1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38 
39 #include <stdio.h>
40 
41 #include <set>
42 
43 #include "src/assembler.h"
44 #include "src/mips/constants-mips.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 // clang-format off
50 #define GENERAL_REGISTERS(V)                              \
51   V(zero_reg)  V(at)  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3)  \
52   V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6)  V(t7)  \
53   V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  V(t8)  V(t9) \
54   V(k0)  V(k1)  V(gp)  V(sp)  V(fp)  V(ra)
55 
56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
57   V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3) \
58   V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6) V(s7)
59 
60 #define DOUBLE_REGISTERS(V)                               \
61   V(f0)  V(f1)  V(f2)  V(f3)  V(f4)  V(f5)  V(f6)  V(f7)  \
62   V(f8)  V(f9)  V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
63   V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
64   V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
65 
66 #define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
67   V(f0)  V(f2)  V(f4)  V(f6)  V(f8)  V(f10) V(f12) V(f14) \
68   V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
69 // clang-format on
70 
71 // CPU Registers.
72 //
73 // 1) We would prefer to use an enum, but enum values are assignment-
74 // compatible with int, which has caused code-generation bugs.
75 //
76 // 2) We would prefer to use a class instead of a struct but we don't like
77 // the register initialization to depend on the particular initialization
78 // order (which appears to be different on OS X, Linux, and Windows for the
79 // installed versions of C++ we tried). Using a struct permits C-style
80 // "initialization". Also, the Register objects cannot be const as this
81 // forces initialization stubs in MSVC, making us dependent on initialization
82 // order.
83 //
84 // 3) By not using an enum, we are possibly preventing the compiler from
85 // doing certain constant folds, which may significantly reduce the
86 // code generated for some assembly instructions (because they boil down
87 // to a few constants). If this is a problem, we could change the code
88 // such that we use an enum in optimized mode, and the struct in debug
89 // mode. This way we get the compile-time error checking in debug mode
90 // and best performance in optimized code.
91 
92 
93 // -----------------------------------------------------------------------------
94 // Implementation of Register and FPURegister.
95 
96 struct Register {
97   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
98 
99   enum Code {
100 #define REGISTER_CODE(R) kCode_##R,
101     GENERAL_REGISTERS(REGISTER_CODE)
102 #undef REGISTER_CODE
103         kAfterLast,
104     kCode_no_reg = -1
105   };
106 
107   static const int kNumRegisters = Code::kAfterLast;
108 
109 #if defined(V8_TARGET_LITTLE_ENDIAN)
110   static const int kMantissaOffset = 0;
111   static const int kExponentOffset = 4;
112 #elif defined(V8_TARGET_BIG_ENDIAN)
113   static const int kMantissaOffset = 4;
114   static const int kExponentOffset = 0;
115 #else
116 #error Unknown endianness
117 #endif
118 
119 
from_codeRegister120   static Register from_code(int code) {
121     DCHECK(code >= 0);
122     DCHECK(code < kNumRegisters);
123     Register r = {code};
124     return r;
125   }
126   const char* ToString();
127   bool IsAllocatable() const;
is_validRegister128   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister129   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister130   int code() const {
131     DCHECK(is_valid());
132     return reg_code;
133   }
bitRegister134   int bit() const {
135     DCHECK(is_valid());
136     return 1 << reg_code;
137   }
138 
139   // Unfortunately we can't make this private in a struct.
140   int reg_code;
141 };
142 
143 // s7: context register
144 // s3: lithium scratch
145 // s4: lithium scratch2
146 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
147 GENERAL_REGISTERS(DECLARE_REGISTER)
148 #undef DECLARE_REGISTER
149 const Register no_reg = {Register::kCode_no_reg};
150 
151 
152 int ToNumber(Register reg);
153 
154 Register ToRegister(int num);
155 
156 // Coprocessor register.
157 struct DoubleRegister {
158   enum Code {
159 #define REGISTER_CODE(R) kCode_##R,
160     DOUBLE_REGISTERS(REGISTER_CODE)
161 #undef REGISTER_CODE
162         kAfterLast,
163     kCode_no_reg = -1
164   };
165 
166   static const int kMaxNumRegisters = Code::kAfterLast;
167 
168   inline static int NumRegisters();
169 
170   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
171   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
172   // number of Double regs (64-bit regs, or FPU-reg-pairs).
173 
174   const char* ToString();
175   bool IsAllocatable() const;
is_validDoubleRegister176   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
isDoubleRegister177   bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; }
lowDoubleRegister178   DoubleRegister low() const {
179     // Find low reg of a Double-reg pair, which is the reg itself.
180     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
181     DoubleRegister reg;
182     reg.reg_code = reg_code;
183     DCHECK(reg.is_valid());
184     return reg;
185   }
highDoubleRegister186   DoubleRegister high() const {
187     // Find high reg of a Doubel-reg pair, which is reg + 1.
188     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
189     DoubleRegister reg;
190     reg.reg_code = reg_code + 1;
191     DCHECK(reg.is_valid());
192     return reg;
193   }
194 
codeDoubleRegister195   int code() const {
196     DCHECK(is_valid());
197     return reg_code;
198   }
bitDoubleRegister199   int bit() const {
200     DCHECK(is_valid());
201     return 1 << reg_code;
202   }
203 
from_codeDoubleRegister204   static DoubleRegister from_code(int code) {
205     DoubleRegister r = {code};
206     return r;
207   }
setcodeDoubleRegister208   void setcode(int f) {
209     reg_code = f;
210     DCHECK(is_valid());
211   }
212   // Unfortunately we can't make this private in a struct.
213   int reg_code;
214 };
215 
216 // A few double registers are reserved: one as a scratch register and one to
217 // hold 0.0.
218 //  f28: 0.0
219 //  f30: scratch register.
220 
221 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
222 // 32-bit registers, f0 through f31. When used as 'double' they are used
223 // in pairs, starting with the even numbered register. So a double operation
224 // on f0 really uses f0 and f1.
225 // (Modern mips hardware also supports 32 64-bit registers, via setting
226 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
227 // but it is not in common use. Someday we will want to support this in v8.)
228 
229 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
230 typedef DoubleRegister FPURegister;
231 typedef DoubleRegister FloatRegister;
232 
233 const DoubleRegister no_freg = {-1};
234 
235 const DoubleRegister f0 = {0};  // Return value in hard float mode.
236 const DoubleRegister f1 = {1};
237 const DoubleRegister f2 = {2};
238 const DoubleRegister f3 = {3};
239 const DoubleRegister f4 = {4};
240 const DoubleRegister f5 = {5};
241 const DoubleRegister f6 = {6};
242 const DoubleRegister f7 = {7};
243 const DoubleRegister f8 = {8};
244 const DoubleRegister f9 = {9};
245 const DoubleRegister f10 = {10};
246 const DoubleRegister f11 = {11};
247 const DoubleRegister f12 = {12};  // Arg 0 in hard float mode.
