1 /******************************************************************************
2 *
3 * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18 /**
19 *******************************************************************************
20 * @file
21 * ihevc_chroma_itrans_recon_8x8.c
22 *
23 * @brief
24 * Contains function definitions for 8x8 inverse transform and reconstruction
25 * of chroma interleaved data.
26 *
27 * @author
28 * 100470
29 *
30 * @par List of Functions:
31 * - ihevc_chroma_itrans_recon_8x8()
32 *
33 * @remarks
34 * None
35 *
36 *******************************************************************************
37 */
38
39 #include <stdio.h>
40 #include <string.h>
41 #include "ihevc_typedefs.h"
42 #include "ihevc_macros.h"
43 #include "ihevc_platform_macros.h"
44 #include "ihevc_defs.h"
45 #include "ihevc_trans_tables.h"
46 #include "ihevc_chroma_itrans_recon.h"
47 #include "ihevc_func_selector.h"
48 #include "ihevc_trans_macros.h"
49
50 /* All the functions work one component(U or V) of interleaved data depending upon pointers passed to it */
51 /* Data visualization */
52 /* U V U V U V U V */
53 /* U V U V U V U V */
54 /* U V U V U V U V */
55 /* U V U V U V U V */
56 /* If the pointer points to first byte of above stream (U) , functions will operate on U component */
57 /* If the pointer points to second byte of above stream (V) , functions will operate on V component */
58
59 /**
60 *******************************************************************************
61 *
62 * @brief
63 * This function performs Inverse transform and reconstruction for 8x8
64 * input block
65 *
66 * @par Description:
67 * Performs inverse transform and adds the prediction data and clips output
68 * to 8 bit
69 *
70 * @param[in] pi2_src
71 * Input 8x8 coefficients
72 *
73 * @param[in] pi2_tmp
74 * Temporary 8x8 buffer for storing inverse transform
75 * 1st stage output
76 *
77 * @param[in] pu1_pred
78 * Prediction 8x8 block
79 *
80 * @param[out] pu1_dst
81 * Output 8x8 block
82 *
83 * @param[in] src_strd
84 * Input stride
85 *
86 * @param[in] pred_strd
87 * Prediction stride
88 *
89 * @param[in] dst_strd
90 * Output Stride
91 *
92 * @param[in] shift
93 * Output shift
94 *
95 * @param[in] zero_cols
96 * Zero columns in pi2_src
97 *
98 * @returns Void
99 *
100 * @remarks
101 * None
102 *
103 *******************************************************************************
104 */
105
106
ihevc_chroma_itrans_recon_8x8(WORD16 * pi2_src,WORD16 * pi2_tmp,UWORD8 * pu1_pred,UWORD8 * pu1_dst,WORD32 src_strd,WORD32 pred_strd,WORD32 dst_strd,WORD32 zero_cols,WORD32 zero_rows)107 void ihevc_chroma_itrans_recon_8x8(WORD16 *pi2_src,
108 WORD16 *pi2_tmp,
109 UWORD8 *pu1_pred,
110 UWORD8 *pu1_dst,
111 WORD32 src_strd,
112 WORD32 pred_strd,
113 WORD32 dst_strd,
114 WORD32 zero_cols,
115 WORD32 zero_rows)
116 {
117 WORD32 j, k;
118 WORD32 e[4], o[4];
119 WORD32 ee[2], eo[2];
120 WORD32 add;
121 WORD32 shift;
122 WORD16 *pi2_tmp_orig;
123 WORD32 trans_size;
124 WORD32 zero_rows_2nd_stage = zero_cols;
125 WORD32 row_limit_2nd_stage;
126 UNUSED(zero_rows);
127 trans_size = TRANS_SIZE_8;
128
129 pi2_tmp_orig = pi2_tmp;
130
131 if((zero_cols & 0xF0) == 0xF0)
132 row_limit_2nd_stage = 4;
133 else
134 row_limit_2nd_stage = TRANS_SIZE_8;
135
136 /* Inverse Transform 1st stage */
137 shift = IT_SHIFT_STAGE_1;
138 add = 1 << (shift - 1);
139 {
140 /************************************************************************************************/
141 /**********************************START - IT_RECON_8x8******************************************/
142 /************************************************************************************************/
143
144 for(j = 0; j < row_limit_2nd_stage; j++)
145 {
146 /* Checking for Zero Cols */
147 if((zero_cols & 1) == 1)
148 {
149 memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
150 }
151 else
152 {
153 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
154 for(k = 0; k < 4; k++)
155 {
156 o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
157 + g_ai2_ihevc_trans_8[3][k]
158 * pi2_src[3 * src_strd]
159 + g_ai2_ihevc_trans_8[5][k]
160 * pi2_src[5 * src_strd]
