to fill the destination register.
1744 // sbfx dst, src, #lsb, #width
sbfx(Register dst,Register src,int lsb,int width,Condition cond)1745 void Assembler::sbfx(Register dst,
1746 Register src,
1747 int lsb,
1748 int width,
1749 Condition cond) {
1750 // v7 and above.
1751 DCHECK(CpuFeatures::IsSupported(ARMv7));
1752 DCHECK(!dst.is(pc) && !src.is(pc));
1753 DCHECK((lsb >= 0) && (lsb <= 31));
1754 DCHECK((width >= 1) && (width <= (32 - lsb)));
1755 emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
1756 lsb*B7 | B6 | B4 | src.code());
1757 }
1758
1759
1760 // Bit field clear.
1761 // Sets #width adjacent bits at position #lsb in the destination register
1762 // to zero, preserving the value of the other bits.
1763 // bfc dst, #lsb, #width
bfc(Register dst,int lsb,int width,Condition cond)1764 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
1765 // v7 and above.
1766 DCHECK(CpuFeatures::IsSupported(ARMv7));
1767 DCHECK(!dst.is(pc));
1768 DCHECK((lsb >= 0) && (lsb <= 31));
1769 DCHECK((width >= 1) && (width <= (32 - lsb)));
1770 int msb = lsb + width - 1;
1771 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
1772 }
1773
1774
1775 // Bit field insert.
1776 // Inserts #width adjacent bits from the low bits of the source register
1777 // into position #lsb of the destination register.
1778 // bfi dst, src, #lsb, #width
bfi(Register dst,Register src,int lsb,int width,Condition cond)1779 void Assembler::bfi(Register dst,
1780 Register src,
1781 int lsb,
1782 int width,
1783 Condition cond) {
1784 // v7 and above.
1785 DCHECK(CpuFeatures::IsSupported(ARMv7));
1786 DCHECK(!dst.is(pc) && !src.is(pc));
1787 DCHECK((lsb >= 0) && (lsb <= 31));
1788 DCHECK((width >= 1) && (width <= (32 - lsb)));
1789 int msb = lsb + width - 1;
1790 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
1791 src.code());
1792 }
1793
1794
pkhbt(Register dst,Register src1,const Operand & src2,Condition cond)1795 void Assembler::pkhbt(Register dst,
1796 Register src1,
1797 const Operand& src2,
1798 Condition cond ) {
1799 // Instruction details available in ARM DDI 0406C.b, A8.8.125.
1800 // cond(31-28) | 01101000(27-20) | Rn(19-16) |
1801 // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0)
1802 DCHECK(!dst.is(pc));
1803 DCHECK(!src1.is(pc));
1804 DCHECK(!src2.rm().is(pc));
1805 DCHECK(!src2.rm().is(no_reg));
1806 DCHECK(src2.rs().is(no_reg));
1807 DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31));
1808 DCHECK(src2.shift_op() == LSL);
1809 emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
1810 src2.shift_imm_*B7 | B4 | src2.rm().code());
1811 }
1812
1813
pkhtb(Register dst,Register src1,const Operand & src2,Condition cond)1814 void Assembler::pkhtb(Register dst,
1815 Register src1,
1816 const Operand& src2,
1817 Condition cond) {
1818 // Instruction details available in ARM DDI 0406C.b, A8.8.125.
1819 // cond(31-28) | 01101000(27-20) | Rn(19-16) |
1820 // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0)
1821 DCHECK(!dst.is(pc));
1822 DCHECK(!src1.is(pc));
1823 DCHECK(!src2.rm().is(pc));
1824 DCHECK(!src2.rm().is(no_reg));
1825 DCHECK(src2.rs().is(no_reg));
1826 DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32));
1827 DCHECK(src2.shift_op() == ASR);
1828 int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_;
1829 emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
1830 asr*B7 | B6 | B4 | src2.rm().code());
1831 }
1832
1833
sxtb(Register dst,Register src,int rotate,Condition cond)1834 void Assembler::sxtb(Register dst, Register src, int rotate, Condition cond) {
1835 // Instruction details available in ARM DDI 0406C.b, A8.8.233.
1836 // cond(31-28) | 01101010(27-20) | 1111(19-16) |
1837 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1838 DCHECK(!dst.is(pc));
1839 DCHECK(!src.is(pc));
1840 DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1841 emit(cond | 0x6A * B20 | 0xF * B16 | dst.code() * B12 |
1842 ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1843 }
1844
1845
sxtab(Register dst,Register src1,Register src2,int rotate,Condition cond)1846 void Assembler::sxtab(Register dst, Register src1, Register src2, int rotate,
1847 Condition cond) {
1848 // Instruction details available in ARM DDI 0406C.b, A8.8.233.
1849 // cond(31-28) | 01101010(27-20) | Rn(19-16) |
1850 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1851 DCHECK(!dst.is(pc));
1852 DCHECK(!src1.is(pc));
1853 DCHECK(!src2.is(pc));
1854 DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1855 emit(cond | 0x6A * B20 | src1.code() * B16 | dst.code() * B12 |
1856 ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
1857 }
1858
1859
sxth(Register dst,Register src,int rotate,Condition cond)1860 void Assembler::sxth(Register dst, Register src, int rotate, Condition cond) {
1861 // Instruction details available in ARM DDI 0406C.b, A8.8.235.
1862 // cond(31-28) | 01101011(27-20) | 1111(19-16) |
1863 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1864 DCHECK(!dst.is(pc));
1865 DCHECK(!src.is(pc));
1866 DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1867 emit(cond | 0x6B * B20 | 0xF * B16 | dst.code() * B12 |
1868 ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1869 }
1870
1871
sxtah(Register dst,Register src1,Register src2,int rotate,Condition cond)1872 void Assembler::sxtah(Register dst, Register src1, Register src2, int rotate,
1873 Condition cond) {
1874 // Instruction details available in ARM DDI 0406C.b, A8.8.235.
1875 // cond(31-28) | 01101011(27-20) | Rn(19-16) |
1876 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1877 DCHECK(!dst.is(pc));
1878 DCHECK(!src1.is(pc));
1879 DCHECK(!src2.is(pc));
1880 DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1881 emit(cond | 0x6B * B20 | src1.code() * B16 | dst.code() * B12 |
1882 ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
1883 }
1884
1885
uxtb(Register dst,Register src,int rotate,Condition cond)1886 void Assembler::uxtb(Register dst, Register src, int rotate, Condition cond) {
1887 // Instruction details available in ARM DDI 0406C.b, A8.8.274.
1888 // cond(31-28) | 01101110(27-20) | 1111(19-16) |
1889 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1890 DCHECK(!dst.is(pc));
1891 DCHECK(!src.is(pc));
1892 DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1893 emit(cond | 0x6E * B20 | 0xF * B16 | dst.code() * B12 |
1894 ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1895 }
1896
1897
uxtab(Register dst,Register src1,Register src2,int rotate,Condition cond)1898 void Assembler::uxtab(Register dst, Register src1, Register src2, int rotate,
1899 Condition cond) {
1900 // Instruction details available in ARM DDI 0406C.b, A8.8.271.
1901 // cond(31-28) | 01101110(27-20) | Rn(19-16) |
1902 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1903 DCHECK(!dst.is(pc));
1904 DCHECK(!src1.is(pc));
1905 DCHECK(!src2.is(pc));
1906 DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1907 emit(cond | 0x6E * B20 | src1.code() * B16 | dst.code() * B12 |
1908 ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
1909 }
1910
1911
uxtb16(Register dst,Register src,int rotate,Condition cond)1912 void Assembler::uxtb16(Register dst, Register src, int rotate, Condition cond) {
1913 // Instruction details available in ARM DDI 0406C.b, A8.8.275.
1914 // cond(31-28) | 01101100(27-20) | 1111(19-16) |
1915 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1916 DCHECK(!dst.is(pc));
1917 DCHECK(!src.is(pc));
1918 DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1919 emit(cond | 0x6C * B20 | 0xF * B16 | dst.code() * B12 |
1920 ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1921 }
1922
1923
uxth(Register dst,Register src,int rotate,Condition cond)1924 void Assembler::uxth(Register dst, Register src, int rotate, Condition cond) {
1925 // Instruction details available in ARM DDI 0406C.b, A8.8.276.
1926 // cond(31-28) | 01101111(27-20) | 1111(19-16) |
1927 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1928 DCHECK(!dst.is(pc));
1929 DCHECK(!src.is(pc));
1930 DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1931 emit(cond | 0x6F * B20 | 0xF * B16 | dst.code() * B12 |
1932 ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1933 }
1934
1935
uxtah(Register dst,Register src1,Register src2,int rotate,Condition cond)1936 void Assembler::uxtah(Register dst, Register src1, Register src2, int rotate,
1937 Condition cond) {
1938 // Instruction details available in ARM DDI 0406C.b, A8.8.273.
1939 // cond(31-28) | 01101111(27-20) | Rn(19-16) |
1940 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1941 DCHECK(!dst.is(pc));
1942 DCHECK(!src1.is(pc));
1943 DCHECK(!src2.is(pc));
1944 DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1945 emit(cond | 0x6F * B20 | src1.code() * B16 | dst.code() * B12 |
1946 ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
1947 }
1948
1949
1950 // Status register access instructions.
mrs(Register dst,SRegister s,Condition cond)1951 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
1952 DCHECK(!dst.is(pc));
1953 emit(cond | B24 | s | 15*B16 | dst.code()*B12);
1954 }
1955
1956
msr(SRegisterFieldMask fields,const Operand & src,Condition cond)1957 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
1958 Condition cond) {
1959 DCHECK(fields >= B16 && fields < B20); // at least one field set
1960 Instr instr;
1961 if (!src.rm_.is_valid()) {
1962 // Immediate.
1963 uint32_t rotate_imm;
1964 uint32_t immed_8;
1965 if (src.must_output_reloc_info(this) ||
1966 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
1967 // Immediate operand cannot be encoded, load it first to register ip.