248 const DoubleRegister f13 = {13};
249 const DoubleRegister f14 = {14};  // Arg 1 in hard float mode.
250 const DoubleRegister f15 = {15};
251 const DoubleRegister f16 = {16};
252 const DoubleRegister f17 = {17};
253 const DoubleRegister f18 = {18};
254 const DoubleRegister f19 = {19};
255 const DoubleRegister f20 = {20};
256 const DoubleRegister f21 = {21};
257 const DoubleRegister f22 = {22};
258 const DoubleRegister f23 = {23};
259 const DoubleRegister f24 = {24};
260 const DoubleRegister f25 = {25};
261 const DoubleRegister f26 = {26};
262 const DoubleRegister f27 = {27};
263 const DoubleRegister f28 = {28};
264 const DoubleRegister f29 = {29};
265 const DoubleRegister f30 = {30};
266 const DoubleRegister f31 = {31};
267 
268 // Register aliases.
269 // cp is assumed to be a callee saved register.
270 // Defined using #define instead of "static const Register&" because Clang
271 // complains otherwise when a compilation unit that includes this header
272 // doesn't use the variables.
273 #define kRootRegister s6
274 #define cp s7
275 #define kLithiumScratchReg s3
276 #define kLithiumScratchReg2 s4
277 #define kLithiumScratchDouble f30
278 #define kDoubleRegZero f28
279 // Used on mips32r6 for compare operations.
280 // We use the last non-callee saved odd register for O32 ABI
281 #define kDoubleCompareReg f19
282 
283 // FPU (coprocessor 1) control registers.
284 // Currently only FCSR (#31) is implemented.
285 struct FPUControlRegister {
is_validFPUControlRegister286   bool is_valid() const { return reg_code == kFCSRRegister; }
isFPUControlRegister287   bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
codeFPUControlRegister288   int code() const {
289     DCHECK(is_valid());
290     return reg_code;
291   }
bitFPUControlRegister292   int bit() const {
293     DCHECK(is_valid());
294     return 1 << reg_code;
295   }
setcodeFPUControlRegister296   void setcode(int f) {
297     reg_code = f;
298     DCHECK(is_valid());
299   }
300   // Unfortunately we can't make this private in a struct.
301   int reg_code;
302 };
303 
304 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
305 const FPUControlRegister FCSR = { kFCSRRegister };
306 
307 
308 // -----------------------------------------------------------------------------
309 // Machine instruction Operands.
310 
311 // Class Operand represents a shifter operand in data processing instructions.
312 class Operand BASE_EMBEDDED {
313  public:
314   // Immediate.
315   INLINE(explicit Operand(int32_t immediate,
316          RelocInfo::Mode rmode = RelocInfo::NONE32));
317   INLINE(explicit Operand(const ExternalReference& f));
318   INLINE(explicit Operand(const char* s));
319   INLINE(explicit Operand(Object** opp));
320   INLINE(explicit Operand(Context** cpp));
321   explicit Operand(Handle<Object> handle);
322   INLINE(explicit Operand(Smi* value));
323 
324   // Register.
325   INLINE(explicit Operand(Register rm));
326 
327   // Return true if this is a register operand.
328   INLINE(bool is_reg() const);
329 
immediate()330   inline int32_t immediate() const {
331     DCHECK(!is_reg());
332     return imm32_;
333   }
334 
rm()335   Register rm() const { return rm_; }
336 
337  private:
338   Register rm_;
339   int32_t imm32_;  // Valid if rm_ == no_reg.
340   RelocInfo::Mode rmode_;
341 
342   friend class Assembler;
343   friend class MacroAssembler;
344 };
345 
346 
347 // On MIPS we have only one adressing mode with base_reg + offset.
348 // Class MemOperand represents a memory operand in load and store instructions.
349 class MemOperand : public Operand {
350  public:
351   // Immediate value attached to offset.
352   enum OffsetAddend {
353     offset_minus_one = -1,
354     offset_zero = 0
355   };
356 
357   explicit MemOperand(Register rn, int32_t offset = 0);
358   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
359                       OffsetAddend offset_addend = offset_zero);
offset()360   int32_t offset() const { return offset_; }
361 
OffsetIsInt16Encodable()362   bool OffsetIsInt16Encodable() const {
363     return is_int16(offset_);
364   }
365 
366  private:
367   int32_t offset_;
368 
369   friend class Assembler;
370 };
371 
372 
373 class Assembler : public AssemblerBase {
374  public:
375   // Create an assembler. Instructions and relocation information are emitted
376   // into a buffer, with the instructions starting from the beginning and the
377   // relocation information starting from the end of the buffer. See CodeDesc
378   // for a detailed comment on the layout (globals.h).
379   //
380   // If the provided buffer is NULL, the assembler allocates and grows its own
381   // buffer, and buffer_size determines the initial buffer size. The buffer is
382   // owned by the assembler and deallocated upon destruction of the assembler.
383   //
384   // If the provided buffer is not NULL, the assembler uses the provided buffer
385   // for code generation and assumes its size to be buffer_size. If the buffer
386   // is too small, a fatal error occurs. No deallocation of the buffer is done
387   // upon destruction of the assembler.
388   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()389   virtual ~Assembler() { }
390 
391   // GetCode emits any pending (non-emitted) code and fills the descriptor
392   // desc. GetCode() is idempotent; it returns the same result if no other
393   // Assembler functions are invoked in between GetCode() calls.
394   void GetCode(CodeDesc* desc);
395 
396   // Label operations & relative jumps (PPUM Appendix D).
397   //
398   // Takes a branch opcode (cc) and a label (L) and generates
399   // either a backward branch or a forward branch and links it
400   // to the label fixup chain. Usage:
401   //
402   // Label L;    // unbound label
403   // j(cc, &L);  // forward branch to unbound label
404   // bind(&L);   // bind label to the current pc
405   // j(cc, &L);  // backward branch to bound label
406   // bind(&L);   // illegal: a label may be bound only once
407   //
408   // Note: The same Label can be used for forward and backward branches
409   // but it may be bound only once.
410   void bind(Label* L);  // Binds an unbound label L to current code position.
411 
412   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
413 
414   // Determines if Label is bound and near enough so that branch instruction
415   // can be used to reach it, instead of jump instruction.
416   bool is_near(Label* L);
417   bool is_near(Label* L, OffsetSize bits);
418   bool is_near_branch(Label* L);
is_near_pre_r6(Label * L)419   inline bool is_near_pre_r6(Label* L) {
420     DCHECK(!IsMipsArchVariant(kMips32r6));
421     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
422   }
is_near_r6(Label * L)423   inline bool is_near_r6(Label* L) {
424     DCHECK(IsMipsArchVariant(kMips32r6));
425     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
426   }
427 
428   int BranchOffset(Instr instr);
429 
430   // Returns the branch offset to the given label from the current code
431   // position. Links the label to the current position if it is still unbound.
