1 //M*//////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #include "_cv.h"
43 
44 #undef INFINITY
45 #define INFINITY 10000
46 #define OCCLUSION_PENALTY 10000
47 #define OCCLUSION_PENALTY2 1000
48 #define DENOMINATOR 16
49 #undef OCCLUDED
50 #define OCCLUDED CV_STEREO_GC_OCCLUDED
51 #define CUTOFF 1000
52 #define IS_BLOCKED(d1, d2) ((d1) > (d2))
53 
54 typedef struct GCVtx
55 {
56     GCVtx *next;
57     int parent;
58     int first;
59     int ts;
60     int dist;
61     short weight;
62     uchar t;
63 }
64 GCVtx;
65 
66 typedef struct GCEdge
67 {
68     GCVtx* dst;
69     int next;
70     int weight;
71 }
72 GCEdge;
73 
74 typedef struct CvStereoGCState2
75 {
76     int Ithreshold, interactionRadius;
77     int lambda, lambda1, lambda2, K;
78     int dataCostFuncTab[CUTOFF+1];
79     int smoothnessR[CUTOFF*2+1];
80     int smoothnessGrayDiff[512];
81     GCVtx** orphans;
82     int maxOrphans;
83 }
84 CvStereoGCState2;
85 
86 // truncTab[x+255] = MAX(x-255,0)
87 static uchar icvTruncTab[512];
88 // cutoffSqrTab[x] = MIN(x*x, CUTOFF)
89 static int icvCutoffSqrTab[256];
90 
icvInitStereoConstTabs()91 static void icvInitStereoConstTabs()
92 {
93     static volatile int initialized = 0;
94     if( !initialized )
95     {
96         int i;
97         for( i = 0; i < 512; i++ )
98             icvTruncTab[i] = (uchar)MIN(MAX(i-255,0),255);
99         for( i = 0; i < 256; i++ )
100             icvCutoffSqrTab[i] = MIN(i*i, CUTOFF);
101         initialized = 1;
102     }
103 }
104 
icvInitStereoTabs(CvStereoGCState2 * state2)105 static void icvInitStereoTabs( CvStereoGCState2* state2 )
106 {
107     int i, K = state2->K;
108 
109     for( i = 0; i <= CUTOFF; i++ )
110         state2->dataCostFuncTab[i] = MIN(i*DENOMINATOR - K, 0);
111 
112     for( i = 0; i < CUTOFF*2 + 1; i++ )
113         state2->smoothnessR[i] = MIN(abs(i-CUTOFF), state2->interactionRadius);
114 
115     for( i = 0; i < 512; i++ )
116     {
117         int diff = abs(i - 255);
118         state2->smoothnessGrayDiff[i] = diff < state2->Ithreshold ? state2->lambda1 : state2->lambda2;
119     }
120 }
121 
122 
icvGCResizeOrphansBuf(GCVtx ** & orphans,int norphans)123 static int icvGCResizeOrphansBuf( GCVtx**& orphans, int norphans )
124 {
125     int i, newNOrphans = MAX(norphans*3/2, 256);
126     GCVtx** newOrphans = (GCVtx**)cvAlloc( newNOrphans*sizeof(orphans[0]) );
127     for( i = 0; i < norphans; i++ )
128         newOrphans[i] = orphans[i];
129     cvFree( &orphans );
130     orphans = newOrphans;
131     return newNOrphans;
132 }
133 
icvGCMaxFlow(GCVtx * vtx,int nvtx,GCEdge * edges,GCVtx ** & _orphans,int & _maxOrphans)134 static int64 icvGCMaxFlow( GCVtx* vtx, int nvtx, GCEdge* edges, GCVtx**& _orphans, int& _maxOrphans )
135 {
136     const int TERMINAL = -1, ORPHAN = -2;
137     GCVtx stub, *nil = &stub, *first = nil, *last = nil;
138     int i, k;
139     int curr_ts = 0;
140     int64 flow = 0;
141     int norphans = 0, maxOrphans = _maxOrphans;
142     GCVtx** orphans = _orphans;
143     stub.next = nil;
144 
145     // initialize the active queue and the graph vertices
146     for( i = 0; i < nvtx; i++ )
147     {
148         GCVtx* v = vtx + i;
149         v->ts = 0;
150         if( v->weight != 0 )
151         {
152             last = last->next = v;
153             v->dist = 1;
154             v->parent = TERMINAL;
155             v->t = v->weight < 0;
156         }
157         else
158             v->parent = 0;
159     }
160 
161     first = first->next;
162     last->next = nil;
163     nil->next = 0;
164 
165     // run the search-path -> augment-graph -> restore-trees loop
166     for(;;)
167     {
168         GCVtx* v, *u;
169         int e0 = -1, ei = 0, ej = 0, min_weight, weight;
170         uchar vt;
171 
172         // grow S & T search trees, find an edge connecting them
173         while( first != nil )
174         {
175             v = first;
176             if( v->parent )
177             {
178                 vt = v->t;
179                 for( ei = v->first; ei != 0; ei = edges[ei].next )
180                 {
181                     if( edges[ei^vt].weight == 0 )
182                         continue;
183                     u = edges[ei].dst;
