1 /* bzcat.c - bzip2 decompression
2 *
3 * Copyright 2003, 2007 Rob Landley <rob@landley.net>
4 *
5 * Based on a close reading (but not the actual code) of the original bzip2
6 * decompression code by Julian R Seward (jseward@acm.org), which also
7 * acknowledges contributions by Mike Burrows, David Wheeler, Peter Fenwick,
8 * Alistair Moffat, Radford Neal, Ian H. Witten, Robert Sedgewick, and
9 * Jon L. Bentley.
10 *
11 * No standard.
12
13
14 USE_BZCAT(NEWTOY(bzcat, NULL, TOYFLAG_USR|TOYFLAG_BIN))
15 USE_BUNZIP2(NEWTOY(bunzip2, "cftkv", TOYFLAG_USR|TOYFLAG_BIN))
16
17 config BUNZIP2
18 bool "bunzip2"
19 default y
20 help
21 usage: bunzip2 [-cftkv] [FILE...]
22
23 Decompress listed files (file.bz becomes file) deleting archive file(s).
24 Read from stdin if no files listed.
25
26 -c force output to stdout
27 -f force decompression. (If FILE doesn't end in .bz, replace original.)
28 -k keep input files (-c and -t imply this)
29 -t test integrity
30 -v verbose
31
32 config BZCAT
33 bool "bzcat"
34 default y
35 help
36 usage: bzcat [FILE...]
37
38 Decompress listed files to stdout. Use stdin if no files listed.
39 */
40
41 #define FOR_bunzip2
42 #include "toys.h"
43
44 #define THREADS 1
45
46 // Constants for huffman coding
47 #define MAX_GROUPS 6
48 #define GROUP_SIZE 50 /* 64 would have been more efficient */
49 #define MAX_HUFCODE_BITS 20 /* Longest huffman code allowed */
50 #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
51 #define SYMBOL_RUNA 0
52 #define SYMBOL_RUNB 1
53
54 // Other housekeeping constants
55 #define IOBUF_SIZE 4096
56
57 // Status return values
58 #define RETVAL_LAST_BLOCK (-100)
59 #define RETVAL_NOT_BZIP_DATA (-1)
60 #define RETVAL_DATA_ERROR (-2)
61 #define RETVAL_OBSOLETE_INPUT (-3)
62
63 // This is what we know about each huffman coding group
64 struct group_data {
65 int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
66 char minLen, maxLen;
67 };
68
69 // Data for burrows wheeler transform
70
71 struct bwdata {
72 unsigned int origPtr;
73 int byteCount[256];
74 // State saved when interrupting output
75 int writePos, writeRun, writeCount, writeCurrent;
76 unsigned int dataCRC, headerCRC;
77 unsigned int *dbuf;
78 };
79
80 // Structure holding all the housekeeping data, including IO buffers and
81 // memory that persists between calls to bunzip
82 struct bunzip_data {
83 // Input stream, input buffer, input bit buffer
84 int in_fd, inbufCount, inbufPos;
85 char *inbuf;
86 unsigned int inbufBitCount, inbufBits;
87
88 // Output buffer
89 char outbuf[IOBUF_SIZE];
90 int outbufPos;
91
92 unsigned int totalCRC;
93
94 // First pass decompression data (Huffman and MTF decoding)
95 char selectors[32768]; // nSelectors=15 bits
96 struct group_data groups[MAX_GROUPS]; // huffman coding tables
97 int symTotal, groupCount, nSelectors;
98 unsigned char symToByte[256], mtfSymbol[256];
99
100 // The CRC values stored in the block header and calculated from the data
101 unsigned int crc32Table[256];
102
103 // Second pass decompression data (burrows-wheeler transform)
104 unsigned int dbufSize;
105 struct bwdata bwdata[THREADS];
106 };
107
108 // Return the next nnn bits of input. All reads from the compressed input
109 // are done through this function. All reads are big endian.
get_bits(struct bunzip_data * bd,char bits_wanted)110 static unsigned int get_bits(struct bunzip_data *bd, char bits_wanted)
111 {
112 unsigned int bits = 0;
113
114 // If we need to get more data from the byte buffer, do so. (Loop getting
115 // one byte at a time to enforce endianness and avoid unaligned access.)
