1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2012 the V8 project authors. All rights reserved. 34 35 36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ 37 #define V8_MIPS_ASSEMBLER_MIPS_H_ 38 39 #include <stdio.h> 40 41 #include <set> 42 43 #include "src/assembler.h" 44 #include "src/mips/constants-mips.h" 45 46 namespace v8 { 47 namespace internal { 48 49 // clang-format off 50 #define GENERAL_REGISTERS(V) \ 51 V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ 52 V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(t7) \ 53 V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \ 54 V(k0) V(k1) V(gp) V(sp) V(fp) V(ra) 55 56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \ 57 V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ 58 V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(s7) 59 60 #define DOUBLE_REGISTERS(V) \ 61 V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \ 62 V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \ 63 V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \ 64 V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31) 65 66 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \ 67 V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \ 68 V(f16) V(f18) V(f20) V(f22) V(f24) V(f26) 69 // clang-format on 70 71 // CPU Registers. 72 // 73 // 1) We would prefer to use an enum, but enum values are assignment- 74 // compatible with int, which has caused code-generation bugs. 75 // 76 // 2) We would prefer to use a class instead of a struct but we don't like 77 // the register initialization to depend on the particular initialization 78 // order (which appears to be different on OS X, Linux, and Windows for the 79 // installed versions of C++ we tried). Using a struct permits C-style 80 // "initialization". Also, the Register objects cannot be const as this 81 // forces initialization stubs in MSVC, making us dependent on initialization 82 // order. 83 // 84 // 3) By not using an enum, we are possibly preventing the compiler from 85 // doing certain constant folds, which may significantly reduce the 86 // code generated for some assembly instructions (because they boil down 87 // to a few constants). If this is a problem, we could change the code 88 // such that we use an enum in optimized mode, and the struct in debug 89 // mode. This way we get the compile-time error checking in debug mode 90 // and best performance in optimized code. 91 92 93 // ----------------------------------------------------------------------------- 94 // Implementation of Register and FPURegister. 95 96 struct Register { 97 static const int kCpRegister = 23; // cp (s7) is the 23rd register. 98 99 enum Code { 100 #define REGISTER_CODE(R) kCode_##R, 101 GENERAL_REGISTERS(REGISTER_CODE) 102 #undef REGISTER_CODE 103 kAfterLast, 104 kCode_no_reg = -1 105 }; 106 107 static const int kNumRegisters = Code::kAfterLast; 108 109 #if defined(V8_TARGET_LITTLE_ENDIAN) 110 static const int kMantissaOffset = 0; 111 static const int kExponentOffset = 4; 112 #elif defined(V8_TARGET_BIG_ENDIAN) 113 static const int kMantissaOffset = 4; 114 static const int kExponentOffset = 0; 115 #else 116 #error Unknown endianness 117 #endif 118 119 from_codeRegister120 static Register from_code(int code) { 121 DCHECK(code >= 0); 122 DCHECK(code < kNumRegisters); 123 Register r = {code}; 124 return r; 125 } 126 const char* ToString(); 127 bool IsAllocatable() const; is_validRegister128 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } isRegister129 bool is(Register reg) const { return reg_code == reg.reg_code; } codeRegister130 int code() const { 131 DCHECK(is_valid()); 132 return reg_code; 133 } bitRegister134 int bit() const { 135 DCHECK(is_valid()); 136 return 1 << reg_code; 137 } 138 139 // Unfortunately we can't make this private in a struct. 140 int reg_code; 141 }; 142 143 // s7: context register 144 // s3: lithium scratch 145 // s4: lithium scratch2 146 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R}; 147 GENERAL_REGISTERS(DECLARE_REGISTER) 148 #undef DECLARE_REGISTER 149 const Register no_reg = {Register::kCode_no_reg}; 150 151 152 int ToNumber(Register reg); 153 154 Register ToRegister(int num); 155 156 // Coprocessor register. 157 struct DoubleRegister { 158 enum Code { 159 #define REGISTER_CODE(R) kCode_##R, 160 DOUBLE_REGISTERS(REGISTER_CODE) 161 #undef REGISTER_CODE 162 kAfterLast, 163 kCode_no_reg = -1 164 }; 165 166 static const int kMaxNumRegisters = Code::kAfterLast; 167 168 inline static int NumRegisters(); 169 170 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers 171 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to 172 // number of Double regs (64-bit regs, or FPU-reg-pairs). 173 174 const char* ToString(); 175 bool IsAllocatable() const; is_validDoubleRegister176 bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; } isDoubleRegister177 bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; } lowDoubleRegister178 DoubleRegister low() const { 179 // Find low reg of a Double-reg pair, which is the reg itself. 180 DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. 181 DoubleRegister reg; 182 reg.reg_code = reg_code; 183 DCHECK(reg.is_valid()); 184 return reg; 185 } highDoubleRegister186 DoubleRegister high() const { 187 // Find high reg of a Doubel-reg pair, which is reg + 1. 188 DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. 189 DoubleRegister reg; 190 reg.reg_code = reg_code + 1; 191 DCHECK(reg.is_valid()); 192 return reg; 193 } 194 codeDoubleRegister195 int code() const { 196 DCHECK(is_valid()); 197 return reg_code; 198 } bitDoubleRegister199 int bit() const { 200 DCHECK(is_valid()); 201 return 1 << reg_code; 202 } 203 from_codeDoubleRegister204 static DoubleRegister from_code(int code) { 205 DoubleRegister r = {code}; 206 return r; 207 } setcodeDoubleRegister208 void setcode(int f) { 209 reg_code = f; 210 DCHECK(is_valid()); 211 } 212 // Unfortunately we can't make this private in a struct. 213 int reg_code; 214 }; 215 216 // A few double registers are reserved: one as a scratch register and one to 217 // hold 0.0. 218 // f28: 0.0 219 // f30: scratch register. 220 221 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32 222 // 32-bit registers, f0 through f31. When used as 'double' they are used 223 // in pairs, starting with the even numbered register. So a double operation 224 // on f0 really uses f0 and f1. 225 // (Modern mips hardware also supports 32 64-bit registers, via setting 226 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI, 227 // but it is not in common use. Someday we will want to support this in v8.) 228 229 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. 