184                     if( !u->parent )
185                     {
186                         u->t = vt;
187                         u->parent = ei ^ 1;
188                         u->ts = v->ts;
189                         u->dist = v->dist + 1;
190                         if( !u->next )
191                         {
192                             u->next = nil;
193                             last = last->next = u;
194                         }
195                         continue;
196                     }
197 
198                     if( u->t != vt )
199                     {
200                         e0 = ei ^ vt;
201                         break;
202                     }
203 
204                     if( u->dist > v->dist+1 && u->ts <= v->ts )
205                     {
206                         // reassign the parent
207                         u->parent = ei ^ 1;
208                         u->ts = v->ts;
209                         u->dist = v->dist + 1;
210                     }
211                 }
212                 if( e0 > 0 )
213                     break;
214             }
215             // exclude the vertex from the active list
216             first = first->next;
217             v->next = 0;
218         }
219 
220         if( e0 <= 0 )
221             break;
222 
223         // find the minimum edge weight along the path
224         min_weight = edges[e0].weight;
225         assert( min_weight > 0 );
226         // k = 1: source tree, k = 0: destination tree
227         for( k = 1; k >= 0; k-- )
228         {
229             for( v = edges[e0^k].dst;; v = edges[ei].dst )
230             {
231                 if( (ei = v->parent) < 0 )
232                     break;
233                 weight = edges[ei^k].weight;
234                 min_weight = MIN(min_weight, weight);
235                 assert( min_weight > 0 );
236             }
237             weight = abs(v->weight);
238             min_weight = MIN(min_weight, weight);
239             assert( min_weight > 0 );
240         }
241 
242         // modify weights of the edges along the path and collect orphans
243         edges[e0].weight -= min_weight;
244         edges[e0^1].weight += min_weight;
245         flow += min_weight;
246 
247         // k = 1: source tree, k = 0: destination tree
248         for( k = 1; k >= 0; k-- )
249         {
250             for( v = edges[e0^k].dst;; v = edges[ei].dst )
251             {
252                 if( (ei = v->parent) < 0 )
253                     break;
254                 edges[ei^(k^1)].weight += min_weight;
255                 if( (edges[ei^k].weight -= min_weight) == 0 )
256                 {
257                     if( norphans >= maxOrphans )
258                         maxOrphans = icvGCResizeOrphansBuf( orphans, norphans );
259                     orphans[norphans++] = v;
260                     v->parent = ORPHAN;
261                 }
262             }
263 
264             v->weight = (short)(v->weight + min_weight*(1-k*2));
265             if( v->weight == 0 )
266             {
267                 if( norphans >= maxOrphans )
268                     maxOrphans = icvGCResizeOrphansBuf( orphans, norphans );
269                 orphans[norphans++] = v;
270                 v->parent = ORPHAN;
271             }
272         }
273 
274         // restore the search trees by finding new parents for the orphans
275         curr_ts++;
276         while( norphans > 0 )
277         {
278             GCVtx* v = orphans[--norphans];
279             int d, min_dist = INT_MAX;
280             e0 = 0;
281             vt = v->t;
282 
283             for( ei = v->first; ei != 0; ei = edges[ei].next )
284             {
285                 if( edges[ei^(vt^1)].weight == 0 )
286                     continue;
287                 u = edges[ei].dst;
288                 if( u->t != vt || u->parent == 0 )
289                     continue;
290                 // compute the distance to the tree root
291                 for( d = 0;; )
292                 {
293                     if( u->ts == curr_ts )
294                     {
295                         d += u->dist;
296                         break;
297                     }