116 while (bd->inbufBitCount < bits_wanted) {
117
118 // If we need to read more data from file into byte buffer, do so
119 if (bd->inbufPos == bd->inbufCount) {
120 if (0 >= (bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)))
121 error_exit("input EOF");
122 bd->inbufPos = 0;
123 }
124
125 // Avoid 32-bit overflow (dump bit buffer to top of output)
126 if (bd->inbufBitCount>=24) {
127 bits = bd->inbufBits&((1<<bd->inbufBitCount)-1);
128 bits_wanted -= bd->inbufBitCount;
129 bits <<= bits_wanted;
130 bd->inbufBitCount = 0;
131 }
132
133 // Grab next 8 bits of input from buffer.
134 bd->inbufBits = (bd->inbufBits<<8) | bd->inbuf[bd->inbufPos++];
135 bd->inbufBitCount += 8;
136 }
137
138 // Calculate result
139 bd->inbufBitCount -= bits_wanted;
140 bits |= (bd->inbufBits>>bd->inbufBitCount) & ((1<<bits_wanted)-1);
141
142 return bits;
143 }
144
145 /* Read block header at start of a new compressed data block. Consists of:
146 *
147 * 48 bits : Block signature, either pi (data block) or e (EOF block).
148 * 32 bits : bw->headerCRC
149 * 1 bit : obsolete feature flag.
150 * 24 bits : origPtr (Burrows-wheeler unwind index, only 20 bits ever used)
151 * 16 bits : Mapping table index.
152 *[16 bits]: symToByte[symTotal] (Mapping table. For each bit set in mapping
153 * table index above, read another 16 bits of mapping table data.
154 * If correspondig bit is unset, all bits in that mapping table
155 * section are 0.)
156 * 3 bits : groupCount (how many huffman tables used to encode, anywhere
157 * from 2 to MAX_GROUPS)
158 * variable: hufGroup[groupCount] (MTF encoded huffman table data.)
159 */
160
read_block_header(struct bunzip_data * bd,struct bwdata * bw)161 static int read_block_header(struct bunzip_data *bd, struct bwdata *bw)
162 {
163 struct group_data *hufGroup;
164 int hh, ii, jj, kk, symCount, *base, *limit;
165 unsigned char uc;
166
167 // Read in header signature and CRC (which is stored big endian)
168 ii = get_bits(bd, 24);
169 jj = get_bits(bd, 24);
170 bw->headerCRC = get_bits(bd,32);
171
172 // Is this the EOF block with CRC for whole file? (Constant is "e")
173 if (ii==0x177245 && jj==0x385090) return RETVAL_LAST_BLOCK;
174
175 // Is this a valid data block? (Constant is "pi".)
176 if (ii!=0x314159 || jj!=0x265359) return RETVAL_NOT_BZIP_DATA;
177
178 // We can add support for blockRandomised if anybody complains.
179 if (get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
180 if ((bw->origPtr = get_bits(bd,24)) > bd->dbufSize) return RETVAL_DATA_ERROR;
181
182 // mapping table: if some byte values are never used (encoding things
183 // like ascii text), the compression code removes the gaps to have fewer
184 // symbols to deal with, and writes a sparse bitfield indicating which
185 // values were present. We make a translation table to convert the symbols
186 // back to the corresponding bytes.
187 hh = get_bits(bd, 16);
188 bd->symTotal = 0;
189 for (ii=0; ii<16; ii++) {
190 if (hh & (1 << (15 - ii))) {
191 kk = get_bits(bd, 16);
192 for (jj=0; jj<16; jj++)
193 if (kk & (1 << (15 - jj)))
194 bd->symToByte[bd->symTotal++] = (16 * ii) + jj;
195 }
196 }
197
198 // How many different huffman coding groups does this block use?
199 bd->groupCount = get_bits(bd,3);
200 if (bd->groupCount<2 || bd->groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
201
202 // nSelectors: Every GROUP_SIZE many symbols we switch huffman coding
203 // tables. Each group has a selector, which is an index into the huffman
204 // coding table arrays.
205 //
206 // Read in the group selector array, which is stored as MTF encoded
207 // bit runs. (MTF = Move To Front. Every time a symbol occurs it's moved
208 // to the front of the table, so it has a shorter encoding next time.)
