1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips/assembler-mips.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
52 
53 // -----------------------------------------------------------------------------
54 // Operand and MemOperand.
55 
Operand(int32_t immediate,RelocInfo::Mode rmode)56 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
57   rm_ = no_reg;
58   imm32_ = immediate;
59   rmode_ = rmode;
60 }
61 
62 
Operand(const ExternalReference & f)63 Operand::Operand(const ExternalReference& f)  {
64   rm_ = no_reg;
65   imm32_ = reinterpret_cast<int32_t>(f.address());
66   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
67 }
68 
69 
Operand(Smi * value)70 Operand::Operand(Smi* value) {
71   rm_ = no_reg;
72   imm32_ =  reinterpret_cast<intptr_t>(value);
73   rmode_ = RelocInfo::NONE32;
74 }
75 
76 
Operand(Register rm)77 Operand::Operand(Register rm) {
78   rm_ = rm;
79 }
80 
81 
is_reg()82 bool Operand::is_reg() const {
83   return rm_.is_valid();
84 }
85 
86 
87 // -----------------------------------------------------------------------------
88 // RelocInfo.
89 
apply(intptr_t delta)90 void RelocInfo::apply(intptr_t delta) {
91   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
92     // Absolute code pointer inside code object moves with the code object.
93     byte* p = reinterpret_cast<byte*>(pc_);
94     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
95     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
96   }
97 }
98 
99 
target_address()100 Address RelocInfo::target_address() {
101   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
102   return Assembler::target_address_at(pc_, host_);
103 }
104 
105 
target_address_address()106 Address RelocInfo::target_address_address() {
107   DCHECK(IsCodeTarget(rmode_) ||
108          IsRuntimeEntry(rmode_) ||
109          rmode_ == EMBEDDED_OBJECT ||
110          rmode_ == EXTERNAL_REFERENCE);
111   // Read the address of the word containing the target_address in an
112   // instruction stream.
113   // The only architecture-independent user of this function is the serializer.
114   // The serializer uses it to find out how many raw bytes of instruction to
115   // output before the next target.
116   // For an instruction like LUI/ORI where the target bits are mixed into the
117   // instruction bits, the size of the target will be zero, indicating that the
118   // serializer should not step forward in memory after a target is resolved
119   // and written. In this case the target_address_address function should
120   // return the end of the instructions to be patched, allowing the
121   // deserializer to deserialize the instructions as raw bytes and put them in
122   // place, ready to be patched with the target. After jump optimization,
123   // that is the address of the instruction that follows J/JAL/JR/JALR
124   // instruction.
125   return reinterpret_cast<Address>(
126     pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
127 }
128 
129 
constant_pool_entry_address()130 Address RelocInfo::constant_pool_entry_address() {
131   UNREACHABLE();
132   return NULL;
133 }
134 
135 
target_address_size()136 int RelocInfo::target_address_size() {
137   return Assembler::kSpecialTargetSize;
138 }
139 
140 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)141 void RelocInfo::set_target_address(Address target,
142                                    WriteBarrierMode write_barrier_mode,
143                                    ICacheFlushMode icache_flush_mode) {
144   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
145   Assembler::set_target_address_at(isolate_, pc_, host_, target,
146                                    icache_flush_mode);
147   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
148       host() != NULL && IsCodeTarget(rmode_)) {
149     Object* target_code = Code::GetCodeFromTargetAddress(target);
150     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
151         host(), this, HeapObject::cast(target_code));
152   }
153 }
154 
155 
target_address_from_return_address(Address pc)156 Address Assembler::target_address_from_return_address(Address pc) {
157   return pc - kCallTargetAddressOffset;
158 }
159 
160 
set_target_internal_reference_encoded_at(Address pc,Address target)161 void Assembler::set_target_internal_reference_encoded_at(Address pc,
162                                                          Address target) {
163   // Encoded internal references are lui/ori load of 32-bit abolute address.
164   Instr instr_lui = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
165   Instr instr_ori = Assembler::instr_at(pc + 1 * Assembler::kInstrSize);
166   DCHECK(Assembler::IsLui(instr_lui));
167   DCHECK(Assembler::IsOri(instr_ori));
168   instr_lui &= ~kImm16Mask;
169   instr_ori &= ~kImm16Mask;
170   int32_t imm = reinterpret_cast<int32_t>(target);
171   DCHECK((imm & 3) == 0);
172   Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
173                           instr_lui | ((imm >> kLuiShift) & kImm16Mask));
174   Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
175                           instr_ori | (imm & kImm16Mask));
176 
177   // Currently used only by deserializer, and all code will be flushed
178   // after complete deserialization, no need to flush on each reference.
