1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 /* Haar features calculation */
43 
44 #include "_cv.h"
45 #include <stdio.h>
46 
47 /* these settings affect the quality of detection: change with care */
48 #define CV_ADJUST_FEATURES 1
49 #define CV_ADJUST_WEIGHTS  1
50 
51 typedef int sumtype;
52 typedef double sqsumtype;
53 
54 typedef struct MyCvHidHaarFeature
55 	{
56 		struct
57 		{
58 			sumtype *p0, *p1, *p2, *p3;
59 			int weight;
60 		}
61 		rect[CV_HAAR_FEATURE_MAX];
62 	}
63 	MyCvHidHaarFeature;
64 
65 
66 typedef struct MyCvHidHaarTreeNode
67 	{
68 		MyCvHidHaarFeature feature;
69 		int threshold;
70 		int left;
71 		int right;
72 	}
73 	MyCvHidHaarTreeNode;
74 
75 
76 typedef struct MyCvHidHaarClassifier
77 	{
78 		int count;
79 		//CvHaarFeature* orig_feature;
80 		MyCvHidHaarTreeNode* node;
81 		float* alpha;
82 	}
83 	MyCvHidHaarClassifier;
84 
85 
86 typedef struct MyCvHidHaarStageClassifier
87 	{
88 		int  count;
89 		float threshold;
90 		MyCvHidHaarClassifier* classifier;
91 		int two_rects;
92 
93 		struct MyCvHidHaarStageClassifier* next;
94 		struct MyCvHidHaarStageClassifier* child;
95 		struct MyCvHidHaarStageClassifier* parent;
96 	}
97 	MyCvHidHaarStageClassifier;
98 
99 
100 struct MyCvHidHaarClassifierCascade
101 {
102     int  count;
103     int  is_stump_based;
104     int  has_tilted_features;
105     int  is_tree;
106     double inv_window_area;
107     CvMat sum, sqsum, tilted;
108     MyCvHidHaarStageClassifier* stage_classifier;
109     sqsumtype *pq0, *pq1, *pq2, *pq3;
110     sumtype *p0, *p1, *p2, *p3;
111 
112     void** ipp_stages;
113 };
114 
115 
116 const int icv_object_win_border = 1;
117 const float icv_stage_threshold_bias = 0.0001f;
118 
myis_equal(const void * _r1,const void * _r2,void *)119 static int myis_equal( const void* _r1, const void* _r2, void* )
120 {
121     const CvRect* r1 = (const CvRect*)_r1;
122     const CvRect* r2 = (const CvRect*)_r2;
123     int distance = cvRound(r1->width*0.2);
124 
125     return r2->x <= r1->x + distance &&
126 	r2->x >= r1->x - distance &&
127 	r2->y <= r1->y + distance &&
128 	r2->y >= r1->y - distance &&
129 	r2->width <= cvRound( r1->width * 1.2 ) &&
130 	cvRound( r2->width * 1.2 ) >= r1->width;
131 }
132 
133 static void
myicvReleaseHidHaarClassifierCascade(MyCvHidHaarClassifierCascade ** _cascade)134 myicvReleaseHidHaarClassifierCascade( MyCvHidHaarClassifierCascade** _cascade )
135 {
136     if( _cascade && *_cascade )
137     {
138         /*CvHidHaarClassifierCascade* cascade = *_cascade;
139 		 if( cascade->ipp_stages && icvHaarClassifierFree_32f_p )
140 		 {
141 		 int i;
142 		 for( i = 0; i < cascade->count; i++ )
143 		 {
144 		 if( cascade->ipp_stages[i] )
145 		 icvHaarClassifierFree_32f_p( cascade->ipp_stages[i] );
146 		 }
147 		 }
148 		 cvFree( &cascade->ipp_stages );*/
149         cvFree( _cascade );
150     }
151 }
152 
153 /* create more efficient internal representation of haar classifier cascade */
154 static MyCvHidHaarClassifierCascade*
myicvCreateHidHaarClassifierCascade(CvHaarClassifierCascade * cascade)155 myicvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade )
156 {
157     CvRect* ipp_features = 0;
158     float *ipp_weights = 0, *ipp_thresholds = 0, *ipp_val1 = 0, *ipp_val2 = 0;
159     int* ipp_counts = 0;
160 
161     MyCvHidHaarClassifierCascade* out = 0;
162 
163     CV_FUNCNAME( "icvCreateHidHaarClassifierCascade" );
164 
165     __BEGIN__;
166 
167     int i, j, k, l;
168     int datasize;
169     int total_classifiers = 0;
170     int total_nodes = 0;
171     char errorstr[100];
172     MyCvHidHaarClassifier* haar_classifier_ptr;
173     MyCvHidHaarTreeNode* haar_node_ptr;
174     CvSize orig_window_size;
175     int has_tilted_features = 0;
176     int max_count = 0;
177 
178     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
179         CV_ERROR( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
180 
181     if( cascade->hid_cascade )
182         CV_ERROR( CV_StsError, "hid_cascade has been already created" );
183 
184     if( !cascade->stage_classifier )
185         CV_ERROR( CV_StsNullPtr, "" );
186 
187     if( cascade->count <= 0 )
188         CV_ERROR( CV_StsOutOfRange, "Negative number of cascade stages" );
189 
190     orig_window_size = cascade->orig_window_size;
191 
192     /* check input structure correctness and calculate total memory size needed for
193 	 internal representation of the classifier cascade */
194     for( i = 0; i < cascade->count; i++ )
195     {
196         CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
197 
198         if( !stage_classifier->classifier ||
199 		   stage_classifier->count <= 0 )
200         {
201             sprintf( errorstr, "header of the stage classifier #%d is invalid "
202 					"(has null pointers or non-positive classfier count)", i );
203             CV_ERROR( CV_StsError, errorstr );
204         }
205 
206         max_count = MAX( max_count, stage_classifier->count );
207         total_classifiers += stage_classifier->count;
208 
209         for( j = 0; j < stage_classifier->count; j++ )
210         {
211             CvHaarClassifier* classifier = stage_classifier->classifier + j;
212 
213             total_nodes += classifier->count;
214             for( l = 0; l < classifier->count; l++ )
215             {
216                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
217                 {
218                     if( classifier->haar_feature[l].rect[k].r.width )
219                     {
220                         CvRect r = classifier->haar_feature[l].rect[k].r;