432   // Manages the jump elimination optimization if the second parameter is true.
433   int32_t branch_offset_helper(Label* L, OffsetSize bits);
branch_offset(Label * L)434   inline int32_t branch_offset(Label* L) {
435     return branch_offset_helper(L, OffsetSize::kOffset16);
436   }
branch_offset21(Label * L)437   inline int32_t branch_offset21(Label* L) {
438     return branch_offset_helper(L, OffsetSize::kOffset21);
439   }
branch_offset26(Label * L)440   inline int32_t branch_offset26(Label* L) {
441     return branch_offset_helper(L, OffsetSize::kOffset26);
442   }
shifted_branch_offset(Label * L)443   inline int32_t shifted_branch_offset(Label* L) {
444     return branch_offset(L) >> 2;
445   }
shifted_branch_offset21(Label * L)446   inline int32_t shifted_branch_offset21(Label* L) {
447     return branch_offset21(L) >> 2;
448   }
shifted_branch_offset26(Label * L)449   inline int32_t shifted_branch_offset26(Label* L) {
450     return branch_offset26(L) >> 2;
451   }
452   uint32_t jump_address(Label* L);
453 
454   // Puts a labels target address at the given position.
455   // The high 8 bits are set to zero.
456   void label_at_put(Label* L, int at_offset);
457 
458   // Read/Modify the code target address in the branch/call instruction at pc.
459   static Address target_address_at(Address pc);
460   static void set_target_address_at(
461       Isolate* isolate, Address pc, Address target,
462       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
463   // On MIPS there is no Constant Pool so we skip that parameter.
INLINE(static Address target_address_at (Address pc,Address constant_pool))464   INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
465     return target_address_at(pc);
466   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))467   INLINE(static void set_target_address_at(
468       Isolate* isolate, Address pc, Address constant_pool, Address target,
469       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
470     set_target_address_at(isolate, pc, target, icache_flush_mode);
471   }
INLINE(static Address target_address_at (Address pc,Code * code))472   INLINE(static Address target_address_at(Address pc, Code* code)) {
473     Address constant_pool = code ? code->constant_pool() : NULL;
474     return target_address_at(pc, constant_pool);
475   }
INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))476   INLINE(static void set_target_address_at(
477       Isolate* isolate, Address pc, Code* code, Address target,
478       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
479     Address constant_pool = code ? code->constant_pool() : NULL;
480     set_target_address_at(isolate, pc, constant_pool, target,
481                           icache_flush_mode);
482   }
483 
484   // Return the code target address at a call site from the return address
485   // of that call in the instruction stream.
486   inline static Address target_address_from_return_address(Address pc);
487 
488   static void QuietNaN(HeapObject* nan);
489 
490   // This sets the branch destination (which gets loaded at the call address).
491   // This is for calls and branches within generated code.  The serializer
492   // has already deserialized the lui/ori instructions etc.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)493   inline static void deserialization_set_special_target_at(
494       Isolate* isolate, Address instruction_payload, Code* code,
495       Address target) {
496     set_target_address_at(
497         isolate,
498         instruction_payload - kInstructionsFor32BitConstant * kInstrSize, code,
499         target);
500   }
501 
502   // This sets the internal reference at the pc.
503   inline static void deserialization_set_target_internal_reference_at(
504       Isolate* isolate, Address pc, Address target,
505       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
506 
507   // Size of an instruction.
508   static const int kInstrSize = sizeof(Instr);
509 
510   // Difference between address of current opcode and target address offset.
511   static const int kBranchPCOffset = 4;
512 
513   // Here we are patching the address in the LUI/ORI instruction pair.
514   // These values are used in the serialization process and must be zero for
515   // MIPS platform, as Code, Embedded Object or External-reference pointers
516   // are split across two consecutive instructions and don't exist separately
517   // in the code, so the serializer should not step forwards in memory after
518   // a target is resolved and written.
519   static const int kSpecialTargetSize = 0;
520 
521   // Number of consecutive instructions used to store 32bit constant.
522   // Before jump-optimizations, this constant was used in
523   // RelocInfo::target_address_address() function to tell serializer address of
524   // the instruction that follows LUI/ORI instruction pair. Now, with new jump
525   // optimization, where jump-through-register instruction that usually
526   // follows LUI/ORI pair is substituted with J/JAL, this constant equals
527   // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
528   static const int kInstructionsFor32BitConstant = 3;
529 
530   // Distance between the instruction referring to the address of the call
531   // target and the return address.
532   static const int kCallTargetAddressOffset = 4 * kInstrSize;
533 
534   // Distance between start of patched debug break slot and the emitted address
535   // to jump to.
536   static const int kPatchDebugBreakSlotAddressOffset = 4 * kInstrSize;
537 
538   // Difference between address of current opcode and value read from pc
539   // register.
540   static const int kPcLoadDelta = 4;
541 
542   static const int kDebugBreakSlotInstructions = 4;
543   static const int kDebugBreakSlotLength =
544       kDebugBreakSlotInstructions * kInstrSize;
545 
546 
547   // ---------------------------------------------------------------------------
548   // Code generation.
549 
550   // Insert the smallest number of nop instructions
551   // possible to align the pc offset to a multiple
552   // of m. m must be a power of 2 (>= 4).
553   void Align(int m);
554   // Insert the smallest number of zero bytes possible to align the pc offset
555   // to a mulitple of m. m must be a power of 2 (>= 2).
556   void DataAlign(int m);
557   // Aligns code to something that's optimal for a jump target for the platform.
558   void CodeTargetAlign();
559 
560   // Different nop operations are used by the code generator to detect certain
561   // states of the generated code.
562   enum NopMarkerTypes {
563     NON_MARKING_NOP = 0,
564     DEBUG_BREAK_NOP,
565     // IC markers.
566     PROPERTY_ACCESS_INLINED,
567     PROPERTY_ACCESS_INLINED_CONTEXT,
568     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
569     // Helper values.
570     LAST_CODE_MARKER,
571     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
572     // Code aging
573     CODE_AGE_MARKER_NOP = 6,
574     CODE_AGE_SEQUENCE_NOP
575   };
576 
577   // Type == 0 is the default non-marking nop. For mips this is a
578   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
579   // marking, to avoid conflict with ssnop and ehb instructions.
580   void nop(unsigned int type = 0) {
581     DCHECK(type < 32);
582     Register nop_rt_reg = (type == 0) ? zero_reg : at;
583     sll(zero_reg, nop_rt_reg, type, true);
584   }
585 
586 
587   // --------Branch-and-jump-instructions----------
588   // We don't use likely variant of instructions.