209 if (!(bd->nSelectors = get_bits(bd, 15))) return RETVAL_DATA_ERROR;
210 for (ii=0; ii<bd->groupCount; ii++) bd->mtfSymbol[ii] = ii;
211 for (ii=0; ii<bd->nSelectors; ii++) {
212
213 // Get next value
214 for(jj=0;get_bits(bd,1);jj++)
215 if (jj>=bd->groupCount) return RETVAL_DATA_ERROR;
216
217 // Decode MTF to get the next selector, and move it to the front.
218 uc = bd->mtfSymbol[jj];
219 memmove(bd->mtfSymbol+1, bd->mtfSymbol, jj);
220 bd->mtfSymbol[0] = bd->selectors[ii] = uc;
221 }
222
223 // Read the huffman coding tables for each group, which code for symTotal
224 // literal symbols, plus two run symbols (RUNA, RUNB)
225 symCount = bd->symTotal+2;
226 for (jj=0; jj<bd->groupCount; jj++) {
227 unsigned char length[MAX_SYMBOLS];
228 unsigned temp[MAX_HUFCODE_BITS+1];
229 int minLen, maxLen, pp;
230
231 // Read lengths
232 hh = get_bits(bd, 5);
233 for (ii = 0; ii < symCount; ii++) {
234 for(;;) {
235 // !hh || hh > MAX_HUFCODE_BITS in one test.
236 if (MAX_HUFCODE_BITS-1 < (unsigned)hh-1) return RETVAL_DATA_ERROR;
237 // Grab 2 bits instead of 1 (slightly smaller/faster). Stop if
238 // first bit is 0, otherwise second bit says whether to
239 // increment or decrement.
240 kk = get_bits(bd, 2);
241 if (kk & 2) hh += 1 - ((kk&1)<<1);
242 else {
243 bd->inbufBitCount++;
244 break;
245 }
246 }
247 length[ii] = hh;
248 }
249
250 // Find largest and smallest lengths in this group
251 minLen = maxLen = length[0];
252 for (ii = 1; ii < symCount; ii++) {
253 if(length[ii] > maxLen) maxLen = length[ii];
254 else if(length[ii] < minLen) minLen = length[ii];
255 }
256
257 /* Calculate permute[], base[], and limit[] tables from length[].
258 *
259 * permute[] is the lookup table for converting huffman coded symbols
260 * into decoded symbols. It contains symbol values sorted by length.
261 *
262 * base[] is the amount to subtract from the value of a huffman symbol
263 * of a given length when using permute[].
264 *
265 * limit[] indicates the largest numerical value a symbol with a given
266 * number of bits can have. It lets us know when to stop reading.
267 *
268 * To use these, keep reading bits until value <= limit[bitcount] or
269 * you've read over 20 bits (error). Then the decoded symbol
270 * equals permute[hufcode_value - base[hufcode_bitcount]].
271 */
272 hufGroup = bd->groups+jj;
273 hufGroup->minLen = minLen;
274 hufGroup->maxLen = maxLen;
275
276 // Note that minLen can't be smaller than 1, so we adjust the base
277 // and limit array pointers so we're not always wasting the first
278 // entry. We do this again when using them (during symbol decoding).
279 base = hufGroup->base-1;
280 limit = hufGroup->limit-1;
281
282 // zero temp[] and limit[], and calculate permute[]
283 pp = 0;
284 for (ii = minLen; ii <= maxLen; ii++) {
285 temp[ii] = limit[ii] = 0;
286 for (hh = 0; hh < symCount; hh++)
287 if (length[hh] == ii) hufGroup->permute[pp++] = hh;
288 }
289
290 // Count symbols coded for at each bit length
291 for (ii = 0; ii < symCount; ii++) temp[length[ii]]++;
292
293 /* Calculate limit[] (the largest symbol-coding value at each bit
294 * length, which is (previous limit<<1)+symbols at this level), and
295 * base[] (number of symbols to ignore at each bit length, which is
296 * limit minus the cumulative count of symbols coded for already). */
297 pp = hh = 0;
298 for (ii = minLen; ii < maxLen; ii++) {
299 pp += temp[ii];
300 limit[ii] = pp-1;
301 pp <<= 1;
302 base[ii+1] = pp-(hh+=temp[ii]);
303 }
304 limit[maxLen] = pp+temp[maxLen]-1;
305 limit[maxLen+1] = INT_MAX;
306 base[minLen] = 0;
307 }
308
309 return 0;
310 }
311
312 /* First pass, read block's symbols into dbuf[dbufCount].