221                         int tilted = classifier->haar_feature[l].tilted;
222                         has_tilted_features |= tilted != 0;
223                         if( r.width < 0 || r.height < 0 || r.y < 0 ||
224 						   r.x + r.width > orig_window_size.width
225 						   ||
226 						   (!tilted &&
227                             (r.x < 0 || r.y + r.height > orig_window_size.height))
228 						   ||
229 						   (tilted && (r.x - r.height < 0 ||
230 									   r.y + r.width + r.height > orig_window_size.height)))
231                         {
232                             sprintf( errorstr, "rectangle #%d of the classifier #%d of "
233 									"the stage classifier #%d is not inside "
234 									"the reference (original) cascade window", k, j, i );
235                             CV_ERROR( CV_StsNullPtr, errorstr );
236                         }
237                     }
238                 }
239             }
240         }
241     }
242 
243     // this is an upper boundary for the whole hidden cascade size
244     datasize = sizeof(MyCvHidHaarClassifierCascade) +
245 	sizeof(MyCvHidHaarStageClassifier)*cascade->count +
246 	sizeof(MyCvHidHaarClassifier) * total_classifiers +
247 	sizeof(MyCvHidHaarTreeNode) * total_nodes +
248 	sizeof(void*)*(total_nodes + total_classifiers);
249 
250     CV_CALL( out = (MyCvHidHaarClassifierCascade*)cvAlloc( datasize ));
251     memset( out, 0, sizeof(*out) );
252 
253     /* init header */
254     out->count = cascade->count;
255     out->stage_classifier = (MyCvHidHaarStageClassifier*)(out + 1);
256     haar_classifier_ptr = (MyCvHidHaarClassifier*)(out->stage_classifier + cascade->count);
257     haar_node_ptr = (MyCvHidHaarTreeNode*)(haar_classifier_ptr + total_classifiers);
258 
259     out->is_stump_based = 1;
260     out->has_tilted_features = has_tilted_features;
261     out->is_tree = 0;
262 
263     /* initialize internal representation */
264     for( i = 0; i < cascade->count; i++ )
265     {
266         CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
267         MyCvHidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i;
268 
269         hid_stage_classifier->count = stage_classifier->count;
270         hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
271         hid_stage_classifier->classifier = haar_classifier_ptr;
272         hid_stage_classifier->two_rects = 1;
273         haar_classifier_ptr += stage_classifier->count;
274 
275         hid_stage_classifier->parent = (stage_classifier->parent == -1)
276 		? NULL : out->stage_classifier + stage_classifier->parent;
277         hid_stage_classifier->next = (stage_classifier->next == -1)
278 		? NULL : out->stage_classifier + stage_classifier->next;
279         hid_stage_classifier->child = (stage_classifier->child == -1)
280 		? NULL : out->stage_classifier + stage_classifier->child;
281 
282         out->is_tree |= hid_stage_classifier->next != NULL;
283 
284         for( j = 0; j < stage_classifier->count; j++ )
285         {
286             CvHaarClassifier* classifier = stage_classifier->classifier + j;
287             MyCvHidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j;
288             int node_count = classifier->count;
289             float* alpha_ptr = (float*)(haar_node_ptr + node_count);
290 
291             hid_classifier->count = node_count;
292             hid_classifier->node = haar_node_ptr;
293             hid_classifier->alpha = alpha_ptr;
294 
295             for( l = 0; l < node_count; l++ )
296             {
297                 MyCvHidHaarTreeNode* node = hid_classifier->node + l;
298                 CvHaarFeature* feature = classifier->haar_feature + l;
299                 memset( node, -1, sizeof(*node) );
300                 node->threshold = (int)((classifier->threshold[l]) * 65536.0);
301                 node->left = classifier->left[l];
302                 node->right = classifier->right[l];
303 
304                 if( fabs(feature->rect[2].weight) < DBL_EPSILON ||
305 				   feature->rect[2].r.width == 0 ||
306 				   feature->rect[2].r.height == 0 )
307                     memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
308                 else
309                     hid_stage_classifier->two_rects = 0;
310             }
311 
312             memcpy( alpha_ptr, classifier->alpha, (node_count+1)*sizeof(alpha_ptr[0]));
313             haar_node_ptr =
314 			(MyCvHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));
315 
316             out->is_stump_based &= node_count == 1;
317         }
318     }
319 
320     /*{
321 	 int can_use_ipp = icvHaarClassifierInitAlloc_32f_p != 0 &&
322 	 icvHaarClassifierFree_32f_p != 0 &&
323 	 icvApplyHaarClassifier_32f_C1R_p != 0 &&
324 	 icvRectStdDev_32f_C1R_p != 0 &&
325 	 !out->has_tilted_features && !out->is_tree && out->is_stump_based;
326 
327 	 if( can_use_ipp )
328 	 {
329 	 int ipp_datasize = cascade->count*sizeof(out->ipp_stages[0]);
330 	 float ipp_weight_scale=(float)(1./((orig_window_size.width-icv_object_win_border*2)*
331 	 (orig_window_size.height-icv_object_win_border*2)));
332 
333 	 CV_CALL( out->ipp_stages = (void**)cvAlloc( ipp_datasize ));
334 	 memset( out->ipp_stages, 0, ipp_datasize );
335 
336 	 CV_CALL( ipp_features = (CvRect*)cvAlloc( max_count*3*sizeof(ipp_features[0]) ));
337 	 CV_CALL( ipp_weights = (float*)cvAlloc( max_count*3*sizeof(ipp_weights[0]) ));
338 	 CV_CALL( ipp_thresholds = (float*)cvAlloc( max_count*sizeof(ipp_thresholds[0]) ));
339 	 CV_CALL( ipp_val1 = (float*)cvAlloc( max_count*sizeof(ipp_val1[0]) ));
340 	 CV_CALL( ipp_val2 = (float*)cvAlloc( max_count*sizeof(ipp_val2[0]) ));