589   void b(int16_t offset);
b(Label * L)590   inline void b(Label* L) { b(shifted_branch_offset(L)); }
591   void bal(int16_t offset);
bal(Label * L)592   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
593   void bc(int32_t offset);
bc(Label * L)594   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
595   void balc(int32_t offset);
balc(Label * L)596   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
597 
598   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)599   inline void beq(Register rs, Register rt, Label* L) {
600     beq(rs, rt, shifted_branch_offset(L));
601   }
602   void bgez(Register rs, int16_t offset);
603   void bgezc(Register rt, int16_t offset);
bgezc(Register rt,Label * L)604   inline void bgezc(Register rt, Label* L) {
605     bgezc(rt, shifted_branch_offset(L));
606   }
607   void bgeuc(Register rs, Register rt, int16_t offset);
bgeuc(Register rs,Register rt,Label * L)608   inline void bgeuc(Register rs, Register rt, Label* L) {
609     bgeuc(rs, rt, shifted_branch_offset(L));
610   }
611   void bgec(Register rs, Register rt, int16_t offset);
bgec(Register rs,Register rt,Label * L)612   inline void bgec(Register rs, Register rt, Label* L) {
613     bgec(rs, rt, shifted_branch_offset(L));
614   }
615   void bgezal(Register rs, int16_t offset);
616   void bgezalc(Register rt, int16_t offset);
bgezalc(Register rt,Label * L)617   inline void bgezalc(Register rt, Label* L) {
618     bgezalc(rt, shifted_branch_offset(L));
619   }
620   void bgezall(Register rs, int16_t offset);
bgezall(Register rs,Label * L)621   inline void bgezall(Register rs, Label* L) {
622     bgezall(rs, branch_offset(L) >> 2);
623   }
624   void bgtz(Register rs, int16_t offset);
625   void bgtzc(Register rt, int16_t offset);
bgtzc(Register rt,Label * L)626   inline void bgtzc(Register rt, Label* L) {
627     bgtzc(rt, shifted_branch_offset(L));
628   }
629   void blez(Register rs, int16_t offset);
630   void blezc(Register rt, int16_t offset);
blezc(Register rt,Label * L)631   inline void blezc(Register rt, Label* L) {
632     blezc(rt, shifted_branch_offset(L));
633   }
634   void bltz(Register rs, int16_t offset);
635   void bltzc(Register rt, int16_t offset);
bltzc(Register rt,Label * L)636   inline void bltzc(Register rt, Label* L) {
637     bltzc(rt, shifted_branch_offset(L));
638   }
639   void bltuc(Register rs, Register rt, int16_t offset);
bltuc(Register rs,Register rt,Label * L)640   inline void bltuc(Register rs, Register rt, Label* L) {
641     bltuc(rs, rt, shifted_branch_offset(L));
642   }
643   void bltc(Register rs, Register rt, int16_t offset);
bltc(Register rs,Register rt,Label * L)644   inline void bltc(Register rs, Register rt, Label* L) {
645     bltc(rs, rt, shifted_branch_offset(L));
646   }
647   void bltzal(Register rs, int16_t offset);
648   void blezalc(Register rt, int16_t offset);
blezalc(Register rt,Label * L)649   inline void blezalc(Register rt, Label* L) {
650     blezalc(rt, shifted_branch_offset(L));
651   }
652   void bltzalc(Register rt, int16_t offset);
bltzalc(Register rt,Label * L)653   inline void bltzalc(Register rt, Label* L) {
654     bltzalc(rt, shifted_branch_offset(L));
655   }
656   void bgtzalc(Register rt, int16_t offset);
bgtzalc(Register rt,Label * L)657   inline void bgtzalc(Register rt, Label* L) {
658     bgtzalc(rt, shifted_branch_offset(L));
659   }
660   void beqzalc(Register rt, int16_t offset);
beqzalc(Register rt,Label * L)661   inline void beqzalc(Register rt, Label* L) {
662     beqzalc(rt, shifted_branch_offset(L));
663   }
664   void beqc(Register rs, Register rt, int16_t offset);
beqc(Register rs,Register rt,Label * L)665   inline void beqc(Register rs, Register rt, Label* L) {
666     beqc(rs, rt, shifted_branch_offset(L));
667   }
668   void beqzc(Register rs, int32_t offset);
beqzc(Register rs,Label * L)669   inline void beqzc(Register rs, Label* L) {
670     beqzc(rs, shifted_branch_offset21(L));
671   }
672   void bnezalc(Register rt, int16_t offset);
bnezalc(Register rt,Label * L)673   inline void bnezalc(Register rt, Label* L) {
674     bnezalc(rt, shifted_branch_offset(L));
675   }
676   void bnec(Register rs, Register rt, int16_t offset);
bnec(Register rs,Register rt,Label * L)677   inline void bnec(Register rs, Register rt, Label* L) {
678     bnec(rs, rt, shifted_branch_offset(L));
679   }
680   void bnezc(Register rt, int32_t offset);
bnezc(Register rt,Label * L)681   inline void bnezc(Register rt, Label* L) {
682     bnezc(rt, shifted_branch_offset21(L));
683   }
684   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)685   inline void bne(Register rs, Register rt, Label* L) {
686     bne(rs, rt, shifted_branch_offset(L));
687   }
688   void bovc(Register rs, Register rt, int16_t offset);
bovc(Register rs,Register rt,Label * L)689   inline void bovc(Register rs, Register rt, Label* L) {
690     bovc(rs, rt, shifted_branch_offset(L));
691   }
692   void bnvc(Register rs, Register rt, int16_t offset);
bnvc(Register rs,Register rt,Label * L)693   inline void bnvc(Register rs, Register rt, Label* L) {
694     bnvc(rs, rt, shifted_branch_offset(L));
695   }
696 
697   // Never use the int16_t b(l)cond version with a branch offset
698   // instead of using the Label* version.
699 
700   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
701   void j(int32_t target);
702   void jal(int32_t target);
703   void jalr(Register rs, Register rd = ra);
704   void jr(Register target);
705   void jic(Register rt, int16_t offset);
706   void jialc(Register rt, int16_t offset);
707 
708 
709   // -------Data-processing-instructions---------
710 
711   // Arithmetic.
712   void addu(Register rd, Register rs, Register rt);
713   void subu(Register rd, Register rs, Register rt);
714   void mult(Register rs, Register rt);
715   void multu(Register rs, Register rt);
716   void div(Register rs, Register rt);
717   void divu(Register rs, Register rt);
718   void div(Register rd, Register rs, Register rt);
719   void divu(Register rd, Register rs, Register rt);
720   void mod(Register rd, Register rs, Register rt);
721   void modu(Register rd, Register rs, Register rt);
722   void mul(Register rd, Register rs, Register rt);
723   void muh(Register rd, Register rs, Register rt);
724   void mulu(Register rd, Register rs, Register rt);
725   void muhu(Register rd, Register rs, Register rt);
726 
727   void addiu(Register rd, Register rs, int32_t j);
728 
729   // Logical.
