1 // Copyright 2014 The Chromium OS Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Internal implementation of brillo::Any class.
6 
7 #ifndef LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
8 #define LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
9 
10 #include <type_traits>
11 #include <typeinfo>
12 #include <utility>
13 
14 #include <base/logging.h>
15 #include <brillo/dbus/data_serialization.h>
16 #include <brillo/type_name_undecorate.h>
17 
18 namespace brillo {
19 
20 namespace internal_details {
21 
22 // An extension to std::is_convertible to allow conversion from an enum to
23 // an integral type which std::is_convertible does not indicate as supported.
24 template <typename From, typename To>
25 struct IsConvertible
26     : public std::integral_constant<
27           bool,
28           std::is_convertible<From, To>::value ||
29               (std::is_enum<From>::value && std::is_integral<To>::value)> {};
30 
31 // TryConvert is a helper function that does a safe compile-time conditional
32 // type cast between data types that may not be always convertible.
33 // From and To are the source and destination types.
34 // The function returns true if conversion was possible/successful.
35 template <typename From, typename To>
36 inline typename std::enable_if<IsConvertible<From, To>::value, bool>::type
TryConvert(const From & in,To * out)37 TryConvert(const From& in, To* out) {
38   *out = static_cast<To>(in);
39   return true;
40 }
41 template <typename From, typename To>
42 inline typename std::enable_if<!IsConvertible<From, To>::value, bool>::type
TryConvert(const From &,To *)43 TryConvert(const From& /* in */, To* /* out */) {
44   return false;
45 }
46 
47 //////////////////////////////////////////////////////////////////////////////
48 // Provide a way to compare values of unspecified types without compiler errors
49 // when no operator==() is provided for a given type. This is important to
50 // allow Any class to have operator==(), yet still allowing arbitrary types
51 // (not necessarily comparable) to be placed inside Any without resulting in
52 // compile-time error.
53 //
54 // We achieve this in two ways. First, we provide a IsEqualityComparable<T>
55 // class that can be used in compile-time conditions to determine if there is
56 // operator==() defined that takes values of type T (or which can be implicitly
57 // converted to type T). Secondly, this allows us to specialize a helper
58 // compare function EqCompare<T>(v1, v2) to use operator==() for types that
59 // are comparable, and just return false for those that are not.
60 //
61 // IsEqualityComparableHelper<T> is a helper class for implementing an
62 // an STL-compatible IsEqualityComparable<T> containing a Boolean member |value|
63 // which evaluates to true for comparable types and false otherwise.
64 template<typename T>
65 struct IsEqualityComparableHelper {
66   struct IntWrapper {
67     // A special structure that provides a constructor that takes an int.
68     // This way, an int argument passed to a function will be favored over
69     // IntWrapper when both overloads are provided.
70     // Also this constructor must NOT be explicit.
71     // NOLINTNEXTLINE(runtime/explicit)
IntWrapperIsEqualityComparableHelper::IntWrapper72     IntWrapper(int /* dummy */) {}  // do nothing
73   };
74 
75   // Here is an obscure trick to determine if a type U has operator==().
76   // We are providing two function prototypes for TriggerFunction. One that
77   // takes an argument of type IntWrapper (which is implicitly convertible from
78   // an int), and returns an std::false_type. This is a fall-back mechanism.
79   template<typename U>
80   static std::false_type TriggerFunction(IntWrapper dummy);
81 
82   // The second overload of TriggerFunction takes an int (explicitly) and
83   // returns std::true_type. If both overloads are available, this one will be
84   // chosen when referencing it as TriggerFunction(0), since it is a better
85   // (more specific) match.
86   //
87   // However this overload is available only for types that support operator==.
88   // This is achieved by employing SFINAE mechanism inside a template function
89   // overload that refers to operator==() for two values of types U&. This is
90   // used inside decltype(), so no actual code is executed. If the types
91   // are not comparable, reference to "==" would fail and the compiler will
92   // simply ignore this overload due to SFIANE.