313 *
314 * This undoes three types of compression: huffman coding, run length encoding,
315 * and move to front encoding. We have to undo all those to know when we've
316 * read enough input.
317 */
318
read_huffman_data(struct bunzip_data * bd,struct bwdata * bw)319 static int read_huffman_data(struct bunzip_data *bd, struct bwdata *bw)
320 {
321 struct group_data *hufGroup;
322 int hh, ii, jj, kk, runPos, dbufCount, symCount, selector, nextSym,
323 *byteCount, *base, *limit;
324 unsigned int *dbuf = bw->dbuf;
325 unsigned char uc;
326
327 // We've finished reading and digesting the block header. Now read this
328 // block's huffman coded symbols from the file and undo the huffman coding
329 // and run length encoding, saving the result into dbuf[dbufCount++] = uc
330
331 // Initialize symbol occurrence counters and symbol mtf table
332 byteCount = bw->byteCount;
333 for(ii=0; ii<256; ii++) {
334 byteCount[ii] = 0;
335 bd->mtfSymbol[ii] = ii;
336 }
337
338 // Loop through compressed symbols. This is the first "tight inner loop"
339 // that needs to be micro-optimized for speed. (This one fills out dbuf[]
340 // linearly, staying in cache more, so isn't as limited by DRAM access.)
341 runPos = dbufCount = symCount = selector = 0;
342 // Some unnecessary initializations to shut gcc up.
343 base = limit = 0;
344 hufGroup = 0;
345 hh = 0;
346
347 for (;;) {
348 // Have we reached the end of this huffman group?
349 if (!(symCount--)) {
350 // Determine which huffman coding group to use.
351 symCount = GROUP_SIZE-1;
352 if (selector >= bd->nSelectors) return RETVAL_DATA_ERROR;
353 hufGroup = bd->groups + bd->selectors[selector++];
354 base = hufGroup->base-1;
355 limit = hufGroup->limit-1;
356 }
357
358 // Read next huffman-coded symbol (into jj).
359 ii = hufGroup->minLen;
360 jj = get_bits(bd, ii);
361 while (jj > limit[ii]) {
362 // if (ii > hufGroup->maxLen) return RETVAL_DATA_ERROR;
363 ii++;
364
365 // Unroll get_bits() to avoid a function call when the data's in
366 // the buffer already.
367 kk = bd->inbufBitCount
368 ? (bd->inbufBits >> --(bd->inbufBitCount)) & 1 : get_bits(bd, 1);
369 jj = (jj << 1) | kk;
370 }
371 // Huffman decode jj into nextSym (with bounds checking)
372 jj-=base[ii];
373
374 if (ii > hufGroup->maxLen || (unsigned)jj >= MAX_SYMBOLS)
375 return RETVAL_DATA_ERROR;
376 nextSym = hufGroup->permute[jj];
377
378 // If this is a repeated run, loop collecting data
379 if ((unsigned)nextSym <= SYMBOL_RUNB) {
380 // If this is the start of a new run, zero out counter
381 if(!runPos) {
382 runPos = 1;
383 hh = 0;
384 }
385
386 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
387 each bit position, add 1 or 2 instead. For example,
388 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
389 You can make any bit pattern that way using 1 less symbol than
390 the basic or 0/1 method (except all bits 0, which would use no
391 symbols, but a run of length 0 doesn't mean anything in this
392 context). Thus space is saved. */
393 hh += (runPos << nextSym); // +runPos if RUNA; +2*runPos if RUNB
394 runPos <<= 1;
395 continue;
396 }
397
398 /* When we hit the first non-run symbol after a run, we now know
399 how many times to repeat the last literal, so append that many
400 copies to our buffer of decoded symbols (dbuf) now. (The last
401 literal used is the one at the head of the mtfSymbol array.) */
402 if (runPos) {
403 runPos = 0;
404 if (dbufCount+hh > bd->dbufSize) return RETVAL_DATA_ERROR;
405
406 uc = bd->symToByte[bd->mtfSymbol[0]];
407 byteCount[uc] += hh;
408 while (hh--) dbuf[dbufCount++] = uc;
409 }
410
411 // Is this the terminating symbol?