179 }
180 
181 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)182 void Assembler::deserialization_set_target_internal_reference_at(
183     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
184   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
185     DCHECK(IsLui(instr_at(pc)));
186     set_target_internal_reference_encoded_at(pc, target);
187   } else {
188     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
189     Memory::Address_at(pc) = target;
190   }
191 }
192 
193 
target_object()194 Object* RelocInfo::target_object() {
195   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
196   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
197 }
198 
199 
target_object_handle(Assembler * origin)200 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
201   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
202   return Handle<Object>(reinterpret_cast<Object**>(
203       Assembler::target_address_at(pc_, host_)));
204 }
205 
206 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)207 void RelocInfo::set_target_object(Object* target,
208                                   WriteBarrierMode write_barrier_mode,
209                                   ICacheFlushMode icache_flush_mode) {
210   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
211   Assembler::set_target_address_at(isolate_, pc_, host_,
212                                    reinterpret_cast<Address>(target),
213                                    icache_flush_mode);
214   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
215       host() != NULL &&
216       target->IsHeapObject()) {
217     host()->GetHeap()->incremental_marking()->RecordWrite(
218         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
219   }
220 }
221 
222 
target_external_reference()223 Address RelocInfo::target_external_reference() {
224   DCHECK(rmode_ == EXTERNAL_REFERENCE);
225   return Assembler::target_address_at(pc_, host_);
226 }
227 
228 
target_internal_reference()229 Address RelocInfo::target_internal_reference() {
230   if (rmode_ == INTERNAL_REFERENCE) {
231     return Memory::Address_at(pc_);
232   } else {
233     // Encoded internal references are lui/ori load of 32-bit abolute address.
234     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
235     Instr instr_lui = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
236     Instr instr_ori = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
237     DCHECK(Assembler::IsLui(instr_lui));
238     DCHECK(Assembler::IsOri(instr_ori));
239     int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
240     imm |= (instr_ori & static_cast<int32_t>(kImm16Mask));
241     return reinterpret_cast<Address>(imm);
242   }
243 }
244 
245 
target_internal_reference_address()246 Address RelocInfo::target_internal_reference_address() {
247   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
248   return reinterpret_cast<Address>(pc_);
249 }
250 
251 
target_runtime_entry(Assembler * origin)252 Address RelocInfo::target_runtime_entry(Assembler* origin) {
253   DCHECK(IsRuntimeEntry(rmode_));
254   return target_address();
255 }
256 
257 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)258 void RelocInfo::set_target_runtime_entry(Address target,
259                                          WriteBarrierMode write_barrier_mode,
260                                          ICacheFlushMode icache_flush_mode) {
261   DCHECK(IsRuntimeEntry(rmode_));
262   if (target_address() != target)
263     set_target_address(target, write_barrier_mode, icache_flush_mode);
264 }
265 
266 
target_cell_handle()267 Handle<Cell> RelocInfo::target_cell_handle() {
268   DCHECK(rmode_ == RelocInfo::CELL);
269   Address address = Memory::Address_at(pc_);
270   return Handle<Cell>(reinterpret_cast<Cell**>(address));
271 }
272 
273 
target_cell()274 Cell* RelocInfo::target_cell() {
275   DCHECK(rmode_ == RelocInfo::CELL);
276   return Cell::FromValueAddress(Memory::Address_at(pc_));
277 }
278 
279 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)280 void RelocInfo::set_target_cell(Cell* cell,
281                                 WriteBarrierMode write_barrier_mode,
282                                 ICacheFlushMode icache_flush_mode) {
283   DCHECK(rmode_ == RelocInfo::CELL);
284   Address address = cell->address() + Cell::kValueOffset;
285   Memory::Address_at(pc_) = address;
286   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
287     // TODO(1550) We are passing NULL as a slot because cell can never be on
288     // evacuation candidate.
289     host()->GetHeap()->incremental_marking()->RecordWrite(
290         host(), NULL, cell);
291   }
292 }
293 
294 
295 static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize;
296 
297 
code_age_stub_handle(Assembler * origin)298 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
299   UNREACHABLE();  // This should never be reached on Arm.
300   return Handle<Object>();
301 }
302 
303 
code_age_stub()304 Code* RelocInfo::code_age_stub() {
305   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
306   return Code::GetCodeFromTargetAddress(
307       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
308 }
309 
310 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)311 void RelocInfo::set_code_age_stub(Code* stub,
312                                   ICacheFlushMode icache_flush_mode) {
313   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
314   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
315                                    stub->instruction_start());
316 }
317 
318 
debug_call_address()319 Address RelocInfo::debug_call_address() {
320   // The pc_ offset of 0 assumes patched debug break slot or return
321   // sequence.
322   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
323   return Assembler::target_address_at(pc_, host_);
324 }
325 
326 
set_debug_call_address(Address target)327 void RelocInfo::set_debug_call_address(Address target) {
328   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
329   // The pc_ offset of 0 assumes patched debug break slot or return
330   // sequence.