1968 move_32_bit_immediate(ip, src);
1969 msr(fields, Operand(ip), cond);
1970 return;
1971 }
1972 instr = I | rotate_imm*B8 | immed_8;
1973 } else {
1974 DCHECK(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
1975 instr = src.rm_.code();
1976 }
1977 emit(cond | instr | B24 | B21 | fields | 15*B12);
1978 }
1979
1980
1981 // Load/Store instructions.
ldr(Register dst,const MemOperand & src,Condition cond)1982 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
1983 if (dst.is(pc)) {
1984 positions_recorder()->WriteRecordedPositions();
1985 }
1986 addrmod2(cond | B26 | L, dst, src);
1987 }
1988
1989
str(Register src,const MemOperand & dst,Condition cond)1990 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
1991 addrmod2(cond | B26, src, dst);
1992 }
1993
1994
ldrb(Register dst,const MemOperand & src,Condition cond)1995 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
1996 addrmod2(cond | B26 | B | L, dst, src);
1997 }
1998
1999
strb(Register src,const MemOperand & dst,Condition cond)2000 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
2001 addrmod2(cond | B26 | B, src, dst);
2002 }
2003
2004
ldrh(Register dst,const MemOperand & src,Condition cond)2005 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
2006 addrmod3(cond | L | B7 | H | B4, dst, src);
2007 }
2008
2009
strh(Register src,const MemOperand & dst,Condition cond)2010 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
2011 addrmod3(cond | B7 | H | B4, src, dst);
2012 }
2013
2014
ldrsb(Register dst,const MemOperand & src,Condition cond)2015 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
2016 addrmod3(cond | L | B7 | S6 | B4, dst, src);
2017 }
2018
2019
ldrsh(Register dst,const MemOperand & src,Condition cond)2020 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
2021 addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
2022 }
2023
2024
ldrd(Register dst1,Register dst2,const MemOperand & src,Condition cond)2025 void Assembler::ldrd(Register dst1, Register dst2,
2026 const MemOperand& src, Condition cond) {
2027 DCHECK(IsEnabled(ARMv7));
2028 DCHECK(src.rm().is(no_reg));
2029 DCHECK(!dst1.is(lr)); // r14.
2030 DCHECK_EQ(0, dst1.code() % 2);
2031 DCHECK_EQ(dst1.code() + 1, dst2.code());
2032 addrmod3(cond | B7 | B6 | B4, dst1, src);
2033 }
2034
2035
strd(Register src1,Register src2,const MemOperand & dst,Condition cond)2036 void Assembler::strd(Register src1, Register src2,
2037 const MemOperand& dst, Condition cond) {
2038 DCHECK(dst.rm().is(no_reg));
2039 DCHECK(!src1.is(lr)); // r14.
2040 DCHECK_EQ(0, src1.code() % 2);
2041 DCHECK_EQ(src1.code() + 1, src2.code());
2042 DCHECK(IsEnabled(ARMv7));
2043 addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
2044 }
2045
2046
2047 // Preload instructions.
pld(const MemOperand & address)2048 void Assembler::pld(const MemOperand& address) {
2049 // Instruction details available in ARM DDI 0406C.b, A8.8.128.
2050 // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) |
2051 // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) |
2052 DCHECK(address.rm().is(no_reg));
2053 DCHECK(address.am() == Offset);
2054 int U = B23;
2055 int offset = address.offset();
2056 if (offset < 0) {
2057 offset = -offset;
2058 U = 0;
2059 }
2060 DCHECK(offset < 4096);
2061 emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 |
2062 0xf*B12 | offset);
2063 }
2064
2065
2066 // Load/Store multiple instructions.
ldm(BlockAddrMode am,Register base,RegList dst,Condition cond)2067 void Assembler::ldm(BlockAddrMode am,
2068 Register base,
2069 RegList dst,
2070 Condition cond) {
2071 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable.
2072 DCHECK(base.is(sp) || (dst & sp.bit()) == 0);
2073
2074 addrmod4(cond | B27 | am | L, base, dst);
2075
2076 // Emit the constant pool after a function return implemented by ldm ..{..pc}.
2077 if (cond == al && (dst & pc.bit()) != 0) {
2078 // There is a slight chance that the ldm instruction was actually a call,
2079 // in which case it would be wrong to return into the constant pool; we
2080 // recognize this case by checking if the emission of the pool was blocked
2081 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
2082 // the case, we emit a jump over the pool.
2083 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
2084 }
2085 }
2086
2087
stm(BlockAddrMode am,Register base,RegList src,Condition cond)2088 void Assembler::stm(BlockAddrMode am,
2089 Register base,
2090 RegList src,
2091 Condition cond) {
2092 addrmod4(cond | B27 | am, base, src);
2093 }
2094
2095
2096 // Exception-generating instructions and debugging support.
2097 // Stops with a non-negative code less than kNumOfWatchedStops support
2098 // enabling/disabling and a counter feature. See simulator-arm.h .
stop(const char * msg,Condition cond,int32_t code)2099 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
2100 #ifndef __arm__
2101 DCHECK(code >= kDefaultStopCode);
2102 {
2103 // The Simulator will handle the stop instruction and get the message
2104 // address. It expects to find the address just after the svc instruction.
2105 BlockConstPoolScope block_const_pool(this);
2106 if (code >= 0) {
2107 svc(kStopCode + code, cond);
2108 } else {
2109 svc(kStopCode + kMaxStopCode, cond);
2110 }
2111 emit(reinterpret_cast<Instr>(msg));
2112 }
2113 #else // def __arm__
2114 if (cond != al) {
2115 Label skip;
2116 b(&skip, NegateCondition(cond));
2117 bkpt(0);
2118 bind(&skip);
2119 } else {
2120 bkpt(0);
2121 }
2122 #endif // def __arm__
2123 }
2124
2125
bkpt(uint32_t imm16)2126 void Assembler::bkpt(uint32_t imm16) { // v5 and above
2127 DCHECK(is_uint16(imm16));
2128 emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
2129 }
2130
2131
svc(uint32_t imm24,Condition cond)2132 void Assembler::svc(uint32_t imm24, Condition cond) {
2133 DCHECK(is_uint24(imm24));
2134 emit(cond | 15*B24 | imm24);
2135 }
2136
2137
2138 // Coprocessor instructions.
cdp(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2,Condition cond)2139 void Assembler::cdp(Coprocessor coproc,
2140 int opcode_1,
2141 CRegister crd,
2142 CRegister crn,
2143 CRegister crm,
2144 int opcode_2,
2145 Condition cond) {
2146 DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2));
2147 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
2148 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
2149 }
2150
2151
cdp2(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2)2152 void Assembler::cdp2(Coprocessor coproc,
2153 int opcode_1,
2154 CRegister crd,
2155 CRegister crn,
2156 CRegister crm,
2157 int opcode_2) { // v5 and above
2158 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
2159 }
2160
2161
mcr(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)2162 void Assembler::mcr(Coprocessor coproc,
2163 int opcode_1,
2164 Register rd,
2165 CRegister crn,
2166 CRegister crm,
2167 int opcode_2,
2168 Condition cond) {
2169 DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
2170 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
2171 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
2172 }
2173
2174
mcr2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)2175 void Assembler::mcr2(Coprocessor coproc,
2176 int opcode_1,
2177 Register rd,
2178 CRegister crn,
2179 CRegister crm,
2180 int opcode_2) { // v5 and above
2181 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
2182 }
2183
2184
mrc(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)2185 void Assembler::mrc(Coprocessor coproc,
2186 int opcode_1,
2187 Register rd,
2188 CRegister crn,
2189 CRegister crm,
2190 int opcode_2,
2191 Condition cond) {
2192 DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
2193 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
2194 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
2195 }
2196
2197
mrc2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)2198 void Assembler::mrc2(Coprocessor coproc,
2199 int opcode_1,
2200 Register rd,
2201 CRegister crn,
2202 CRegister crm,
2203 int opcode_2) { // v5 and above
2204 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
2205 }
2206
2207
ldc(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l,Condition cond)2208 void Assembler::ldc(Coprocessor coproc,
2209 CRegister crd,
2210 const MemOperand& src,
2211 LFlag l,
2212 Condition cond) {
2213 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
2214 }
2215
2216
ldc(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l,Condition cond)2217 void Assembler::ldc(Coprocessor coproc,
2218 CRegister crd,
2219 Register rn,
2220 int option,
2221 LFlag l,
2222 Condition cond) {
2223 // Unindexed addressing.
2224 DCHECK(is_uint8(option));
2225 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
2226 coproc*B8 | (option & 255));
2227 }
2228
2229
ldc2(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l)2230 void Assembler::ldc2(Coprocessor coproc,
2231 CRegister crd,
2232 const MemOperand& src,
2233 LFlag l) { // v5 and above
2234 ldc(coproc, crd, src, l, kSpecialCondition);
2235 }
2236
2237
ldc2(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l)2238 void Assembler::ldc2(Coprocessor coproc,
2239 CRegister crd,
2240 Register rn,
2241 int option,
2242 LFlag l) { // v5 and above
2243 ldc(coproc, crd, rn, option, l, kSpecialCondition);
2244 }
2245
2246
2247 // Support for VFP.
2248
vldr(const DwVfpRegister dst,const Register base,int offset,const Condition cond)2249 void Assembler::vldr(const DwVfpRegister dst,
2250 const Register base,
2251 int offset,
2252 const Condition cond) {
2253 // Ddst = MEM(Rbase + offset).
2254 // Instruction details available in ARM DDI 0406C.b, A8-924.
2255 // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) |
2256 // Vd(15-12) | 1011(11-8) | offset
2257 int u = 1;
2258 if (offset < 0) {
2259 CHECK(offset != kMinInt);
2260 offset = -offset;
2261 u = 0;
2262 }
2263 int vd, d;
2264 dst.split_code(&vd, &d);
2265
2266 DCHECK(offset >= 0);
2267 if ((offset % 4) == 0 && (offset / 4) < 256) {
2268 emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 |
2269 0xB*B8 | ((offset / 4) & 255));
2270 } else {
2271 // Larger offsets must be handled by computing the correct address
2272 // in the ip register.
2273 DCHECK(!base.is(ip));
2274 if (u == 1) {
2275 add(ip, base, Operand(offset));
2276 } else {
2277 sub(ip, base, Operand(offset));
2278 }
2279 emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8);
2280 }
2281 }
2282
2283
vldr(const DwVfpRegister dst,const MemOperand & operand,const Condition cond)2284 void Assembler::vldr(const DwVfpRegister dst,
2285 const MemOperand& operand,
2286 const Condition cond) {
2287 DCHECK(operand.am_ == Offset);
2288 if (operand.rm().is_valid()) {
2289 add(ip, operand.rn(),
2290 Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2291 vldr(dst, ip, 0, cond);
2292 } else {
2293 vldr(dst, operand.rn(), operand.offset(), cond);
2294 }
2295 }
2296
2297
vldr(const SwVfpRegister dst,const Register base,int offset,const Condition cond)2298 void Assembler::vldr(const SwVfpRegister dst,
2299 const Register base,
2300 int offset,
2301 const Condition cond) {
2302 // Sdst = MEM(Rbase + offset).
2303 // Instruction details available in ARM DDI 0406A, A8-628.
2304 // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
2305 // Vdst(15-12) | 1010(11-8) | offset
2306 int u = 1;
2307 if (offset < 0) {
2308 offset = -offset;
2309 u = 0;
2310 }
2311 int sd, d;
2312 dst.split_code(&sd, &d);
2313 DCHECK(offset >= 0);
2314
2315 if ((offset % 4) == 0 && (offset / 4) < 256) {
2316 emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
2317 0xA*B8 | ((offset / 4) & 255));
2318 } else {
2319 // Larger offsets must be handled by computing the correct address
2320 // in the ip register.
2321 DCHECK(!base.is(ip));
2322 if (u == 1) {
2323 add(ip, base, Operand(offset));
2324 } else {
2325 sub(ip, base, Operand(offset));
2326 }
2327 emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
2328 }
2329 }
2330
2331
vldr(const SwVfpRegister dst,const MemOperand & operand,const Condition cond)2332 void Assembler::vldr(const SwVfpRegister dst,
2333 const MemOperand& operand,
2334 const Condition cond) {
2335 DCHECK(operand.am_ == Offset);
2336 if (operand.rm().is_valid()) {
2337 add(ip, operand.rn(),
2338 Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2339 vldr(dst, ip, 0, cond);
2340 } else {
2341 vldr(dst, operand.rn(), operand.offset(), cond);
2342 }
2343 }
2344
2345
vstr(const DwVfpRegister src,const Register base,int offset,const Condition cond)2346 void Assembler::vstr(const DwVfpRegister src,
2347 const Register base,
2348 int offset,
2349 const Condition cond) {
2350 // MEM(Rbase + offset) = Dsrc.
2351 // Instruction details available in ARM DDI 0406C.b, A8-1082.