341 	 CV_CALL( ipp_counts = (int*)cvAlloc( max_count*sizeof(ipp_counts[0]) ));
342 
343 	 for( i = 0; i < cascade->count; i++ )
344 	 {
345 	 CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
346 	 for( j = 0, k = 0; j < stage_classifier->count; j++ )
347 	 {
348 	 CvHaarClassifier* classifier = stage_classifier->classifier + j;
349 	 int rect_count = 2 + (classifier->haar_feature->rect[2].r.width != 0);
350 
351 	 ipp_thresholds[j] = classifier->threshold[0];
352 	 ipp_val1[j] = classifier->alpha[0];
353 	 ipp_val2[j] = classifier->alpha[1];
354 	 ipp_counts[j] = rect_count;
355 
356 	 for( l = 0; l < rect_count; l++, k++ )
357 	 {
358 	 ipp_features[k] = classifier->haar_feature->rect[l].r;
359 	 //ipp_features[k].y = orig_window_size.height - ipp_features[k].y - ipp_features[k].height;
360 	 ipp_weights[k] = classifier->haar_feature->rect[l].weight*ipp_weight_scale;
361 	 }
362 	 }
363 
364 	 if( icvHaarClassifierInitAlloc_32f_p( &out->ipp_stages[i],
365 	 ipp_features, ipp_weights, ipp_thresholds,
366 	 ipp_val1, ipp_val2, ipp_counts, stage_classifier->count ) < 0 )
367 	 break;
368 	 }
369 
370 	 if( i < cascade->count )
371 	 {
372 	 for( j = 0; j < i; j++ )
373 	 if( icvHaarClassifierFree_32f_p && out->ipp_stages[i] )
374 	 icvHaarClassifierFree_32f_p( out->ipp_stages[i] );
375 	 cvFree( &out->ipp_stages );
376 	 }
377 	 }
378 	 }*/
379 
380     cascade->hid_cascade = (CvHidHaarClassifierCascade*)out;
381     assert( (char*)haar_node_ptr - (char*)out <= datasize );
382 
383     __END__;
384 
385     if( cvGetErrStatus() < 0 )
386         myicvReleaseHidHaarClassifierCascade( &out );
387 
388     cvFree( &ipp_features );
389     cvFree( &ipp_weights );
390     cvFree( &ipp_thresholds );
391     cvFree( &ipp_val1 );
392     cvFree( &ipp_val2 );
393     cvFree( &ipp_counts );
394 
395     return out;
396 }
397 
398 #define calc_sum(rect,offset) \
399 ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
400 
401 
402 CV_INLINE
myicvEvalHidHaarClassifier(MyCvHidHaarClassifier * classifier,double variance_norm_factor,size_t p_offset)403 double myicvEvalHidHaarClassifier( MyCvHidHaarClassifier* classifier,
404 								double variance_norm_factor,
405 								size_t p_offset )
406 {
407     int idx = 0;
408     do
409     {
410         MyCvHidHaarTreeNode* node = classifier->node + idx;
411         double t = node->threshold * variance_norm_factor;
412 
413         double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
414         sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
415 
416         if( node->feature.rect[2].p0 )
417             sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
418 
419         idx = sum < t ? node->left : node->right;
420     }
421     while( idx > 0 );
422     return classifier->alpha[-idx];
423 }
424 
425 /*********************** Special integer sqrt **************************/
426 
427 int
isqrt(int x)428 isqrt(int x)
429 {
430 	/*
431 	 *	Logically, these are unsigned. We need the sign bit to test
432 	 *	whether (op - res - one) underflowed.
433 	 */
434 
435 	register int op, res, one;
436 
437 	op = x;
438 	res = 0;
439 
440 	/* "one" starts at the highest power of four <= than the argument. */
441 
442 	one = 1 << 30;	/* second-to-top bit set */
443 	while (one > op) one >>= 2;
444 
445 		while (one != 0) {
446 			if (op >= res + one) {
447 				op = op - (res + one);
448 				res = res +  2 * one;
449 			}
450 			res /= 2;
451 			one /= 4;
452 		}
453 	return(res);
454 }
455 
456 #define NEXT(n, i)  (((n) + (i)/(n)) >> 1)
457 
isqrt1(int number)458 unsigned int isqrt1(int number) {
459 	unsigned int n  = 1;
460 	unsigned int n1 = NEXT(n, number);
461 
462 	while(abs(n1 - n) > 1) {
463 		n  = n1;
464 		n1 = NEXT(n, number);
465 	}
466 	while((n1*n1) > number) {
467 		n1 -= 1;
468 	}
469 	return n1;
470 }
471 /***********************************************************************/
472 
473 CV_IMPL int
mycvRunHaarClassifierCascade(CvHaarClassifierCascade * _cascade,CvPoint pt,int start_stage)474 mycvRunHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
475 						   CvPoint pt, int start_stage )
476 {
477     int result = -1;
478     CV_FUNCNAME("mycvRunHaarClassifierCascade");
479 
480     __BEGIN__;
481 
482     int p_offset, pq_offset;
483 	int pq0, pq1, pq2, pq3;
484     int i, j;
485     double mean;
486 	int variance_norm_factor;
487     MyCvHidHaarClassifierCascade* cascade;
488 
489     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
490         CV_ERROR( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid cascade pointer" );
491 
492     cascade = (MyCvHidHaarClassifierCascade*)_cascade->hid_cascade;
493     if( !cascade )
494         CV_ERROR( CV_StsNullPtr, "Hidden cascade has not been created.\n"
495 				 "Use cvSetImagesForHaarClassifierCascade" );
496 
497     if( pt.x < 0 || pt.y < 0 ||
498 	   pt.x + _cascade->real_window_size.width >= cascade->sum.width-2 ||
499 	   pt.y + _cascade->real_window_size.height >= cascade->sum.height-2 )
500         EXIT;
501 
502     p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x;
503     pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x;
504     mean = calc_sum(*cascade,p_offset) * cascade->inv_window_area;
505 	pq0 = cascade->pq0[pq_offset];
506 	pq1 = cascade->pq1[pq_offset];
507 	pq2 = cascade->pq2[pq_offset];
508 	pq3 = cascade->pq3[pq_offset];
509     variance_norm_factor = pq0 - pq1 - pq2 + pq3;
510     variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
511     if( variance_norm_factor >= 0. )
