1 /* tc-xtensa.h -- Header file for tc-xtensa.c.
2    Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #ifndef TC_XTENSA
22 #define TC_XTENSA 1
23 
24 struct fix;
25 
26 #ifndef OBJ_ELF
27 #error Xtensa support requires ELF object format
28 #endif
29 
30 #include "xtensa-isa.h"
31 #include "xtensa-config.h"
32 
33 #define TARGET_BYTES_BIG_ENDIAN XCHAL_HAVE_BE
34 
35 
36 /* Maximum number of opcode slots in a VLIW instruction.  */
37 #define MAX_SLOTS 15
38 
39 
40 /* For all xtensa relax states except RELAX_DESIRE_ALIGN and
41    RELAX_DESIRE_ALIGN_IF_TARGET, the amount a frag might grow is stored
42    in the fr_var field.  For the two exceptions, fr_var is a float value
43    that records the frequency with which the following instruction is
44    executed as a branch target.  The aligner uses this information to
45    tell which targets are most important to be aligned.  */
46 
47 enum xtensa_relax_statesE
48 {
49   RELAX_XTENSA_NONE,
50 
51   RELAX_ALIGN_NEXT_OPCODE,
52   /* Use the first opcode of the next fragment to determine the
53      alignment requirements.  This is ONLY used for LOOPs currently.  */
54 
55   RELAX_CHECK_ALIGN_NEXT_OPCODE,
56   /* The next non-empty frag contains a loop instruction.  Check to see
57      if it is correctly aligned, but do not align it.  */
58 
59   RELAX_DESIRE_ALIGN_IF_TARGET,
60   /* These are placed in front of labels and converted to either
61      RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
62      relaxation begins.  */
63 
64   RELAX_ADD_NOP_IF_A0_B_RETW,
65   /* These are placed in front of conditional branches.  Before
66      relaxation begins, they are turned into either NOPs for branches
67      immediately followed by RETW or RETW.N or rs_fills of 0.  This is
68      used to avoid a hardware bug in some early versions of the
69      processor.  */
70 
71   RELAX_ADD_NOP_IF_PRE_LOOP_END,
72   /* These are placed after JX instructions.  Before relaxation begins,
73      they are turned into either NOPs, if the JX is one instruction
74      before a loop end label, or rs_fills of 0.  This is used to avoid a
75      hardware interlock issue prior to Xtensa version T1040.  */
76 
77   RELAX_ADD_NOP_IF_SHORT_LOOP,
78   /* These are placed after LOOP instructions and turned into NOPs when:
79      (1) there are less than 3 instructions in the loop; we place 2 of
80      these in a row to add up to 2 NOPS in short loops; or (2) the
81      instructions in the loop do not include a branch or jump.
82      Otherwise they are turned into rs_fills of 0 before relaxation
83      begins.  This is used to avoid hardware bug PR3830.  */
84 
85   RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
86   /* These are placed after LOOP instructions and turned into NOPs if
87      there are less than 12 bytes to the end of some other loop's end.