730   void and_(Register rd, Register rs, Register rt);
731   void or_(Register rd, Register rs, Register rt);
732   void xor_(Register rd, Register rs, Register rt);
733   void nor(Register rd, Register rs, Register rt);
734 
735   void andi(Register rd, Register rs, int32_t j);
736   void ori(Register rd, Register rs, int32_t j);
737   void xori(Register rd, Register rs, int32_t j);
738   void lui(Register rd, int32_t j);
739   void aui(Register rs, Register rt, int32_t j);
740 
741   // Shifts.
742   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
743   // and may cause problems in normal code. coming_from_nop makes sure this
744   // doesn't happen.
745   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
746   void sllv(Register rd, Register rt, Register rs);
747   void srl(Register rd, Register rt, uint16_t sa);
748   void srlv(Register rd, Register rt, Register rs);
749   void sra(Register rt, Register rd, uint16_t sa);
750   void srav(Register rt, Register rd, Register rs);
751   void rotr(Register rd, Register rt, uint16_t sa);
752   void rotrv(Register rd, Register rt, Register rs);
753 
754   // Address computing instructions with shift.
755   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
756 
757   // ------------Memory-instructions-------------
758 
759   void lb(Register rd, const MemOperand& rs);
760   void lbu(Register rd, const MemOperand& rs);
761   void lh(Register rd, const MemOperand& rs);
762   void lhu(Register rd, const MemOperand& rs);
763   void lw(Register rd, const MemOperand& rs);
764   void lwl(Register rd, const MemOperand& rs);
765   void lwr(Register rd, const MemOperand& rs);
766   void sb(Register rd, const MemOperand& rs);
767   void sh(Register rd, const MemOperand& rs);
768   void sw(Register rd, const MemOperand& rs);
769   void swl(Register rd, const MemOperand& rs);
770   void swr(Register rd, const MemOperand& rs);
771 
772 
773   // ---------PC-Relative-instructions-----------
774 
775   void addiupc(Register rs, int32_t imm19);
776   void lwpc(Register rs, int32_t offset19);
777   void auipc(Register rs, int16_t imm16);
778   void aluipc(Register rs, int16_t imm16);
779 
780 
781   // ----------------Prefetch--------------------
782 
783   void pref(int32_t hint, const MemOperand& rs);
784 
785 
786   // -------------Misc-instructions--------------
787 
788   // Break / Trap instructions.
789   void break_(uint32_t code, bool break_as_stop = false);
790   void stop(const char* msg, uint32_t code = kMaxStopCode);
791   void tge(Register rs, Register rt, uint16_t code);
792   void tgeu(Register rs, Register rt, uint16_t code);
793   void tlt(Register rs, Register rt, uint16_t code);
794   void tltu(Register rs, Register rt, uint16_t code);
795   void teq(Register rs, Register rt, uint16_t code);
796   void tne(Register rs, Register rt, uint16_t code);
797 
798   // Move from HI/LO register.
799   void mfhi(Register rd);
800   void mflo(Register rd);
801 
802   // Set on less than.
803   void slt(Register rd, Register rs, Register rt);
804   void sltu(Register rd, Register rs, Register rt);
805   void slti(Register rd, Register rs, int32_t j);
806   void sltiu(Register rd, Register rs, int32_t j);
807 
808   // Conditional move.
809   void movz(Register rd, Register rs, Register rt);
810   void movn(Register rd, Register rs, Register rt);
811   void movt(Register rd, Register rs, uint16_t cc = 0);
812   void movf(Register rd, Register rs, uint16_t cc = 0);
813 
814   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
815   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
816   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
817   void seleqz(Register rd, Register rs, Register rt);
818   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
819               FPURegister ft);
820   void selnez(Register rd, Register rs, Register rt);
821   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
822               FPURegister ft);
823   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
824   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
825   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
826   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
827 
828   void movz_s(FPURegister fd, FPURegister fs, Register rt);
829   void movz_d(FPURegister fd, FPURegister fs, Register rt);
830   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
831   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
832   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
833   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
834   void movn_s(FPURegister fd, FPURegister fs, Register rt);
835   void movn_d(FPURegister fd, FPURegister fs, Register rt);
836   // Bit twiddling.
837   void clz(Register rd, Register rs);
838   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
839   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
840   void bitswap(Register rd, Register rt);
841   void align(Register rd, Register rs, Register rt, uint8_t bp);
842 
843   // --------Coprocessor-instructions----------------
844 
845   // Load, store, and move.
846   void lwc1(FPURegister fd, const MemOperand& src);
847   void ldc1(FPURegister fd, const MemOperand& src);
848 
849   void swc1(FPURegister fs, const MemOperand& dst);
850   void sdc1(FPURegister fs, const MemOperand& dst);
851 
852   void mtc1(Register rt, FPURegister fs);
853   void mthc1(Register rt, FPURegister fs);
854 
855   void mfc1(Register rt, FPURegister fs);
856   void mfhc1(Register rt, FPURegister fs);
857 
858   void ctc1(Register rt, FPUControlRegister fs);
859   void cfc1(Register rt, FPUControlRegister fs);
860 
861   // Arithmetic.
862   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
863   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
864   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
865   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
866   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
867   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
868   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
869   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
870   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
871   void abs_s(FPURegister fd, FPURegister fs);
872   void abs_d(FPURegister fd, FPURegister fs);
873   void mov_d(FPURegister fd, FPURegister fs);
874   void mov_s(FPURegister fd, FPURegister fs);
875   void neg_s(FPURegister fd, FPURegister fs);
876   void neg_d(FPURegister fd, FPURegister fs);
877   void sqrt_s(FPURegister fd, FPURegister fs);
878   void sqrt_d(FPURegister fd, FPURegister fs);
879   void rsqrt_s(FPURegister fd, FPURegister fs);
880   void rsqrt_d(FPURegister fd, FPURegister fs);
881   void recip_d(FPURegister fd, FPURegister fs);
882   void recip_s(FPURegister fd, FPURegister fs);
883 
884   // Conversion.