298                     ej = u->parent;
299                     d++;
300                     if( ej < 0 )
301                     {
302                         if( ej == ORPHAN )
303                             d = INT_MAX-1;
304                         else
305                         {
306                             u->ts = curr_ts;
307                             u->dist = 1;
308                         }
309                         break;
310                     }
311                     u = edges[ej].dst;
312                 }
313 
314                 // update the distance
315                 if( ++d < INT_MAX )
316                 {
317                     if( d < min_dist )
318                     {
319                         min_dist = d;
320                         e0 = ei;
321                     }
322                     for( u = edges[ei].dst; u->ts != curr_ts; u = edges[u->parent].dst )
323                     {
324                         u->ts = curr_ts;
325                         u->dist = --d;
326                     }
327                 }
328             }
329 
330             if( (v->parent = e0) > 0 )
331             {
332                 v->ts = curr_ts;
333                 v->dist = min_dist;
334                 continue;
335             }
336 
337             /* no parent is found */
338             v->ts = 0;
339             for( ei = v->first; ei != 0; ei = edges[ei].next )
340             {
341                 u = edges[ei].dst;
342                 ej = u->parent;
343                 if( u->t != vt || !ej )
344                     continue;
345                 if( edges[ei^(vt^1)].weight && !u->next )
346                 {
347                     u->next = nil;
348                     last = last->next = u;
349                 }
350                 if( ej > 0 && edges[ej].dst == v )
351                 {
352                     if( norphans >= maxOrphans )
353                         maxOrphans = icvGCResizeOrphansBuf( orphans, norphans );
354                     orphans[norphans++] = u;
355                     u->parent = ORPHAN;
356                 }
357             }
358         }
359     }
360 
361     _orphans = orphans;
362     _maxOrphans = maxOrphans;
363 
364     return flow;
365 }
366 
367 
cvCreateStereoGCState(int numberOfDisparities,int maxIters)368 CvStereoGCState* cvCreateStereoGCState( int numberOfDisparities, int maxIters )
369 {
370     CvStereoGCState* state = 0;
371 
372     //CV_FUNCNAME("cvCreateStereoGCState");
373 
374     __BEGIN__;
375 
376     state = (CvStereoGCState*)cvAlloc( sizeof(*state) );
377     memset( state, 0, sizeof(*state) );
378     state->minDisparity = 0;
379     state->numberOfDisparities = numberOfDisparities;
380     state->maxIters = maxIters <= 0 ? 3 : maxIters;
381     state->Ithreshold = 5;
382     state->interactionRadius = 1;
383     state->K = state->lambda = state->lambda1 = state->lambda2 = -1.f;
384     state->occlusionCost = OCCLUSION_PENALTY;
385 
386     __END__;
387 
388     return state;
389 }
390 
cvReleaseStereoGCState(CvStereoGCState ** _state)391 void cvReleaseStereoGCState( CvStereoGCState** _state )
392 {
393     CvStereoGCState* state;
394 
395     if( !_state && !*_state )
396         return;
397 
398     state = *_state;
399     cvReleaseMat( &state->left );
400     cvReleaseMat( &state->right );
401     cvReleaseMat( &state->ptrLeft );
402     cvReleaseMat( &state->ptrRight );
403     cvReleaseMat( &state->vtxBuf );
404     cvReleaseMat( &state->edgeBuf );
405     cvFree( _state );
406 }
407 
408 // ||I(x) - J(x')|| =
409 // min(CUTOFF,
410 //   min(
411 //     max(
412 //       max(minJ(x') - I(x), 0),
413 //       max(I(x) - maxJ(x'), 0)),
414 //     max(
415 //       max(minI(x) - J(x'), 0),
416 //       max(J(x') - maxI(x), 0)))**2) ==
417 // min(CUTOFF,
418 //   min(
419 //       max(minJ(x') - I(x), 0) +
420 //       max(I(x) - maxJ(x'), 0),
421 //
422 //       max(minI(x) - J(x'), 0) +
423 //       max(J(x') - maxI(x), 0)))**2)
424 // where (I, minI, maxI) and
425 //       (J, minJ, maxJ) are stored as interleaved 3-channel images.
426 // minI, maxI are computed from I,
427 // minJ, maxJ are computed from J - see icvInitGraySubPix.