412 if (nextSym>bd->symTotal) break;
413
414 /* At this point, the symbol we just decoded indicates a new literal
415 character. Subtract one to get the position in the MTF array
416 at which this literal is currently to be found. (Note that the
417 result can't be -1 or 0, because 0 and 1 are RUNA and RUNB.
418 Another instance of the first symbol in the mtf array, position 0,
419 would have been handled as part of a run.) */
420 if (dbufCount>=bd->dbufSize) return RETVAL_DATA_ERROR;
421 ii = nextSym - 1;
422 uc = bd->mtfSymbol[ii];
423 // On my laptop, unrolling this memmove() into a loop shaves 3.5% off
424 // the total running time.
425 while(ii--) bd->mtfSymbol[ii+1] = bd->mtfSymbol[ii];
426 bd->mtfSymbol[0] = uc;
427 uc = bd->symToByte[uc];
428
429 // We have our literal byte. Save it into dbuf.
430 byteCount[uc]++;
431 dbuf[dbufCount++] = (unsigned int)uc;
432 }
433
434 // Now we know what dbufCount is, do a better sanity check on origPtr.
435 if (bw->origPtr >= (bw->writeCount = dbufCount)) return RETVAL_DATA_ERROR;
436
437 return 0;
438 }
439
440 // Flush output buffer to disk
flush_bunzip_outbuf(struct bunzip_data * bd,int out_fd)441 static void flush_bunzip_outbuf(struct bunzip_data *bd, int out_fd)
442 {
443 if (bd->outbufPos) {
444 if (write(out_fd, bd->outbuf, bd->outbufPos) != bd->outbufPos)
445 error_exit("output EOF");
446 bd->outbufPos = 0;
447 }
448 }
449
burrows_wheeler_prep(struct bunzip_data * bd,struct bwdata * bw)450 static void burrows_wheeler_prep(struct bunzip_data *bd, struct bwdata *bw)
451 {
452 int ii, jj;
453 unsigned int *dbuf = bw->dbuf;
454 int *byteCount = bw->byteCount;
455
456 // Technically this part is preparation for the burrows-wheeler
457 // transform, but it's quick and convenient to do here.
458
459 // Turn byteCount into cumulative occurrence counts of 0 to n-1.
460 jj = 0;
461 for (ii=0; ii<256; ii++) {
462 int kk = jj + byteCount[ii];
463 byteCount[ii] = jj;
464 jj = kk;
465 }
466
467 // Use occurrence counts to quickly figure out what order dbuf would be in
468 // if we sorted it.
469 for (ii=0; ii < bw->writeCount; ii++) {
470 unsigned char uc = dbuf[ii];
471 dbuf[byteCount[uc]] |= (ii << 8);
472 byteCount[uc]++;
473 }
474
475 // blockRandomised support would go here.
476
477 // Using ii as position, jj as previous character, hh as current character,
478 // and uc as run count.
479 bw->dataCRC = 0xffffffffL;
480
481 /* Decode first byte by hand to initialize "previous" byte. Note that it
482 doesn't get output, and if the first three characters are identical
483 it doesn't qualify as a run (hence uc=255, which will either wrap
484 to 1 or get reset). */
485 if (bw->writeCount) {
486 bw->writePos = dbuf[bw->origPtr];
487 bw->writeCurrent = (unsigned char)bw->writePos;
488 bw->writePos >>= 8;
489 bw->writeRun = -1;
490 }
491 }
492
493 // Decompress a block of text to intermediate buffer
read_bunzip_data(struct bunzip_data * bd)494 static int read_bunzip_data(struct bunzip_data *bd)
495 {
496 int rc = read_block_header(bd, bd->bwdata);
497 if (!rc) rc=read_huffman_data(bd, bd->bwdata);
498
499 // First thing that can be done by a background thread.