230 typedef DoubleRegister FPURegister; 231 typedef DoubleRegister FloatRegister; 232 233 const DoubleRegister no_freg = {-1}; 234 235 const DoubleRegister f0 = {0}; // Return value in hard float mode. 236 const DoubleRegister f1 = {1}; 237 const DoubleRegister f2 = {2}; 238 const DoubleRegister f3 = {3}; 239 const DoubleRegister f4 = {4}; 240 const DoubleRegister f5 = {5}; 241 const DoubleRegister f6 = {6}; 242 const DoubleRegister f7 = {7}; 243 const DoubleRegister f8 = {8}; 244 const DoubleRegister f9 = {9}; 245 const DoubleRegister f10 = {10}; 246 const DoubleRegister f11 = {11}; 247 const DoubleRegister f12 = {12}; // Arg 0 in hard float mode. 248 const DoubleRegister f13 = {13}; 249 const DoubleRegister f14 = {14}; // Arg 1 in hard float mode. 250 const DoubleRegister f15 = {15}; 251 const DoubleRegister f16 = {16}; 252 const DoubleRegister f17 = {17}; 253 const DoubleRegister f18 = {18}; 254 const DoubleRegister f19 = {19}; 255 const DoubleRegister f20 = {20}; 256 const DoubleRegister f21 = {21}; 257 const DoubleRegister f22 = {22}; 258 const DoubleRegister f23 = {23}; 259 const DoubleRegister f24 = {24}; 260 const DoubleRegister f25 = {25}; 261 const DoubleRegister f26 = {26}; 262 const DoubleRegister f27 = {27}; 263 const DoubleRegister f28 = {28}; 264 const DoubleRegister f29 = {29}; 265 const DoubleRegister f30 = {30}; 266 const DoubleRegister f31 = {31}; 267 268 // Register aliases. 269 // cp is assumed to be a callee saved register. 270 // Defined using #define instead of "static const Register&" because Clang 271 // complains otherwise when a compilation unit that includes this header 272 // doesn't use the variables. 273 #define kRootRegister s6 274 #define cp s7 275 #define kLithiumScratchReg s3 276 #define kLithiumScratchReg2 s4 277 #define kLithiumScratchDouble f30 278 #define kDoubleRegZero f28 279 // Used on mips32r6 for compare operations. 280 // We use the last non-callee saved odd register for O32 ABI 281 #define kDoubleCompareReg f19 282 283 // FPU (coprocessor 1) control registers. 284 // Currently only FCSR (#31) is implemented. 285 struct FPUControlRegister { is_validFPUControlRegister286 bool is_valid() const { return reg_code == kFCSRRegister; } isFPUControlRegister287 bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; } codeFPUControlRegister288 int code() const { 289 DCHECK(is_valid()); 290 return reg_code; 291 } bitFPUControlRegister292 int bit() const { 293 DCHECK(is_valid()); 294 return 1 << reg_code; 295 } setcodeFPUControlRegister296 void setcode(int f) { 297 reg_code = f; 298 DCHECK(is_valid()); 299 } 300 // Unfortunately we can't make this private in a struct. 301 int reg_code; 302 }; 303 304 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister }; 305 const FPUControlRegister FCSR = { kFCSRRegister }; 306 307 308 // ----------------------------------------------------------------------------- 309 // Machine instruction Operands. 310 311 // Class Operand represents a shifter operand in data processing instructions. 312 class Operand BASE_EMBEDDED { 313 public: 314 // Immediate. 315 INLINE(explicit Operand(int32_t immediate, 316 RelocInfo::Mode rmode = RelocInfo::NONE32)); 317 INLINE(explicit Operand(const ExternalReference& f)); 318 INLINE(explicit Operand(const char* s)); 319 INLINE(explicit Operand(Object** opp)); 320 INLINE(explicit Operand(Context** cpp)); 321 explicit Operand(Handle<Object> handle); 322 INLINE(explicit Operand(Smi* value)); 323 324 // Register. 325 INLINE(explicit Operand(Register rm)); 326 327 // Return true if this is a register operand. 328 INLINE(bool is_reg() const); 329 immediate()330 inline int32_t immediate() const { 331 DCHECK(!is_reg()); 332 return imm32_; 333 } 334 rm()335 Register rm() const { return rm_; } 336 337 private: 338 Register rm_; 339 int32_t imm32_; // Valid if rm_ == no_reg. 340 RelocInfo::Mode rmode_; 341 342 friend class Assembler; 343 friend class MacroAssembler; 344 }; 345 346 347 // On MIPS we have only one adressing mode with base_reg + offset. 348 // Class MemOperand represents a memory operand in load and store instructions. 349 class MemOperand : public Operand { 350 public: 351 // Immediate value attached to offset. 352 enum OffsetAddend { 353 offset_minus_one = -1, 354 offset_zero = 0 355 }; 356 357 explicit MemOperand(Register rn, int32_t offset = 0); 358 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier, 359 OffsetAddend offset_addend = offset_zero); offset()360 int32_t offset() const { return offset_; } 361 OffsetIsInt16Encodable()362 bool OffsetIsInt16Encodable() const { 363 return is_int16(offset_); 364 } 365 366 private: 367 int32_t offset_; 368 369 friend class Assembler; 370 }; 371 372 373 class Assembler : public AssemblerBase { 374 public: 375 // Create an assembler. Instructions and relocation information are emitted 376 // into a buffer, with the instructions starting from the beginning and the 377 // relocation information starting from the end of the buffer. See CodeDesc 378 // for a detailed comment on the layout (globals.h). 379 // 380 // If the provided buffer is NULL, the assembler allocates and grows its own 381 // buffer, and buffer_size determines the initial buffer size. The buffer is 382 // owned by the assembler and deallocated upon destruction of the assembler. 383 // 384 // If the provided buffer is not NULL, the assembler uses the provided buffer 385 // for code generation and assumes its size to be buffer_size. If the buffer 386 // is too small, a fatal error occurs. No deallocation of the buffer is done 387 // upon destruction of the assembler. 388 Assembler(Isolate* isolate, void* buffer, int buffer_size); ~Assembler()389 virtual ~Assembler() { } 390 391 // GetCode emits any pending (non-emitted) code and fills the descriptor 392 // desc. GetCode() is idempotent; it returns the same result if no other 393 // Assembler functions are invoked in between GetCode() calls. 394 void GetCode(CodeDesc* desc); 395 396 // Label operations & relative jumps (PPUM Appendix D). 397 // 398 // Takes a branch opcode (cc) and a label (L) and generates 399 // either a backward branch or a forward branch and links it 400 // to the label fixup chain. Usage: 401 // 402 // Label L; // unbound label 403 // j(cc, &L); // forward branch to unbound label 404 // bind(&L); // bind label to the current pc 405 // j(cc, &L); // backward branch to bound label 406 // bind(&L); // illegal: a label may be bound only once 407 // 408 // Note: The same Label can be used for forward and backward branches 409 // but it may be bound only once. 410 void bind(Label* L); // Binds an unbound label L to current code position. 411 412 enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 }; 413 414 // Determines if Label is bound and near enough so that branch instruction 415 // can be used to reach it, instead of jump instruction. 