1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2008, Xavier Delacour, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 // 2008-05-13, Xavier Delacour <xavier.delacour@gmail.com>
43 
44 #include "_cv.h"
45 
46 #if !defined _MSC_VER || defined __ICL || _MSC_VER >= 1400
47 #include "_cvkdtree.hpp"
48 
49 // * write up some docs
50 
51 // * removing __valuetype parameter from CvKDTree and using virtuals instead
52 // * of void* data here could simplify things.
53 
54 struct CvFeatureTree {
55 
56   template <class __scalartype, int __cvtype>
57   struct deref {
58     typedef __scalartype scalar_type;
59     typedef double accum_type;
60 
61     CvMat* mat;
derefCvFeatureTree::deref62     deref(CvMat* _mat) : mat(_mat) {
63       assert(CV_ELEM_SIZE1(__cvtype) == sizeof(__scalartype));
64     }
operator ()CvFeatureTree::deref65     scalar_type operator() (int i, int j) const {
66       return *((scalar_type*)(mat->data.ptr + i * mat->step) + j);
67     }
68   };
69 
70 #define dispatch_cvtype(mat, c) \
71     switch (CV_MAT_DEPTH((mat)->type)) { \
72     case CV_32F: \
73       { typedef CvKDTree<int, deref<float, CV_32F> > tree_type; c; break; } \
74     case CV_64F: \
75       { typedef CvKDTree<int, deref<double, CV_64F> > tree_type; c; break; } \
76     default: assert(0); \
77     }
78 
79   CvMat* mat;
80   void* data;
81 
82   template <class __treetype>
find_nnCvFeatureTree83   void find_nn(CvMat* d, int k, int emax, CvMat* results, CvMat* dist) {
84     __treetype* tr = (__treetype*) data;
85     uchar* dptr = d->data.ptr;
86     uchar* resultsptr = results->data.ptr;
87     uchar* distptr = dist->data.ptr;
88     typename __treetype::bbf_nn_pqueue nn;
89 
90     assert(d->cols == tr->dims());
91     assert(results->rows == d->rows);
92     assert(results->rows == dist->rows);
93     assert(results->cols == k);
94     assert(dist->cols == k);
95 
96     for (int j = 0; j < d->rows; ++j) {
97       typename __treetype::scalar_type* dj = (typename __treetype::scalar_type*) dptr;
98 
99       int* resultsj = (int*) resultsptr;
100       double* distj = (double*) distptr;
101       tr->find_nn_bbf(dj, k, emax, nn);
102 
103       assert((int)nn.size() <= k);
104       for (unsigned int j = 0; j < nn.size(); ++j) {
105 	*resultsj++ = *nn[j].p;
106 	*distj++ = nn[j].dist;
107       }
108       std::fill(resultsj, resultsj + k - nn.size(), -1);
109       std::fill(distj, distj + k - nn.size(), 0);
110 
111       dptr += d->step;
112       resultsptr += results->step;
113       distptr += dist->step;
114     }
115   }
116 
117   template <class __treetype>
find_ortho_rangeCvFeatureTree118   int find_ortho_range(CvMat* bounds_min, CvMat* bounds_max,
119 		       CvMat* results) {
120     int rn = results->rows * results->cols;
121     std::vector<int> inbounds;
122     dispatch_cvtype(mat, ((__treetype*)data)->
123 		    find_ortho_range((typename __treetype::scalar_type*)bounds_min->data.ptr,
124 				     (typename __treetype::scalar_type*)bounds_max->data.ptr,
125 				     inbounds));
126     std::copy(inbounds.begin(),
127 	      inbounds.begin() + std::min((int)inbounds.size(), rn),
128 	      (int*) results->data.ptr);
129     return inbounds.size();
130   }
131 
132   CvFeatureTree(const CvFeatureTree& x);
133   CvFeatureTree& operator= (const CvFeatureTree& rhs);
134 public:
CvFeatureTreeCvFeatureTree135   CvFeatureTree(CvMat* _mat) : mat(_mat) {
136     // * a flag parameter should tell us whether
137     // * (a) user ensures *mat outlives *this and is unchanged,
138     // * (b) we take reference and user ensures mat is unchanged,
139     // * (c) we copy data, (d) we own and release data.