500 burrows_wheeler_prep(bd, bd->bwdata);
501
502 return rc;
503 }
504
505 // Undo burrows-wheeler transform on intermediate buffer to produce output.
506 // If !len, write up to len bytes of data to buf. Otherwise write to out_fd.
507 // Returns len ? bytes written : 0. Notice all errors are negative #'s.
508 //
509 // Burrows-wheeler transform is described at:
510 // http://dogma.net/markn/articles/bwt/bwt.htm
511 // http://marknelson.us/1996/09/01/bwt/
512
write_bunzip_data(struct bunzip_data * bd,struct bwdata * bw,int out_fd,char * outbuf,int len)513 static int write_bunzip_data(struct bunzip_data *bd, struct bwdata *bw,
514 int out_fd, char *outbuf, int len)
515 {
516 unsigned int *dbuf = bw->dbuf;
517 int count, pos, current, run, copies, outbyte, previous, gotcount = 0;
518
519 for (;;) {
520 // If last read was short due to end of file, return last block now
521 if (bw->writeCount < 0) return bw->writeCount;
522
523 // If we need to refill dbuf, do it.
524 if (!bw->writeCount) {
525 int i = read_bunzip_data(bd);
526 if (i) {
527 if (i == RETVAL_LAST_BLOCK) {
528 bw->writeCount = i;
529 return gotcount;
530 } else return i;
531 }
532 }
533
534 // loop generating output
535 count = bw->writeCount;
536 pos = bw->writePos;
537 current = bw->writeCurrent;
538 run = bw->writeRun;
539 while (count) {
540
541 // If somebody (like tar) wants a certain number of bytes of
542 // data from memory instead of written to a file, humor them.
543 if (len && bd->outbufPos >= len) goto dataus_interruptus;
544 count--;
545
546 // Follow sequence vector to undo Burrows-Wheeler transform.
547 previous = current;
548 pos = dbuf[pos];
549 current = pos&0xff;
550 pos >>= 8;
551
552 // Whenever we see 3 consecutive copies of the same byte,
553 // the 4th is a repeat count
554 if (run++ == 3) {
555 copies = current;
556 outbyte = previous;
557 current = -1;
558 } else {
559 copies = 1;
560 outbyte = current;
561 }
562
563 // Output bytes to buffer, flushing to file if necessary
564 while (copies--) {
565 if (bd->outbufPos == IOBUF_SIZE) flush_bunzip_outbuf(bd, out_fd);
566 bd->outbuf[bd->outbufPos++] = outbyte;
567 bw->dataCRC = (bw->dataCRC << 8)
568 ^ bd->crc32Table[(bw->dataCRC >> 24) ^ outbyte];
569 }
570 if (current != previous) run=0;
571 }
572
573 // decompression of this block completed successfully
574 bw->dataCRC = ~(bw->dataCRC);
575 bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bw->dataCRC;
576
577 // if this block had a crc error, force file level crc error.
578 if (bw->dataCRC != bw->headerCRC) {
579 bd->totalCRC = bw->headerCRC+1;
580
581 return RETVAL_LAST_BLOCK;
582 }
583 dataus_interruptus:
584 bw->writeCount = count;
585 if (len) {
586 gotcount += bd->outbufPos;
587 memcpy(outbuf, bd->outbuf, len);
588
589 // If we got enough data, checkpoint loop state and return
590 if ((len -= bd->outbufPos)<1) {
591 bd->outbufPos -= len;
592 if (bd->outbufPos) memmove(bd->outbuf, bd->outbuf+len, bd->outbufPos);
593 bw->writePos = pos;
594 bw->writeCurrent = current;
595 bw->writeRun = run;
596
597 return gotcount;
598 }
599 }
600 }
601 }
602
603 // Allocate the structure, read file header. If !len, src_fd contains
604 // filehandle to read from. Else inbuf contains data.
start_bunzip(struct bunzip_data ** bdp,int src_fd,char * inbuf,int len)605 static int start_bunzip(struct bunzip_data **bdp, int src_fd, char *inbuf,
606 int len)
607 {
608 struct bunzip_data *bd;
609 unsigned int i;
610
611 // Figure out how much data to allocate.
612 i = sizeof(struct bunzip_data);
613 if (!len) i += IOBUF_SIZE;
614
615 // Allocate bunzip_data. Most fields initialize to zero.