416 bool is_near(Label* L); 417 bool is_near(Label* L, OffsetSize bits); 418 bool is_near_branch(Label* L); is_near_pre_r6(Label * L)419 inline bool is_near_pre_r6(Label* L) { 420 DCHECK(!IsMipsArchVariant(kMips32r6)); 421 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; 422 } is_near_r6(Label * L)423 inline bool is_near_r6(Label* L) { 424 DCHECK(IsMipsArchVariant(kMips32r6)); 425 return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize; 426 } 427 428 int BranchOffset(Instr instr); 429 430 // Returns the branch offset to the given label from the current code 431 // position. Links the label to the current position if it is still unbound. 432 // Manages the jump elimination optimization if the second parameter is true. 433 int32_t branch_offset_helper(Label* L, OffsetSize bits); branch_offset(Label * L)434 inline int32_t branch_offset(Label* L) { 435 return branch_offset_helper(L, OffsetSize::kOffset16); 436 } branch_offset21(Label * L)437 inline int32_t branch_offset21(Label* L) { 438 return branch_offset_helper(L, OffsetSize::kOffset21); 439 } branch_offset26(Label * L)440 inline int32_t branch_offset26(Label* L) { 441 return branch_offset_helper(L, OffsetSize::kOffset26); 442 } shifted_branch_offset(Label * L)443 inline int32_t shifted_branch_offset(Label* L) { 444 return branch_offset(L) >> 2; 445 } shifted_branch_offset21(Label * L)446 inline int32_t shifted_branch_offset21(Label* L) { 447 return branch_offset21(L) >> 2; 448 } shifted_branch_offset26(Label * L)449 inline int32_t shifted_branch_offset26(Label* L) { 450 return branch_offset26(L) >> 2; 451 } 452 uint32_t jump_address(Label* L); 453 454 // Puts a labels target address at the given position. 455 // The high 8 bits are set to zero. 456 void label_at_put(Label* L, int at_offset); 457 458 // Read/Modify the code target address in the branch/call instruction at pc. 459 static Address target_address_at(Address pc); 460 static void set_target_address_at( 461 Isolate* isolate, Address pc, Address target, 462 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); 463 // On MIPS there is no Constant Pool so we skip that parameter. INLINE(static Address target_address_at (Address pc,Address constant_pool))464 INLINE(static Address target_address_at(Address pc, Address constant_pool)) { 465 return target_address_at(pc); 466 } INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))467 INLINE(static void set_target_address_at( 468 Isolate* isolate, Address pc, Address constant_pool, Address target, 469 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { 470 set_target_address_at(isolate, pc, target, icache_flush_mode); 471 } INLINE(static Address target_address_at (Address pc,Code * code))472 INLINE(static Address target_address_at(Address pc, Code* code)) { 473 Address constant_pool = code ? code->constant_pool() : NULL; 474 return target_address_at(pc, constant_pool); 475 } INLINE(static void set_target_address_at (Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))476 INLINE(static void set_target_address_at( 477 Isolate* isolate, Address pc, Code* code, Address target, 478 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { 479 Address constant_pool = code ? code->constant_pool() : NULL; 480 set_target_address_at(isolate, pc, constant_pool, target, 481 icache_flush_mode); 482 } 483 484 // Return the code target address at a call site from the return address 485 // of that call in the instruction stream. 486 inline static Address target_address_from_return_address(Address pc); 487 488 static void QuietNaN(HeapObject* nan); 489 490 // This sets the branch destination (which gets loaded at the call address). 491 // This is for calls and branches within generated code. The serializer 492 // has already deserialized the lui/ori instructions etc. deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)493 inline static void deserialization_set_special_target_at( 494 Isolate* isolate, Address instruction_payload, Code* code, 495 Address target) { 496 set_target_address_at( 497 isolate, 498 instruction_payload - kInstructionsFor32BitConstant * kInstrSize, code, 499 target); 500 } 501 502 // This sets the internal reference at the pc. 503 inline static void deserialization_set_target_internal_reference_at( 504 Isolate* isolate, Address pc, Address target, 505 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); 506 507 // Size of an instruction. 508 static const int kInstrSize = sizeof(Instr); 509 510 // Difference between address of current opcode and target address offset. 511 static const int kBranchPCOffset = 4; 512 513 // Here we are patching the address in the LUI/ORI instruction pair. 514 // These values are used in the serialization process and must be zero for 515 // MIPS platform, as Code, Embedded Object or External-reference pointers 516 // are split across two consecutive instructions and don't exist separately 517 // in the code, so the serializer should not step forwards in memory after 518 // a target is resolved and written. 519 static const int kSpecialTargetSize = 0; 520 521 // Number of consecutive instructions used to store 32bit constant. 522 // Before jump-optimizations, this constant was used in 523 // RelocInfo::target_address_address() function to tell serializer address of 524 // the instruction that follows LUI/ORI instruction pair. Now, with new jump 525 // optimization, where jump-through-register instruction that usually 526 // follows LUI/ORI pair is substituted with J/JAL, this constant equals 527 // to 3 instructions (LUI+ORI+J/JAL/JR/JALR). 528 static const int kInstructionsFor32BitConstant = 3; 529 530 // Distance between the instruction referring to the address of the call 531 // target and the return address. 532 static const int kCallTargetAddressOffset = 4 * kInstrSize; 533 534 // Distance between start of patched debug break slot and the emitted address 535 // to jump to. 536 static const int kPatchDebugBreakSlotAddressOffset = 4 * kInstrSize; 537 538 // Difference between address of current opcode and value read from pc 539 // register. 540 static const int kPcLoadDelta = 4; 541 542 static const int kDebugBreakSlotInstructions = 4; 543 static const int kDebugBreakSlotLength = 544 kDebugBreakSlotInstructions * kInstrSize; 545 546 547 // --------------------------------------------------------------------------- 548 // Code generation. 549 550 // Insert the smallest number of nop instructions 551 // possible to align the pc offset to a multiple 552 // of m. m must be a power of 2 (>= 4). 553 void Align(int m); 554 // Insert the smallest number of zero bytes possible to align the pc offset 555 // to a mulitple of m. m must be a power of 2 (>= 2). 556 void DataAlign(int m); 557 // Aligns code to something that's optimal for a jump target for the platform. 558 void CodeTargetAlign(); 559 560 // Different nop operations are used by the code generator to detect certain 561 // states of the generated code. 562 enum NopMarkerTypes { 563 NON_MARKING_NOP = 0, 564 DEBUG_BREAK_NOP, 565 // IC markers. 566 PROPERTY_ACCESS_INLINED, 567 PROPERTY_ACCESS_INLINED_CONTEXT, 568 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, 569 // Helper values. 