2352 // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) |
2353 // Vd(15-12) | 1011(11-8) | (offset/4)
2354 int u = 1;
2355 if (offset < 0) {
2356 CHECK(offset != kMinInt);
2357 offset = -offset;
2358 u = 0;
2359 }
2360 DCHECK(offset >= 0);
2361 int vd, d;
2362 src.split_code(&vd, &d);
2363
2364 if ((offset % 4) == 0 && (offset / 4) < 256) {
2365 emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 |
2366 ((offset / 4) & 255));
2367 } else {
2368 // Larger offsets must be handled by computing the correct address
2369 // in the ip register.
2370 DCHECK(!base.is(ip));
2371 if (u == 1) {
2372 add(ip, base, Operand(offset));
2373 } else {
2374 sub(ip, base, Operand(offset));
2375 }
2376 emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8);
2377 }
2378 }
2379
2380
vstr(const DwVfpRegister src,const MemOperand & operand,const Condition cond)2381 void Assembler::vstr(const DwVfpRegister src,
2382 const MemOperand& operand,
2383 const Condition cond) {
2384 DCHECK(operand.am_ == Offset);
2385 if (operand.rm().is_valid()) {
2386 add(ip, operand.rn(),
2387 Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2388 vstr(src, ip, 0, cond);
2389 } else {
2390 vstr(src, operand.rn(), operand.offset(), cond);
2391 }
2392 }
2393
2394
vstr(const SwVfpRegister src,const Register base,int offset,const Condition cond)2395 void Assembler::vstr(const SwVfpRegister src,
2396 const Register base,
2397 int offset,
2398 const Condition cond) {
2399 // MEM(Rbase + offset) = SSrc.
2400 // Instruction details available in ARM DDI 0406A, A8-786.
2401 // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
2402 // Vdst(15-12) | 1010(11-8) | (offset/4)
2403 int u = 1;
2404 if (offset < 0) {
2405 CHECK(offset != kMinInt);
2406 offset = -offset;
2407 u = 0;
2408 }
2409 int sd, d;
2410 src.split_code(&sd, &d);
2411 DCHECK(offset >= 0);
2412 if ((offset % 4) == 0 && (offset / 4) < 256) {
2413 emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
2414 0xA*B8 | ((offset / 4) & 255));
2415 } else {
2416 // Larger offsets must be handled by computing the correct address
2417 // in the ip register.
2418 DCHECK(!base.is(ip));
2419 if (u == 1) {
2420 add(ip, base, Operand(offset));
2421 } else {
2422 sub(ip, base, Operand(offset));
2423 }
2424 emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
2425 }
2426 }
2427
2428
vstr(const SwVfpRegister src,const MemOperand & operand,const Condition cond)2429 void Assembler::vstr(const SwVfpRegister src,
2430 const MemOperand& operand,
2431 const Condition cond) {
2432 DCHECK(operand.am_ == Offset);
2433 if (operand.rm().is_valid()) {
2434 add(ip, operand.rn(),
2435 Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2436 vstr(src, ip, 0, cond);
2437 } else {
2438 vstr(src, operand.rn(), operand.offset(), cond);
2439 }
2440 }
2441
2442
vldm(BlockAddrMode am,Register base,DwVfpRegister first,DwVfpRegister last,Condition cond)2443 void Assembler::vldm(BlockAddrMode am,
2444 Register base,
2445 DwVfpRegister first,
2446 DwVfpRegister last,
2447 Condition cond) {
2448 // Instruction details available in ARM DDI 0406C.b, A8-922.
2449 // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2450 // first(15-12) | 1011(11-8) | (count * 2)
2451 DCHECK_LE(first.code(), last.code());
2452 DCHECK(am == ia || am == ia_w || am == db_w);
2453 DCHECK(!base.is(pc));
2454
2455 int sd, d;
2456 first.split_code(&sd, &d);
2457 int count = last.code() - first.code() + 1;
2458 DCHECK(count <= 16);
2459 emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2460 0xB*B8 | count*2);
2461 }
2462
2463
vstm(BlockAddrMode am,Register base,DwVfpRegister first,DwVfpRegister last,Condition cond)2464 void Assembler::vstm(BlockAddrMode am,
2465 Register base,
2466 DwVfpRegister first,
2467 DwVfpRegister last,
2468 Condition cond) {
2469 // Instruction details available in ARM DDI 0406C.b, A8-1080.
2470 // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2471 // first(15-12) | 1011(11-8) | (count * 2)
2472 DCHECK_LE(first.code(), last.code());
2473 DCHECK(am == ia || am == ia_w || am == db_w);
2474 DCHECK(!base.is(pc));
2475
2476 int sd, d;
2477 first.split_code(&sd, &d);
2478 int count = last.code() - first.code() + 1;
2479 DCHECK(count <= 16);
2480 emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2481 0xB*B8 | count*2);
2482 }
2483
vldm(BlockAddrMode am,Register base,SwVfpRegister first,SwVfpRegister last,Condition cond)2484 void Assembler::vldm(BlockAddrMode am,
2485 Register base,
2486 SwVfpRegister first,
2487 SwVfpRegister last,
2488 Condition cond) {
2489 // Instruction details available in ARM DDI 0406A, A8-626.
2490 // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2491 // first(15-12) | 1010(11-8) | (count/2)
2492 DCHECK_LE(first.code(), last.code());
2493 DCHECK(am == ia || am == ia_w || am == db_w);
2494 DCHECK(!base.is(pc));
2495
2496 int sd, d;
2497 first.split_code(&sd, &d);
2498 int count = last.code() - first.code() + 1;
2499 emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2500 0xA*B8 | count);
2501 }
2502
2503
vstm(BlockAddrMode am,Register base,SwVfpRegister first,SwVfpRegister last,Condition cond)2504 void Assembler::vstm(BlockAddrMode am,
2505 Register base,
2506 SwVfpRegister first,
2507 SwVfpRegister last,
2508 Condition cond) {
2509 // Instruction details available in ARM DDI 0406A, A8-784.
2510 // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2511 // first(15-12) | 1011(11-8) | (count/2)
2512 DCHECK_LE(first.code(), last.code());
2513 DCHECK(am == ia || am == ia_w || am == db_w);
2514 DCHECK(!base.is(pc));
2515
2516 int sd, d;
2517 first.split_code(&sd, &d);
2518 int count = last.code() - first.code() + 1;
2519 emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2520 0xA*B8 | count);
2521 }
2522
2523
vmov(const SwVfpRegister dst,float imm)2524 void Assembler::vmov(const SwVfpRegister dst, float imm) {
2525 mov(ip, Operand(bit_cast<int32_t>(imm)));
2526 vmov(dst, ip);
2527 }
2528
2529
DoubleAsTwoUInt32(double d,uint32_t * lo,uint32_t * hi)2530 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
2531 uint64_t i;
2532 memcpy(&i, &d, 8);
2533
2534 *lo = i & 0xffffffff;
2535 *hi = i >> 32;
2536 }
2537
2538
2539 // Only works for little endian floating point formats.
2540 // We don't support VFP on the mixed endian floating point platform.
FitsVMOVDoubleImmediate(double d,uint32_t * encoding)2541 static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
2542 DCHECK(CpuFeatures::IsSupported(VFP3));
2543
2544 // VMOV can accept an immediate of the form:
2545 //
2546 // +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
2547 //
2548 // The immediate is encoded using an 8-bit quantity, comprised of two
2549 // 4-bit fields. For an 8-bit immediate of the form:
2550 //
2551 // [abcdefgh]
2552 //
2553 // where a is the MSB and h is the LSB, an immediate 64-bit double can be
2554 // created of the form:
2555 //
2556 // [aBbbbbbb,bbcdefgh,00000000,00000000,
2557 // 00000000,00000000,00000000,00000000]
2558 //
2559 // where B = ~b.
2560 //
2561
2562 uint32_t lo, hi;
2563 DoubleAsTwoUInt32(d, &lo, &hi);
2564
2565 // The most obvious constraint is the long block of zeroes.
2566 if ((lo != 0) || ((hi & 0xffff) != 0)) {
2567 return false;
2568 }
2569
2570 // Bits 62:55 must be all clear or all set.
2571 if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
2572 return false;
2573 }
2574
2575 // Bit 63 must be NOT bit 62.
2576 if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
2577 return false;
2578 }
2579
2580 // Create the encoded immediate in the form:
2581 // [00000000,0000abcd,00000000,0000efgh]
2582 *encoding = (hi >> 16) & 0xf; // Low nybble.
2583 *encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble.
2584 *encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble.
2585
2586 return true;
2587 }
2588
2589
vmov(const DwVfpRegister dst,double imm,const Register scratch)2590 void Assembler::vmov(const DwVfpRegister dst,
2591 double imm,
2592 const Register scratch) {
2593 uint32_t enc;
2594 // If the embedded constant pool is disabled, we can use the normal, inline
2595 // constant pool. If the embedded constant pool is enabled (via
2596 // FLAG_enable_embedded_constant_pool), we can only use it where the pool
2597 // pointer (pp) is valid.
2598 bool can_use_pool =
2599 !FLAG_enable_embedded_constant_pool || is_constant_pool_available();
2600 if (CpuFeatures::IsSupported(VFP3) && FitsVMOVDoubleImmediate(imm, &enc)) {
2601 // The double can be encoded in the instruction.
2602 //
2603 // Dd = immediate
2604 // Instruction details available in ARM DDI 0406C.b, A8-936.
2605 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
2606 // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0)
2607 int vd, d;
2608 dst.split_code(&vd, &d);
2609 emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
2610 } else if (FLAG_enable_vldr_imm && can_use_pool) {
2611 // TODO(jfb) Temporarily turned off until we have constant blinding or
2612 // some equivalent mitigation: an attacker can otherwise control
2613 // generated data which also happens to be executable, a Very Bad
2614 // Thing indeed.
2615 // Blinding gets tricky because we don't have xor, we probably
2616 // need to add/subtract without losing precision, which requires a
2617 // cookie value that Lithium is probably better positioned to
2618 // choose.
2619 // We could also add a few peepholes here like detecting 0.0 and
2620 // -0.0 and doing a vmov from the sequestered d14, forcing denorms
2621 // to zero (we set flush-to-zero), and normalizing NaN values.
2622 // We could also detect redundant values.
2623 // The code could also randomize the order of values, though
2624 // that's tricky because vldr has a limited reach. Furthermore
2625 // it breaks load locality.
2626 ConstantPoolEntry::Access access = ConstantPoolAddEntry(pc_offset(), imm);
2627 if (access == ConstantPoolEntry::OVERFLOWED) {
2628 DCHECK(FLAG_enable_embedded_constant_pool);
2629 // Emit instructions to load constant pool offset.
2630 movw(ip, 0);
2631 movt(ip, 0);
2632 // Load from constant pool at offset.
2633 vldr(dst, MemOperand(pp, ip));
2634 } else {
2635 DCHECK(access == ConstantPoolEntry::REGULAR);
2636 vldr(dst, MemOperand(FLAG_enable_embedded_constant_pool ? pp : pc, 0));
2637 }
2638 } else {
2639 // Synthesise the double from ARM immediates.
2640 uint32_t lo, hi;
2641 DoubleAsTwoUInt32(imm, &lo, &hi);
2642
2643 if (lo == hi) {
2644 // Move the low and high parts of the double to a D register in one
2645 // instruction.