512         variance_norm_factor = sqrt(variance_norm_factor);
513     else
514         variance_norm_factor = 1.;
515 
516 //    if( cascade->is_tree )
517 //    {
518 //        MyCvHidHaarStageClassifier* ptr;
519 //        assert( start_stage == 0 );
520 //
521 //        result = 1;
522 //        ptr = cascade->stage_classifier;
523 //
524 //        while( ptr )
525 //        {
526 //            double stage_sum = 0;
527 //
528 //            for( j = 0; j < ptr->count; j++ )
529 //            {
530 //                stage_sum += myicvEvalHidHaarClassifier( ptr->classifier + j,
531 //													  variance_norm_factor, p_offset );
532 //            }
533 //
534 //            if( stage_sum >= ptr->threshold )
535 //            {
536 //                ptr = ptr->child;
537 //            }
538 //            else
539 //            {
540 //                while( ptr && ptr->next == NULL ) ptr = ptr->parent;
541 //                if( ptr == NULL )
542 //                {
543 //                    result = 0;
544 //                    EXIT;
545 //                }
546 //                ptr = ptr->next;
547 //            }
548 //        }
549 //    }
550 //    else if( cascade->is_stump_based )
551     {
552         for( i = start_stage; i < cascade->count; i++ )
553         {
554             double stage_sum = 0;
555 
556             if( cascade->stage_classifier[i].two_rects )
557             {
558                 for( j = 0; j < cascade->stage_classifier[i].count; j++ )
559                 {
560                     MyCvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
561                     MyCvHidHaarTreeNode* node = classifier->node;
562                     int t = node->threshold * variance_norm_factor;
563                     int sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
564                     sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
565                     stage_sum += classifier->alpha[sum >= t];
566                 }
567             }
568             else
569             {
570                 for( j = 0; j < cascade->stage_classifier[i].count; j++ )
571                 {
572                     MyCvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
573                     MyCvHidHaarTreeNode* node = classifier->node;
574                     int t = node->threshold * variance_norm_factor;
575                     int sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
576                     sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
577                     if( node->feature.rect[2].p0 )
578                         sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
579 
580                     stage_sum += classifier->alpha[sum >= t];
581                 }
582             }
583 
584             if( stage_sum < cascade->stage_classifier[i].threshold )
585             {
586                 result = -i;
587                 EXIT;
588             }
589         }
590     }
591 //    else
592 //    {
593 //        for( i = start_stage; i < cascade->count; i++ )
594 //        {
595 //            double stage_sum = 0;
596 //
597 //            for( j = 0; j < cascade->stage_classifier[i].count; j++ )
598 //            {
599 //                stage_sum += myicvEvalHidHaarClassifier(
600 //													  cascade->stage_classifier[i].classifier + j,
601 //													  variance_norm_factor, p_offset );
602 //            }
603 //
604 //            if( stage_sum < cascade->stage_classifier[i].threshold )
605 //            {
606 //                result = -i;
607 //                EXIT;
608 //            }
609 //        }
610 //    }
611 
612     result = 1;
613 
614     __END__;
615 
616     return result;
617 }
618 
619 #define sum_elem_ptr(sum,row,col)  \
620 ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
621 
622 #define sqsum_elem_ptr(sqsum,row,col)  \
623 ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
624 
625 
626 CV_IMPL void
mycvSetImagesForHaarClassifierCascade(CvHaarClassifierCascade * _cascade,const CvArr * _sum,const CvArr * _sqsum,const CvArr * _tilted_sum,double scale)627 mycvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
628 									const CvArr* _sum,
629 									const CvArr* _sqsum,
630 									const CvArr* _tilted_sum,
631 									double scale )
632 {
633     CV_FUNCNAME("cvSetImagesForHaarClassifierCascade");
634 
635     __BEGIN__;
636 
637     CvMat sum_stub, *sum = (CvMat*)_sum;
638     CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
639     CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
640     MyCvHidHaarClassifierCascade* cascade;
641     int coi0 = 0, coi1 = 0;
642     int i;
643     CvRect equ_rect;
644     double weight_scale;
645 
646     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
647         CV_ERROR( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
648 
649     if( scale <= 0 )
650         CV_ERROR( CV_StsOutOfRange, "Scale must be positive" );
651 
652     CV_CALL( sum = cvGetMat( sum, &sum_stub, &coi0 ));
653     CV_CALL( sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 ));
654 
655     if( coi0 || coi1 )
656         CV_ERROR( CV_BadCOI, "COI is not supported" );
657 
658     if( !CV_ARE_SIZES_EQ( sum, sqsum ))
659         CV_ERROR( CV_StsUnmatchedSizes, "All integral images must have the same size" );
660 
661     if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
662 	   CV_MAT_TYPE(sum->type) != CV_32SC1 )
663         CV_ERROR( CV_StsUnsupportedFormat,
664 				 "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
665 
666     if( !_cascade->hid_cascade )