570 LAST_CODE_MARKER, 571 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, 572 // Code aging 573 CODE_AGE_MARKER_NOP = 6, 574 CODE_AGE_SEQUENCE_NOP 575 }; 576 577 // Type == 0 is the default non-marking nop. For mips this is a 578 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero 579 // marking, to avoid conflict with ssnop and ehb instructions. 580 void nop(unsigned int type = 0) { 581 DCHECK(type < 32); 582 Register nop_rt_reg = (type == 0) ? zero_reg : at; 583 sll(zero_reg, nop_rt_reg, type, true); 584 } 585 586 587 // --------Branch-and-jump-instructions---------- 588 // We don't use likely variant of instructions. 589 void b(int16_t offset); b(Label * L)590 inline void b(Label* L) { b(shifted_branch_offset(L)); } 591 void bal(int16_t offset); bal(Label * L)592 inline void bal(Label* L) { bal(shifted_branch_offset(L)); } 593 void bc(int32_t offset); bc(Label * L)594 inline void bc(Label* L) { bc(shifted_branch_offset26(L)); } 595 void balc(int32_t offset); balc(Label * L)596 inline void balc(Label* L) { balc(shifted_branch_offset26(L)); } 597 598 void beq(Register rs, Register rt, int16_t offset); beq(Register rs,Register rt,Label * L)599 inline void beq(Register rs, Register rt, Label* L) { 600 beq(rs, rt, shifted_branch_offset(L)); 601 } 602 void bgez(Register rs, int16_t offset); 603 void bgezc(Register rt, int16_t offset); bgezc(Register rt,Label * L)604 inline void bgezc(Register rt, Label* L) { 605 bgezc(rt, shifted_branch_offset(L)); 606 } 607 void bgeuc(Register rs, Register rt, int16_t offset); bgeuc(Register rs,Register rt,Label * L)608 inline void bgeuc(Register rs, Register rt, Label* L) { 609 bgeuc(rs, rt, shifted_branch_offset(L)); 610 } 611 void bgec(Register rs, Register rt, int16_t offset); bgec(Register rs,Register rt,Label * L)612 inline void bgec(Register rs, Register rt, Label* L) { 613 bgec(rs, rt, shifted_branch_offset(L)); 614 } 615 void bgezal(Register rs, int16_t offset); 616 void bgezalc(Register rt, int16_t offset); bgezalc(Register rt,Label * L)617 inline void bgezalc(Register rt, Label* L) { 618 bgezalc(rt, shifted_branch_offset(L)); 619 } 620 void bgezall(Register rs, int16_t offset); bgezall(Register rs,Label * L)621 inline void bgezall(Register rs, Label* L) { 622 bgezall(rs, branch_offset(L) >> 2); 623 } 624 void bgtz(Register rs, int16_t offset); 625 void bgtzc(Register rt, int16_t offset); bgtzc(Register rt,Label * L)626 inline void bgtzc(Register rt, Label* L) { 627 bgtzc(rt, shifted_branch_offset(L)); 628 } 629 void blez(Register rs, int16_t offset); 630 void blezc(Register rt, int16_t offset); blezc(Register rt,Label * L)631 inline void blezc(Register rt, Label* L) { 632 blezc(rt, shifted_branch_offset(L)); 633 } 634 void bltz(Register rs, int16_t offset); 635 void bltzc(Register rt, int16_t offset); bltzc(Register rt,Label * L)636 inline void bltzc(Register rt, Label* L) { 637 bltzc(rt, shifted_branch_offset(L)); 638 } 639 void bltuc(Register rs, Register rt, int16_t offset); bltuc(Register rs,Register rt,Label * L)640 inline void bltuc(Register rs, Register rt, Label* L) { 641 bltuc(rs, rt, shifted_branch_offset(L)); 642 } 643 void bltc(Register rs, Register rt, int16_t offset); bltc(Register rs,Register rt,Label * L)644 inline void bltc(Register rs, Register rt, Label* L) { 645 bltc(rs, rt, shifted_branch_offset(L)); 646 } 647 void bltzal(Register rs, int16_t offset); 648 void blezalc(Register rt, int16_t offset); blezalc(Register rt,Label * L)649 inline void blezalc(Register rt, Label* L) { 650 blezalc(rt, shifted_branch_offset(L)); 651 } 652 void bltzalc(Register rt, int16_t offset); bltzalc(Register rt,Label * L)653 inline void bltzalc(Register rt, Label* L) { 654 bltzalc(rt, shifted_branch_offset(L)); 655 } 656 void bgtzalc(Register rt, int16_t offset); bgtzalc(Register rt,Label * L)657 inline void bgtzalc(Register rt, Label* L) { 658 bgtzalc(rt, shifted_branch_offset(L)); 659 } 660 void beqzalc(Register rt, int16_t offset); beqzalc(Register rt,Label * L)661 inline void beqzalc(Register rt, Label* L) { 662 beqzalc(rt, shifted_branch_offset(L)); 663 } 664 void beqc(Register rs, Register rt, int16_t offset); beqc(Register rs,Register rt,Label * L)665 inline void beqc(Register rs, Register rt, Label* L) { 666 beqc(rs, rt, shifted_branch_offset(L)); 667 } 668 void beqzc(Register rs, int32_t offset); beqzc(Register rs,Label * L)669 inline void beqzc(Register rs, Label* L) { 670 beqzc(rs, shifted_branch_offset21(L)); 671 } 672 void bnezalc(Register rt, int16_t offset); bnezalc(Register rt,Label * L)673 inline void bnezalc(Register rt, Label* L) { 674 bnezalc(rt, shifted_branch_offset(L)); 675 } 676 void bnec(Register rs, Register rt, int16_t offset); bnec(Register rs,Register rt,Label * L)677 inline void bnec(Register rs, Register rt, Label* L) { 678 bnec(rs, rt, shifted_branch_offset(L)); 679 } 680 void bnezc(Register rt, int32_t offset); bnezc(Register rt,Label * L)681 inline void bnezc(Register rt, Label* L) { 682 bnezc(rt, shifted_branch_offset21(L)); 683 } 684 void bne(Register rs, Register rt, int16_t offset); bne(Register rs,Register rt,Label * L)685 inline void bne(Register rs, Register rt, Label* L) { 686 bne(rs, rt, shifted_branch_offset(L)); 687 } 688 void bovc(Register rs, Register rt, int16_t offset); bovc(Register rs,Register rt,Label * L)689 inline void bovc(Register rs, Register rt, Label* L) { 690 bovc(rs, rt, shifted_branch_offset(L)); 691 } 692 void bnvc(Register rs, Register rt, int16_t offset); bnvc(Register rs,Register rt,Label * L)693 inline void bnvc(Register rs, Register rt, Label* L) { 694 bnvc(rs, rt, shifted_branch_offset(L)); 695 } 696 697 // Never use the int16_t b(l)cond version with a branch offset 698 // instead of using the Label* version. 699 700 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. 701 void j(int32_t target); 702 void jal(int32_t target); 703 void jalr(Register rs, Register rd = ra); 704 void jr(Register target); 705 void jic(Register rt, int16_t offset); 706 void jialc(Register rt, int16_t offset); 707 708 709 // -------Data-processing-instructions--------- 710 711 // Arithmetic. 712 void addu(Register rd, Register rs, Register rt); 713 void subu(Register rd, Register rs, Register rt); 714 void mult(Register rs, Register rt); 715 void multu(Register rs, Register rt); 716 void div(Register rs, Register rt); 717 void divu(Register rs, Register rt); 718 void div(Register rd, Register rs, Register rt); 719 void divu(Register rd, Register rs, Register rt); 720 void mod(Register rd, Register rs, Register rt); 721 void modu(Register rd, Register rs, Register rt); 722 void mul(Register rd, Register rs, Register rt); 723 void muh(Register rd, Register rs, Register rt); 724 void mulu(Register rd, Register rs, Register rt); 725 void muhu(Register rd, Register rs, Register rt); 726 727 void addiu(Register rd, Register rs, int32_t j); 728 729 // Logical. 