2646 mov(ip, Operand(lo));
2647 vmov(dst, ip, ip);
2648 } else if (scratch.is(no_reg)) {
2649 mov(ip, Operand(lo));
2650 vmov(dst, VmovIndexLo, ip);
2651 if (((lo & 0xffff) == (hi & 0xffff)) &&
2652 CpuFeatures::IsSupported(ARMv7)) {
2653 movt(ip, hi >> 16);
2654 } else {
2655 mov(ip, Operand(hi));
2656 }
2657 vmov(dst, VmovIndexHi, ip);
2658 } else {
2659 // Move the low and high parts of the double to a D register in one
2660 // instruction.
2661 mov(ip, Operand(lo));
2662 mov(scratch, Operand(hi));
2663 vmov(dst, ip, scratch);
2664 }
2665 }
2666 }
2667
2668
vmov(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)2669 void Assembler::vmov(const SwVfpRegister dst,
2670 const SwVfpRegister src,
2671 const Condition cond) {
2672 // Sd = Sm
2673 // Instruction details available in ARM DDI 0406B, A8-642.
2674 int sd, d, sm, m;
2675 dst.split_code(&sd, &d);
2676 src.split_code(&sm, &m);
2677 emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
2678 }
2679
2680
vmov(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2681 void Assembler::vmov(const DwVfpRegister dst,
2682 const DwVfpRegister src,
2683 const Condition cond) {
2684 // Dd = Dm
2685 // Instruction details available in ARM DDI 0406C.b, A8-938.
2686 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
2687 // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2688 int vd, d;
2689 dst.split_code(&vd, &d);
2690 int vm, m;
2691 src.split_code(&vm, &m);
2692 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 |
2693 vm);
2694 }
2695
2696
vmov(const DwVfpRegister dst,const VmovIndex index,const Register src,const Condition cond)2697 void Assembler::vmov(const DwVfpRegister dst,
2698 const VmovIndex index,
2699 const Register src,
2700 const Condition cond) {
2701 // Dd[index] = Rt
2702 // Instruction details available in ARM DDI 0406C.b, A8-940.
2703 // cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) |
2704 // Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
2705 DCHECK(index.index == 0 || index.index == 1);
2706 int vd, d;
2707 dst.split_code(&vd, &d);
2708 emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 |
2709 d*B7 | B4);
2710 }
2711
2712
vmov(const Register dst,const VmovIndex index,const DwVfpRegister src,const Condition cond)2713 void Assembler::vmov(const Register dst,
2714 const VmovIndex index,
2715 const DwVfpRegister src,
2716 const Condition cond) {
2717 // Dd[index] = Rt
2718 // Instruction details available in ARM DDI 0406C.b, A8.8.342.
2719 // cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) |
2720 // Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
2721 DCHECK(index.index == 0 || index.index == 1);
2722 int vn, n;
2723 src.split_code(&vn, &n);
2724 emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 |
2725 0xB*B8 | n*B7 | B4);
2726 }
2727
2728
vmov(const DwVfpRegister dst,const Register src1,const Register src2,const Condition cond)2729 void Assembler::vmov(const DwVfpRegister dst,
2730 const Register src1,
2731 const Register src2,
2732 const Condition cond) {
2733 // Dm = <Rt,Rt2>.
2734 // Instruction details available in ARM DDI 0406C.b, A8-948.
2735 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
2736 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2737 DCHECK(!src1.is(pc) && !src2.is(pc));
2738 int vm, m;
2739 dst.split_code(&vm, &m);
2740 emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
2741 src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
2742 }
2743
2744
vmov(const Register dst1,const Register dst2,const DwVfpRegister src,const Condition cond)2745 void Assembler::vmov(const Register dst1,
2746 const Register dst2,
2747 const DwVfpRegister src,
2748 const Condition cond) {
2749 // <Rt,Rt2> = Dm.
2750 // Instruction details available in ARM DDI 0406C.b, A8-948.
2751 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
2752 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2753 DCHECK(!dst1.is(pc) && !dst2.is(pc));
2754 int vm, m;
2755 src.split_code(&vm, &m);
2756 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
2757 dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
2758 }
2759
2760
vmov(const SwVfpRegister dst,const Register src,const Condition cond)2761 void Assembler::vmov(const SwVfpRegister dst,
2762 const Register src,
2763 const Condition cond) {
2764 // Sn = Rt.
2765 // Instruction details available in ARM DDI 0406A, A8-642.
2766 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
2767 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2768 DCHECK(!src.is(pc));
2769 int sn, n;
2770 dst.split_code(&sn, &n);
2771 emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
2772 }
2773
2774
vmov(const Register dst,const SwVfpRegister src,const Condition cond)2775 void Assembler::vmov(const Register dst,
2776 const SwVfpRegister src,
2777 const Condition cond) {
2778 // Rt = Sn.
2779 // Instruction details available in ARM DDI 0406A, A8-642.
2780 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
2781 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2782 DCHECK(!dst.is(pc));
2783 int sn, n;
2784 src.split_code(&sn, &n);
2785 emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
2786 }
2787
2788
2789 // Type of data to read from or write to VFP register.
2790 // Used as specifier in generic vcvt instruction.
2791 enum VFPType { S32, U32, F32, F64 };
2792
2793
IsSignedVFPType(VFPType type)2794 static bool IsSignedVFPType(VFPType type) {
2795 switch (type) {
2796 case S32:
2797 return true;
2798 case U32:
2799 return false;
2800 default:
2801 UNREACHABLE();
2802 return false;
2803 }
2804 }
2805
2806
IsIntegerVFPType(VFPType type)2807 static bool IsIntegerVFPType(VFPType type) {
2808 switch (type) {
2809 case S32:
2810 case U32:
2811 return true;
2812 case F32:
2813 case F64:
2814 return false;
2815 default:
2816 UNREACHABLE();
2817 return false;
2818 }
2819 }
2820
2821
IsDoubleVFPType(VFPType type)2822 static bool IsDoubleVFPType(VFPType type) {
2823 switch (type) {
2824 case F32:
2825 return false;
2826 case F64:
2827 return true;
2828 default:
2829 UNREACHABLE();
2830 return false;
2831 }
2832 }
2833
2834
2835 // Split five bit reg_code based on size of reg_type.
2836 // 32-bit register codes are Vm:M
2837 // 64-bit register codes are M:Vm
2838 // where Vm is four bits, and M is a single bit.
SplitRegCode(VFPType reg_type,int reg_code,int * vm,int * m)2839 static void SplitRegCode(VFPType reg_type,
2840 int reg_code,
2841 int* vm,
2842 int* m) {
2843 DCHECK((reg_code >= 0) && (reg_code <= 31));
2844 if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
2845 // 32 bit type.
2846 *m = reg_code & 0x1;
2847 *vm = reg_code >> 1;
2848 } else {
2849 // 64 bit type.
2850 *m = (reg_code & 0x10) >> 4;
2851 *vm = reg_code & 0x0F;
2852 }
2853 }
2854
2855
2856 // Encode vcvt.src_type.dst_type instruction.
EncodeVCVT(const VFPType dst_type,const int dst_code,const VFPType src_type,const int src_code,VFPConversionMode mode,const Condition cond)2857 static Instr EncodeVCVT(const VFPType dst_type,
2858 const int dst_code,
2859 const VFPType src_type,
2860 const int src_code,
2861 VFPConversionMode mode,
2862 const Condition cond) {
2863 DCHECK(src_type != dst_type);
2864 int D, Vd, M, Vm;
2865 SplitRegCode(src_type, src_code, &Vm, &M);
2866 SplitRegCode(dst_type, dst_code, &Vd, &D);
2867
2868 if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
2869 // Conversion between IEEE floating point and 32-bit integer.
2870 // Instruction details available in ARM DDI 0406B, A8.6.295.
2871 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
2872 // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2873 DCHECK(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
2874
2875 int sz, opc2, op;
2876
2877 if (IsIntegerVFPType(dst_type)) {
2878 opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
2879 sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2880 op = mode;
2881 } else {
2882 DCHECK(IsIntegerVFPType(src_type));
2883 opc2 = 0x0;
2884 sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
2885 op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
2886 }
2887
2888 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
2889 Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
2890 } else {
2891 // Conversion between IEEE double and single precision.
2892 // Instruction details available in ARM DDI 0406B, A8.6.298.
2893 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
2894 // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2895 int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2896 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
2897 Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
2898 }
2899 }
2900
2901
vcvt_f64_s32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2902 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2903 const SwVfpRegister src,
2904 VFPConversionMode mode,
2905 const Condition cond) {
2906 emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
2907 }
2908
2909
vcvt_f32_s32(const SwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2910 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
2911 const SwVfpRegister src,
2912 VFPConversionMode mode,
2913 const Condition cond) {
2914 emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
2915 }
2916
2917
vcvt_f64_u32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2918 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
2919 const SwVfpRegister src,
2920 VFPConversionMode mode,
2921 const Condition cond) {
2922 emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
2923 }
2924
2925
vcvt_s32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)2926 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
2927 const DwVfpRegister src,
2928 VFPConversionMode mode,
2929 const Condition cond) {
2930 emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
2931 }
2932
2933
vcvt_u32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)2934 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
2935 const DwVfpRegister src,
2936 VFPConversionMode mode,
2937 const Condition cond) {
2938 emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
2939 }
2940
2941
vcvt_f64_f32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2942 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
2943 const SwVfpRegister src,
2944 VFPConversionMode mode,
2945 const Condition cond) {
2946 emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
2947 }
2948
2949
vcvt_f32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)2950 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
2951 const DwVfpRegister src,
2952 VFPConversionMode mode,
2953 const Condition cond) {
2954 emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
2955 }
2956
2957
vcvt_f64_s32(const DwVfpRegister dst,int fraction_bits,const Condition cond)2958 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2959 int fraction_bits,
2960 const Condition cond) {
2961 // Instruction details available in ARM DDI 0406C.b, A8-874.
2962 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) |
2963 // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0)
2964 DCHECK(fraction_bits > 0 && fraction_bits <= 32);
2965 DCHECK(CpuFeatures::IsSupported(VFP3));
2966 int vd, d;
2967 dst.split_code(&vd, &d);
2968 int imm5 = 32 - fraction_bits;
2969 int i = imm5 & 1;
2970 int imm4 = (imm5 >> 1) & 0xf;
2971 emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 |
2972 vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4);
2973 }
2974
2975
vneg(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2976 void Assembler::vneg(const DwVfpRegister dst,
2977 const DwVfpRegister src,
2978 const Condition cond) {
2979 // Instruction details available in ARM DDI 0406C.b, A8-968.
2980 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
2981 // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2982 int vd, d;
2983 dst.split_code(&vd, &d);
2984 int vm, m;
2985 src.split_code(&vm, &m);
2986
2987 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 |
2988 m*B5 | vm);
2989 }
2990
2991
vneg(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)2992 void Assembler::vneg(const SwVfpRegister dst, const SwVfpRegister src,
2993 const Condition cond) {
2994 // Instruction details available in ARM DDI 0406C.b, A8-968.
2995 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
2996 // 101(11-9) | sz=0(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2997 int vd, d;
2998 dst.split_code(&vd, &d);
2999 int vm, m;
3000 src.split_code(&vm, &m);
3001
3002 emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 |
3003 B6 | m * B5 | vm);
3004 }
3005
3006
vabs(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)3007 void Assembler::vabs(const DwVfpRegister dst,
3008 const DwVfpRegister src,
3009 const Condition cond) {
3010 // Instruction details available in ARM DDI 0406C.b, A8-524.