616 bd = *bdp = xzalloc(i);
617 if (len) {
618 bd->inbuf = inbuf;
619 bd->inbufCount = len;
620 bd->in_fd = -1;
621 } else {
622 bd->inbuf = (char *)(bd+1);
623 bd->in_fd = src_fd;
624 }
625
626 crc_init(bd->crc32Table, 0);
627
628 // Ensure that file starts with "BZh".
629 for (i=0;i<3;i++) if (get_bits(bd,8)!="BZh"[i]) return RETVAL_NOT_BZIP_DATA;
630
631 // Next byte ascii '1'-'9', indicates block size in units of 100k of
632 // uncompressed data. Allocate intermediate buffer for block.
633 i = get_bits(bd, 8);
634 if (i<'1' || i>'9') return RETVAL_NOT_BZIP_DATA;
635 bd->dbufSize = 100000*(i-'0')*THREADS;
636 for (i=0; i<THREADS; i++)
637 bd->bwdata[i].dbuf = xmalloc(bd->dbufSize * sizeof(int));
638
639 return 0;
640 }
641
642 // Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
643 // not end of file.)
bunzipStream(int src_fd,int dst_fd)644 static char *bunzipStream(int src_fd, int dst_fd)
645 {
646 struct bunzip_data *bd;
647 char *bunzip_errors[] = {0, "not bzip", "bad data", "old format"};
648 int i, j;
649
650 if (!(i = start_bunzip(&bd,src_fd, 0, 0))) {
651 i = write_bunzip_data(bd,bd->bwdata, dst_fd, 0, 0);
652 if (i==RETVAL_LAST_BLOCK && bd->bwdata[0].headerCRC==bd->totalCRC) i = 0;
653 }
654 flush_bunzip_outbuf(bd, dst_fd);
655
656 for (j=0; j<THREADS; j++) free(bd->bwdata[j].dbuf);
657 free(bd);
658
659 return bunzip_errors[-i];
660 }
661
do_bzcat(int fd,char * name)662 static void do_bzcat(int fd, char *name)
663 {
664 char *err = bunzipStream(fd, 1);
665
666 if (err) error_exit_raw(err);
667 }
668
bzcat_main(void)669 void bzcat_main(void)
670 {
671 loopfiles(toys.optargs, do_bzcat);
672 }
673
do_bunzip2(int fd,char * name)674 static void do_bunzip2(int fd, char *name)
675 {
676 int outfd = 1, rename = 0, len = strlen(name);
677 char *tmp, *err, *dotbz = 0;
678
679 // Trim off .bz or .bz2 extension
680 dotbz = name+len-3;
681 if ((len>3 && !strcmp(dotbz, ".bz")) || (len>4 && !strcmp(--dotbz, ".bz2")))
682 dotbz = 0;
683
684 // For - no replace
685 if (toys.optflags&FLAG_t) outfd = xopen("/dev/null", O_WRONLY);
686 else if ((fd || strcmp(name, "-")) && !(toys.optflags&FLAG_c)) {
687 if (toys.optflags&FLAG_k) {
688 if (!dotbz || !access(name, X_OK)) {
689 error_msg("%s exists", name);
690
691 return;
692 }
693 }
694 outfd = copy_tempfile(fd, name, &tmp);
695 rename++;
696 }
697
698 if (toys.optflags&FLAG_v) printf("%s:", name);
699 err = bunzipStream(fd, outfd);
700 if (toys.optflags&FLAG_v) {
701 printf("%s\n", err ? err : "ok");
702 toys.exitval |= !!err;
703 } else if (err) error_msg_raw(err);
704
705 // can't test outfd==1 because may have been called with stdin+stdout closed
706 if (rename) {
707 if (toys.optflags&FLAG_k) {
708 free(tmp);
709 tmp = 0;
710 } else {
711 if (dotbz) *dotbz = '.';
712 if (!unlink(name)) perror_msg_raw(name);
713 }
714 (err ? delete_tempfile : replace_tempfile)(-1, outfd, &tmp);
715 }
716 }
717
bunzip2_main(void)718 void bunzip2_main(void)
719 {
720 loopfiles(toys.optargs, do_bunzip2);
721 }
722