icvDataCostFuncGraySubpix(const uchar * a,const uchar * b)428 static inline int icvDataCostFuncGraySubpix( const uchar* a, const uchar* b )
429 {
430     int va = a[0], vb = b[0];
431     int da = icvTruncTab[b[1] - va + 255] + icvTruncTab[va - b[2] + 255];
432     int db = icvTruncTab[a[1] - vb + 255] + icvTruncTab[vb - a[2] + 255];
433     return icvCutoffSqrTab[MIN(da,db)];
434 }
435 
icvSmoothnessCostFunc(int da,int db,int maxR,const int * stabR,int scale)436 static inline int icvSmoothnessCostFunc( int da, int db, int maxR, const int* stabR, int scale )
437 {
438     return da == db ? 0 : (da == OCCLUDED || db == OCCLUDED ? maxR : stabR[da - db])*scale;
439 }
440 
icvInitGraySubpix(const CvMat * left,const CvMat * right,CvMat * left3,CvMat * right3)441 static void icvInitGraySubpix( const CvMat* left, const CvMat* right,
442                                CvMat* left3, CvMat* right3 )
443 {
444     int k, x, y, rows = left->rows, cols = left->cols;
445 
446     for( k = 0; k < 2; k++ )
447     {
448         const CvMat* src = k == 0 ? left : right;
449         CvMat* dst = k == 0 ? left3 : right3;
450         int sstep = src->step;
451 
452         for( y = 0; y < rows; y++ )
453         {
454             const uchar* sptr = src->data.ptr + sstep*y;
455             const uchar* sptr_prev = y > 0 ? sptr - sstep : sptr;
456             const uchar* sptr_next = y < rows-1 ? sptr + sstep : sptr;
457             uchar* dptr = dst->data.ptr + dst->step*y;
458             int v_prev = sptr[0];
459 
460             for( x = 0; x < cols; x++, dptr += 3 )
461             {
462                 int v = sptr[x], v1, minv = v, maxv = v;
463 
464                 v1 = (v + v_prev)/2;
465                 minv = MIN(minv, v1); maxv = MAX(maxv, v1);
466                 v1 = (v + sptr_prev[x])/2;
467                 minv = MIN(minv, v1); maxv = MAX(maxv, v1);
468                 v1 = (v + sptr_next[x])/2;
469                 minv = MIN(minv, v1); maxv = MAX(maxv, v1);
470                 if( x < cols-1 )
471                 {
472                     v1 = (v + sptr[x+1])/2;
473                     minv = MIN(minv, v1); maxv = MAX(maxv, v1);
474                 }
475                 v_prev = v;
476                 dptr[0] = (uchar)v;
477                 dptr[1] = (uchar)minv;
478                 dptr[2] = (uchar)maxv;
479             }
480         }
481     }
482 }
483 
484 // Optimal K is computed as avg_x(k-th-smallest_d(||I(x)-J(x+d)||)),
485 // where k = number_of_disparities*0.25.
486 static float
icvComputeK(CvStereoGCState * state)487 icvComputeK( CvStereoGCState* state )
488 {
489     int x, y, x1, d, i, j, rows = state->left->rows, cols = state->left->cols, n = 0;
490     int mind = state->minDisparity, nd = state->numberOfDisparities, maxd = mind + nd;
491     int k = MIN(MAX((nd + 2)/4, 3), nd);
492     int *arr = (int*)cvStackAlloc(k*sizeof(arr[0])), delta, t, sum = 0;
493 
494     for( y = 0; y < rows; y++ )
495     {
496         const uchar* lptr = state->left->data.ptr + state->left->step*y;
497         const uchar* rptr = state->right->data.ptr + state->right->step*y;
498 
499         for( x = 0; x < cols; x++ )
500         {
501             for( d = maxd-1, i = 0; d >= mind; d-- )
502             {
503                 x1 = x - d;
504                 if( (unsigned)x1 >= (unsigned)cols )
505                     continue;
506                 delta = icvDataCostFuncGraySubpix( lptr + x*3, rptr + x1*3 );
507                 if( i < k )
508                     arr[i++] = delta;
509                 else
510                     for( i = 0; i < k; i++ )
511                         if( delta < arr[i] )
512                             CV_SWAP( arr[i], delta, t );
513             }
514             delta = arr[0];
515             for( j = 1; j < i; j++ )
516                 delta = MAX(delta, arr[j]);
517             sum += delta;
518             n++;
519         }
520     }
521 
522     return (float)sum/n;
523 }
524 
icvComputeEnergy(const CvStereoGCState * state,const CvStereoGCState2 * state2,bool allOccluded)525 static int64 icvComputeEnergy( const CvStereoGCState* state, const CvStereoGCState2* state2,
526                                bool allOccluded )