88      Otherwise they are turned into rs_fills of 0 before relaxation
89      begins.  This is used to avoid hardware bug PR3830.  */
90 
91   RELAX_DESIRE_ALIGN,
92   /* The next fragment would like its first instruction to NOT cross an
93      instruction fetch boundary.  */
94 
95   RELAX_MAYBE_DESIRE_ALIGN,
96   /* The next fragment might like its first instruction to NOT cross an
97      instruction fetch boundary.  These are placed after a branch that
98      might be relaxed.  If the branch is relaxed, then this frag will be
99      a branch target and this frag will be changed to RELAX_DESIRE_ALIGN
100      frag.  */
101 
102   RELAX_LOOP_END,
103   /* This will be turned into a NOP or NOP.N if the previous instruction
104      is expanded to negate a loop.  */
105 
106   RELAX_LOOP_END_ADD_NOP,
107   /* When the code density option is available, this will generate a
108      NOP.N marked RELAX_NARROW.  Otherwise, it will create an rs_fill
109      fragment with a NOP in it.  Once a frag has been converted to
110      RELAX_LOOP_END_ADD_NOP, it should never be changed back to
111      RELAX_LOOP_END.  */
112 
113   RELAX_LITERAL,
114   /* Another fragment could generate an expansion here but has not yet.  */
115 
116   RELAX_LITERAL_NR,
117   /* Expansion has been generated by an instruction that generates a
118      literal.  However, the stretch has NOT been reported yet in this
119      fragment.  */
120 
121   RELAX_LITERAL_FINAL,
122   /* Expansion has been generated by an instruction that generates a
123      literal.  */
124 
125   RELAX_LITERAL_POOL_BEGIN,
126   RELAX_LITERAL_POOL_END,
127   /* Technically these are not relaxations at all but mark a location
128      to store literals later.  Note that fr_var stores the frchain for
129      BEGIN frags and fr_var stores now_seg for END frags.  */
130 
131   RELAX_NARROW,
132   /* The last instruction in this fragment (at->fr_opcode) can be
133      freely replaced with a single wider instruction if a future
134      alignment desires or needs it.  */
135 
136   RELAX_IMMED,
137   /* The last instruction in this fragment (at->fr_opcode) contains
138      an immediate or symbol.  If the value does not fit, relax the
139      opcode using expansions from the relax table.  */
140 
141   RELAX_IMMED_STEP1,
142   /* The last instruction in this fragment (at->fr_opcode) contains a
143      literal.  It has already been expanded 1 step.  */
144 
145   RELAX_IMMED_STEP2,
146   /* The last instruction in this fragment (at->fr_opcode) contains a
147      literal.  It has already been expanded 2 steps.  */
148 
149   RELAX_IMMED_STEP3,
150   /* The last instruction in this fragment (at->fr_opcode) contains a
151      literal.  It has already been expanded 3 steps.  */
152 
153   RELAX_SLOTS,
154   /* There are instructions within the last VLIW instruction that need
155      relaxation.  Find the relaxation based on the slot info in
156      xtensa_frag_type.  Relaxations that deal with particular opcodes
157      are slot-based (e.g., converting a MOVI to an L32R).  Relaxations
158      that deal with entire instructions, such as alignment, are not
159      slot-based.  */
160 
161   RELAX_FILL_NOP,
162   /* This marks the location of a pipeline stall.  We can fill these guys
163      in for alignment of any size.  */
164 
165   RELAX_UNREACHABLE,
166   /* This marks the location as unreachable.  The assembler may widen or
167      narrow this area to meet alignment requirements of nearby
168      instructions.  */
169 
170   RELAX_MAYBE_UNREACHABLE,
171   /* This marks the location as possibly unreachable.  These are placed
172      after a branch that may be relaxed into a branch and jump. If the
173      branch is relaxed, then this frag will be converted to a
174      RELAX_UNREACHABLE frag.  */
175 
176   RELAX_ORG,
177   /* This marks the location as having previously been an rs_org frag.
178      rs_org frags are converted to fill-zero frags immediately after
179      relaxation.  However, we need to remember where they were so we can
180      prevent the linker from changing the size of any frag between the
181      section start and the org frag.  */
182 
183   RELAX_TRAMPOLINE,
184   /* Every few thousand frags, we insert one of these, just in case we may
185      need some space for a trampoline (jump to a jump) because the function
186      has gotten too big. If not needed, it disappears. */
187 
188   RELAX_NONE
189 };
190 
191 /* This is used as a stopper to bound the number of steps that
192    can be taken.  */
193 #define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP3 - RELAX_IMMED)
194 
195 struct xtensa_frag_type
196 {
197   /* Info about the current state of assembly, e.g., transform,
198      absolute_literals, etc.  These need to be passed to the backend and
199      then to the object file.