331   Assembler::set_target_address_at(isolate_, pc_, host_, target);
332   if (host() != NULL) {
333     Object* target_code = Code::GetCodeFromTargetAddress(target);
334     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
335         host(), this, HeapObject::cast(target_code));
336   }
337 }
338 
339 
WipeOut()340 void RelocInfo::WipeOut() {
341   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
342          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
343          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
344   if (IsInternalReference(rmode_)) {
345     Memory::Address_at(pc_) = NULL;
346   } else if (IsInternalReferenceEncoded(rmode_)) {
347     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
348   } else {
349     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
350   }
351 }
352 
353 
IsPatchedReturnSequence()354 bool RelocInfo::IsPatchedReturnSequence() {
355   Instr instr0 = Assembler::instr_at(pc_);
356   Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
357   Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize);
358   bool patched_return = ((instr0 & kOpcodeMask) == LUI &&
359                          (instr1 & kOpcodeMask) == ORI &&
360                          ((instr2 & kOpcodeMask) == JAL ||
361                           ((instr2 & kOpcodeMask) == SPECIAL &&
362                            (instr2 & kFunctionFieldMask) == JALR)));
363   return patched_return;
364 }
365 
366 
IsPatchedDebugBreakSlotSequence()367 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
368   Instr current_instr = Assembler::instr_at(pc_);
369   return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
370 }
371 
372 
Visit(Isolate * isolate,ObjectVisitor * visitor)373 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
374   RelocInfo::Mode mode = rmode();
375   if (mode == RelocInfo::EMBEDDED_OBJECT) {
376     visitor->VisitEmbeddedPointer(this);
377   } else if (RelocInfo::IsCodeTarget(mode)) {
378     visitor->VisitCodeTarget(this);
379   } else if (mode == RelocInfo::CELL) {
380     visitor->VisitCell(this);
381   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
382     visitor->VisitExternalReference(this);
383   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
384              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
385     visitor->VisitInternalReference(this);
386   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
387     visitor->VisitCodeAgeSequence(this);
388   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
389              IsPatchedDebugBreakSlotSequence()) {
390     visitor->VisitDebugTarget(this);
391   } else if (RelocInfo::IsRuntimeEntry(mode)) {
392     visitor->VisitRuntimeEntry(this);
393   }
394 }
395 
396 
397 template<typename StaticVisitor>
Visit(Heap * heap)398 void RelocInfo::Visit(Heap* heap) {
399   RelocInfo::Mode mode = rmode();
400   if (mode == RelocInfo::EMBEDDED_OBJECT) {
401     StaticVisitor::VisitEmbeddedPointer(heap, this);
402   } else if (RelocInfo::IsCodeTarget(mode)) {
403     StaticVisitor::VisitCodeTarget(heap, this);
404   } else if (mode == RelocInfo::CELL) {
405     StaticVisitor::VisitCell(heap, this);
406   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
407     StaticVisitor::VisitExternalReference(this);
408   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
409              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
410     StaticVisitor::VisitInternalReference(this);
411   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
412     StaticVisitor::VisitCodeAgeSequence(heap, this);
413   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
414              IsPatchedDebugBreakSlotSequence()) {
415     StaticVisitor::VisitDebugTarget(heap, this);
416   } else if (RelocInfo::IsRuntimeEntry(mode)) {
417     StaticVisitor::VisitRuntimeEntry(this);
418   }
419 }
420 
421 
422 // -----------------------------------------------------------------------------
423 // Assembler.
424 
425 
CheckBuffer()426 void Assembler::CheckBuffer() {
427   if (buffer_space() <= kGap) {
428     GrowBuffer();
429   }
430 }
431 
432 
CheckTrampolinePoolQuick(int extra_instructions)433 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
434   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
435     CheckTrampolinePool();
436   }
437 }
438 
439 
CheckForEmitInForbiddenSlot()440 void Assembler::CheckForEmitInForbiddenSlot() {
441   if (!is_buffer_growth_blocked()) {
442     CheckBuffer();
443   }
444   if (IsPrevInstrCompactBranch()) {
445     // Nop instruction to preceed a CTI in forbidden slot:
446     Instr nop = SPECIAL | SLL;
447     *reinterpret_cast<Instr*>(pc_) = nop;
448     pc_ += kInstrSize;
449 
450     ClearCompactBranchState();
451   }
452 }
453 
454 
EmitHelper(Instr x,CompactBranchType is_compact_branch)455 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
456   if (IsPrevInstrCompactBranch()) {
457     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
458       // Nop instruction to preceed a CTI in forbidden slot:
459       Instr nop = SPECIAL | SLL;
460       *reinterpret_cast<Instr*>(pc_) = nop;
461       pc_ += kInstrSize;
462     }
463     ClearCompactBranchState();
464   }
465   *reinterpret_cast<Instr*>(pc_) = x;
466   pc_ += kInstrSize;
467   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
468     EmittedCompactBranchInstruction();
469   }
470   CheckTrampolinePoolQuick();
471 }
472 
473 
474 template <typename T>
EmitHelper(T x)475 void Assembler::EmitHelper(T x) {
476   *reinterpret_cast<T*>(pc_) = x;
477   pc_ += sizeof(x);
478   CheckTrampolinePoolQuick();
479 }
480 
481 
emit(Instr x,CompactBranchType is_compact_branch)482 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
483   if (!is_buffer_growth_blocked()) {
484     CheckBuffer();
485   }
486   EmitHelper(x, is_compact_branch);
487 }
488 
489 
490 }  // namespace internal
491 }  // namespace v8
492 
493 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
494