527 {
528     int x, y, rows = state->left->rows, cols = state->left->cols;
529     int64 E = 0;
530     const int* dtab = state2->dataCostFuncTab;
531     int maxR = state2->interactionRadius;
532     const int* stabR = state2->smoothnessR + CUTOFF;
533     const int* stabI = state2->smoothnessGrayDiff + 255;
534     const uchar* left = state->left->data.ptr;
535     const uchar* right = state->right->data.ptr;
536     short* dleft = state->dispLeft->data.s;
537     short* dright = state->dispRight->data.s;
538     int step = state->left->step;
539     int dstep = (int)(state->dispLeft->step/sizeof(short));
540 
541     assert( state->left->step == state->right->step &&
542         state->dispLeft->step == state->dispRight->step );
543 
544     if( allOccluded )
545         return (int64)OCCLUSION_PENALTY*rows*cols*2;
546 
547     for( y = 0; y < rows; y++, left += step, right += step, dleft += dstep, dright += dstep )
548     {
549         for( x = 0; x < cols; x++ )
550         {
551             int d = dleft[x], x1, d1;
552             if( d == OCCLUDED )
553                 E += OCCLUSION_PENALTY;
554             else
555             {
556                 x1 = x + d;
557                 if( (unsigned)x1 >= (unsigned)cols )
558                     continue;
559                 d1 = dright[x1];
560                 if( d == -d1 )
561                     E += dtab[icvDataCostFuncGraySubpix( left + x*3, right + x1*3 )];
562             }
563 
564             if( x < cols-1 )
565             {
566                 d1 = dleft[x+1];
567                 E += icvSmoothnessCostFunc(d, d1, maxR, stabR, stabI[left[x*3] - left[x*3+3]] );
568             }
569             if( y < rows-1 )
570             {
571                 d1 = dleft[x+dstep];
572                 E += icvSmoothnessCostFunc(d, d1, maxR, stabR, stabI[left[x*3] - left[x*3+step]] );
573             }
574 
575             d = dright[x];
576             if( d == OCCLUDED )
577                 E += OCCLUSION_PENALTY;
578 
579             if( x < cols-1 )
580             {
581                 d1 = dright[x+1];
582                 E += icvSmoothnessCostFunc(d, d1, maxR, stabR, stabI[right[x*3] - right[x*3+3]] );
583             }
584             if( y < rows-1 )
585             {
586                 d1 = dright[x+dstep];
587                 E += icvSmoothnessCostFunc(d, d1, maxR, stabR, stabI[right[x*3] - right[x*3+step]] );
588             }
589             assert( E >= 0 );
590         }
591     }
592 
593     return E;
594 }
595 
icvAddEdge(GCVtx * x,GCVtx * y,GCEdge * edgeBuf,int nedges,int w,int rw)596 static inline void icvAddEdge( GCVtx *x, GCVtx* y, GCEdge* edgeBuf, int nedges, int w, int rw )
597 {
598     GCEdge *xy = edgeBuf + nedges, *yx = xy + 1;
599 
600     assert( x != 0 && y != 0 );
601     xy->dst = y;
602     xy->next = x->first;
603     xy->weight = (short)w;
604     x->first = nedges;
605 
606     yx->dst = x;
607     yx->next = y->first;
608     yx->weight = (short)rw;
609     y->first = nedges+1;
610 }
611 
icvAddTWeights(GCVtx * vtx,int sourceWeight,int sinkWeight)612 static inline int icvAddTWeights( GCVtx* vtx, int sourceWeight, int sinkWeight )
613 {
614     int w = vtx->weight;
615     if( w > 0 )
616         sourceWeight += w;
617     else
618         sinkWeight -= w;
619     vtx->weight = (short)(sourceWeight - sinkWeight);
620     return MIN(sourceWeight, sinkWeight);
621 }
622 
icvAddTerm(GCVtx * x,GCVtx * y,int A,int B,int C,int D,GCEdge * edgeBuf,int & nedges)623 static inline int icvAddTerm( GCVtx* x, GCVtx* y, int A, int B, int C, int D,
624                               GCEdge* edgeBuf, int& nedges )
625 {
626     int dE = 0, w;
627 
628     assert(B - A + C - D >= 0);
629     if( B < A )
630     {
631         dE += icvAddTWeights(x, D, B);
632         dE += icvAddTWeights(y, 0, A - B);
633         if( (w = B - A + C - D) != 0 )
634         {
635             icvAddEdge( x, y, edgeBuf, nedges, 0, w );
636             nedges += 2;
637         }
638     }
639     else if( C < D )
640     {
641         dE += icvAddTWeights(x, D, A + D - C);
642         dE += icvAddTWeights(y, 0, C - D);
643         if( (w = B - A + C - D) != 0 )
644         {