200 
201      When is_assembly_state_set is false, the frag inherits some of the
202      state settings from the previous frag in this segment.  Because it
203      is not possible to intercept all fragment closures (frag_more and
204      frag_append_1_char can close a frag), we use a pass after initial
205      assembly to fill in the assembly states.  */
206 
207   unsigned int is_assembly_state_set : 1;
208   unsigned int is_no_density : 1;
209   unsigned int is_no_transform : 1;
210   unsigned int use_longcalls : 1;
211   unsigned int use_absolute_literals : 1;
212 
213   /* Inhibits relaxation of machine-dependent alignment frags the
214      first time through a relaxation....  */
215   unsigned int relax_seen : 1;
216 
217   /* Information that is needed in the object file and set when known.  */
218   unsigned int is_literal : 1;
219   unsigned int is_loop_target : 1;
220   unsigned int is_branch_target : 1;
221   unsigned int is_insn : 1;
222   unsigned int is_unreachable : 1;
223 
224   unsigned int is_specific_opcode : 1; /* also implies no_transform */
225 
226   unsigned int is_align : 1;
227   unsigned int is_text_align : 1;
228   unsigned int alignment : 5;
229 
230   /* A frag with this bit set is the first in a loop that actually
231      contains an instruction.  */
232   unsigned int is_first_loop_insn : 1;
233 
234   /* A frag with this bit set is a branch that we are using to
235      align branch targets as if it were a normal narrow instruction.  */
236   unsigned int is_aligning_branch : 1;
237 
238   /* For text fragments that can generate literals at relax time, this
239      variable points to the frag where the literal will be stored.  For
240      literal frags, this variable points to the nearest literal pool
241      location frag.  This literal frag will be moved to after this
242      location.  For RELAX_LITERAL_POOL_BEGIN frags, this field points
243      to the frag immediately before the corresponding RELAX_LITERAL_POOL_END
244      frag, to make moving frags for this literal pool efficient.  */
245   fragS *literal_frag;
246 
247   /* The destination segment for literal frags.  (Note that this is only
248      valid after xtensa_move_literals.)  This field is also used for
249      LITERAL_POOL_END frags.  */
250   segT lit_seg;
251 
252   /* Frag chain for LITERAL_POOL_BEGIN frags.  */
253   struct frchain *lit_frchain;
254 
255   /* For the relaxation scheme, some literal fragments can have their
256      expansions modified by an instruction that relaxes.  */
257   int text_expansion[MAX_SLOTS];
258   int literal_expansion[MAX_SLOTS];
259   int unreported_expansion;
260 
261   /* For slots that have a free register for relaxation, record that
262      register.  */
263   expressionS free_reg[MAX_SLOTS];
264 
265   /* For text fragments that can generate literals at relax time:  */
266   fragS *literal_frags[MAX_SLOTS];
267   enum xtensa_relax_statesE slot_subtypes[MAX_SLOTS];
268   symbolS *slot_symbols[MAX_SLOTS];
269   offsetT slot_offsets[MAX_SLOTS];
270 
271   /* When marking frags after this one in the chain as no transform,
272      cache the last one in the chain, so that we can skip to the
273      end of the chain.  */
274   fragS *no_transform_end;
275 };
276 
277 
278 /* For VLIW support, we need to know what slot a fixup applies to.  */
279 typedef struct xtensa_fix_data_struct
280 {
281   int slot;
282   symbolS *X_add_symbol;
283   offsetT X_add_number;
284 } xtensa_fix_data;
285 
286 
287 /* Structure to record xtensa-specific symbol information.  */
288 typedef struct xtensa_symfield_type
289 {
290   unsigned int is_loop_target : 1;
291   unsigned int is_branch_target : 1;