3011 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
3012 // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3013 int vd, d;
3014 dst.split_code(&vd, &d);
3015 int vm, m;
3016 src.split_code(&vm, &m);
3017 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 |
3018 m*B5 | vm);
3019 }
3020
3021
vabs(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)3022 void Assembler::vabs(const SwVfpRegister dst, const SwVfpRegister src,
3023 const Condition cond) {
3024 // Instruction details available in ARM DDI 0406C.b, A8-524.
3025 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
3026 // 101(11-9) | sz=0(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3027 int vd, d;
3028 dst.split_code(&vd, &d);
3029 int vm, m;
3030 src.split_code(&vm, &m);
3031 emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B7 | B6 |
3032 m * B5 | vm);
3033 }
3034
3035
vadd(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3036 void Assembler::vadd(const DwVfpRegister dst,
3037 const DwVfpRegister src1,
3038 const DwVfpRegister src2,
3039 const Condition cond) {
3040 // Dd = vadd(Dn, Dm) double precision floating point addition.
3041 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3042 // Instruction details available in ARM DDI 0406C.b, A8-830.
3043 // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
3044 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3045 int vd, d;
3046 dst.split_code(&vd, &d);
3047 int vn, n;
3048 src1.split_code(&vn, &n);
3049 int vm, m;
3050 src2.split_code(&vm, &m);
3051 emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
3052 n*B7 | m*B5 | vm);
3053 }
3054
3055
vadd(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3056 void Assembler::vadd(const SwVfpRegister dst, const SwVfpRegister src1,
3057 const SwVfpRegister src2, const Condition cond) {
3058 // Sd = vadd(Sn, Sm) single precision floating point addition.
3059 // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
3060 // Instruction details available in ARM DDI 0406C.b, A8-830.
3061 // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
3062 // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3063 int vd, d;
3064 dst.split_code(&vd, &d);
3065 int vn, n;
3066 src1.split_code(&vn, &n);
3067 int vm, m;
3068 src2.split_code(&vm, &m);
3069 emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 |
3070 0x5 * B9 | n * B7 | m * B5 | vm);
3071 }
3072
3073
vsub(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3074 void Assembler::vsub(const DwVfpRegister dst,
3075 const DwVfpRegister src1,
3076 const DwVfpRegister src2,
3077 const Condition cond) {
3078 // Dd = vsub(Dn, Dm) double precision floating point subtraction.
3079 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3080 // Instruction details available in ARM DDI 0406C.b, A8-1086.
3081 // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
3082 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3083 int vd, d;
3084 dst.split_code(&vd, &d);
3085 int vn, n;
3086 src1.split_code(&vn, &n);
3087 int vm, m;
3088 src2.split_code(&vm, &m);
3089 emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
3090 n*B7 | B6 | m*B5 | vm);
3091 }
3092
3093
vsub(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3094 void Assembler::vsub(const SwVfpRegister dst, const SwVfpRegister src1,
3095 const SwVfpRegister src2, const Condition cond) {
3096 // Sd = vsub(Sn, Sm) single precision floating point subtraction.
3097 // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
3098 // Instruction details available in ARM DDI 0406C.b, A8-1086.
3099 // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
3100 // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3101 int vd, d;
3102 dst.split_code(&vd, &d);
3103 int vn, n;
3104 src1.split_code(&vn, &n);
3105 int vm, m;
3106 src2.split_code(&vm, &m);
3107 emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 |
3108 0x5 * B9 | n * B7 | B6 | m * B5 | vm);
3109 }
3110
3111
vmul(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3112 void Assembler::vmul(const DwVfpRegister dst,
3113 const DwVfpRegister src1,
3114 const DwVfpRegister src2,
3115 const Condition cond) {
3116 // Dd = vmul(Dn, Dm) double precision floating point multiplication.
3117 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3118 // Instruction details available in ARM DDI 0406C.b, A8-960.
3119 // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
3120 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3121 int vd, d;
3122 dst.split_code(&vd, &d);
3123 int vn, n;
3124 src1.split_code(&vn, &n);
3125 int vm, m;
3126 src2.split_code(&vm, &m);
3127 emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
3128 n*B7 | m*B5 | vm);
3129 }
3130
3131
vmul(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3132 void Assembler::vmul(const SwVfpRegister dst, const SwVfpRegister src1,
3133 const SwVfpRegister src2, const Condition cond) {
3134 // Sd = vmul(Sn, Sm) single precision floating point multiplication.
3135 // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
3136 // Instruction details available in ARM DDI 0406C.b, A8-960.
3137 // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
3138 // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3139 int vd, d;
3140 dst.split_code(&vd, &d);
3141 int vn, n;
3142 src1.split_code(&vn, &n);
3143 int vm, m;
3144 src2.split_code(&vm, &m);
3145 emit(cond | 0x1C * B23 | d * B22 | 0x2 * B20 | vn * B16 | vd * B12 |
3146 0x5 * B9 | n * B7 | m * B5 | vm);
3147 }
3148
3149
vmla(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3150 void Assembler::vmla(const DwVfpRegister dst,
3151 const DwVfpRegister src1,
3152 const DwVfpRegister src2,
3153 const Condition cond) {
3154 // Instruction details available in ARM DDI 0406C.b, A8-932.
3155 // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
3156 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
3157 int vd, d;
3158 dst.split_code(&vd, &d);
3159 int vn, n;
3160 src1.split_code(&vn, &n);
3161 int vm, m;
3162 src2.split_code(&vm, &m);
3163 emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
3164 vm);
3165 }
3166
3167
vmla(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3168 void Assembler::vmla(const SwVfpRegister dst, const SwVfpRegister src1,
3169 const SwVfpRegister src2, const Condition cond) {
3170 // Instruction details available in ARM DDI 0406C.b, A8-932.
3171 // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
3172 // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
3173 int vd, d;
3174 dst.split_code(&vd, &d);
3175 int vn, n;
3176 src1.split_code(&vn, &n);
3177 int vm, m;
3178 src2.split_code(&vm, &m);
3179 emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 |
3180 m * B5 | vm);
3181 }
3182
3183
vmls(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3184 void Assembler::vmls(const DwVfpRegister dst,
3185 const DwVfpRegister src1,
3186 const DwVfpRegister src2,
3187 const Condition cond) {
3188 // Instruction details available in ARM DDI 0406C.b, A8-932.
3189 // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
3190 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
3191 int vd, d;
3192 dst.split_code(&vd, &d);
3193 int vn, n;
3194 src1.split_code(&vn, &n);
3195 int vm, m;
3196 src2.split_code(&vm, &m);
3197 emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 |
3198 m*B5 | vm);
3199 }
3200
3201
vmls(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3202 void Assembler::vmls(const SwVfpRegister dst, const SwVfpRegister src1,
3203 const SwVfpRegister src2, const Condition cond) {
3204 // Instruction details available in ARM DDI 0406C.b, A8-932.
3205 // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
3206 // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
3207 int vd, d;
3208 dst.split_code(&vd, &d);
3209 int vn, n;
3210 src1.split_code(&vn, &n);
3211 int vm, m;
3212 src2.split_code(&vm, &m);
3213 emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 |
3214 B6 | m * B5 | vm);
3215 }
3216
3217
vdiv(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3218 void Assembler::vdiv(const DwVfpRegister dst,
3219 const DwVfpRegister src1,
3220 const DwVfpRegister src2,
3221 const Condition cond) {
3222 // Dd = vdiv(Dn, Dm) double precision floating point division.
3223 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3224 // Instruction details available in ARM DDI 0406C.b, A8-882.
3225 // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
3226 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3227 int vd, d;
3228 dst.split_code(&vd, &d);
3229 int vn, n;
3230 src1.split_code(&vn, &n);
3231 int vm, m;
3232 src2.split_code(&vm, &m);
3233 emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
3234 vm);
3235 }
3236
3237
vdiv(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3238 void Assembler::vdiv(const SwVfpRegister dst, const SwVfpRegister src1,
3239 const SwVfpRegister src2, const Condition cond) {
3240 // Sd = vdiv(Sn, Sm) single precision floating point division.
3241 // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
3242 // Instruction details available in ARM DDI 0406C.b, A8-882.
3243 // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
3244 // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3245 int vd, d;
3246 dst.split_code(&vd, &d);
3247 int vn, n;
3248 src1.split_code(&vn, &n);
3249 int vm, m;
3250 src2.split_code(&vm, &m);
3251 emit(cond | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 |
3252 m * B5 | vm);
3253 }
3254
3255
vcmp(const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3256 void Assembler::vcmp(const DwVfpRegister src1,
3257 const DwVfpRegister src2,
3258 const Condition cond) {
3259 // vcmp(Dd, Dm) double precision floating point comparison.
3260 // Instruction details available in ARM DDI 0406C.b, A8-864.
3261 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
3262 // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3263 int vd, d;
3264 src1.split_code(&vd, &d);
3265 int vm, m;
3266 src2.split_code(&vm, &m);
3267 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 |
3268 m*B5 | vm);
3269 }
3270
3271
vcmp(const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3272 void Assembler::vcmp(const SwVfpRegister src1, const SwVfpRegister src2,
3273 const Condition cond) {
3274 // vcmp(Sd, Sm) single precision floating point comparison.
3275 // Instruction details available in ARM DDI 0406C.b, A8-864.
3276 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
3277 // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3278 int vd, d;
3279 src1.split_code(&vd, &d);
3280 int vm, m;
3281 src2.split_code(&vm, &m);
3282 emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x4 * B16 | vd * B12 |
3283 0x5 * B9 | B6 | m * B5 | vm);
3284 }
3285
3286
vcmp(const DwVfpRegister src1,const double src2,const Condition cond)3287 void Assembler::vcmp(const DwVfpRegister src1,
3288 const double src2,
3289 const Condition cond) {
3290 // vcmp(Dd, #0.0) double precision floating point comparison.
3291 // Instruction details available in ARM DDI 0406C.b, A8-864.
3292 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
3293 // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
3294 DCHECK(src2 == 0.0);
3295 int vd, d;
3296 src1.split_code(&vd, &d);
3297 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6);
3298 }
3299
3300
vcmp(const SwVfpRegister src1,const float src2,const Condition cond)3301 void Assembler::vcmp(const SwVfpRegister src1, const float src2,
3302 const Condition cond) {
3303 // vcmp(Sd, #0.0) single precision floating point comparison.
3304 // Instruction details available in ARM DDI 0406C.b, A8-864.
3305 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
3306 // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
3307 DCHECK(src2 == 0.0);
3308 int vd, d;
3309 src1.split_code(&vd, &d);
3310 emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x5 * B16 | vd * B12 |
3311 0x5 * B9 | B6);
3312 }
3313
3314
vsqrt(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)3315 void Assembler::vsqrt(const DwVfpRegister dst,
3316 const DwVfpRegister src,
3317 const Condition cond) {
3318 // Instruction details available in ARM DDI 0406C.b, A8-1058.
3319 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
3320 // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
3321 int vd, d;
3322 dst.split_code(&vd, &d);
3323 int vm, m;
3324 src.split_code(&vm, &m);
3325 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 |
3326 m*B5 | vm);
3327 }
3328
3329
vsqrt(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)3330 void Assembler::vsqrt(const SwVfpRegister dst, const SwVfpRegister src,
3331 const Condition cond) {
3332 // Instruction details available in ARM DDI 0406C.b, A8-1058.