93   //
94   // The final little trick used here is the reliance on operator comma inside
95   // the decltype() expression. The result of the expression is always
96   // std::true_type(). The expression on the left of comma is just evaluated and
97   // discarded. If it evaluates successfully (i.e. the type has operator==), the
98   // return value of the function is set to be std::true_value. If it fails,
99   // the whole function prototype is discarded and is not available in the
100   // IsEqualityComparableHelper<T> class.
101   //
102   // Here we use std::declval<U&>() to make sure we have operator==() that takes
103   // lvalue references to type U which is not necessarily default-constructible.
104   template<typename U>
105   static decltype((std::declval<U&>() == std::declval<U&>()), std::true_type())
106   TriggerFunction(int dummy);
107 
108   // Finally, use the return type of the overload of TriggerFunction that
109   // matches the argument (int) to be aliased to type |type|. If T is
110   // comparable, there will be two overloads and the more specific (int) will
111   // be chosen which returns std::true_value. If the type is non-comparable,
112   // there will be only one version of TriggerFunction available which
113   // returns std::false_value.
114   using type = decltype(TriggerFunction<T>(0));
115 };
116 
117 // IsEqualityComparable<T> is simply a class that derives from either
118 // std::true_value, if type T is comparable, or from std::false_value, if the
119 // type is non-comparable. We just use |type| alias from
120 // IsEqualityComparableHelper<T> as the base class.
121 template<typename T>
122 struct IsEqualityComparable : IsEqualityComparableHelper<T>::type {};
123 
124 // EqCompare() overload for non-comparable types. Always returns false.
125 template<typename T>
126 inline typename std::enable_if<!IsEqualityComparable<T>::value, bool>::type
EqCompare(const T &,const T &)127 EqCompare(const T& /* v1 */, const T& /* v2 */) {
128   return false;
129 }
130 
131 // EqCompare overload for comparable types. Calls operator==(v1, v2) to compare.
132 template<typename T>
133 inline typename std::enable_if<IsEqualityComparable<T>::value, bool>::type
EqCompare(const T & v1,const T & v2)134 EqCompare(const T& v1, const T& v2) {
135   return (v1 == v2);
136 }
137 
138 //////////////////////////////////////////////////////////////////////////////
139 
140 class Buffer;  // Forward declaration of data buffer container.
141 
142 // Abstract base class for contained variant data.
143 struct Data {
~DataData144   virtual ~Data() {}
145   // Returns the type tag (name) for the contained data.
146   virtual const char* GetTypeTag() const = 0;
147   // Copies the contained data to the output |buffer|.
148   virtual void CopyTo(Buffer* buffer) const = 0;
149   // Moves the contained data to the output |buffer|.
150   virtual void MoveTo(Buffer* buffer) = 0;
151   // Checks if the contained data is an integer type (not necessarily an 'int').
152   virtual bool IsConvertibleToInteger() const = 0;
153   // Gets the contained integral value as an integer.
154   virtual intmax_t GetAsInteger() const = 0;
155   // Writes the contained value to the D-Bus message buffer.
156   virtual void AppendToDBusMessage(dbus::MessageWriter* writer) const = 0;
157   // Compares if the two data containers have objects of the same value.
158   virtual bool CompareEqual(const Data* other_data) const = 0;
159 };
160 
161 // Concrete implementation of variant data of type T.