730 void and_(Register rd, Register rs, Register rt); 731 void or_(Register rd, Register rs, Register rt); 732 void xor_(Register rd, Register rs, Register rt); 733 void nor(Register rd, Register rs, Register rt); 734 735 void andi(Register rd, Register rs, int32_t j); 736 void ori(Register rd, Register rs, int32_t j); 737 void xori(Register rd, Register rs, int32_t j); 738 void lui(Register rd, int32_t j); 739 void aui(Register rs, Register rt, int32_t j); 740 741 // Shifts. 742 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop 743 // and may cause problems in normal code. coming_from_nop makes sure this 744 // doesn't happen. 745 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); 746 void sllv(Register rd, Register rt, Register rs); 747 void srl(Register rd, Register rt, uint16_t sa); 748 void srlv(Register rd, Register rt, Register rs); 749 void sra(Register rt, Register rd, uint16_t sa); 750 void srav(Register rt, Register rd, Register rs); 751 void rotr(Register rd, Register rt, uint16_t sa); 752 void rotrv(Register rd, Register rt, Register rs); 753 754 // Address computing instructions with shift. 755 void lsa(Register rd, Register rt, Register rs, uint8_t sa); 756 757 // ------------Memory-instructions------------- 758 759 void lb(Register rd, const MemOperand& rs); 760 void lbu(Register rd, const MemOperand& rs); 761 void lh(Register rd, const MemOperand& rs); 762 void lhu(Register rd, const MemOperand& rs); 763 void lw(Register rd, const MemOperand& rs); 764 void lwl(Register rd, const MemOperand& rs); 765 void lwr(Register rd, const MemOperand& rs); 766 void sb(Register rd, const MemOperand& rs); 767 void sh(Register rd, const MemOperand& rs); 768 void sw(Register rd, const MemOperand& rs); 769 void swl(Register rd, const MemOperand& rs); 770 void swr(Register rd, const MemOperand& rs); 771 772 773 // ---------PC-Relative-instructions----------- 774 775 void addiupc(Register rs, int32_t imm19); 776 void lwpc(Register rs, int32_t offset19); 777 void auipc(Register rs, int16_t imm16); 778 void aluipc(Register rs, int16_t imm16); 779 780 781 // ----------------Prefetch-------------------- 782 783 void pref(int32_t hint, const MemOperand& rs); 784 785 786 // -------------Misc-instructions-------------- 787 788 // Break / Trap instructions. 789 void break_(uint32_t code, bool break_as_stop = false); 790 void stop(const char* msg, uint32_t code = kMaxStopCode); 791 void tge(Register rs, Register rt, uint16_t code); 792 void tgeu(Register rs, Register rt, uint16_t code); 793 void tlt(Register rs, Register rt, uint16_t code); 794 void tltu(Register rs, Register rt, uint16_t code); 795 void teq(Register rs, Register rt, uint16_t code); 796 void tne(Register rs, Register rt, uint16_t code); 797 798 // Move from HI/LO register. 799 void mfhi(Register rd); 800 void mflo(Register rd); 801 802 // Set on less than. 803 void slt(Register rd, Register rs, Register rt); 804 void sltu(Register rd, Register rs, Register rt); 805 void slti(Register rd, Register rs, int32_t j); 806 void sltiu(Register rd, Register rs, int32_t j); 807 808 // Conditional move. 809 void movz(Register rd, Register rs, Register rt); 810 void movn(Register rd, Register rs, Register rt); 811 void movt(Register rd, Register rs, uint16_t cc = 0); 812 void movf(Register rd, Register rs, uint16_t cc = 0); 813 814 void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 815 void sel_s(FPURegister fd, FPURegister fs, FPURegister ft); 816 void sel_d(FPURegister fd, FPURegister fs, FPURegister ft); 817 void seleqz(Register rd, Register rs, Register rt); 818 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs, 819 FPURegister ft); 820 void selnez(Register rd, Register rs, Register rt); 821 void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs, 822 FPURegister ft); 823 void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft); 824 void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft); 825 void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft); 826 void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft); 827 828 void movz_s(FPURegister fd, FPURegister fs, Register rt); 829 void movz_d(FPURegister fd, FPURegister fs, Register rt); 830 void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 831 void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 832 void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); 833 void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); 834 void movn_s(FPURegister fd, FPURegister fs, Register rt); 835 void movn_d(FPURegister fd, FPURegister fs, Register rt); 836 // Bit twiddling. 837 void clz(Register rd, Register rs); 838 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); 839 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); 840 void bitswap(Register rd, Register rt); 841 void align(Register rd, Register rs, Register rt, uint8_t bp); 842 843 // --------Coprocessor-instructions---------------- 844 845 // Load, store, and move. 846 void lwc1(FPURegister fd, const MemOperand& src); 847 void ldc1(FPURegister fd, const MemOperand& src); 848 849 void swc1(FPURegister fs, const MemOperand& dst); 850 void sdc1(FPURegister fs, const MemOperand& dst); 851 852 void mtc1(Register rt, FPURegister fs); 853 void mthc1(Register rt, FPURegister fs); 854 855 void mfc1(Register rt, FPURegister fs); 856 void mfhc1(Register rt, FPURegister fs); 857 858 void ctc1(Register rt, FPUControlRegister fs); 859 void cfc1(Register rt, FPUControlRegister fs); 860 861 // Arithmetic. 862 void add_s(FPURegister fd, FPURegister fs, FPURegister ft); 863 void add_d(FPURegister fd, FPURegister fs, FPURegister ft); 864 void sub_s(FPURegister fd, FPURegister fs, FPURegister ft); 865 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); 866 void mul_s(FPURegister fd, FPURegister fs, FPURegister ft); 867 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); 868 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); 869 void div_s(FPURegister fd, FPURegister fs, FPURegister ft); 870 void div_d(FPURegister fd, FPURegister fs, FPURegister ft); 871 void abs_s(FPURegister fd, FPURegister fs); 872 void abs_d(FPURegister fd, FPURegister fs); 873 void mov_d(FPURegister fd, FPURegister fs); 874 void mov_s(FPURegister fd, FPURegister fs); 875 void neg_s(FPURegister fd, FPURegister fs); 876 void neg_d(FPURegister fd, FPURegister fs); 877 void sqrt_s(FPURegister fd, FPURegister fs); 878 void sqrt_d(FPURegister fd, FPURegister fs); 879 void rsqrt_s(FPURegister fd, FPURegister fs); 880 void rsqrt_d(FPURegister fd, FPURegister fs); 881 void recip_d(FPURegister fd, FPURegister fs); 882 void recip_s(FPURegister fd, FPURegister fs); 883 884 // Conversion. 