1 /*
2  *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <cmath>
12 #include <algorithm>
13 #include <vector>
14 
15 #include "testing/gtest/include/gtest/gtest.h"
16 #include "webrtc/base/arraysize.h"
17 #include "webrtc/base/format_macros.h"
18 #include "webrtc/base/scoped_ptr.h"
19 #include "webrtc/common_audio/audio_converter.h"
20 #include "webrtc/common_audio/channel_buffer.h"
21 #include "webrtc/common_audio/resampler/push_sinc_resampler.h"
22 
23 namespace webrtc {
24 
25 typedef rtc::scoped_ptr<ChannelBuffer<float>> ScopedBuffer;
26 
27 // Sets the signal value to increase by |data| with every sample.
CreateBuffer(const std::vector<float> & data,size_t frames)28 ScopedBuffer CreateBuffer(const std::vector<float>& data, size_t frames) {
29   const size_t num_channels = data.size();
30   ScopedBuffer sb(new ChannelBuffer<float>(frames, num_channels));
31   for (size_t i = 0; i < num_channels; ++i)
32     for (size_t j = 0; j < frames; ++j)
33       sb->channels()[i][j] = data[i] * j;
34   return sb;
35 }
36 
VerifyParams(const ChannelBuffer<float> & ref,const ChannelBuffer<float> & test)37 void VerifyParams(const ChannelBuffer<float>& ref,
38                   const ChannelBuffer<float>& test) {
39   EXPECT_EQ(ref.num_channels(), test.num_channels());
40   EXPECT_EQ(ref.num_frames(), test.num_frames());
41 }
42 
43 // Computes the best SNR based on the error between |ref_frame| and
44 // |test_frame|. It searches around |expected_delay| in samples between the
45 // signals to compensate for the resampling delay.
ComputeSNR(const ChannelBuffer<float> & ref,const ChannelBuffer<float> & test,size_t expected_delay)46 float ComputeSNR(const ChannelBuffer<float>& ref,
47                  const ChannelBuffer<float>& test,
48                  size_t expected_delay) {
49   VerifyParams(ref, test);
50   float best_snr = 0;
51   size_t best_delay = 0;
52 
53   // Search within one sample of the expected delay.
54   for (size_t delay = std::max(expected_delay, static_cast<size_t>(1)) - 1;
55        delay <= std::min(expected_delay + 1, ref.num_frames());
56        ++delay) {
57     float mse = 0;
58     float variance = 0;
59     float mean = 0;
60     for (size_t i = 0; i < ref.num_channels(); ++i) {
61       for (size_t j = 0; j < ref.num_frames() - delay; ++j) {
62         float error = ref.channels()[i][j] - test.channels()[i][j + delay];
63         mse += error * error;
64         variance += ref.channels()[i][j] * ref.channels()[i][j];
65         mean += ref.channels()[i][j];
66       }
67     }
68 
69     const size_t length = ref.num_channels() * (ref.num_frames() - delay);
70     mse /= length;
71     variance /= length;
72     mean /= length;
73     variance -= mean * mean;
74     float snr = 100;  // We assign 100 dB to the zero-error case.
75     if (mse > 0)
76       snr = 10 * std::log10(variance / mse);
77     if (snr > best_snr) {
78       best_snr = snr;
79       best_delay = delay;
80     }
81   }
82   printf("SNR=%.1f dB at delay=%" PRIuS "\n", best_snr, best_delay);
83   return best_snr;
84 }
85 
86 // Sets the source to a linearly increasing signal for which we can easily
87 // generate a reference. Runs the AudioConverter and ensures the output has
88 // sufficiently high SNR relative to the reference.
RunAudioConverterTest(size_t src_channels,int src_sample_rate_hz,size_t dst_channels,int dst_sample_rate_hz)89 void RunAudioConverterTest(size_t src_channels,
90                            int src_sample_rate_hz,
91                            size_t dst_channels,
92                            int dst_sample_rate_hz) {
93   const float kSrcLeft = 0.0002f;
94   const float kSrcRight = 0.0001f;
95   const float resampling_factor = (1.f * src_sample_rate_hz) /
96       dst_sample_rate_hz;
97   const float dst_left = resampling_factor * kSrcLeft;
98   const float dst_right = resampling_factor * kSrcRight;
99   const float dst_mono = (dst_left + dst_right) / 2;
100   const size_t src_frames = static_cast<size_t>(src_sample_rate_hz / 100);
101   const size_t dst_frames = static_cast<size_t>(dst_sample_rate_hz / 100);
102 
103   std::vector<float> src_data(1, kSrcLeft);
104   if (src_channels == 2)
105     src_data.push_back(kSrcRight);
106   ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames);
107 
108   std::vector<float> dst_data(1, 0);
109   std::vector<float> ref_data;
110   if (dst_channels == 1) {
111     if (src_channels == 1)
112       ref_data.push_back(dst_left);
113     else
114       ref_data.push_back(dst_mono);
115   } else {
116     dst_data.push_back(0);
117     ref_data.push_back(dst_left);
118     if (src_channels == 1)
119       ref_data.push_back(dst_left);
120     else
121       ref_data.push_back(dst_right);
122   }
123   ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames);
124   ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames);
125 
126   // The sinc resampler has a known delay, which we compute here.
127   const size_t delay_frames = src_sample_rate_hz == dst_sample_rate_hz ? 0 :
128       static_cast<size_t>(
129           PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) *
130           dst_sample_rate_hz);
131   // SNR reported on the same line later.
132   printf("(%" PRIuS ", %d Hz) -> (%" PRIuS ", %d Hz) ",
133          src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz);
134 
135   rtc::scoped_ptr<AudioConverter> converter = AudioConverter::Create(
136       src_channels, src_frames, dst_channels, dst_frames);
137   converter->Convert(src_buffer->channels(), src_buffer->size(),
138                      dst_buffer->channels(), dst_buffer->size());
139 
140   EXPECT_LT(43.f,
141             ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames));
142 }
143 
TEST(AudioConverterTest,ConversionsPassSNRThreshold)144 TEST(AudioConverterTest, ConversionsPassSNRThreshold) {
145   const int kSampleRates[] = {8000, 16000, 32000, 44100, 48000};
146   const size_t kChannels[] = {1, 2};
147   for (size_t src_rate = 0; src_rate < arraysize(kSampleRates); ++src_rate) {
148     for (size_t dst_rate = 0; dst_rate < arraysize(kSampleRates); ++dst_rate) {
149       for (size_t src_channel = 0; src_channel < arraysize(kChannels);
150            ++src_channel) {
151         for (size_t dst_channel = 0; dst_channel < arraysize(kChannels);
152              ++dst_channel) {
153           RunAudioConverterTest(kChannels[src_channel], kSampleRates[src_rate],
154                                 kChannels[dst_channel], kSampleRates[dst_rate]);
155         }
156       }
157     }
158   }
159 }
160 
161 }  // namespace webrtc
162