292   symbolS *next_expr_symbol;
293 } xtensa_symfield_type;
294 
295 
296 /* Structure for saving information about a block of property data
297    for frags that have the same flags.   The forward reference is
298    in this header file.  The actual definition is in tc-xtensa.c.  */
299 struct xtensa_block_info_struct;
300 typedef struct xtensa_block_info_struct xtensa_block_info;
301 
302 
303 /* Property section types.  */
304 typedef enum
305 {
306   xt_literal_sec,
307   xt_prop_sec,
308   max_xt_sec
309 } xt_section_type;
310 
311 typedef struct xtensa_segment_info_struct
312 {
313   fragS *literal_pool_loc;
314   xtensa_block_info *blocks[max_xt_sec];
315 } xtensa_segment_info;
316 
317 
318 extern const char *xtensa_target_format (void);
319 extern void xtensa_init_fix_data (struct fix *);
320 extern void xtensa_frag_init (fragS *);
321 extern int xtensa_force_relocation (struct fix *);
322 extern int xtensa_validate_fix_sub (struct fix *);
323 extern void xtensa_frob_label (struct symbol *);
324 extern void xtensa_end (void);
325 extern void xtensa_post_relax_hook (void);
326 extern void xtensa_file_arch_init (bfd *);
327 extern void xtensa_flush_pending_output (void);
328 extern bfd_boolean xtensa_fix_adjustable (struct fix *);
329 extern void xtensa_symbol_new_hook (symbolS *);
330 extern long xtensa_relax_frag (fragS *, long, int *);
331 extern void xtensa_elf_section_change_hook (void);
332 extern int xtensa_unrecognized_line (int);
333 extern bfd_boolean xtensa_check_inside_bundle (void);
334 extern void xtensa_handle_align (fragS *);
335 extern char *xtensa_section_rename (char *);
336 
337 #define TARGET_FORMAT			xtensa_target_format ()
338 #define TARGET_ARCH			bfd_arch_xtensa
339 #define TC_SEGMENT_INFO_TYPE		xtensa_segment_info
340 #define TC_SYMFIELD_TYPE                struct xtensa_symfield_type
341 #define TC_FIX_TYPE			xtensa_fix_data
342 #define TC_INIT_FIX_DATA(x)		xtensa_init_fix_data (x)
343 #define TC_FRAG_TYPE			struct xtensa_frag_type
344 #define TC_FRAG_INIT(frag)		xtensa_frag_init (frag)
345 #define TC_FORCE_RELOCATION(fix)	xtensa_force_relocation (fix)
346 #define TC_FORCE_RELOCATION_SUB_SAME(fix, seg) \
347   (! SEG_NORMAL (seg) || xtensa_force_relocation (fix))
348 #define	TC_VALIDATE_FIX_SUB(fix, seg)	xtensa_validate_fix_sub (fix)
349 #define NO_PSEUDO_DOT			xtensa_check_inside_bundle ()
350 #define tc_canonicalize_symbol_name(s)	xtensa_section_rename (s)
351 #define tc_canonicalize_section_name(s)	xtensa_section_rename (s)
352 #define tc_init_after_args()		xtensa_file_arch_init (stdoutput)
353 #define tc_fix_adjustable(fix)		xtensa_fix_adjustable (fix)
354 #define tc_frob_label(sym)		xtensa_frob_label (sym)
355 #define tc_unrecognized_line(ch)	xtensa_unrecognized_line (ch)
356 #define tc_symbol_new_hook(sym)		xtensa_symbol_new_hook (sym)
357 #define md_do_align(a,b,c,d,e)		xtensa_flush_pending_output ()
358 #define md_elf_section_change_hook	xtensa_elf_section_change_hook
359 #define md_end				xtensa_end
360 #define md_flush_pending_output()	xtensa_flush_pending_output ()
361 #define md_operand(x)
362 #define TEXT_SECTION_NAME		xtensa_section_rename (".text")
363 #define DATA_SECTION_NAME		xtensa_section_rename (".data")
364 #define BSS_SECTION_NAME		xtensa_section_rename (".bss")
365 #define HANDLE_ALIGN(fragP)		xtensa_handle_align (fragP)
366 #define MAX_MEM_FOR_RS_ALIGN_CODE	1
367 
368 
369 /* The renumber_section function must be mapped over all the sections
370    after calling xtensa_post_relax_hook.  That function is static in
371    write.c so it cannot be called from xtensa_post_relax_hook itself.  */
372 
373 #define md_post_relax_hook \
374   do \
375     { \
376       int i = 0; \