161 + g_ai2_ihevc_trans_8[7][k]
162 * pi2_src[7 * src_strd];
163 }
164
165 eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd]
166 + g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd];
167 eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd]
168 + g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd];
169 ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0]
170 + g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd];
171 ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0]
172 + g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd];
173
174 /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
175 e[0] = ee[0] + eo[0];
176 e[3] = ee[0] - eo[0];
177 e[1] = ee[1] + eo[1];
178 e[2] = ee[1] - eo[1];
179 for(k = 0; k < 4; k++)
180 {
181 pi2_tmp[k] =
182 CLIP_S16(((e[k] + o[k] + add) >> shift));
183 pi2_tmp[k + 4] =
184 CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
185 }
186 }
187 pi2_src++;
188 pi2_tmp += trans_size;
189 zero_cols = zero_cols >> 1;
190 }
191
192 pi2_tmp = pi2_tmp_orig;
193
194 /* Inverse Transform 2nd stage */
195 shift = IT_SHIFT_STAGE_2;
196 add = 1 << (shift - 1);
197
198 if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */
199 {
200 for(j = 0; j < trans_size; j++)
201 {
202 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
203 for(k = 0; k < 4; k++)
204 {
205 o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
206 + g_ai2_ihevc_trans_8[3][k]
207 * pi2_tmp[3 * trans_size];
208 }
209 eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size];
210 eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size];
211 ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0];
212 ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0];
213
214 /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
215 e[0] = ee[0] + eo[0];
216 e[3] = ee[0] - eo[0];
217 e[1] = ee[1] + eo[1];
218 e[2] = ee[1] - eo[1];
219 for(k = 0; k < 4; k++)
220 {
221 WORD32 itrans_out;
222 itrans_out =
223 CLIP_S16(((e[k] + o[k] + add) >> shift));
224 pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
225 itrans_out =
226 CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
227 pu1_dst[(k + 4) * 2] =
228 CLIP_U8((itrans_out + pu1_pred[(k + 4) * 2]));
229 }
230 pi2_tmp++;
231 pu1_pred += pred_strd;
232 pu1_dst += dst_strd;
233 }
234 }
235 else /* All rows of output of 1st stage are non-zero */
236 {
237 for(j = 0; j < trans_size; j++)
238 {
239 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
240 for(k = 0; k < 4; k++)
241 {
242 o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
243 + g_ai2_ihevc_trans_8[3][k]
244 * pi2_tmp[3 * trans_size]
245 + g_ai2_ihevc_trans_8[5][k]
246 * pi2_tmp[5 * trans_size]
247 + g_ai2_ihevc_trans_8[7][k]
248 * pi2_tmp[7 * trans_size];
249 }
250
251 eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]
252 + g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size];
253 eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]
254 + g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size];
255 ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]
256 + g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size];
257 ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]
258 + g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size];
259
260 /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
261 e[0] = ee[0] + eo[0];
262 e[3] = ee[0] - eo[0];
263 e[1] = ee[1] + eo[1];
264 e[2] = ee[1] - eo[1];
265 for(k = 0; k < 4; k++)
266 {
267 WORD32 itrans_out;
268 itrans_out =
269 CLIP_S16(((e[k] + o[k] + add) >> shift));
270 pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
271 itrans_out =
272 CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
273 pu1_dst[(k + 4) * 2] =
274 CLIP_U8((itrans_out + pu1_pred[(k + 4) * 2]));
275 }
276 pi2_tmp++;
277 pu1_pred += pred_strd;
278 pu1_dst += dst_strd;
279 }
280 }
281 /************************************************************************************************/
282 /************************************END - IT_RECON_8x8******************************************/
283 /************************************************************************************************/
284 }
285 }
286