645             icvAddEdge( x, y, edgeBuf, nedges, w, 0 );
646             nedges += 2;
647         }
648     }
649     else
650     {
651         dE += icvAddTWeights(x, D, A);
652         if( B != A || C != D )
653         {
654             icvAddEdge( x, y, edgeBuf, nedges, B - A, C - D );
655             nedges += 2;
656         }
657     }
658     return dE;
659 }
660 
icvAlphaExpand(int64 Eprev,int alpha,CvStereoGCState * state,CvStereoGCState2 * state2)661 static int64 icvAlphaExpand( int64 Eprev, int alpha, CvStereoGCState* state, CvStereoGCState2* state2 )
662 {
663     GCVtx *var, *var1;
664     int64 E = 0;
665     int delta, E00=0, E0a=0, Ea0=0, Eaa=0;
666     int k, a, d, d1, x, y, x1, y1, rows = state->left->rows, cols = state->left->cols;
667     int nvtx = 0, nedges = 2;
668     GCVtx* vbuf = (GCVtx*)state->vtxBuf->data.ptr;
669     GCEdge* ebuf = (GCEdge*)state->edgeBuf->data.ptr;
670     int maxR = state2->interactionRadius;
671     const int* dtab = state2->dataCostFuncTab;
672     const int* stabR = state2->smoothnessR + CUTOFF;
673     const int* stabI = state2->smoothnessGrayDiff + 255;
674     const uchar* left0 = state->left->data.ptr;
675     const uchar* right0 = state->right->data.ptr;
676     short* dleft0 = state->dispLeft->data.s;
677     short* dright0 = state->dispRight->data.s;
678     GCVtx** pleft0 = (GCVtx**)state->ptrLeft->data.ptr;
679     GCVtx** pright0 = (GCVtx**)state->ptrRight->data.ptr;
680     int step = state->left->step;
681     int dstep = (int)(state->dispLeft->step/sizeof(short));
682     int pstep = (int)(state->ptrLeft->step/sizeof(GCVtx*));
683     int aa[] = { alpha, -alpha };
684 
685     double t = (double)cvGetTickCount();
686 
687     assert( state->left->step == state->right->step &&
688             state->dispLeft->step == state->dispRight->step &&
689             state->ptrLeft->step == state->ptrRight->step );
690     for( k = 0; k < 2; k++ )
691     {
692         ebuf[k].dst = 0;
693         ebuf[k].next = 0;
694         ebuf[k].weight = 0;
695     }
696 
697     for( y = 0; y < rows; y++ )
698     {
699         const uchar* left = left0 + step*y;
700         const uchar* right = right0 + step*y;
701         const short* dleft = dleft0 + dstep*y;
702         const short* dright = dright0 + dstep*y;
703         GCVtx** pleft = pleft0 + pstep*y;
704         GCVtx** pright = pright0 + pstep*y;
705         const uchar* lr[] = { left, right };
706         const short* dlr[] = { dleft, dright };
707         GCVtx** plr[] = { pleft, pright };
708 
709         for( k = 0; k < 2; k++ )
710         {
711             a = aa[k];
712             for( y1 = y+(y>0); y1 <= y+(y<rows-1); y1++ )
713             {
714                 const short* disp = (k == 0 ? dleft0 : dright0) + y1*dstep;
715                 GCVtx** ptr = (k == 0 ? pleft0 : pright0) + y1*pstep;
716                 for( x = 0; x < cols; x++ )
717                 {
718                     GCVtx* v = ptr[x] = &vbuf[nvtx++];
719                     v->first = 0;
720                     v->weight = disp[x] == (short)(OCCLUDED ? -OCCLUSION_PENALTY2 : 0);
721                 }
722             }
723         }
724 
725         for( x = 0; x < cols; x++ )
726         {
727             d = dleft[x];
728             x1 = x + d;
729             var = pleft[x];
730 
731             // (left + x, right + x + d)
732             if( d != alpha && d != OCCLUDED && (unsigned)x1 < (unsigned)cols )
733             {
734                 var1 = pright[x1];
735                 d1 = dright[x1];
736                 if( d == -d1 )
737                 {
738                     assert( var1 != 0 );
739                     delta = IS_BLOCKED(alpha, d) ? INFINITY : 0;
740                     //add inter edge
741                     E += icvAddTerm( var, var1,
742                         dtab[icvDataCostFuncGraySubpix( left + x*3, right + x1*3 )],
743                         delta, delta, 0, ebuf, nedges );
744                 }
745                 else if( IS_BLOCKED(alpha, d) )
746                     E += icvAddTerm( var, var1, 0, INFINITY, 0, 0, ebuf, nedges );
747             }
748 
749             // (left + x, right + x + alpha)
750             x1 = x + alpha;