162 template<typename T>
163 struct TypedData : public Data {
TypedDataTypedData164   explicit TypedData(const T& value) : value_(value) {}
165   // NOLINTNEXTLINE(build/c++11)
TypedDataTypedData166   explicit TypedData(T&& value) : value_(std::move(value)) {}
167 
GetTypeTagTypedData168   const char* GetTypeTag() const override { return brillo::GetTypeTag<T>(); }
169   void CopyTo(Buffer* buffer) const override;
170   void MoveTo(Buffer* buffer) override;
IsConvertibleToIntegerTypedData171   bool IsConvertibleToInteger() const override {
172     return std::is_integral<T>::value || std::is_enum<T>::value;
173   }
GetAsIntegerTypedData174   intmax_t GetAsInteger() const override {
175     intmax_t int_val = 0;
176     bool converted = TryConvert(value_, &int_val);
177     CHECK(converted) << "Unable to convert value of type '"
178                      << GetUndecoratedTypeName<T>() << "' to integer";
179     return int_val;
180   }
181 
182   template<typename U>
183   static typename std::enable_if<dbus_utils::IsTypeSupported<U>::value>::type
AppendValueHelperTypedData184   AppendValueHelper(dbus::MessageWriter* writer, const U& value) {
185     brillo::dbus_utils::AppendValueToWriterAsVariant(writer, value);
186   }
187   template<typename U>
188   static typename std::enable_if<!dbus_utils::IsTypeSupported<U>::value>::type
AppendValueHelperTypedData189   AppendValueHelper(dbus::MessageWriter* /* writer */, const U& /* value */) {
190     LOG(FATAL) << "Type '" << GetUndecoratedTypeName<U>()
191                << "' is not supported by D-Bus";
192   }
193 
AppendToDBusMessageTypedData194   void AppendToDBusMessage(dbus::MessageWriter* writer) const override {
195     return AppendValueHelper(writer, value_);
196   }
197 
CompareEqualTypedData198   bool CompareEqual(const Data* other_data) const override {
199     return EqCompare<T>(value_,
200                         static_cast<const TypedData<T>*>(other_data)->value_);
201   }
202 
203   // Special methods to copy/move data of the same type
204   // without reallocating the buffer.
FastAssignTypedData205   void FastAssign(const T& source) { value_ = source; }
206   // NOLINTNEXTLINE(build/c++11)
FastAssignTypedData207   void FastAssign(T&& source) { value_ = std::move(source); }
208 
209   T value_;
210 };
211 
212 // Buffer class that stores the contained variant data.
213 // To improve performance and reduce memory fragmentation, small variants
214 // are stored in pre-allocated memory buffers that are part of the Any class.
215 // If the memory requirements are larger than the set limit or the type is
216 // non-trivially copyable, then the contained class is allocated in a separate
217 // memory block and the pointer to that memory is contained within this memory
218 // buffer class.
219 class Buffer final {
220  public:
221   enum StorageType { kExternal, kContained };
Buffer()222   Buffer() : external_ptr_(nullptr), storage_(kExternal) {}
~Buffer()223   ~Buffer() { Clear(); }
224 
Buffer(const Buffer & rhs)225   Buffer(const Buffer& rhs) : Buffer() { rhs.CopyTo(this); }
226   // NOLINTNEXTLINE(build/c++11)
Buffer(Buffer && rhs)227   Buffer(Buffer&& rhs) : Buffer() { rhs.MoveTo(this); }
228   Buffer& operator=(const Buffer& rhs) {
229     rhs.CopyTo(this);
230     return *this;
231   }
232   // NOLINTNEXTLINE(build/c++11)
233   Buffer& operator=(Buffer&& rhs) {
234     rhs.MoveTo(this);
235     return *this;
236   }
237 
238   // Returns the underlying pointer to contained data. Uses either the pointer
239   // or the raw data depending on |storage_| type.
GetDataPtr()240   inline Data* GetDataPtr() {
241     return (storage_ == kExternal) ? external_ptr_
242                                    : reinterpret_cast<Data*>(contained_buffer_);
243   }
GetDataPtr()244   inline const Data* GetDataPtr() const {
245     return (storage_ == kExternal)
246                ? external_ptr_
247                : reinterpret_cast<const Data*>(contained_buffer_);
248   }
249 
250   // Destroys the contained object (and frees memory if needed).
Clear()251   void Clear() {
252     Data* data = GetDataPtr();
253     if (storage_ == kExternal) {
254       delete data;
255     } else {
256       // Call the destructor manually, since the object was constructed inline
257       // in the pre-allocated buffer. We still need to call the destructor
258       // to free any associated resources, but we can't call delete |data| here.
259       data->~Data();
260     }
261     external_ptr_ = nullptr;
262     storage_ = kExternal;
263   }
264 
265   // Stores a value of type T.
266   template<typename T>
Assign(T && value)267   void Assign(T&& value) {  // NOLINT(build/c++11)
268     using Type = typename std::decay<T>::type;
269     using DataType = TypedData<Type>;
270     Data* ptr = GetDataPtr();
271     if (ptr && strcmp(ptr->GetTypeTag(), GetTypeTag<Type>()) == 0) {
272       // We assign the data to the variant container, which already
273       // has the data of the same type. Do fast copy/move with no memory
274       // reallocation.