377       xtensa_post_relax_hook (); \
378       bfd_map_over_sections (stdoutput, renumber_sections, &i); \
379     } \
380   while (0)
381 
382 
383 /* Because xtensa relaxation can insert a new literal into the middle of
384    fragment and thus require re-running the relaxation pass on the
385    section, we need an explicit flag here.  We explicitly use the name
386    "stretched" here to avoid changing the source code in write.c.  */
387 
388 #define md_relax_frag(segment, fragP, stretch) \
389   xtensa_relax_frag (fragP, stretch, &stretched)
390 
391 /* Only allow call frame debug info optimization when linker relaxation is
392    not enabled as otherwise we could generate the DWARF directives without
393    the relocs necessary to patch them up.  */
394 #define md_allow_eh_opt (linkrelax == 0)
395 
396 #define LOCAL_LABELS_FB 1
397 #define WORKING_DOT_WORD 1
398 #define DOUBLESLASH_LINE_COMMENTS
399 #define TC_HANDLES_FX_DONE
400 #define TC_FINALIZE_SYMS_BEFORE_SIZE_SEG 0
401 #define TC_LINKRELAX_FIXUP(SEG) 0
402 #define MD_APPLY_SYM_VALUE(FIX) 0
403 #define SUB_SEGMENT_ALIGN(SEG, FRCHAIN) 0
404 
405 /* Use line number format that is amenable to linker relaxation.  */
406 #define DWARF2_USE_FIXED_ADVANCE_PC (linkrelax != 0)
407 
408 
409 /* Resource reservation info functions.  */
410 
411 /* Returns the number of copies of a particular unit.  */
412 typedef int (*unit_num_copies_func) (void *, xtensa_funcUnit);
413 
414 /* Returns the number of units the opcode uses.  */
415 typedef int (*opcode_num_units_func) (void *, xtensa_opcode);
416 
417 /* Given an opcode and an index into the opcode's funcUnit list,
418    returns the unit used for the index.  */
419 typedef int (*opcode_funcUnit_use_unit_func) (void *, xtensa_opcode, int);
420 
421 /* Given an opcode and an index into the opcode's funcUnit list,
422    returns the cycle during which the unit is used.  */
423 typedef int (*opcode_funcUnit_use_stage_func) (void *, xtensa_opcode, int);
424 
425 /* The above typedefs parameterize the resource_table so that the
426    optional scheduler doesn't need its own resource reservation system.
427 
428    For simple resource checking, which is all that happens normally,
429    the functions will be as follows (with some wrapping to make the
430    interface more convenient):
431 
432    unit_num_copies_func = xtensa_funcUnit_num_copies
433    opcode_num_units_func = xtensa_opcode_num_funcUnit_uses
434    opcode_funcUnit_use_unit_func = xtensa_opcode_funcUnit_use->unit
435    opcode_funcUnit_use_stage_func = xtensa_opcode_funcUnit_use->stage
436 
437    Of course the optional scheduler has its own reservation table
438    and functions.  */
439 
440 int opcode_funcUnit_use_unit (void *, xtensa_opcode, int);
441 int opcode_funcUnit_use_stage (void *, xtensa_opcode, int);
442 
443 typedef struct
444 {
445   void *data;
446   int cycles;
447   int allocated_cycles;
448   int num_units;
449   unit_num_copies_func unit_num_copies;
450   opcode_num_units_func opcode_num_units;
451   opcode_funcUnit_use_unit_func opcode_unit_use;
452   opcode_funcUnit_use_stage_func opcode_unit_stage;
453   unsigned char **units;
454 } resource_table;
455 
456 resource_table *new_resource_table
457   (void *, int, int, unit_num_copies_func, opcode_num_units_func,
458    opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func);
459 void resize_resource_table (resource_table *, int);
460 void clear_resource_table (resource_table *);
461 bfd_boolean resources_available (resource_table *, xtensa_opcode, int);
462 void reserve_resources (resource_table *, xtensa_opcode, int);
463 void release_resources (resource_table *, xtensa_opcode, int);
464 
465 #endif /* TC_XTENSA */
466