885 void cvt_w_s(FPURegister fd, FPURegister fs); 886 void cvt_w_d(FPURegister fd, FPURegister fs); 887 void trunc_w_s(FPURegister fd, FPURegister fs); 888 void trunc_w_d(FPURegister fd, FPURegister fs); 889 void round_w_s(FPURegister fd, FPURegister fs); 890 void round_w_d(FPURegister fd, FPURegister fs); 891 void floor_w_s(FPURegister fd, FPURegister fs); 892 void floor_w_d(FPURegister fd, FPURegister fs); 893 void ceil_w_s(FPURegister fd, FPURegister fs); 894 void ceil_w_d(FPURegister fd, FPURegister fs); 895 void rint_s(FPURegister fd, FPURegister fs); 896 void rint_d(FPURegister fd, FPURegister fs); 897 void rint(SecondaryField fmt, FPURegister fd, FPURegister fs); 898 899 void cvt_l_s(FPURegister fd, FPURegister fs); 900 void cvt_l_d(FPURegister fd, FPURegister fs); 901 void trunc_l_s(FPURegister fd, FPURegister fs); 902 void trunc_l_d(FPURegister fd, FPURegister fs); 903 void round_l_s(FPURegister fd, FPURegister fs); 904 void round_l_d(FPURegister fd, FPURegister fs); 905 void floor_l_s(FPURegister fd, FPURegister fs); 906 void floor_l_d(FPURegister fd, FPURegister fs); 907 void ceil_l_s(FPURegister fd, FPURegister fs); 908 void ceil_l_d(FPURegister fd, FPURegister fs); 909 910 void class_s(FPURegister fd, FPURegister fs); 911 void class_d(FPURegister fd, FPURegister fs); 912 913 void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 914 void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 915 void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 916 void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); 917 void min_s(FPURegister fd, FPURegister fs, FPURegister ft); 918 void min_d(FPURegister fd, FPURegister fs, FPURegister ft); 919 void max_s(FPURegister fd, FPURegister fs, FPURegister ft); 920 void max_d(FPURegister fd, FPURegister fs, FPURegister ft); 921 void mina_s(FPURegister fd, FPURegister fs, FPURegister ft); 922 void mina_d(FPURegister fd, FPURegister fs, FPURegister ft); 923 void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft); 924 void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft); 925 926 void cvt_s_w(FPURegister fd, FPURegister fs); 927 void cvt_s_l(FPURegister fd, FPURegister fs); 928 void cvt_s_d(FPURegister fd, FPURegister fs); 929 930 void cvt_d_w(FPURegister fd, FPURegister fs); 931 void cvt_d_l(FPURegister fd, FPURegister fs); 932 void cvt_d_s(FPURegister fd, FPURegister fs); 933 934 // Conditions and branches for MIPSr6. 935 void cmp(FPUCondition cond, SecondaryField fmt, 936 FPURegister fd, FPURegister ft, FPURegister fs); 937 void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 938 void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); 939 940 void bc1eqz(int16_t offset, FPURegister ft); bc1eqz(Label * L,FPURegister ft)941 inline void bc1eqz(Label* L, FPURegister ft) { 942 bc1eqz(shifted_branch_offset(L), ft); 943 } 944 void bc1nez(int16_t offset, FPURegister ft); bc1nez(Label * L,FPURegister ft)945 inline void bc1nez(Label* L, FPURegister ft) { 946 bc1nez(shifted_branch_offset(L), ft); 947 } 948 949 // Conditions and branches for non MIPSr6. 950 void c(FPUCondition cond, SecondaryField fmt, 951 FPURegister ft, FPURegister fs, uint16_t cc = 0); 952 void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 953 void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); 954 955 void bc1f(int16_t offset, uint16_t cc = 0); 956 inline void bc1f(Label* L, uint16_t cc = 0) { 957 bc1f(shifted_branch_offset(L), cc); 958 } 959 void bc1t(int16_t offset, uint16_t cc = 0); 960 inline void bc1t(Label* L, uint16_t cc = 0) { 961 bc1t(shifted_branch_offset(L), cc); 962 } 963 void fcmp(FPURegister src1, const double src2, FPUCondition cond); 964 965 // Check the code size generated from label to here. SizeOfCodeGeneratedSince(Label * label)966 int SizeOfCodeGeneratedSince(Label* label) { 967 return pc_offset() - label->pos(); 968 } 969 970 // Check the number of instructions generated from label to here. InstructionsGeneratedSince(Label * label)971 int InstructionsGeneratedSince(Label* label) { 972 return SizeOfCodeGeneratedSince(label) / kInstrSize; 973 } 974 975 // Class for scoping postponing the trampoline pool generation. 976 class BlockTrampolinePoolScope { 977 public: BlockTrampolinePoolScope(Assembler * assem)978 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { 979 assem_->StartBlockTrampolinePool(); 980 } ~BlockTrampolinePoolScope()981 ~BlockTrampolinePoolScope() { 982 assem_->EndBlockTrampolinePool(); 983 } 984 985 private: 986 Assembler* assem_; 987 988 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); 989 }; 990 991 // Class for postponing the assembly buffer growth. Typically used for 992 // sequences of instructions that must be emitted as a unit, before 993 // buffer growth (and relocation) can occur. 994 // This blocking scope is not nestable. 995 class BlockGrowBufferScope { 996 public: BlockGrowBufferScope(Assembler * assem)997 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { 998 assem_->StartBlockGrowBuffer(); 999 } ~BlockGrowBufferScope()1000 ~BlockGrowBufferScope() { 1001 assem_->EndBlockGrowBuffer(); 1002 } 1003 1004 private: 1005 Assembler* assem_; 1006 1007 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); 1008 }; 1009 1010 // Debugging. 1011 1012 // Mark generator continuation. 1013 void RecordGeneratorContinuation(); 1014 1015 // Mark address of a debug break slot. 1016 void RecordDebugBreakSlot(RelocInfo::Mode mode); 1017 1018 // Record the AST id of the CallIC being compiled, so that it can be placed 1019 // in the relocation information. SetRecordedAstId(TypeFeedbackId ast_id)1020 void SetRecordedAstId(TypeFeedbackId ast_id) { 1021 DCHECK(recorded_ast_id_.IsNone()); 1022 recorded_ast_id_ = ast_id; 1023 } 1024 RecordedAstId()1025 TypeFeedbackId RecordedAstId() { 1026 DCHECK(!recorded_ast_id_.IsNone()); 1027 return recorded_ast_id_; 1028 } 1029 ClearRecordedAstId()1030 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } 1031 1032 // Record a comment relocation entry that can be used by a disassembler. 1033 // Use --code-comments to enable. 1034 void RecordComment(const char* msg); 1035 1036 // Record a deoptimization reason that can be used by a log or cpu profiler. 1037 // Use --trace-deopt to enable. 1038 void RecordDeoptReason(const int reason, const SourcePosition position); 1039 1040 1041 static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc, 1042 intptr_t pc_delta); 1043 1044 // Writes a single byte or word of data in the code stream. Used for 1045 // inline tables, e.g., jump-tables. 1046 void db(uint8_t data); 1047 void dd(uint32_t data); 1048 void dq(uint64_t data); dp(uintptr_t data)1049 void dp(uintptr_t data) { dd(data); } 1050 void dd(Label* label); 1051 positions_recorder()1052 PositionsRecorder* positions_recorder() { return &positions_recorder_; } 1053 1054 // Postpone the generation of the trampoline pool for the specified number of 1055 // instructions. 1056 void BlockTrampolinePoolFor(int instructions); 1057 1058 // Check if there is less than kGap bytes available in the buffer. 