751             if( (unsigned)x1 < (unsigned)cols )
752             {
753                 var1 = pright[x1];
754                 d1 = dright[x1];
755 
756                 E0a = IS_BLOCKED(d, alpha) ? INFINITY : 0;
757                 Ea0 = IS_BLOCKED(-d1, alpha) ? INFINITY : 0;
758                 Eaa = dtab[icvDataCostFuncGraySubpix( left + x*3, right + x1*3 )];
759                 E += icvAddTerm( var, var1, 0, E0a, Ea0, Eaa, ebuf, nedges );
760             }
761 
762             // smoothness
763             for( k = 0; k < 2; k++ )
764             {
765                 GCVtx** p = plr[k];
766                 const short* disp = dlr[k];
767                 const uchar* img = lr[k] + x*3;
768                 int scale;
769                 var = p[x];
770                 d = disp[x];
771                 a = aa[k];
772 
773                 if( x < cols - 1 )
774                 {
775                     var1 = p[x+1];
776                     d1 = disp[x+1];
777                     scale = stabI[img[0] - img[3]];
778                     E0a = icvSmoothnessCostFunc( d, a, maxR, stabR, scale );
779                     Ea0 = icvSmoothnessCostFunc( a, d1, maxR, stabR, scale );
780                     E00 = icvSmoothnessCostFunc( d, d1, maxR, stabR, scale );
781                     E += icvAddTerm( var, var1, E00, E0a, Ea0, 0, ebuf, nedges );
782                 }
783 
784                 if( y < rows - 1 )
785                 {
786                     var1 = p[x+pstep];
787                     d1 = disp[x+dstep];
788                     scale = stabI[img[0] - img[step]];
789                     E0a = icvSmoothnessCostFunc( d, a, maxR, stabR, scale );
790                     Ea0 = icvSmoothnessCostFunc( a, d1, maxR, stabR, scale );
791                     E00 = icvSmoothnessCostFunc( d, d1, maxR, stabR, scale );
792                     E += icvAddTerm( var, var1, E00, E0a, Ea0, 0, ebuf, nedges );
793                 }
794             }
795 
796             // visibility term
797             if( d != OCCLUDED && IS_BLOCKED(alpha, -d))
798             {
799                 x1 = x + d;
800                 if( (unsigned)x1 < (unsigned)cols )
801                 {
802                     if( d != -dleft[x1] )
803                     {
804                         var1 = pleft[x1];
805                         E += icvAddTerm( var, var1, 0, INFINITY, 0, 0, ebuf, nedges );
806                     }
807                 }
808             }
809         }
810     }
811 
812     t = (double)cvGetTickCount() - t;
813     ebuf[0].weight = ebuf[1].weight = 0;
814     E += icvGCMaxFlow( vbuf, nvtx, ebuf, state2->orphans, state2->maxOrphans );
815 
816     if( E < Eprev )
817     {
818         for( y = 0; y < rows; y++ )
819         {
820             short* dleft = dleft0 + dstep*y;
821             short* dright = dright0 + dstep*y;
822             GCVtx** pleft = pleft0 + pstep*y;
823             GCVtx** pright = pright0 + pstep*y;
824             for( x = 0; x < cols; x++ )
825             {
826                 GCVtx* var = pleft[x];
827                 if( var && var->parent && var->t )
828                     dleft[x] = (short)alpha;
829 
830                 var = pright[x];
831                 if( var && var->parent && var->t )
832                     dright[x] = (short)-alpha;
833             }
834         }
835     }
836 
837     return MIN(E, Eprev);
838 }
839 
840 
cvFindStereoCorrespondenceGC(const CvArr * _left,const CvArr * _right,CvArr * _dispLeft,CvArr * _dispRight,CvStereoGCState * state,int useDisparityGuess)841 CV_IMPL void cvFindStereoCorrespondenceGC( const CvArr* _left, const CvArr* _right,
842     CvArr* _dispLeft, CvArr* _dispRight, CvStereoGCState* state, int useDisparityGuess )
843 {
844     CvStereoGCState2 state2;
845     state2.orphans = 0;
846     state2.maxOrphans = 0;
847 
848     CV_FUNCNAME( "cvFindStereoCorrespondenceGC" );
849 
850     __BEGIN__;
851 
852     CvMat lstub, *left = cvGetMat( _left, &lstub );
853     CvMat rstub, *right = cvGetMat( _right, &rstub );
854     CvMat dlstub, *dispLeft = cvGetMat( _dispLeft, &dlstub );
855     CvMat drstub, *dispRight = cvGetMat( _dispRight, &drstub );
856     CvSize size;