885   void cvt_w_s(FPURegister fd, FPURegister fs);
886   void cvt_w_d(FPURegister fd, FPURegister fs);
887   void trunc_w_s(FPURegister fd, FPURegister fs);
888   void trunc_w_d(FPURegister fd, FPURegister fs);
889   void round_w_s(FPURegister fd, FPURegister fs);
890   void round_w_d(FPURegister fd, FPURegister fs);
891   void floor_w_s(FPURegister fd, FPURegister fs);
892   void floor_w_d(FPURegister fd, FPURegister fs);
893   void ceil_w_s(FPURegister fd, FPURegister fs);
894   void ceil_w_d(FPURegister fd, FPURegister fs);
895   void rint_s(FPURegister fd, FPURegister fs);
896   void rint_d(FPURegister fd, FPURegister fs);
897   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
898 
899   void cvt_l_s(FPURegister fd, FPURegister fs);
900   void cvt_l_d(FPURegister fd, FPURegister fs);
901   void trunc_l_s(FPURegister fd, FPURegister fs);
902   void trunc_l_d(FPURegister fd, FPURegister fs);
903   void round_l_s(FPURegister fd, FPURegister fs);
904   void round_l_d(FPURegister fd, FPURegister fs);
905   void floor_l_s(FPURegister fd, FPURegister fs);
906   void floor_l_d(FPURegister fd, FPURegister fs);
907   void ceil_l_s(FPURegister fd, FPURegister fs);
908   void ceil_l_d(FPURegister fd, FPURegister fs);
909 
910   void class_s(FPURegister fd, FPURegister fs);
911   void class_d(FPURegister fd, FPURegister fs);
912 
913   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
914   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
915   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
916   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
917   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
918   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
919   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
920   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
921   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
922   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
923   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
924   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
925 
926   void cvt_s_w(FPURegister fd, FPURegister fs);
927   void cvt_s_l(FPURegister fd, FPURegister fs);
928   void cvt_s_d(FPURegister fd, FPURegister fs);
929 
930   void cvt_d_w(FPURegister fd, FPURegister fs);
931   void cvt_d_l(FPURegister fd, FPURegister fs);
932   void cvt_d_s(FPURegister fd, FPURegister fs);
933 
934   // Conditions and branches for MIPSr6.
935   void cmp(FPUCondition cond, SecondaryField fmt,
936          FPURegister fd, FPURegister ft, FPURegister fs);
937   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
938   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
939 
940   void bc1eqz(int16_t offset, FPURegister ft);
bc1eqz(Label * L,FPURegister ft)941   inline void bc1eqz(Label* L, FPURegister ft) {
942     bc1eqz(shifted_branch_offset(L), ft);
943   }
944   void bc1nez(int16_t offset, FPURegister ft);
bc1nez(Label * L,FPURegister ft)945   inline void bc1nez(Label* L, FPURegister ft) {
946     bc1nez(shifted_branch_offset(L), ft);
947   }
948 
949   // Conditions and branches for non MIPSr6.
950   void c(FPUCondition cond, SecondaryField fmt,
951          FPURegister ft, FPURegister fs, uint16_t cc = 0);
952   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
953   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
954 
955   void bc1f(int16_t offset, uint16_t cc = 0);
956   inline void bc1f(Label* L, uint16_t cc = 0) {
957     bc1f(shifted_branch_offset(L), cc);
958   }
959   void bc1t(int16_t offset, uint16_t cc = 0);
960   inline void bc1t(Label* L, uint16_t cc = 0) {
961     bc1t(shifted_branch_offset(L), cc);
962   }
963   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
964 
965   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)966   int SizeOfCodeGeneratedSince(Label* label) {
967     return pc_offset() - label->pos();
968   }
969 
970   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)971   int InstructionsGeneratedSince(Label* label) {
972     return SizeOfCodeGeneratedSince(label) / kInstrSize;
973   }
974 
975   // Class for scoping postponing the trampoline pool generation.
976   class BlockTrampolinePoolScope {
977    public:
BlockTrampolinePoolScope(Assembler * assem)978     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
979       assem_->StartBlockTrampolinePool();
980     }
~BlockTrampolinePoolScope()981     ~BlockTrampolinePoolScope() {
982       assem_->EndBlockTrampolinePool();
983     }
984 
985    private:
986     Assembler* assem_;
987 
988     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
989   };
990 
991   // Class for postponing the assembly buffer growth. Typically used for
992   // sequences of instructions that must be emitted as a unit, before
993   // buffer growth (and relocation) can occur.
994   // This blocking scope is not nestable.
995   class BlockGrowBufferScope {
996    public:
BlockGrowBufferScope(Assembler * assem)997     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
998       assem_->StartBlockGrowBuffer();
999     }
~BlockGrowBufferScope()1000     ~BlockGrowBufferScope() {
1001       assem_->EndBlockGrowBuffer();
1002     }
1003 
1004    private:
1005     Assembler* assem_;
1006 
1007     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1008   };
1009 
1010   // Debugging.
1011 
1012   // Mark generator continuation.
1013   void RecordGeneratorContinuation();
1014 
1015   // Mark address of a debug break slot.
1016   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1017 
1018   // Record the AST id of the CallIC being compiled, so that it can be placed
1019   // in the relocation information.
SetRecordedAstId(TypeFeedbackId ast_id)1020   void SetRecordedAstId(TypeFeedbackId ast_id) {
1021     DCHECK(recorded_ast_id_.IsNone());
1022     recorded_ast_id_ = ast_id;
1023   }
1024 
RecordedAstId()1025   TypeFeedbackId RecordedAstId() {
1026     DCHECK(!recorded_ast_id_.IsNone());
1027     return recorded_ast_id_;
1028   }
1029 
ClearRecordedAstId()1030   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1031 
1032   // Record a comment relocation entry that can be used by a disassembler.
1033   // Use --code-comments to enable.
1034   void RecordComment(const char* msg);
1035 
1036   // Record a deoptimization reason that can be used by a log or cpu profiler.
1037   // Use --trace-deopt to enable.
1038   void RecordDeoptReason(const int reason, const SourcePosition position);
1039 
1040 
1041   static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1042                                        intptr_t pc_delta);
1043 
1044   // Writes a single byte or word of data in the code stream.  Used for
1045   // inline tables, e.g., jump-tables.
1046   void db(uint8_t data);
1047   void dd(uint32_t data);
1048   void dq(uint64_t data);
dp(uintptr_t data)1049   void dp(uintptr_t data) { dd(data); }
1050   void dd(Label* label);
1051 
positions_recorder()1052   PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1053 
1054   // Postpone the generation of the trampoline pool for the specified number of
1055   // instructions.
1056   void BlockTrampolinePoolFor(int instructions);
1057 
1058   // Check if there is less than kGap bytes available in the buffer.
1059   // If this is the case, we need to grow the buffer before emitting
1060   // an instruction or relocation information.
overflow()1061   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1062 
1063   // Get the number of bytes available in the buffer.
available_space()1064   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1065 
1066   // Read/patch instructions.
instr_at(byte * pc)1067   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)1068   static void instr_at_put(byte* pc, Instr instr) {
1069     *reinterpret_cast<Instr*>(pc) = instr;
1070   }
instr_at(int pos)1071   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)1072   void instr_at_put(int pos, Instr instr) {
1073     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1074   }
1075 
1076   // Check if an instruction is a branch of some kind.