667         CV_CALL( myicvCreateHidHaarClassifierCascade(_cascade) );
668 
669     cascade = (MyCvHidHaarClassifierCascade*)_cascade->hid_cascade;
670 
671     if( cascade->has_tilted_features )
672     {
673         CV_CALL( tilted = cvGetMat( tilted, &tilted_stub, &coi1 ));
674 
675         if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
676             CV_ERROR( CV_StsUnsupportedFormat,
677 					 "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
678 
679         if( sum->step != tilted->step )
680             CV_ERROR( CV_StsUnmatchedSizes,
681 					 "Sum and tilted_sum must have the same stride (step, widthStep)" );
682 
683         if( !CV_ARE_SIZES_EQ( sum, tilted ))
684             CV_ERROR( CV_StsUnmatchedSizes, "All integral images must have the same size" );
685         cascade->tilted = *tilted;
686     }
687 
688     _cascade->scale = scale;
689     _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
690     _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
691 
692     cascade->sum = *sum;
693     cascade->sqsum = *sqsum;
694 
695     equ_rect.x = equ_rect.y = cvRound(scale);
696     equ_rect.width = cvRound((_cascade->orig_window_size.width-2)*scale);
697     equ_rect.height = cvRound((_cascade->orig_window_size.height-2)*scale);
698     weight_scale = 1./(equ_rect.width*equ_rect.height);
699     cascade->inv_window_area = weight_scale;
700 
701     cascade->p0 = sum_elem_ptr(*sum, equ_rect.y, equ_rect.x);
702     cascade->p1 = sum_elem_ptr(*sum, equ_rect.y, equ_rect.x + equ_rect.width );
703     cascade->p2 = sum_elem_ptr(*sum, equ_rect.y + equ_rect.height, equ_rect.x );
704     cascade->p3 = sum_elem_ptr(*sum, equ_rect.y + equ_rect.height,
705 							   equ_rect.x + equ_rect.width );
706 
707     cascade->pq0 = sqsum_elem_ptr(*sqsum, equ_rect.y, equ_rect.x);
708     cascade->pq1 = sqsum_elem_ptr(*sqsum, equ_rect.y, equ_rect.x + equ_rect.width );
709     cascade->pq2 = sqsum_elem_ptr(*sqsum, equ_rect.y + equ_rect.height, equ_rect.x );
710     cascade->pq3 = sqsum_elem_ptr(*sqsum, equ_rect.y + equ_rect.height,
711 								  equ_rect.x + equ_rect.width );
712 
713     /* init pointers in haar features according to real window size and
714 	 given image pointers */
715     {
716 #ifdef _OPENMP
717 		int max_threads = cvGetNumThreads();
718 #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
719 #endif // _OPENMP
720 		for( i = 0; i < _cascade->count; i++ )
721 		{
722 			int j, k, l;
723 			for( j = 0; j < cascade->stage_classifier[i].count; j++ )
724 			{
725 				for( l = 0; l < cascade->stage_classifier[i].classifier[j].count; l++ )
726 				{
727 					CvHaarFeature* feature =
728                     &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
729 					/* CvHidHaarClassifier* classifier =
730 					 cascade->stage_classifier[i].classifier + j; */
731 					MyCvHidHaarFeature* hidfeature =
732                     &cascade->stage_classifier[i].classifier[j].node[l].feature;
733 					double sum0 = 0, area0 = 0;
734 					CvRect r[3];
735 #if CV_ADJUST_FEATURES
736 					int base_w = -1, base_h = -1;
737 					int new_base_w = 0, new_base_h = 0;
738 					int kx, ky;
739 					int flagx = 0, flagy = 0;
740 					int x0 = 0, y0 = 0;
741 #endif
742 					int nr;
743 
744 					/* align blocks */
745 					for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
746 					{
747 						if( !hidfeature->rect[k].p0 )
748 							break;
749 #if CV_ADJUST_FEATURES
750 						r[k] = feature->rect[k].r;
751 						base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
752 						base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
753 						base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
754 						base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
755 #endif
756 					}
757 
758 					nr = k;
759 
760 #if CV_ADJUST_FEATURES
761 					base_w += 1;
762 					base_h += 1;
763 					kx = r[0].width / base_w;
764 					ky = r[0].height / base_h;
765 
766 					if( kx <= 0 )
767 					{
768 						flagx = 1;
769 						new_base_w = cvRound( r[0].width * scale ) / kx;
770 						x0 = cvRound( r[0].x * scale );
771 					}
772 
773 					if( ky <= 0 )
774 					{
775 						flagy = 1;
776 						new_base_h = cvRound( r[0].height * scale ) / ky;
777 						y0 = cvRound( r[0].y * scale );
778 					}
779 #endif
780 
781 					float tmpweight[3] = {0};
782 
783 					for( k = 0; k < nr; k++ )
784 					{
785 						CvRect tr;
786 						double correction_ratio;
787 
788 #if CV_ADJUST_FEATURES
789 						if( flagx )
790 						{
791 							tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;
792 							tr.width = r[k].width * new_base_w / base_w;
793 						}
794 						else
795 #endif
796 						{
797 							tr.x = cvRound( r[k].x * scale );
798 							tr.width = cvRound( r[k].width * scale );
799 						}
800 
801 #if CV_ADJUST_FEATURES
802 						if( flagy )
803 						{
804 							tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;
805 							tr.height = r[k].height * new_base_h / base_h;
806 						}
807 						else
808 #endif
809 						{
810 							tr.y = cvRound( r[k].y * scale );
811 							tr.height = cvRound( r[k].height * scale );
812 						}
813 
814 #if CV_ADJUST_WEIGHTS
815 						{
816 							// RAINER START
817 							const float orig_feature_size =  (float)(feature->rect[k].r.width)*feature->rect[k].r.height;
818 							const float orig_norm_size = (float)(_cascade->orig_window_size.width)*(_cascade->orig_window_size.height);
819 							const float feature_size = float(tr.width*tr.height);
820 							//const float normSize    = float(equ_rect.width*equ_rect.height);
821 							float target_ratio = orig_feature_size / orig_norm_size;