140 
141     std::vector<int> tmp(mat->rows);
142     for (unsigned int j = 0; j < tmp.size(); ++j)
143       tmp[j] = j;
144 
145     dispatch_cvtype(mat, data = new tree_type
146 		    (&tmp[0], &tmp[0] + tmp.size(), mat->cols,
147 		     tree_type::deref_type(mat)));
148   }
~CvFeatureTreeCvFeatureTree149   ~CvFeatureTree() {
150     dispatch_cvtype(mat, delete (tree_type*) data);
151   }
152 
dimsCvFeatureTree153   int dims() {
154     int d = 0;
155     dispatch_cvtype(mat, d = ((tree_type*) data)->dims());
156     return d;
157   }
typeCvFeatureTree158   int type() {
159     return mat->type;
160   }
161 
find_nnCvFeatureTree162   void find_nn(CvMat* d, int k, int emax, CvMat* results, CvMat* dist) {
163     assert(CV_MAT_TYPE(d->type) == CV_MAT_TYPE(mat->type));
164     assert(CV_MAT_TYPE(dist->type) == CV_64FC1);
165     assert(CV_MAT_TYPE(results->type) == CV_32SC1);
166 
167     dispatch_cvtype(mat, find_nn<tree_type>
168 		    (d, k, emax, results, dist));
169   }
find_ortho_rangeCvFeatureTree170   int find_ortho_range(CvMat* bounds_min, CvMat* bounds_max,
171 			CvMat* results) {
172     assert(CV_MAT_TYPE(bounds_min->type) == CV_MAT_TYPE(mat->type));
173     assert(CV_MAT_TYPE(bounds_min->type) == CV_MAT_TYPE(bounds_max->type));
174     assert(bounds_min->rows * bounds_min->cols == dims());
175     assert(bounds_max->rows * bounds_max->cols == dims());
176 
177     int count = 0;
178     dispatch_cvtype(mat, count = find_ortho_range<tree_type>
179 		    (bounds_min, bounds_max,results));
180     return count;
181   }
182 };
183 
184 
185 
cvCreateFeatureTree(CvMat * desc)186 CvFeatureTree* cvCreateFeatureTree(CvMat* desc) {
187   __BEGIN__;
188   CV_FUNCNAME("cvCreateFeatureTree");
189 
190   if (CV_MAT_TYPE(desc->type) != CV_32FC1 &&
191       CV_MAT_TYPE(desc->type) != CV_64FC1)
192     CV_ERROR(CV_StsUnsupportedFormat, "descriptors must be either CV_32FC1 or CV_64FC1");
193 
194   return new CvFeatureTree(desc);
195   __END__;
196 
197   return 0;
198 }
199 
cvReleaseFeatureTree(CvFeatureTree * tr)200 void cvReleaseFeatureTree(CvFeatureTree* tr) {
201   delete tr;
202 }
203 
204 // desc is m x d set of candidate points.
205 // results is m x k set of row indices of matching points.
206 // dist is m x k distance to matching points.
cvFindFeatures(CvFeatureTree * tr,CvMat * desc,CvMat * results,CvMat * dist,int k,int emax)207 void cvFindFeatures(CvFeatureTree* tr, CvMat* desc,
208 		    CvMat* results, CvMat* dist, int k, int emax) {
209   bool free_desc = false;
210   int dims = tr->dims();
211   int type = tr->type();
212 
213   __BEGIN__;
214   CV_FUNCNAME("cvFindFeatures");
215 
216   if (desc->cols != dims)
217     CV_ERROR(CV_StsUnmatchedSizes, "desc columns be equal feature dimensions");
218   if (results->rows != desc->rows && results->cols != k)
219     CV_ERROR(CV_StsUnmatchedSizes, "results and desc must be same height");
220   if (dist->rows != desc->rows && dist->cols != k)
221     CV_ERROR(CV_StsUnmatchedSizes, "dist and desc must be same height");
222   if (CV_MAT_TYPE(results->type) != CV_32SC1)
223     CV_ERROR(CV_StsUnsupportedFormat, "results must be CV_32SC1");
224   if (CV_MAT_TYPE(dist->type) != CV_64FC1)
225     CV_ERROR(CV_StsUnsupportedFormat, "dist must be CV_64FC1");
226 
227   if (CV_MAT_TYPE(type) != CV_MAT_TYPE(desc->type)) {
228     CvMat* old_desc = desc;
229     desc = cvCreateMat(desc->rows, desc->cols, type);
230     cvConvert(old_desc, desc);
231     free_desc = true;
232   }
233 
234   tr->find_nn(desc, k, emax, results, dist);
235 
236   __END__;
237 
238   if (free_desc)
239     cvReleaseMat(&desc);
240 }
241 
cvFindFeaturesBoxed(CvFeatureTree * tr,CvMat * bounds_min,CvMat * bounds_max,CvMat * results)242 int cvFindFeaturesBoxed(CvFeatureTree* tr,
243 			CvMat* bounds_min, CvMat* bounds_max,
244 			CvMat* results) {
245   int nr = -1;
246   bool free_bounds = false;
247   int dims = tr->dims();
248   int type = tr->type();
249 
250   __BEGIN__;
251   CV_FUNCNAME("cvFindFeaturesBoxed");
252 
253   if (bounds_min->cols * bounds_min->rows != dims ||
254       bounds_max->cols * bounds_max->rows != dims)
255     CV_ERROR(CV_StsUnmatchedSizes, "bounds_{min,max} must 1 x dims or dims x 1");
256   if (CV_MAT_TYPE(bounds_min->type) != CV_MAT_TYPE(bounds_max->type))
257     CV_ERROR(CV_StsUnmatchedFormats, "bounds_{min,max} must have same type");
258   if (CV_MAT_TYPE(results->type) != CV_32SC1)
259     CV_ERROR(CV_StsUnsupportedFormat, "results must be CV_32SC1");
260 
261   if (CV_MAT_TYPE(bounds_min->type) != CV_MAT_TYPE(type)) {
262     free_bounds = true;
263 
264     CvMat* old_bounds_min = bounds_min;
265     bounds_min = cvCreateMat(bounds_min->rows, bounds_min->cols, type);
266     cvConvert(old_bounds_min, bounds_min);
267 
268     CvMat* old_bounds_max = bounds_max;
269     bounds_max = cvCreateMat(bounds_max->rows, bounds_max->cols, type);
270     cvConvert(old_bounds_max, bounds_max);
271   }
272 
273   nr = tr->find_ortho_range(bounds_min, bounds_max, results);
274 
275   __END__;
276   if (free_bounds) {
277     cvReleaseMat(&bounds_min);
278     cvReleaseMat(&bounds_max);
279   }
280 
281   return nr;
282 }
283 #endif
284