1077   static bool IsBranch(Instr instr);
1078   static bool IsBc(Instr instr);
1079   static bool IsBzc(Instr instr);
1080   static bool IsBeq(Instr instr);
1081   static bool IsBne(Instr instr);
1082   static bool IsBeqzc(Instr instr);
1083   static bool IsBnezc(Instr instr);
1084   static bool IsBeqc(Instr instr);
1085   static bool IsBnec(Instr instr);
1086 
1087   static bool IsJump(Instr instr);
1088   static bool IsJ(Instr instr);
1089   static bool IsLui(Instr instr);
1090   static bool IsOri(Instr instr);
1091 
1092   static bool IsJal(Instr instr);
1093   static bool IsJr(Instr instr);
1094   static bool IsJalr(Instr instr);
1095 
1096   static bool IsNop(Instr instr, unsigned int type);
1097   static bool IsPop(Instr instr);
1098   static bool IsPush(Instr instr);
1099   static bool IsLwRegFpOffset(Instr instr);
1100   static bool IsSwRegFpOffset(Instr instr);
1101   static bool IsLwRegFpNegOffset(Instr instr);
1102   static bool IsSwRegFpNegOffset(Instr instr);
1103 
1104   static Register GetRtReg(Instr instr);
1105   static Register GetRsReg(Instr instr);
1106   static Register GetRdReg(Instr instr);
1107 
1108   static uint32_t GetRt(Instr instr);
1109   static uint32_t GetRtField(Instr instr);
1110   static uint32_t GetRs(Instr instr);
1111   static uint32_t GetRsField(Instr instr);
1112   static uint32_t GetRd(Instr instr);
1113   static uint32_t GetRdField(Instr instr);
1114   static uint32_t GetSa(Instr instr);
1115   static uint32_t GetSaField(Instr instr);
1116   static uint32_t GetOpcodeField(Instr instr);
1117   static uint32_t GetFunction(Instr instr);
1118   static uint32_t GetFunctionField(Instr instr);
1119   static uint32_t GetImmediate16(Instr instr);
1120   static uint32_t GetLabelConst(Instr instr);
1121 
1122   static int32_t GetBranchOffset(Instr instr);
1123   static bool IsLw(Instr instr);
1124   static int16_t GetLwOffset(Instr instr);
1125   static Instr SetLwOffset(Instr instr, int16_t offset);
1126 
1127   static bool IsSw(Instr instr);
1128   static Instr SetSwOffset(Instr instr, int16_t offset);
1129   static bool IsAddImmediate(Instr instr);
1130   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1131 
1132   static bool IsAndImmediate(Instr instr);
1133   static bool IsEmittedConstant(Instr instr);
1134 
1135   void CheckTrampolinePool();
1136 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1137   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1138                                           ConstantPoolEntry::Access access,
1139                                           ConstantPoolEntry::Type type) {
1140     // No embedded constant pool support.
1141     UNREACHABLE();
1142   }
1143 
IsPrevInstrCompactBranch()1144   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
1145 
1146  protected:
1147   // Relocation for a type-recording IC has the AST id added to it.  This
1148   // member variable is a way to pass the information from the call site to
1149   // the relocation info.
1150   TypeFeedbackId recorded_ast_id_;
1151 
buffer_space()1152   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1153 
1154   // Decode branch instruction at pos and return branch target pos.
1155   int target_at(int pos, bool is_internal);
1156 
1157   // Patch branch instruction at pos to branch to given branch target pos.
1158   void target_at_put(int pos, int target_pos, bool is_internal);
1159 
1160   // Say if we need to relocate with this mode.
1161   bool MustUseReg(RelocInfo::Mode rmode);
1162 
1163   // Record reloc info for current pc_.
1164   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1165 
1166   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1167   void BlockTrampolinePoolBefore(int pc_offset) {
1168     if (no_trampoline_pool_before_ < pc_offset)
1169       no_trampoline_pool_before_ = pc_offset;
1170   }
1171 
StartBlockTrampolinePool()1172   void StartBlockTrampolinePool() {
1173     trampoline_pool_blocked_nesting_++;
1174   }
1175 
EndBlockTrampolinePool()1176   void EndBlockTrampolinePool() {
1177     trampoline_pool_blocked_nesting_--;
1178   }
1179 
is_trampoline_pool_blocked()1180   bool is_trampoline_pool_blocked() const {
1181     return trampoline_pool_blocked_nesting_ > 0;
1182   }
1183 
has_exception()1184   bool has_exception() const {
1185     return internal_trampoline_exception_;
1186   }
1187 
1188   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1189 
is_trampoline_emitted()1190   bool is_trampoline_emitted() const {
1191     return trampoline_emitted_;
1192   }
1193 
1194   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1195   void StartBlockGrowBuffer() {
1196     DCHECK(!block_buffer_growth_);
1197     block_buffer_growth_ = true;
1198   }
1199 
EndBlockGrowBuffer()1200   void EndBlockGrowBuffer() {
1201     DCHECK(block_buffer_growth_);
1202     block_buffer_growth_ = false;
1203   }
1204 
is_buffer_growth_blocked()1205   bool is_buffer_growth_blocked() const {
1206     return block_buffer_growth_;
1207   }
1208 
1209   inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1210 
1211  private:
1212   inline static void set_target_internal_reference_encoded_at(Address pc,
1213                                                               Address target);
1214 
1215   // Buffer size and constant pool distance are checked together at regular
1216   // intervals of kBufferCheckInterval emitted bytes.
1217   static const int kBufferCheckInterval = 1*KB/2;
1218 
1219   // Code generation.
1220   // The relocation writer's position is at least kGap bytes below the end of
1221   // the generated instructions. This is so that multi-instruction sequences do
1222   // not have to check for overflow. The same is true for writes of large
1223   // relocation info entries.
1224   static const int kGap = 32;
1225 
1226 
1227   // Repeated checking whether the trampoline pool should be emitted is rather
1228   // expensive. By default we only check again once a number of instructions
1229   // has been generated.
1230   static const int kCheckConstIntervalInst = 32;
1231   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1232 
1233   int next_buffer_check_;  // pc offset of next buffer check.
1234 
1235   // Emission of the trampoline pool may be blocked in some code sequences.
1236   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1237   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1238 
1239   // Keep track of the last emitted pool to guarantee a maximal distance.
1240   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1241 
1242   // Automatic growth of the assembly buffer may be blocked for some sequences.
1243   bool block_buffer_growth_;  // Block growth when true.
1244 
1245   // Relocation information generation.
1246   // Each relocation is encoded as a variable size value.
1247   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1248   RelocInfoWriter reloc_info_writer;
1249 
1250   // The bound position, before this we cannot do instruction elimination.