3333 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
3334 // Vd(15-12) | 101(11-9) | sz=0(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
3335 int vd, d;
3336 dst.split_code(&vd, &d);
3337 int vm, m;
3338 src.split_code(&vm, &m);
3339 emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 |
3340 0x3 * B6 | m * B5 | vm);
3341 }
3342
3343
vmsr(Register dst,Condition cond)3344 void Assembler::vmsr(Register dst, Condition cond) {
3345 // Instruction details available in ARM DDI 0406A, A8-652.
3346 // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
3347 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
3348 emit(cond | 0xE * B24 | 0xE * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4);
3349 }
3350
3351
vmrs(Register dst,Condition cond)3352 void Assembler::vmrs(Register dst, Condition cond) {
3353 // Instruction details available in ARM DDI 0406A, A8-652.
3354 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
3355 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
3356 emit(cond | 0xE * B24 | 0xF * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4);
3357 }
3358
3359
vrinta(const SwVfpRegister dst,const SwVfpRegister src)3360 void Assembler::vrinta(const SwVfpRegister dst, const SwVfpRegister src) {
3361 // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3362 // 10(19-18) | RM=00(17-16) | Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
3363 // M(5) | 0(4) | Vm(3-0)
3364 DCHECK(CpuFeatures::IsSupported(ARMv8));
3365 int vd, d;
3366 dst.split_code(&vd, &d);
3367 int vm, m;
3368 src.split_code(&vm, &m);
3369 emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 |
3370 0x5 * B9 | B6 | m * B5 | vm);
3371 }
3372
3373
vrinta(const DwVfpRegister dst,const DwVfpRegister src)3374 void Assembler::vrinta(const DwVfpRegister dst, const DwVfpRegister src) {
3375 // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3376 // 10(19-18) | RM=00(17-16) | Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
3377 // M(5) | 0(4) | Vm(3-0)
3378 DCHECK(CpuFeatures::IsSupported(ARMv8));
3379 int vd, d;
3380 dst.split_code(&vd, &d);
3381 int vm, m;
3382 src.split_code(&vm, &m);
3383 emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 |
3384 0x5 * B9 | B8 | B6 | m * B5 | vm);
3385 }
3386
3387
vrintn(const SwVfpRegister dst,const SwVfpRegister src)3388 void Assembler::vrintn(const SwVfpRegister dst, const SwVfpRegister src) {
3389 // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3390 // 10(19-18) | RM=01(17-16) | Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
3391 // M(5) | 0(4) | Vm(3-0)
3392 DCHECK(CpuFeatures::IsSupported(ARMv8));
3393 int vd, d;
3394 dst.split_code(&vd, &d);
3395 int vm, m;
3396 src.split_code(&vm, &m);
3397 emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 |
3398 vd * B12 | 0x5 * B9 | B6 | m * B5 | vm);
3399 }
3400
3401
vrintn(const DwVfpRegister dst,const DwVfpRegister src)3402 void Assembler::vrintn(const DwVfpRegister dst, const DwVfpRegister src) {
3403 // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3404 // 10(19-18) | RM=01(17-16) | Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
3405 // M(5) | 0(4) | Vm(3-0)
3406 DCHECK(CpuFeatures::IsSupported(ARMv8));
3407 int vd, d;
3408 dst.split_code(&vd, &d);
3409 int vm, m;
3410 src.split_code(&vm, &m);
3411 emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 |
3412 vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm);
3413 }
3414
3415
vrintp(const SwVfpRegister dst,const SwVfpRegister src)3416 void Assembler::vrintp(const SwVfpRegister dst, const SwVfpRegister src) {
3417 // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3418 // 10(19-18) | RM=10(17-16) | Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
3419 // M(5) | 0(4) | Vm(3-0)
3420 DCHECK(CpuFeatures::IsSupported(ARMv8));
3421 int vd, d;
3422 dst.split_code(&vd, &d);
3423 int vm, m;
3424 src.split_code(&vm, &m);
3425 emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 |
3426 vd * B12 | 0x5 * B9 | B6 | m * B5 | vm);
3427 }
3428
3429
vrintp(const DwVfpRegister dst,const DwVfpRegister src)3430 void Assembler::vrintp(const DwVfpRegister dst, const DwVfpRegister src) {
3431 // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3432 // 10(19-18) | RM=10(17-16) | Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
3433 // M(5) | 0(4) | Vm(3-0)
3434 DCHECK(CpuFeatures::IsSupported(ARMv8));
3435 int vd, d;
3436 dst.split_code(&vd, &d);
3437 int vm, m;
3438 src.split_code(&vm, &m);
3439 emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 |
3440 vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm);
3441 }
3442
3443
vrintm(const SwVfpRegister dst,const SwVfpRegister src)3444 void Assembler::vrintm(const SwVfpRegister dst, const SwVfpRegister src) {
3445 // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3446 // 10(19-18) | RM=11(17-16) | Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
3447 // M(5) | 0(4) | Vm(3-0)
3448 DCHECK(CpuFeatures::IsSupported(ARMv8));
3449 int vd, d;
3450 dst.split_code(&vd, &d);
3451 int vm, m;
3452 src.split_code(&vm, &m);
3453 emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 |
3454 vd * B12 | 0x5 * B9 | B6 | m * B5 | vm);
3455 }
3456
3457
vrintm(const DwVfpRegister dst,const DwVfpRegister src)3458 void Assembler::vrintm(const DwVfpRegister dst, const DwVfpRegister src) {
3459 // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3460 // 10(19-18) | RM=11(17-16) | Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
3461 // M(5) | 0(4) | Vm(3-0)
3462 DCHECK(CpuFeatures::IsSupported(ARMv8));
3463 int vd, d;
3464 dst.split_code(&vd, &d);
3465 int vm, m;
3466 src.split_code(&vm, &m);
3467 emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 |
3468 vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm);
3469 }
3470
3471
vrintz(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)3472 void Assembler::vrintz(const SwVfpRegister dst, const SwVfpRegister src,
3473 const Condition cond) {
3474 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) |
3475 // Vd(15-12) | 101(11-9) | sz=0(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3476 DCHECK(CpuFeatures::IsSupported(ARMv8));
3477 int vd, d;
3478 dst.split_code(&vd, &d);
3479 int vm, m;
3480 src.split_code(&vm, &m);
3481 emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 |
3482 0x5 * B9 | B7 | B6 | m * B5 | vm);
3483 }
3484
3485
vrintz(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)3486 void Assembler::vrintz(const DwVfpRegister dst, const DwVfpRegister src,
3487 const Condition cond) {
3488 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) |
3489 // Vd(15-12) | 101(11-9) | sz=1(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3490 DCHECK(CpuFeatures::IsSupported(ARMv8));
3491 int vd, d;
3492 dst.split_code(&vd, &d);
3493 int vm, m;
3494 src.split_code(&vm, &m);
3495 emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 |
3496 0x5 * B9 | B8 | B7 | B6 | m * B5 | vm);
3497 }
3498
3499
3500 // Support for NEON.
3501
vld1(NeonSize size,const NeonListOperand & dst,const NeonMemOperand & src)3502 void Assembler::vld1(NeonSize size,
3503 const NeonListOperand& dst,
3504 const NeonMemOperand& src) {
3505 // Instruction details available in ARM DDI 0406C.b, A8.8.320.
3506 // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) |
3507 // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
3508 DCHECK(CpuFeatures::IsSupported(NEON));
3509 int vd, d;
3510 dst.base().split_code(&vd, &d);
3511 emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 |
3512 dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code());
3513 }
3514
3515
vst1(NeonSize size,const NeonListOperand & src,const NeonMemOperand & dst)3516 void Assembler::vst1(NeonSize size,
3517 const NeonListOperand& src,
3518 const NeonMemOperand& dst) {
3519 // Instruction details available in ARM DDI 0406C.b, A8.8.404.
3520 // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) |
3521 // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
3522 DCHECK(CpuFeatures::IsSupported(NEON));
3523 int vd, d;
3524 src.base().split_code(&vd, &d);
3525 emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 |
3526 size*B6 | dst.align()*B4 | dst.rm().code());
3527 }
3528
3529
vmovl(NeonDataType dt,QwNeonRegister dst,DwVfpRegister src)3530 void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) {
3531 // Instruction details available in ARM DDI 0406C.b, A8.8.346.
3532 // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) |
3533 // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0)
3534 DCHECK(CpuFeatures::IsSupported(NEON));
3535 int vd, d;
3536 dst.split_code(&vd, &d);
3537 int vm, m;
3538 src.split_code(&vm, &m);
3539 emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 |
3540 (dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm);
3541 }
3542
3543
3544 // Pseudo instructions.
nop(int type)3545 void Assembler::nop(int type) {
3546 // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
3547 // some of the CPU's pipeline and has to issue. Older ARM chips simply used
3548 // MOV Rx, Rx as NOP and it performs better even in newer CPUs.
3549 // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
3550 // a type.
3551 DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop.
3552 emit(al | 13*B21 | type*B12 | type);
3553 }
3554
3555
IsMovT(Instr instr)3556 bool Assembler::IsMovT(Instr instr) {
3557 instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions
3558 ((kNumRegisters-1)*B12) | // mask out register
3559 EncodeMovwImmediate(0xFFFF)); // mask out immediate value
3560 return instr == kMovtPattern;
3561 }
3562
3563
IsMovW(Instr instr)3564 bool Assembler::IsMovW(Instr instr) {
3565 instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions
3566 ((kNumRegisters-1)*B12) | // mask out destination
3567 EncodeMovwImmediate(0xFFFF)); // mask out immediate value
3568 return instr == kMovwPattern;
3569 }
3570
3571
GetMovTPattern()3572 Instr Assembler::GetMovTPattern() { return kMovtPattern; }
3573
3574
GetMovWPattern()3575 Instr Assembler::GetMovWPattern() { return kMovwPattern; }
3576
3577
EncodeMovwImmediate(uint32_t immediate)3578 Instr Assembler::EncodeMovwImmediate(uint32_t immediate) {
3579 DCHECK(immediate < 0x10000);
3580 return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
3581 }
3582
3583
PatchMovwImmediate(Instr instruction,uint32_t immediate)3584 Instr Assembler::PatchMovwImmediate(Instr instruction, uint32_t immediate) {
3585 instruction &= ~EncodeMovwImmediate(0xffff);
3586 return instruction | EncodeMovwImmediate(immediate);
3587 }
3588
3589
DecodeShiftImm(Instr instr)3590 int Assembler::DecodeShiftImm(Instr instr) {
3591 int rotate = Instruction::RotateValue(instr) * 2;
3592 int immed8 = Instruction::Immed8Value(instr);
3593 return base::bits::RotateRight32(immed8, rotate);
3594 }
3595
3596
PatchShiftImm(Instr instr,int immed)3597 Instr Assembler::PatchShiftImm(Instr instr, int immed) {
3598 uint32_t rotate_imm = 0;
3599 uint32_t immed_8 = 0;
3600 bool immed_fits = fits_shifter(immed, &rotate_imm, &immed_8, NULL);
3601 DCHECK(immed_fits);
3602 USE(immed_fits);
3603 return (instr & ~kOff12Mask) | (rotate_imm << 8) | immed_8;
3604 }
3605
3606
IsNop(Instr instr,int type)3607 bool Assembler::IsNop(Instr instr, int type) {
3608 DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop.
3609 // Check for mov rx, rx where x = type.