822 							//float isRatio = featureSize / normSize;
823 							//correctionRatio = targetRatio / isRatio / normSize;
824 							correction_ratio = target_ratio / feature_size;
825 							// RAINER END
826 						}
827 #else
828 						correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
829 #endif
830 
831 						if( !feature->tilted )
832 						{
833 							hidfeature->rect[k].p0 = sum_elem_ptr(*sum, tr.y, tr.x);
834 							hidfeature->rect[k].p1 = sum_elem_ptr(*sum, tr.y, tr.x + tr.width);
835 							hidfeature->rect[k].p2 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x);
836 							hidfeature->rect[k].p3 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x + tr.width);
837 						}
838 						else
839 						{
840 							hidfeature->rect[k].p2 = sum_elem_ptr(*tilted, tr.y + tr.width, tr.x + tr.width);
841 							hidfeature->rect[k].p3 = sum_elem_ptr(*tilted, tr.y + tr.width + tr.height,
842 																  tr.x + tr.width - tr.height);
843 							hidfeature->rect[k].p0 = sum_elem_ptr(*tilted, tr.y, tr.x);
844 							hidfeature->rect[k].p1 = sum_elem_ptr(*tilted, tr.y + tr.height, tr.x - tr.height);
845 						}
846 
847 //						hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
848 						tmpweight[k] = (float)(feature->rect[k].weight * correction_ratio);
849 
850 						if( k == 0 )
851 							area0 = tr.width * tr.height;
852 						else
853 //							sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
854 							sum0 += tmpweight[k] * tr.width * tr.height;
855 					}
856 
857 					tmpweight[0] = (float)(-sum0/area0);
858 
859 					for(int ii = 0; ii < nr; hidfeature->rect[ii].weight = (int)(tmpweight[ii] * 65536.0), ii++);
860 				} /* l */
861 			} /* j */
862 		}
863     }
864 
865     __END__;
866 }
867 
868 CvMat *temp = 0, *sum = 0, *sqsum = 0;
869 double tickFreqTimes1000 = ((double)cvGetTickFrequency()*1000.);
870 
871 CV_IMPL CvSeq*
mycvHaarDetectObjects(const CvArr * _img,CvHaarClassifierCascade * cascade,CvMemStorage * storage,double scale_factor,int min_neighbors,int flags,CvSize min_size)872 mycvHaarDetectObjects( const CvArr* _img,
873 					CvHaarClassifierCascade* cascade,
874 					CvMemStorage* storage, double scale_factor,
875 					int min_neighbors, int flags, CvSize min_size )
876 {
877     int split_stage = 2;
878 
879     CvMat stub, *img = (CvMat*)_img;
880     CvMat  *tilted = 0, *norm_img = 0, *sumcanny = 0, *img_small = 0;
881     CvSeq* result_seq = 0;
882     CvMemStorage* temp_storage = 0;
883     CvAvgComp* comps = 0;
884     CvSeq* seq_thread[CV_MAX_THREADS] = {0};
885     int i, max_threads = 0;
886 	double t1;
887 
888     CV_FUNCNAME( "cvHaarDetectObjects" );
889 
890     __BEGIN__;
891 
892 	double t = (double)cvGetTickCount();
893 
894     CvSeq *seq = 0, *seq2 = 0, *idx_seq = 0, *big_seq = 0;
895     CvAvgComp result_comp = {{0,0,0,0},0};
896     double factor;
897     int npass = 2, coi;
898     bool do_canny_pruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0;
899     bool find_biggest_object = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
900     bool rough_search = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0;
901 
902     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
903         CV_ERROR( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
904 
905     if( !storage )
906         CV_ERROR( CV_StsNullPtr, "Null storage pointer" );
907 
908     CV_CALL( img = cvGetMat( img, &stub, &coi ));
909     if( coi )
910         CV_ERROR( CV_BadCOI, "COI is not supported" );
911 
912     if( CV_MAT_DEPTH(img->type) != CV_8U )
913         CV_ERROR( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
914 
915     if( scale_factor <= 1 )
916         CV_ERROR( CV_StsOutOfRange, "scale factor must be > 1" );
917 
918     if( find_biggest_object )
919         flags &= ~CV_HAAR_SCALE_IMAGE;
920 
921 	if(!temp) {
922 		CV_CALL( temp = cvCreateMat( img->rows, img->cols, CV_8UC1 ));
923 	}
924 	if(!sum) {
925 		CV_CALL( sum = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 ));
926 	}
927 	if(!sqsum) {
928 		CV_CALL( sqsum = cvCreateMat( img->rows + 1, img->cols + 1, CV_64FC1 ));
929 	}
930     CV_CALL( temp_storage = cvCreateChildMemStorage( storage ));
931 
932     if( !cascade->hid_cascade )
933         CV_CALL( myicvCreateHidHaarClassifierCascade(cascade) );
934 
935     if( ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->has_tilted_features )
936         tilted = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
937 
938     seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage );
939     seq2 = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), temp_storage );
940     result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
941 
942     max_threads = cvGetNumThreads();
943     if( max_threads > 1 )
944         for( i = 0; i < max_threads; i++ )
945         {
946             CvMemStorage* temp_storage_thread;
947             CV_CALL( temp_storage_thread = cvCreateMemStorage(0));
948             CV_CALL( seq_thread[i] = cvCreateSeq( 0, sizeof(CvSeq),
949 												 sizeof(CvRect), temp_storage_thread ));
950         }
951     else
952         seq_thread[0] = seq;
953 
954     if( CV_MAT_CN(img->type) > 1 )
955     {
956         cvCvtColor( img, temp, CV_BGR2GRAY );
957         img = temp;
958     }
959 
960     if( flags & CV_HAAR_FIND_BIGGEST_OBJECT )
961         flags &= ~(CV_HAAR_SCALE_IMAGE|CV_HAAR_DO_CANNY_PRUNING);
962 
963 //    if( flags & CV_HAAR_SCALE_IMAGE )
964 //    {
965 //        CvSize win_size0 = cascade->orig_window_size;
