1 #include <opencv2/features2d.hpp>
2 #include <opencv2/imgcodecs.hpp>
3 #include <opencv2/opencv.hpp>
4 #include <vector>
5 #include <iostream>
6 
7 using namespace std;
8 using namespace cv;
9 
10 const float inlier_threshold = 2.5f; // Distance threshold to identify inliers
11 const float nn_match_ratio = 0.8f;   // Nearest neighbor matching ratio
12 
main(void)13 int main(void)
14 {
15     Mat img1 = imread("../data/graf1.png", IMREAD_GRAYSCALE);
16     Mat img2 = imread("../data/graf3.png", IMREAD_GRAYSCALE);
17 
18     Mat homography;
19     FileStorage fs("../data/H1to3p.xml", FileStorage::READ);
20     fs.getFirstTopLevelNode() >> homography;
21 
22     vector<KeyPoint> kpts1, kpts2;
23     Mat desc1, desc2;
24 
25     Ptr<AKAZE> akaze = AKAZE::create();
26     akaze->detectAndCompute(img1, noArray(), kpts1, desc1);
27     akaze->detectAndCompute(img2, noArray(), kpts2, desc2);
28 
29     BFMatcher matcher(NORM_HAMMING);
30     vector< vector<DMatch> > nn_matches;
31     matcher.knnMatch(desc1, desc2, nn_matches, 2);
32 
33     vector<KeyPoint> matched1, matched2, inliers1, inliers2;
34     vector<DMatch> good_matches;
35     for(size_t i = 0; i < nn_matches.size(); i++) {
36         DMatch first = nn_matches[i][0];
37         float dist1 = nn_matches[i][0].distance;
38         float dist2 = nn_matches[i][1].distance;
39 
40         if(dist1 < nn_match_ratio * dist2) {
41             matched1.push_back(kpts1[first.queryIdx]);
42             matched2.push_back(kpts2[first.trainIdx]);
43         }
44     }
45 
46     for(unsigned i = 0; i < matched1.size(); i++) {
47         Mat col = Mat::ones(3, 1, CV_64F);
48         col.at<double>(0) = matched1[i].pt.x;
49         col.at<double>(1) = matched1[i].pt.y;
50 
51         col = homography * col;
52         col /= col.at<double>(2);
53         double dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) +
54                             pow(col.at<double>(1) - matched2[i].pt.y, 2));
55 
56         if(dist < inlier_threshold) {
57             int new_i = static_cast<int>(inliers1.size());
58             inliers1.push_back(matched1[i]);
59             inliers2.push_back(matched2[i]);
60             good_matches.push_back(DMatch(new_i, new_i, 0));
61         }
62     }
63 
64     Mat res;
65     drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
66     imwrite("res.png", res);
67 
68     double inlier_ratio = inliers1.size() * 1.0 / matched1.size();
69     cout << "A-KAZE Matching Results" << endl;
70     cout << "*******************************" << endl;
71     cout << "# Keypoints 1:                        \t" << kpts1.size() << endl;
72     cout << "# Keypoints 2:                        \t" << kpts2.size() << endl;
73     cout << "# Matches:                            \t" << matched1.size() << endl;
74     cout << "# Inliers:                            \t" << inliers1.size() << endl;
75     cout << "# Inliers Ratio:                      \t" << inlier_ratio << endl;
76     cout << endl;
77 
78     return 0;
79 }
80