3610 return instr == (al | 13*B21 | type*B12 | type);
3611 }
3612
3613
IsMovImmed(Instr instr)3614 bool Assembler::IsMovImmed(Instr instr) {
3615 return (instr & kMovImmedMask) == kMovImmedPattern;
3616 }
3617
3618
IsOrrImmed(Instr instr)3619 bool Assembler::IsOrrImmed(Instr instr) {
3620 return (instr & kOrrImmedMask) == kOrrImmedPattern;
3621 }
3622
3623
3624 // static
ImmediateFitsAddrMode1Instruction(int32_t imm32)3625 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
3626 uint32_t dummy1;
3627 uint32_t dummy2;
3628 return fits_shifter(imm32, &dummy1, &dummy2, NULL);
3629 }
3630
3631
ImmediateFitsAddrMode2Instruction(int32_t imm32)3632 bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) {
3633 return is_uint12(abs(imm32));
3634 }
3635
3636
3637 // Debugging.
RecordConstPool(int size)3638 void Assembler::RecordConstPool(int size) {
3639 // We only need this for debugger support, to correctly compute offsets in the
3640 // code.
3641 RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3642 }
3643
3644
GrowBuffer()3645 void Assembler::GrowBuffer() {
3646 if (!own_buffer_) FATAL("external code buffer is too small");
3647
3648 // Compute new buffer size.
3649 CodeDesc desc; // the new buffer
3650 if (buffer_size_ < 1 * MB) {
3651 desc.buffer_size = 2*buffer_size_;
3652 } else {
3653 desc.buffer_size = buffer_size_ + 1*MB;
3654 }
3655 CHECK_GT(desc.buffer_size, 0); // no overflow
3656
3657 // Set up new buffer.
3658 desc.buffer = NewArray<byte>(desc.buffer_size);
3659
3660 desc.instr_size = pc_offset();
3661 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
3662 desc.origin = this;
3663
3664 // Copy the data.
3665 int pc_delta = desc.buffer - buffer_;
3666 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
3667 MemMove(desc.buffer, buffer_, desc.instr_size);
3668 MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3669 desc.reloc_size);
3670
3671 // Switch buffers.
3672 DeleteArray(buffer_);
3673 buffer_ = desc.buffer;
3674 buffer_size_ = desc.buffer_size;
3675 pc_ += pc_delta;
3676 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3677 reloc_info_writer.last_pc() + pc_delta);
3678
3679 // None of our relocation types are pc relative pointing outside the code
3680 // buffer nor pc absolute pointing inside the code buffer, so there is no need
3681 // to relocate any emitted relocation entries.
3682 }
3683
3684
db(uint8_t data)3685 void Assembler::db(uint8_t data) {
3686 // db is used to write raw data. The constant pool should be emitted or
3687 // blocked before using db.
3688 DCHECK(is_const_pool_blocked() || (num_pending_32_bit_constants_ == 0));
3689 DCHECK(is_const_pool_blocked() || (num_pending_64_bit_constants_ == 0));
3690 CheckBuffer();
3691 *reinterpret_cast<uint8_t*>(pc_) = data;
3692 pc_ += sizeof(uint8_t);
3693 }
3694
3695
dd(uint32_t data)3696 void Assembler::dd(uint32_t data) {
3697 // dd is used to write raw data. The constant pool should be emitted or
3698 // blocked before using dd.
3699 DCHECK(is_const_pool_blocked() || (num_pending_32_bit_constants_ == 0));
3700 DCHECK(is_const_pool_blocked() || (num_pending_64_bit_constants_ == 0));
3701 CheckBuffer();
3702 *reinterpret_cast<uint32_t*>(pc_) = data;
3703 pc_ += sizeof(uint32_t);
3704 }
3705
3706
dq(uint64_t value)3707 void Assembler::dq(uint64_t value) {
3708 // dq is used to write raw data. The constant pool should be emitted or
3709 // blocked before using dq.
3710 DCHECK(is_const_pool_blocked() || (num_pending_32_bit_constants_ == 0));
3711 DCHECK(is_const_pool_blocked() || (num_pending_64_bit_constants_ == 0));
3712 CheckBuffer();
3713 *reinterpret_cast<uint64_t*>(pc_) = value;
3714 pc_ += sizeof(uint64_t);
3715 }
3716
3717
emit_code_stub_address(Code * stub)3718 void Assembler::emit_code_stub_address(Code* stub) {
3719 CheckBuffer();
3720 *reinterpret_cast<uint32_t*>(pc_) =
3721 reinterpret_cast<uint32_t>(stub->instruction_start());
3722 pc_ += sizeof(uint32_t);
3723 }
3724
3725
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3726 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3727 if (RelocInfo::IsNone(rmode) ||
3728 // Don't record external references unless the heap will be serialized.
3729 (rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() &&
3730 !emit_debug_code())) {
3731 return;
3732 }
3733 DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
3734 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
3735 data = RecordedAstId().ToInt();
3736 ClearRecordedAstId();
3737 }
3738 RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
3739 reloc_info_writer.Write(&rinfo);
3740 }
3741
3742
ConstantPoolAddEntry(int position,RelocInfo::Mode rmode,intptr_t value)3743 ConstantPoolEntry::Access Assembler::ConstantPoolAddEntry(int position,
3744 RelocInfo::Mode rmode,
3745 intptr_t value) {
3746 DCHECK(rmode != RelocInfo::COMMENT && rmode != RelocInfo::POSITION &&
3747 rmode != RelocInfo::STATEMENT_POSITION &&
3748 rmode != RelocInfo::CONST_POOL && rmode != RelocInfo::NONE64);
3749 bool sharing_ok = RelocInfo::IsNone(rmode) ||
3750 !(serializer_enabled() || rmode < RelocInfo::CELL);
3751 if (FLAG_enable_embedded_constant_pool) {
3752 return constant_pool_builder_.AddEntry(position, value, sharing_ok);
3753 } else {
3754 DCHECK(num_pending_32_bit_constants_ < kMaxNumPending32Constants);
3755 if (num_pending_32_bit_constants_ == 0) {
3756 first_const_pool_32_use_ = position;
3757 } else if (num_pending_32_bit_constants_ == kMinNumPendingConstants &&
3758 pending_32_bit_constants_ ==
3759 &pending_32_bit_constants_buffer_[0]) {
3760 // Inline buffer is full, switch to dynamically allocated buffer.
3761 pending_32_bit_constants_ =
3762 new ConstantPoolEntry[kMaxNumPending32Constants];
3763 std::copy(&pending_32_bit_constants_buffer_[0],
3764 &pending_32_bit_constants_buffer_[kMinNumPendingConstants],
3765 &pending_32_bit_constants_[0]);
3766 }
3767 ConstantPoolEntry entry(position, value, sharing_ok);
3768 pending_32_bit_constants_[num_pending_32_bit_constants_++] = entry;
3769
3770 // Make sure the constant pool is not emitted in place of the next
3771 // instruction for which we just recorded relocation info.
3772 BlockConstPoolFor(1);
3773 return ConstantPoolEntry::REGULAR;
3774 }
3775 }
3776
3777
ConstantPoolAddEntry(int position,double value)3778 ConstantPoolEntry::Access Assembler::ConstantPoolAddEntry(int position,
3779 double value) {
3780 if (FLAG_enable_embedded_constant_pool) {
3781 return constant_pool_builder_.AddEntry(position, value);
3782 } else {
3783 DCHECK(num_pending_64_bit_constants_ < kMaxNumPending64Constants);
3784 if (num_pending_64_bit_constants_ == 0) {
3785 first_const_pool_64_use_ = position;
3786 } else if (num_pending_64_bit_constants_ == kMinNumPendingConstants &&
3787 pending_64_bit_constants_ ==
3788 &pending_64_bit_constants_buffer_[0]) {
3789 // Inline buffer is full, switch to dynamically allocated buffer.
3790 pending_64_bit_constants_ =
3791 new ConstantPoolEntry[kMaxNumPending64Constants];
3792 std::copy(&pending_64_bit_constants_buffer_[0],
3793 &pending_64_bit_constants_buffer_[kMinNumPendingConstants],
3794 &pending_64_bit_constants_[0]);
3795 }
3796 ConstantPoolEntry entry(position, value);
3797 pending_64_bit_constants_[num_pending_64_bit_constants_++] = entry;
3798
3799 // Make sure the constant pool is not emitted in place of the next
3800 // instruction for which we just recorded relocation info.
3801 BlockConstPoolFor(1);
3802 return ConstantPoolEntry::REGULAR;
3803 }
3804 }
3805
3806
BlockConstPoolFor(int instructions)3807 void Assembler::BlockConstPoolFor(int instructions) {
3808 if (FLAG_enable_embedded_constant_pool) {
3809 // Should be a no-op if using an embedded constant pool.
3810 DCHECK(num_pending_32_bit_constants_ == 0);
3811 DCHECK(num_pending_64_bit_constants_ == 0);
3812 return;
3813 }
3814
3815 int pc_limit = pc_offset() + instructions * kInstrSize;
3816 if (no_const_pool_before_ < pc_limit) {
3817 // Max pool start (if we need a jump and an alignment).
3818 #ifdef DEBUG
3819 int start = pc_limit + kInstrSize + 2 * kPointerSize;
3820 DCHECK((num_pending_32_bit_constants_ == 0) ||
3821 (start - first_const_pool_32_use_ +
3822 num_pending_64_bit_constants_ * kDoubleSize <
3823 kMaxDistToIntPool));
3824 DCHECK((num_pending_64_bit_constants_ == 0) ||
3825 (start - first_const_pool_64_use_ < kMaxDistToFPPool));
3826 #endif
3827 no_const_pool_before_ = pc_limit;
3828 }
3829
3830 if (next_buffer_check_ < no_const_pool_before_) {
3831 next_buffer_check_ = no_const_pool_before_;
3832 }
3833 }
3834
3835
CheckConstPool(bool force_emit,bool require_jump)3836 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
3837 if (FLAG_enable_embedded_constant_pool) {
3838 // Should be a no-op if using an embedded constant pool.
3839 DCHECK(num_pending_32_bit_constants_ == 0);
3840 DCHECK(num_pending_64_bit_constants_ == 0);
3841 return;
3842 }
3843
3844 // Some short sequence of instruction mustn't be broken up by constant pool
3845 // emission, such sequences are protected by calls to BlockConstPoolFor and
3846 // BlockConstPoolScope.
3847 if (is_const_pool_blocked()) {
3848 // Something is wrong if emission is forced and blocked at the same time.
3849 DCHECK(!force_emit);
3850 return;
3851 }
3852
3853 // There is nothing to do if there are no pending constant pool entries.
3854 if ((num_pending_32_bit_constants_ == 0) &&
3855 (num_pending_64_bit_constants_ == 0)) {
3856 // Calculate the offset of the next check.
3857 next_buffer_check_ = pc_offset() + kCheckPoolInterval;
3858 return;
3859 }
3860
3861 // Check that the code buffer is large enough before emitting the constant
3862 // pool (include the jump over the pool and the constant pool marker and
3863 // the gap to the relocation information).