966 //        /*int use_ipp = cascade->hid_cascade->ipp_stages != 0 &&
967 //		 icvApplyHaarClassifier_32f_C1R_p != 0;
968 //
969 //		 if( use_ipp )
970 //		 CV_CALL( norm_img = cvCreateMat( img->rows, img->cols, CV_32FC1 ));*/
971 //        CV_CALL( img_small = cvCreateMat( img->rows + 1, img->cols + 1, CV_8UC1 ));
972 //
973 //        for( factor = 1; ; factor *= scale_factor )
974 //        {
975 //            int strip_count, strip_size;
976 //            int ystep = factor > 2. ? 1 : 2;
977 //            CvSize win_size = { cvRound(win_size0.width*factor),
978 //			cvRound(win_size0.height*factor) };
979 //            CvSize sz = { cvRound( img->cols/factor ), cvRound( img->rows/factor ) };
980 //            CvSize sz1 = { sz.width - win_size0.width, sz.height - win_size0.height };
981 //            /*CvRect equ_rect = { icv_object_win_border, icv_object_win_border,
982 //			 win_size0.width - icv_object_win_border*2,
983 //			 win_size0.height - icv_object_win_border*2 };*/
984 //            CvMat img1, sum1, sqsum1, norm1, tilted1, mask1;
985 //            CvMat* _tilted = 0;
986 //
987 //            if( sz1.width <= 0 || sz1.height <= 0 )
988 //                break;
989 //            if( win_size.width < min_size.width || win_size.height < min_size.height )
990 //                continue;
991 //
992 //            img1 = cvMat( sz.height, sz.width, CV_8UC1, img_small->data.ptr );
993 //            sum1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, sum->data.ptr );
994 //            sqsum1 = cvMat( sz.height+1, sz.width+1, CV_64FC1, sqsum->data.ptr );
995 //            if( tilted )
996 //            {
997 //                tilted1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, tilted->data.ptr );
998 //                _tilted = &tilted1;
999 //            }
1000 //            norm1 = cvMat( sz1.height, sz1.width, CV_32FC1, norm_img ? norm_img->data.ptr : 0 );
1001 //            mask1 = cvMat( sz1.height, sz1.width, CV_8UC1, temp->data.ptr );
1002 //
1003 //            cvResize( img, &img1, CV_INTER_LINEAR );
1004 //            cvIntegral( &img1, &sum1, &sqsum1, _tilted );
1005 //
1006 //            if( max_threads > 1 )
1007 //            {
1008 //                strip_count = MAX(MIN(sz1.height/ystep, max_threads*3), 1);
1009 //                strip_size = (sz1.height + strip_count - 1)/strip_count;
1010 //                strip_size = (strip_size / ystep)*ystep;
1011 //            }
1012 //            else
1013 //            {
1014 //                strip_count = 1;
1015 //                strip_size = sz1.height;
1016 //            }
1017 //
1018 //            //if( !use_ipp )
1019 //			cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, 0, 1. );
1020 //            /*else
1021 //			 {
1022 //			 for( i = 0; i <= sz.height; i++ )
1023 //			 {
1024 //			 const int* isum = (int*)(sum1.data.ptr + sum1.step*i);
1025 //			 float* fsum = (float*)isum;
1026 //			 const int FLT_DELTA = -(1 << 24);
1027 //			 int j;
1028 //			 for( j = 0; j <= sz.width; j++ )
1029 //			 fsum[j] = (float)(isum[j] + FLT_DELTA);
1030 //			 }
1031 //			 }*/
1032 //
1033 //#ifdef _OPENMP
1034 //#pragma omp parallel for num_threads(max_threads) schedule(dynamic)
1035 //#endif
1036 //            for( i = 0; i < strip_count; i++ )
1037 //            {
1038 //                int thread_id = cvGetThreadNum();
1039 //                int positive = 0;
1040 //                int y1 = i*strip_size, y2 = (i+1)*strip_size/* - ystep + 1*/;
1041 //                CvSize ssz;
1042 //                int x, y;
1043 //                if( i == strip_count - 1 || y2 > sz1.height )
1044 //                    y2 = sz1.height;
1045 //                ssz = cvSize(sz1.width, y2 - y1);
1046 //
1047 //                /*if( use_ipp )
1048 //				 {
1049 //				 icvRectStdDev_32f_C1R_p(
1050 //				 (float*)(sum1.data.ptr + y1*sum1.step), sum1.step,
1051 //				 (double*)(sqsum1.data.ptr + y1*sqsum1.step), sqsum1.step,
1052 //				 (float*)(norm1.data.ptr + y1*norm1.step), norm1.step, ssz, equ_rect );
1053 //
1054 //				 positive = (ssz.width/ystep)*((ssz.height + ystep-1)/ystep);
1055 //				 memset( mask1.data.ptr + y1*mask1.step, ystep == 1, mask1.height*mask1.step);
1056 //
1057 //				 if( ystep > 1 )
1058 //				 {
1059 //				 for( y = y1, positive = 0; y < y2; y += ystep )
1060 //				 for( x = 0; x < ssz.width; x += ystep )
1061 //				 mask1.data.ptr[mask1.step*y + x] = (uchar)1;
1062 //				 }
1063 //
1064 //				 for( int j = 0; j < cascade->count; j++ )
1065 //				 {
1066 //				 if( icvApplyHaarClassifier_32f_C1R_p(
1067 //				 (float*)(sum1.data.ptr + y1*sum1.step), sum1.step,
1068 //				 (float*)(norm1.data.ptr + y1*norm1.step), norm1.step,
1069 //				 mask1.data.ptr + y1*mask1.step, mask1.step, ssz, &positive,
1070 //				 cascade->hid_cascade->stage_classifier[j].threshold,
1071 //				 cascade->hid_cascade->ipp_stages[j]) < 0 )
1072 //				 {
1073 //				 positive = 0;
1074 //				 break;
1075 //				 }
1076 //				 if( positive <= 0 )
1077 //				 break;
1078 //				 }
1079 //				 }
1080 //				 else*/
1081 //                {
1082 //                    for( y = y1, positive = 0; y < y2; y += ystep )
1083 //                        for( x = 0; x < ssz.width; x += ystep )
1084 //                        {
1085 //                            mask1.data.ptr[mask1.step*y + x] =
1086 //							mycvRunHaarClassifierCascade( cascade, cvPoint(x,y), 0 ) > 0;
1087 //                            positive += mask1.data.ptr[mask1.step*y + x];
1088 //                        }
1089 //                }
1090 //
1091 //                if( positive > 0 )
1092 //                {