857     int iter, i, nZeroExpansions = 0;
858     CvRNG rng = cvRNG(-1);
859     int* disp;
860     CvMat _disp;
861     int64 E;
862 
863     CV_ASSERT( state != 0 );
864     CV_ASSERT( CV_ARE_SIZES_EQ(left, right) && CV_ARE_TYPES_EQ(left, right) &&
865                CV_MAT_TYPE(left->type) == CV_8UC1 );
866     CV_ASSERT( !dispLeft ||
867         (CV_ARE_SIZES_EQ(dispLeft, left) && CV_MAT_CN(dispLeft->type) == 1) );
868     CV_ASSERT( !dispRight ||
869         (CV_ARE_SIZES_EQ(dispRight, left) && CV_MAT_CN(dispRight->type) == 1) );
870 
871     size = cvGetSize(left);
872     if( !state->left || state->left->width != size.width || state->left->height != size.height )
873     {
874         int pcn = (int)(sizeof(GCVtx*)/sizeof(int));
875         int vcn = (int)(sizeof(GCVtx)/sizeof(int));
876         int ecn = (int)(sizeof(GCEdge)/sizeof(int));
877         cvReleaseMat( &state->left );
878         cvReleaseMat( &state->right );
879         cvReleaseMat( &state->ptrLeft );
880         cvReleaseMat( &state->ptrRight );
881         cvReleaseMat( &state->dispLeft );
882         cvReleaseMat( &state->dispRight );
883 
884         state->left = cvCreateMat( size.height, size.width, CV_8UC3 );
885         state->right = cvCreateMat( size.height, size.width, CV_8UC3 );
886         state->dispLeft = cvCreateMat( size.height, size.width, CV_16SC1 );
887         state->dispRight = cvCreateMat( size.height, size.width, CV_16SC1 );
888         state->ptrLeft = cvCreateMat( size.height, size.width, CV_32SC(pcn) );
889         state->ptrRight = cvCreateMat( size.height, size.width, CV_32SC(pcn) );
890         state->vtxBuf = cvCreateMat( 1, size.height*size.width*2, CV_32SC(vcn) );
891         state->edgeBuf = cvCreateMat( 1, size.height*size.width*12 + 16, CV_32SC(ecn) );
892     }
893 
894     if( !useDisparityGuess )
895     {
896         cvSet( state->dispLeft, cvScalarAll(OCCLUDED));
897         cvSet( state->dispRight, cvScalarAll(OCCLUDED));
898     }
899     else
900     {
901         CV_ASSERT( dispLeft && dispRight );
902         cvConvert( dispLeft, state->dispLeft );
903         cvConvert( dispRight, state->dispRight );
904     }
905 
906     state2.Ithreshold = state->Ithreshold;
907     state2.interactionRadius = state->interactionRadius;
908     state2.lambda = cvRound(state->lambda*DENOMINATOR);
909     state2.lambda1 = cvRound(state->lambda1*DENOMINATOR);
910     state2.lambda2 = cvRound(state->lambda2*DENOMINATOR);
911     state2.K = cvRound(state->K*DENOMINATOR);
912 
913     icvInitStereoConstTabs();
914     icvInitGraySubpix( left, right, state->left, state->right );
915     disp = (int*)cvStackAlloc( state->numberOfDisparities*sizeof(disp[0]) );
916     _disp = cvMat( 1, state->numberOfDisparities, CV_32S, disp );
917     cvRange( &_disp, state->minDisparity, state->minDisparity + state->numberOfDisparities );
918     cvRandShuffle( &_disp, &rng );
919 
920     if( state2.lambda < 0 && (state2.K < 0 || state2.lambda1 < 0 || state2.lambda2 < 0) )
921     {
922         float L = icvComputeK(state)*0.2f;
923         state2.lambda = cvRound(L*DENOMINATOR);
924     }
925 
926     if( state2.K < 0 )
927         state2.K = state2.lambda*5;
928     if( state2.lambda1 < 0 )
929         state2.lambda1 = state2.lambda*3;
930     if( state2.lambda2 < 0 )
931         state2.lambda2 = state2.lambda;
932 
933     icvInitStereoTabs( &state2 );
934 
935     E = icvComputeEnergy( state, &state2, !useDisparityGuess );
936     for( iter = 0; iter < state->maxIters; iter++ )
937     {
938         for( i = 0; i < state->numberOfDisparities; i++ )
939         {
940             int alpha = disp[i];
941             int64 Enew = icvAlphaExpand( E, -alpha, state, &state2 );
942             if( Enew < E )
943             {
944                 nZeroExpansions = 0;
945                 E = Enew;
946             }
947             else if( ++nZeroExpansions >= state->numberOfDisparities )
948                 break;
949         }
950     }
951 
952     if( dispLeft )
953         cvConvert( state->dispLeft, dispLeft );
954     if( dispRight )
955         cvConvert( state->dispRight, dispRight );
956 
957     __END__;
958 
959     cvFree( &state2.orphans );
960 }
961