275       DataType* typed_ptr = static_cast<DataType*>(ptr);
276       // NOLINTNEXTLINE(build/c++11)
277       typed_ptr->FastAssign(std::forward<T>(value));
278     } else {
279       Clear();
280       // TODO(avakulenko): [see crbug.com/379833]
281       // Unfortunately, GCC doesn't support std::is_trivially_copyable<T> yet,
282       // so using std::is_trivial instead, which is a bit more restrictive.
283       // Once GCC has support for is_trivially_copyable, update the following.
284       if (!std::is_trivial<Type>::value ||
285           sizeof(DataType) > sizeof(contained_buffer_)) {
286         // If it is too big or not trivially copyable, allocate it separately.
287         // NOLINTNEXTLINE(build/c++11)
288         external_ptr_ = new DataType(std::forward<T>(value));
289         storage_ = kExternal;
290       } else {
291         // Otherwise just use the pre-allocated buffer.
292         DataType* address = reinterpret_cast<DataType*>(contained_buffer_);
293         // Make sure we still call the copy/move constructor.
294         // Call the constructor manually by using placement 'new'.
295         // NOLINTNEXTLINE(build/c++11)
296         new (address) DataType(std::forward<T>(value));
297         storage_ = kContained;
298       }
299     }
300   }
301 
302   // Helper methods to retrieve a reference to contained data.
303   // These assume that type checking has already been performed by Any
304   // so the type cast is valid and will succeed.
305   template<typename T>
GetData()306   const T& GetData() const {
307     using DataType = internal_details::TypedData<typename std::decay<T>::type>;
308     return static_cast<const DataType*>(GetDataPtr())->value_;
309   }
310   template<typename T>
GetData()311   T& GetData() {
312     using DataType = internal_details::TypedData<typename std::decay<T>::type>;
313     return static_cast<DataType*>(GetDataPtr())->value_;
314   }
315 
316   // Returns true if the buffer has no contained data.
IsEmpty()317   bool IsEmpty() const {
318     return (storage_ == kExternal && external_ptr_ == nullptr);
319   }
320 
321   // Copies the data from the current buffer into the |destination|.
CopyTo(Buffer * destination)322   void CopyTo(Buffer* destination) const {
323     if (IsEmpty()) {
324       destination->Clear();
325     } else {
326       GetDataPtr()->CopyTo(destination);
327     }
328   }
329 
330   // Moves the data from the current buffer into the |destination|.
MoveTo(Buffer * destination)331   void MoveTo(Buffer* destination) {
332     if (IsEmpty()) {
333       destination->Clear();
334     } else {
335       if (storage_ == kExternal) {
336         destination->Clear();
337         destination->storage_ = kExternal;
338         destination->external_ptr_ = external_ptr_;
339         external_ptr_ = nullptr;
340       } else {
341         GetDataPtr()->MoveTo(destination);
342       }
343     }
344   }
345 
346   union {
347     // |external_ptr_| is a pointer to a larger object allocated in
348     // a separate memory block.
349     Data* external_ptr_;
350     // |contained_buffer_| is a pre-allocated buffer for smaller/simple objects.
351     // Pre-allocate enough memory to store objects as big as "double".
352     unsigned char contained_buffer_[sizeof(TypedData<double>)];
353   };
354   // Depending on a value of |storage_|, either |external_ptr_| or
355   // |contained_buffer_| above is used to get a pointer to memory containing
356   // the variant data.
357   StorageType storage_;  // Declare after the union to eliminate member padding.
358 };
359 
360 template <typename T>
CopyTo(Buffer * buffer)361 void TypedData<T>::CopyTo(Buffer* buffer) const {
362   buffer->Assign(value_);
363 }
364 template <typename T>
MoveTo(Buffer * buffer)365 void TypedData<T>::MoveTo(Buffer* buffer) {
366   buffer->Assign(std::move(value_));
367 }
368 
369 }  // namespace internal_details
370 
371 }  // namespace brillo
372 
373 #endif  // LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
374