3864 int jump_instr = require_jump ? kInstrSize : 0;
3865 int size_up_to_marker = jump_instr + kInstrSize;
3866 int estimated_size_after_marker =
3867 num_pending_32_bit_constants_ * kPointerSize;
3868 bool has_int_values = (num_pending_32_bit_constants_ > 0);
3869 bool has_fp_values = (num_pending_64_bit_constants_ > 0);
3870 bool require_64_bit_align = false;
3871 if (has_fp_values) {
3872 require_64_bit_align =
3873 !IsAligned(reinterpret_cast<intptr_t>(pc_ + size_up_to_marker),
3874 kDoubleAlignment);
3875 if (require_64_bit_align) {
3876 estimated_size_after_marker += kInstrSize;
3877 }
3878 estimated_size_after_marker += num_pending_64_bit_constants_ * kDoubleSize;
3879 }
3880 int estimated_size = size_up_to_marker + estimated_size_after_marker;
3881
3882 // We emit a constant pool when:
3883 // * requested to do so by parameter force_emit (e.g. after each function).
3884 // * the distance from the first instruction accessing the constant pool to
3885 // any of the constant pool entries will exceed its limit the next
3886 // time the pool is checked. This is overly restrictive, but we don't emit
3887 // constant pool entries in-order so it's conservatively correct.
3888 // * the instruction doesn't require a jump after itself to jump over the
3889 // constant pool, and we're getting close to running out of range.
3890 if (!force_emit) {
3891 DCHECK(has_fp_values || has_int_values);
3892 bool need_emit = false;
3893 if (has_fp_values) {
3894 // The 64-bit constants are always emitted before the 32-bit constants, so
3895 // we can ignore the effect of the 32-bit constants on estimated_size.
3896 int dist64 = pc_offset() + estimated_size -
3897 num_pending_32_bit_constants_ * kPointerSize -
3898 first_const_pool_64_use_;
3899 if ((dist64 >= kMaxDistToFPPool - kCheckPoolInterval) ||
3900 (!require_jump && (dist64 >= kMaxDistToFPPool / 2))) {
3901 need_emit = true;
3902 }
3903 }
3904 if (has_int_values) {
3905 int dist32 = pc_offset() + estimated_size - first_const_pool_32_use_;
3906 if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) ||
3907 (!require_jump && (dist32 >= kMaxDistToIntPool / 2))) {
3908 need_emit = true;
3909 }
3910 }
3911 if (!need_emit) return;
3912 }
3913
3914 // Deduplicate constants.
3915 int size_after_marker = estimated_size_after_marker;
3916 for (int i = 0; i < num_pending_64_bit_constants_; i++) {
3917 ConstantPoolEntry& entry = pending_64_bit_constants_[i];
3918 DCHECK(!entry.is_merged());
3919 for (int j = 0; j < i; j++) {
3920 if (entry.value64() == pending_64_bit_constants_[j].value64()) {
3921 DCHECK(!pending_64_bit_constants_[j].is_merged());
3922 entry.set_merged_index(j);
3923 size_after_marker -= kDoubleSize;
3924 break;
3925 }
3926 }
3927 }
3928
3929 for (int i = 0; i < num_pending_32_bit_constants_; i++) {
3930 ConstantPoolEntry& entry = pending_32_bit_constants_[i];
3931 DCHECK(!entry.is_merged());
3932 if (!entry.sharing_ok()) continue;
3933 for (int j = 0; j < i; j++) {
3934 if (entry.value() == pending_32_bit_constants_[j].value()) {
3935 DCHECK(!pending_32_bit_constants_[j].is_merged());
3936 entry.set_merged_index(j);
3937 size_after_marker -= kPointerSize;
3938 break;
3939 }
3940 }
3941 }
3942
3943 int size = size_up_to_marker + size_after_marker;
3944
3945 int needed_space = size + kGap;
3946 while (buffer_space() <= needed_space) GrowBuffer();
3947
3948 {
3949 // Block recursive calls to CheckConstPool.
3950 BlockConstPoolScope block_const_pool(this);
3951 RecordComment("[ Constant Pool");
3952 RecordConstPool(size);
3953
3954 Label size_check;
3955 bind(&size_check);
3956
3957 // Emit jump over constant pool if necessary.
3958 Label after_pool;
3959 if (require_jump) {
3960 b(&after_pool);
3961 }
3962
3963 // Put down constant pool marker "Undefined instruction".
3964 // The data size helps disassembly know what to print.
3965 emit(kConstantPoolMarker |
3966 EncodeConstantPoolLength(size_after_marker / kPointerSize));
3967
3968 if (require_64_bit_align) {
3969 emit(kConstantPoolMarker);
3970 }
3971
3972 // Emit 64-bit constant pool entries first: their range is smaller than
3973 // 32-bit entries.
3974 for (int i = 0; i < num_pending_64_bit_constants_; i++) {
3975 ConstantPoolEntry& entry = pending_64_bit_constants_[i];
3976
3977 Instr instr = instr_at(entry.position());
3978 // Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0.
3979 DCHECK((IsVldrDPcImmediateOffset(instr) &&
3980 GetVldrDRegisterImmediateOffset(instr) == 0));
3981
3982 int delta = pc_offset() - entry.position() - kPcLoadDelta;
3983 DCHECK(is_uint10(delta));
3984
3985 if (entry.is_merged()) {
3986 ConstantPoolEntry& merged =
3987 pending_64_bit_constants_[entry.merged_index()];
3988 DCHECK(entry.value64() == merged.value64());
3989 Instr merged_instr = instr_at(merged.position());
3990 DCHECK(IsVldrDPcImmediateOffset(merged_instr));
3991 delta = GetVldrDRegisterImmediateOffset(merged_instr);
3992 delta += merged.position() - entry.position();
3993 }
3994 instr_at_put(entry.position(),
3995 SetVldrDRegisterImmediateOffset(instr, delta));
3996 if (!entry.is_merged()) {
3997 DCHECK(IsAligned(reinterpret_cast<intptr_t>(pc_), kDoubleAlignment));
3998 dq(entry.value64());
3999 }
4000 }
4001
4002 // Emit 32-bit constant pool entries.
4003 for (int i = 0; i < num_pending_32_bit_constants_; i++) {
4004 ConstantPoolEntry& entry = pending_32_bit_constants_[i];
4005 Instr instr = instr_at(entry.position());
4006
4007 // 64-bit loads shouldn't get here.
4008 DCHECK(!IsVldrDPcImmediateOffset(instr));
4009 DCHECK(!IsMovW(instr));
4010 DCHECK(IsLdrPcImmediateOffset(instr) &&
4011 GetLdrRegisterImmediateOffset(instr) == 0);
4012
4013 int delta = pc_offset() - entry.position() - kPcLoadDelta;
4014 DCHECK(is_uint12(delta));
4015 // 0 is the smallest delta:
4016 // ldr rd, [pc, #0]
4017 // constant pool marker
4018 // data
4019
4020 if (entry.is_merged()) {
4021 DCHECK(entry.sharing_ok());
4022 ConstantPoolEntry& merged =
4023 pending_32_bit_constants_[entry.merged_index()];
4024 DCHECK(entry.value() == merged.value());
4025 Instr merged_instr = instr_at(merged.position());
4026 DCHECK(IsLdrPcImmediateOffset(merged_instr));
4027 delta = GetLdrRegisterImmediateOffset(merged_instr);
4028 delta += merged.position() - entry.position();
4029 }
4030 instr_at_put(entry.position(),
4031 SetLdrRegisterImmediateOffset(instr, delta));
4032 if (!entry.is_merged()) {
4033 emit(entry.value());
4034 }
4035 }
4036
4037 num_pending_32_bit_constants_ = 0;
4038 num_pending_64_bit_constants_ = 0;
4039 first_const_pool_32_use_ = -1;
4040 first_const_pool_64_use_ = -1;
4041
4042 RecordComment("]");
4043
4044 DCHECK_EQ(size, SizeOfCodeGeneratedSince(&size_check));
4045
4046 if (after_pool.is_linked()) {
4047 bind(&after_pool);
4048 }
4049 }
4050
4051 // Since a constant pool was just emitted, move the check offset forward by
4052 // the standard interval.
4053 next_buffer_check_ = pc_offset() + kCheckPoolInterval;
4054 }
4055
4056
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)4057 void Assembler::PatchConstantPoolAccessInstruction(
4058 int pc_offset, int offset, ConstantPoolEntry::Access access,
4059 ConstantPoolEntry::Type type) {
4060 DCHECK(FLAG_enable_embedded_constant_pool);
4061 Address pc = buffer_ + pc_offset;
4062
4063 // Patch vldr/ldr instruction with correct offset.
4064 Instr instr = instr_at(pc);
4065 if (access == ConstantPoolEntry::OVERFLOWED) {
4066 if (CpuFeatures::IsSupported(ARMv7)) {
4067 // Instructions to patch must be 'movw rd, [#0]' and 'movt rd, [#0].
4068 Instr next_instr = instr_at(pc + kInstrSize);
4069 DCHECK((IsMovW(instr) && Instruction::ImmedMovwMovtValue(instr) == 0));
4070 DCHECK((IsMovT(next_instr) &&
4071 Instruction::ImmedMovwMovtValue(next_instr) == 0));
4072 instr_at_put(pc, PatchMovwImmediate(instr, offset & 0xffff));
4073 instr_at_put(pc + kInstrSize,
4074 PatchMovwImmediate(next_instr, offset >> 16));
4075 } else {
4076 // Instructions to patch must be 'mov rd, [#0]' and 'orr rd, rd, [#0].
4077 Instr instr_2 = instr_at(pc + kInstrSize);
4078 Instr instr_3 = instr_at(pc + 2 * kInstrSize);
4079 Instr instr_4 = instr_at(pc + 3 * kInstrSize);
4080 DCHECK((IsMovImmed(instr) && Instruction::Immed8Value(instr) == 0));
4081 DCHECK((IsOrrImmed(instr_2) && Instruction::Immed8Value(instr_2) == 0) &&
4082 GetRn(instr_2).is(GetRd(instr_2)));
4083 DCHECK((IsOrrImmed(instr_3) && Instruction::Immed8Value(instr_3) == 0) &&
4084 GetRn(instr_3).is(GetRd(instr_3)));
4085 DCHECK((IsOrrImmed(instr_4) && Instruction::Immed8Value(instr_4) == 0) &&
4086 GetRn(instr_4).is(GetRd(instr_4)));
4087 instr_at_put(pc, PatchShiftImm(instr, (offset & kImm8Mask)));
4088 instr_at_put(pc + kInstrSize,
4089 PatchShiftImm(instr_2, (offset & (kImm8Mask << 8))));
4090 instr_at_put(pc + 2 * kInstrSize,
4091 PatchShiftImm(instr_3, (offset & (kImm8Mask << 16))));
4092 instr_at_put(pc + 3 * kInstrSize,
4093 PatchShiftImm(instr_4, (offset & (kImm8Mask << 24))));
4094 }
4095 } else if (type == ConstantPoolEntry::DOUBLE) {
4096 // Instruction to patch must be 'vldr rd, [pp, #0]'.
4097 DCHECK((IsVldrDPpImmediateOffset(instr) &&
4098 GetVldrDRegisterImmediateOffset(instr) == 0));
4099 DCHECK(is_uint10(offset));
4100 instr_at_put(pc, SetVldrDRegisterImmediateOffset(instr, offset));
4101 } else {
4102 // Instruction to patch must be 'ldr rd, [pp, #0]'.
4103 DCHECK((IsLdrPpImmediateOffset(instr) &&
4104 GetLdrRegisterImmediateOffset(instr) == 0));
4105 DCHECK(is_uint12(offset));
4106 instr_at_put(pc, SetLdrRegisterImmediateOffset(instr, offset));
4107 }
4108 }
4109
4110
4111 } // namespace internal
4112 } // namespace v8
4113
4114 #endif // V8_TARGET_ARCH_ARM
4115