1059 // If this is the case, we need to grow the buffer before emitting 1060 // an instruction or relocation information. overflow()1061 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } 1062 1063 // Get the number of bytes available in the buffer. available_space()1064 inline int available_space() const { return reloc_info_writer.pos() - pc_; } 1065 1066 // Read/patch instructions. instr_at(byte * pc)1067 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } instr_at_put(byte * pc,Instr instr)1068 static void instr_at_put(byte* pc, Instr instr) { 1069 *reinterpret_cast<Instr*>(pc) = instr; 1070 } instr_at(int pos)1071 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } instr_at_put(int pos,Instr instr)1072 void instr_at_put(int pos, Instr instr) { 1073 *reinterpret_cast<Instr*>(buffer_ + pos) = instr; 1074 } 1075 1076 // Check if an instruction is a branch of some kind. 1077 static bool IsBranch(Instr instr); 1078 static bool IsBc(Instr instr); 1079 static bool IsBzc(Instr instr); 1080 static bool IsBeq(Instr instr); 1081 static bool IsBne(Instr instr); 1082 static bool IsBeqzc(Instr instr); 1083 static bool IsBnezc(Instr instr); 1084 static bool IsBeqc(Instr instr); 1085 static bool IsBnec(Instr instr); 1086 1087 static bool IsJump(Instr instr); 1088 static bool IsJ(Instr instr); 1089 static bool IsLui(Instr instr); 1090 static bool IsOri(Instr instr); 1091 1092 static bool IsJal(Instr instr); 1093 static bool IsJr(Instr instr); 1094 static bool IsJalr(Instr instr); 1095 1096 static bool IsNop(Instr instr, unsigned int type); 1097 static bool IsPop(Instr instr); 1098 static bool IsPush(Instr instr); 1099 static bool IsLwRegFpOffset(Instr instr); 1100 static bool IsSwRegFpOffset(Instr instr); 1101 static bool IsLwRegFpNegOffset(Instr instr); 1102 static bool IsSwRegFpNegOffset(Instr instr); 1103 1104 static Register GetRtReg(Instr instr); 1105 static Register GetRsReg(Instr instr); 1106 static Register GetRdReg(Instr instr); 1107 1108 static uint32_t GetRt(Instr instr); 1109 static uint32_t GetRtField(Instr instr); 1110 static uint32_t GetRs(Instr instr); 1111 static uint32_t GetRsField(Instr instr); 1112 static uint32_t GetRd(Instr instr); 1113 static uint32_t GetRdField(Instr instr); 1114 static uint32_t GetSa(Instr instr); 1115 static uint32_t GetSaField(Instr instr); 1116 static uint32_t GetOpcodeField(Instr instr); 1117 static uint32_t GetFunction(Instr instr); 1118 static uint32_t GetFunctionField(Instr instr); 1119 static uint32_t GetImmediate16(Instr instr); 1120 static uint32_t GetLabelConst(Instr instr); 1121 1122 static int32_t GetBranchOffset(Instr instr); 1123 static bool IsLw(Instr instr); 1124 static int16_t GetLwOffset(Instr instr); 1125 static Instr SetLwOffset(Instr instr, int16_t offset); 1126 1127 static bool IsSw(Instr instr); 1128 static Instr SetSwOffset(Instr instr, int16_t offset); 1129 static bool IsAddImmediate(Instr instr); 1130 static Instr SetAddImmediateOffset(Instr instr, int16_t offset); 1131 1132 static bool IsAndImmediate(Instr instr); 1133 static bool IsEmittedConstant(Instr instr); 1134 1135 void CheckTrampolinePool(); 1136 PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1137 void PatchConstantPoolAccessInstruction(int pc_offset, int offset, 1138 ConstantPoolEntry::Access access, 1139 ConstantPoolEntry::Type type) { 1140 // No embedded constant pool support. 1141 UNREACHABLE(); 1142 } 1143 IsPrevInstrCompactBranch()1144 bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; } 1145 1146 protected: 1147 // Relocation for a type-recording IC has the AST id added to it. This 1148 // member variable is a way to pass the information from the call site to 1149 // the relocation info. 1150 TypeFeedbackId recorded_ast_id_; 1151 buffer_space()1152 int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; } 1153 1154 // Decode branch instruction at pos and return branch target pos. 1155 int target_at(int pos, bool is_internal); 1156 1157 // Patch branch instruction at pos to branch to given branch target pos. 1158 void target_at_put(int pos, int target_pos, bool is_internal); 1159 1160 // Say if we need to relocate with this mode. 1161 bool MustUseReg(RelocInfo::Mode rmode); 1162 1163 // Record reloc info for current pc_. 1164 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); 1165 1166 // Block the emission of the trampoline pool before pc_offset. BlockTrampolinePoolBefore(int pc_offset)1167 void BlockTrampolinePoolBefore(int pc_offset) { 1168 if (no_trampoline_pool_before_ < pc_offset) 1169 no_trampoline_pool_before_ = pc_offset; 1170 } 1171 StartBlockTrampolinePool()1172 void StartBlockTrampolinePool() { 1173 trampoline_pool_blocked_nesting_++; 1174 } 1175 EndBlockTrampolinePool()1176 void EndBlockTrampolinePool() { 1177 trampoline_pool_blocked_nesting_--; 1178 } 1179 is_trampoline_pool_blocked()1180 bool is_trampoline_pool_blocked() const { 1181 return trampoline_pool_blocked_nesting_ > 0; 1182 } 1183 has_exception()1184 bool has_exception() const { 1185 return internal_trampoline_exception_; 1186 } 1187 1188 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); 1189 is_trampoline_emitted()1190 bool is_trampoline_emitted() const { 1191 return trampoline_emitted_; 1192 } 1193 1194 // Temporarily block automatic assembly buffer growth. StartBlockGrowBuffer()1195 void StartBlockGrowBuffer() { 1196 DCHECK(!block_buffer_growth_); 1197 block_buffer_growth_ = true; 1198 } 1199 EndBlockGrowBuffer()1200 void EndBlockGrowBuffer() { 1201 DCHECK(block_buffer_growth_); 1202 block_buffer_growth_ = false; 1203 } 1204 is_buffer_growth_blocked()1205 bool is_buffer_growth_blocked() const { 1206 return block_buffer_growth_; 1207 } 1208 1209 inline void CheckTrampolinePoolQuick(int extra_instructions = 0); 1210 1211 private: 1212 inline static void set_target_internal_reference_encoded_at(Address pc, 1213 Address target); 1214 1215 // Buffer size and constant pool distance are checked together at regular 1216 // intervals of kBufferCheckInterval emitted bytes. 1217 static const int kBufferCheckInterval = 1*KB/2; 1218 1219 // Code generation. 1220 // The relocation writer's position is at least kGap bytes below the end of 1221 // the generated instructions. This is so that multi-instruction sequences do 1222 // not have to check for overflow. The same is true for writes of large 1223 // relocation info entries. 1224 static const int kGap = 32; 1225 1226 1227 // Repeated checking whether the trampoline pool should be emitted is rather 1228 // expensive. By default we only check again once a number of instructions 1229 // has been generated. 1230 static const int kCheckConstIntervalInst = 32; 1231 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; 1232 1233 int next_buffer_check_; // pc offset of next buffer check. 1234 1235 // Emission of the trampoline pool may be blocked in some code sequences. 1236 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. 