1251   int last_bound_pos_;
1252 
1253   // Readable constants for compact branch handling in emit()
1254   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1255 
1256   // Code emission.
1257   inline void CheckBuffer();
1258   void GrowBuffer();
1259   inline void emit(Instr x,
1260                    CompactBranchType is_compact_branch = CompactBranchType::NO);
1261   inline void emit(uint64_t x);
1262   inline void CheckForEmitInForbiddenSlot();
1263   template <typename T>
1264   inline void EmitHelper(T x);
1265   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1266 
1267   // Instruction generation.
1268   // We have 3 different kind of encoding layout on MIPS.
1269   // However due to many different types of objects encoded in the same fields
1270   // we have quite a few aliases for each mode.
1271   // Using the same structure to refer to Register and FPURegister would spare a
1272   // few aliases, but mixing both does not look clean to me.
1273   // Anyway we could surely implement this differently.
1274 
1275   void GenInstrRegister(Opcode opcode,
1276                         Register rs,
1277                         Register rt,
1278                         Register rd,
1279                         uint16_t sa = 0,
1280                         SecondaryField func = NULLSF);
1281 
1282   void GenInstrRegister(Opcode opcode,
1283                         Register rs,
1284                         Register rt,
1285                         uint16_t msb,
1286                         uint16_t lsb,
1287                         SecondaryField func);
1288 
1289   void GenInstrRegister(Opcode opcode,
1290                         SecondaryField fmt,
1291                         FPURegister ft,
1292                         FPURegister fs,
1293                         FPURegister fd,
1294                         SecondaryField func = NULLSF);
1295 
1296   void GenInstrRegister(Opcode opcode,
1297                         FPURegister fr,
1298                         FPURegister ft,
1299                         FPURegister fs,
1300                         FPURegister fd,
1301                         SecondaryField func = NULLSF);
1302 
1303   void GenInstrRegister(Opcode opcode,
1304                         SecondaryField fmt,
1305                         Register rt,
1306                         FPURegister fs,
1307                         FPURegister fd,
1308                         SecondaryField func = NULLSF);
1309 
1310   void GenInstrRegister(Opcode opcode,
1311                         SecondaryField fmt,
1312                         Register rt,
1313                         FPUControlRegister fs,
1314                         SecondaryField func = NULLSF);
1315 
1316   void GenInstrImmediate(
1317       Opcode opcode, Register rs, Register rt, int32_t j,
1318       CompactBranchType is_compact_branch = CompactBranchType::NO);
1319   void GenInstrImmediate(
1320       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1321       CompactBranchType is_compact_branch = CompactBranchType::NO);
1322   void GenInstrImmediate(
1323       Opcode opcode, Register r1, FPURegister r2, int32_t j,
1324       CompactBranchType is_compact_branch = CompactBranchType::NO);
1325   void GenInstrImmediate(
1326       Opcode opcode, Register rs, int32_t offset21,
1327       CompactBranchType is_compact_branch = CompactBranchType::NO);
1328   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1329   void GenInstrImmediate(
1330       Opcode opcode, int32_t offset26,
1331       CompactBranchType is_compact_branch = CompactBranchType::NO);
1332 
1333 
1334   void GenInstrJump(Opcode opcode,
1335                      uint32_t address);
1336 
1337   // Helpers.
1338   void LoadRegPlusOffsetToAt(const MemOperand& src);
1339 
1340   // Labels.
1341   void print(Label* L);
1342   void bind_to(Label* L, int pos);
1343   void next(Label* L, bool is_internal);
1344 
1345   // One trampoline consists of:
1346   // - space for trampoline slots,
1347   // - space for labels.
1348   //
1349   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1350   // Space for trampoline slots preceeds space for labels. Each label is of one
1351   // instruction size, so total amount for labels is equal to
1352   // label_count *  kInstrSize.
1353   class Trampoline {
1354    public:
Trampoline()1355     Trampoline() {
1356       start_ = 0;
1357       next_slot_ = 0;
1358       free_slot_count_ = 0;
1359       end_ = 0;
1360     }
Trampoline(int start,int slot_count)1361     Trampoline(int start, int slot_count) {
1362       start_ = start;
1363       next_slot_ = start;
1364       free_slot_count_ = slot_count;
1365       end_ = start + slot_count * kTrampolineSlotsSize;
1366     }
start()1367     int start() {
1368       return start_;
1369     }
end()1370     int end() {
1371       return end_;
1372     }
take_slot()1373     int take_slot() {
1374       int trampoline_slot = kInvalidSlotPos;
1375       if (free_slot_count_ <= 0) {
1376         // We have run out of space on trampolines.
1377         // Make sure we fail in debug mode, so we become aware of each case
1378         // when this happens.
1379         DCHECK(0);
1380         // Internal exception will be caught.
1381       } else {
1382         trampoline_slot = next_slot_;
1383         free_slot_count_--;
1384         next_slot_ += kTrampolineSlotsSize;
1385       }
1386       return trampoline_slot;
1387     }
1388 
1389    private:
1390     int start_;
1391     int end_;
1392     int next_slot_;
1393     int free_slot_count_;
1394   };
1395 
1396   int32_t get_trampoline_entry(int32_t pos);
1397   int unbound_labels_count_;
1398   // If trampoline is emitted, generated code is becoming large. As this is
1399   // already a slow case which can possibly break our code generation for the
1400   // extreme case, we use this information to trigger different mode of
1401   // branch instruction generation, where we use jump instructions rather
1402   // than regular branch instructions.
1403   bool trampoline_emitted_;
1404   static const int kTrampolineSlotsSize = 4 * kInstrSize;
1405   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1406   static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
1407   static const int kInvalidSlotPos = -1;
1408 
1409   // Internal reference positions, required for unbounded internal reference
1410   // labels.
1411   std::set<int> internal_reference_positions_;
1412 
EmittedCompactBranchInstruction()1413   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
ClearCompactBranchState()1414   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1415   bool prev_instr_compact_branch_ = false;
1416 
1417   Trampoline trampoline_;
1418   bool internal_trampoline_exception_;
1419 
1420   friend class RegExpMacroAssemblerMIPS;
1421   friend class RelocInfo;
1422   friend class CodePatcher;
1423   friend class BlockTrampolinePoolScope;
1424 
1425   PositionsRecorder positions_recorder_;
1426   friend class PositionsRecorder;
1427   friend class EnsureSpace;
1428 };
1429 
1430 
1431 class EnsureSpace BASE_EMBEDDED {
1432  public:
EnsureSpace(Assembler * assembler)1433   explicit EnsureSpace(Assembler* assembler) {
1434     assembler->CheckBuffer();
1435   }
1436 };
1437 
1438 }  // namespace internal
1439 }  // namespace v8
1440 
1441 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
1442