1237 int no_trampoline_pool_before_; // Block emission before this pc offset. 1238 1239 // Keep track of the last emitted pool to guarantee a maximal distance. 1240 int last_trampoline_pool_end_; // pc offset of the end of the last pool. 1241 1242 // Automatic growth of the assembly buffer may be blocked for some sequences. 1243 bool block_buffer_growth_; // Block growth when true. 1244 1245 // Relocation information generation. 1246 // Each relocation is encoded as a variable size value. 1247 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; 1248 RelocInfoWriter reloc_info_writer; 1249 1250 // The bound position, before this we cannot do instruction elimination. 1251 int last_bound_pos_; 1252 1253 // Readable constants for compact branch handling in emit() 1254 enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true }; 1255 1256 // Code emission. 1257 inline void CheckBuffer(); 1258 void GrowBuffer(); 1259 inline void emit(Instr x, 1260 CompactBranchType is_compact_branch = CompactBranchType::NO); 1261 inline void emit(uint64_t x); 1262 inline void CheckForEmitInForbiddenSlot(); 1263 template <typename T> 1264 inline void EmitHelper(T x); 1265 inline void EmitHelper(Instr x, CompactBranchType is_compact_branch); 1266 1267 // Instruction generation. 1268 // We have 3 different kind of encoding layout on MIPS. 1269 // However due to many different types of objects encoded in the same fields 1270 // we have quite a few aliases for each mode. 1271 // Using the same structure to refer to Register and FPURegister would spare a 1272 // few aliases, but mixing both does not look clean to me. 1273 // Anyway we could surely implement this differently. 1274 1275 void GenInstrRegister(Opcode opcode, 1276 Register rs, 1277 Register rt, 1278 Register rd, 1279 uint16_t sa = 0, 1280 SecondaryField func = NULLSF); 1281 1282 void GenInstrRegister(Opcode opcode, 1283 Register rs, 1284 Register rt, 1285 uint16_t msb, 1286 uint16_t lsb, 1287 SecondaryField func); 1288 1289 void GenInstrRegister(Opcode opcode, 1290 SecondaryField fmt, 1291 FPURegister ft, 1292 FPURegister fs, 1293 FPURegister fd, 1294 SecondaryField func = NULLSF); 1295 1296 void GenInstrRegister(Opcode opcode, 1297 FPURegister fr, 1298 FPURegister ft, 1299 FPURegister fs, 1300 FPURegister fd, 1301 SecondaryField func = NULLSF); 1302 1303 void GenInstrRegister(Opcode opcode, 1304 SecondaryField fmt, 1305 Register rt, 1306 FPURegister fs, 1307 FPURegister fd, 1308 SecondaryField func = NULLSF); 1309 1310 void GenInstrRegister(Opcode opcode, 1311 SecondaryField fmt, 1312 Register rt, 1313 FPUControlRegister fs, 1314 SecondaryField func = NULLSF); 1315 1316 void GenInstrImmediate( 1317 Opcode opcode, Register rs, Register rt, int32_t j, 1318 CompactBranchType is_compact_branch = CompactBranchType::NO); 1319 void GenInstrImmediate( 1320 Opcode opcode, Register rs, SecondaryField SF, int32_t j, 1321 CompactBranchType is_compact_branch = CompactBranchType::NO); 1322 void GenInstrImmediate( 1323 Opcode opcode, Register r1, FPURegister r2, int32_t j, 1324 CompactBranchType is_compact_branch = CompactBranchType::NO); 1325 void GenInstrImmediate( 1326 Opcode opcode, Register rs, int32_t offset21, 1327 CompactBranchType is_compact_branch = CompactBranchType::NO); 1328 void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21); 1329 void GenInstrImmediate( 1330 Opcode opcode, int32_t offset26, 1331 CompactBranchType is_compact_branch = CompactBranchType::NO); 1332 1333 1334 void GenInstrJump(Opcode opcode, 1335 uint32_t address); 1336 1337 // Helpers. 1338 void LoadRegPlusOffsetToAt(const MemOperand& src); 1339 1340 // Labels. 1341 void print(Label* L); 1342 void bind_to(Label* L, int pos); 1343 void next(Label* L, bool is_internal); 1344 1345 // One trampoline consists of: 1346 // - space for trampoline slots, 1347 // - space for labels. 1348 // 1349 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. 1350 // Space for trampoline slots preceeds space for labels. Each label is of one 1351 // instruction size, so total amount for labels is equal to 1352 // label_count * kInstrSize. 1353 class Trampoline { 1354 public: Trampoline()1355 Trampoline() { 1356 start_ = 0; 1357 next_slot_ = 0; 1358 free_slot_count_ = 0; 1359 end_ = 0; 1360 } Trampoline(int start,int slot_count)1361 Trampoline(int start, int slot_count) { 1362 start_ = start; 1363 next_slot_ = start; 1364 free_slot_count_ = slot_count; 1365 end_ = start + slot_count * kTrampolineSlotsSize; 1366 } start()1367 int start() { 1368 return start_; 1369 } end()1370 int end() { 1371 return end_; 1372 } take_slot()1373 int take_slot() { 1374 int trampoline_slot = kInvalidSlotPos; 1375 if (free_slot_count_ <= 0) { 1376 // We have run out of space on trampolines. 1377 // Make sure we fail in debug mode, so we become aware of each case 1378 // when this happens. 1379 DCHECK(0); 1380 // Internal exception will be caught. 1381 } else { 1382 trampoline_slot = next_slot_; 1383 free_slot_count_--; 1384 next_slot_ += kTrampolineSlotsSize; 1385 } 1386 return trampoline_slot; 1387 } 1388 1389 private: 1390 int start_; 1391 int end_; 1392 int next_slot_; 1393 int free_slot_count_; 1394 }; 1395 1396 int32_t get_trampoline_entry(int32_t pos); 1397 int unbound_labels_count_; 1398 // If trampoline is emitted, generated code is becoming large. As this is 1399 // already a slow case which can possibly break our code generation for the 1400 // extreme case, we use this information to trigger different mode of 1401 // branch instruction generation, where we use jump instructions rather 1402 // than regular branch instructions. 1403 bool trampoline_emitted_; 1404 static const int kTrampolineSlotsSize = 4 * kInstrSize; 1405 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; 1406 static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1; 1407 static const int kInvalidSlotPos = -1; 1408 1409 // Internal reference positions, required for unbounded internal reference 1410 // labels. 1411 std::set<int> internal_reference_positions_; 1412 EmittedCompactBranchInstruction()1413 void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; } ClearCompactBranchState()1414 void ClearCompactBranchState() { prev_instr_compact_branch_ = false; } 1415 bool prev_instr_compact_branch_ = false; 1416 1417 Trampoline trampoline_; 1418 bool internal_trampoline_exception_; 1419 1420 friend class RegExpMacroAssemblerMIPS; 1421 friend class RelocInfo; 1422 friend class CodePatcher; 1423 friend class BlockTrampolinePoolScope; 1424 1425 PositionsRecorder positions_recorder_; 1426 friend class PositionsRecorder; 1427 friend class EnsureSpace; 1428 }; 1429 1430 1431 class EnsureSpace BASE_EMBEDDED { 1432 public: EnsureSpace(Assembler * assembler)1433 explicit EnsureSpace(Assembler* assembler) { 1434 assembler->CheckBuffer(); 1435 } 1436 }; 1437 1438 } // namespace internal 1439 } // namespace v8 1440 1441 #endif // V8_ARM_ASSEMBLER_MIPS_H_ 1442