1093 //                    for( y = y1; y < y2; y += ystep )
1094 //                        for( x = 0; x < ssz.width; x += ystep )
1095 //                            if( mask1.data.ptr[mask1.step*y + x] != 0 )
1096 //                            {
1097 //                                CvRect obj_rect = { cvRound(x*factor), cvRound(y*factor),
1098 //								win_size.width, win_size.height };
1099 //                                cvSeqPush( seq_thread[thread_id], &obj_rect );
1100 //                            }
1101 //                }
1102 //            }
1103 //
1104 //            // gather the results
1105 //            if( max_threads > 1 )
1106 //                for( i = 0; i < max_threads; i++ )
1107 //                {
1108 //                    CvSeq* s = seq_thread[i];
1109 //                    int j, total = s->total;
1110 //                    CvSeqBlock* b = s->first;
1111 //                    for( j = 0; j < total; j += b->count, b = b->next )
1112 //                        cvSeqPushMulti( seq, b->data, b->count );
1113 //                }
1114 //        }
1115 //    }
1116 //    else
1117 	t1 = (double)cvGetTickCount();
1118 //	printf( "init time = %gms\n", (t1 - t)/tickFreqTimes1000);
1119 	t = t1;
1120 
1121     {
1122         int n_factors = 0;
1123         CvRect scan_roi_rect = {0,0,0,0};
1124         bool is_found = false, scan_roi = false;
1125 
1126         cvIntegral( img, sum, sqsum, tilted );
1127 
1128 //        if( do_canny_pruning )
1129 //        {
1130 //            sumcanny = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
1131 //            cvCanny( img, temp, 0, 50, 3 );
1132 //            cvIntegral( temp, sumcanny );
1133 //        }
1134 
1135         if( (unsigned)split_stage >= (unsigned)cascade->count ||
1136 		   ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->is_tree )
1137         {
1138             split_stage = cascade->count;
1139             npass = 1;
1140         }
1141 
1142         for( n_factors = 0, factor = 1;
1143 			factor*cascade->orig_window_size.width < img->cols - 10 &&
1144 			factor*cascade->orig_window_size.height < img->rows - 10;
1145 			n_factors++, factor *= scale_factor )
1146             ;
1147 
1148         if( find_biggest_object )
1149         {
1150             scale_factor = 1./scale_factor;
1151             factor *= scale_factor;
1152             big_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage );
1153         }
1154         else
1155             factor = 1;
1156 
1157         for( ; n_factors-- > 0 && !is_found; factor *= scale_factor )
1158         {
1159             const double ystep = MAX( 2, factor );
1160             CvSize win_size = { cvRound( cascade->orig_window_size.width * factor ),
1161 			cvRound( cascade->orig_window_size.height * factor )};
1162             CvRect equ_rect = { 0, 0, 0, 0 };
1163             int *p0 = 0, *p1 = 0, *p2 = 0, *p3 = 0;
1164             int *pq0 = 0, *pq1 = 0, *pq2 = 0, *pq3 = 0;
1165             int pass, stage_offset = 0;
1166             int start_x = 0, start_y = 0;
1167             int end_x = cvRound((img->cols - win_size.width) / ystep);
1168             int end_y = cvRound((img->rows - win_size.height) / ystep);
1169 
1170             if( win_size.width < min_size.width || win_size.height < min_size.height )
1171             {
1172                 if( find_biggest_object )
1173                     break;
1174                 continue;
1175             }
1176 
1177             mycvSetImagesForHaarClassifierCascade( cascade, sum, sqsum, tilted, factor );
1178             cvZero( temp );
1179 
1180 //            if( do_canny_pruning )
1181 //            {
1182 //                equ_rect.x = cvRound(win_size.width*0.15);
1183 //                equ_rect.y = cvRound(win_size.height*0.15);
1184 //                equ_rect.width = cvRound(win_size.width*0.7);
1185 //                equ_rect.height = cvRound(win_size.height*0.7);
1186 //
1187 //                p0 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step) + equ_rect.x;
1188 //                p1 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step)
1189 //				+ equ_rect.x + equ_rect.width;
1190 //                p2 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step) + equ_rect.x;
1191 //                p3 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step)
1192 //				+ equ_rect.x + equ_rect.width;
1193 //
1194 //                pq0 = (int*)(sum->data.ptr + equ_rect.y*sum->step) + equ_rect.x;
1195 //                pq1 = (int*)(sum->data.ptr + equ_rect.y*sum->step)
1196 //				+ equ_rect.x + equ_rect.width;
1197 //                pq2 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step) + equ_rect.x;
1198 //                pq3 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step)
1199 //				+ equ_rect.x + equ_rect.width;
1200 //            }
1201 
1202             if( scan_roi )
1203             {
1204                 //adjust start_height and stop_height
1205                 start_y = cvRound(scan_roi_rect.y / ystep);
1206                 end_y = cvRound((scan_roi_rect.y + scan_roi_rect.height - win_size.height) / ystep);
1207 
1208                 start_x = cvRound(scan_roi_rect.x / ystep);
1209                 end_x = cvRound((scan_roi_rect.x + scan_roi_rect.width - win_size.width) / ystep);
1210             }
1211 
1212             ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->count = split_stage;
1213 
1214             for( pass = 0; pass < npass; pass++ )
1215             {
1216 #ifdef _OPENMP
1217 #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
1218 #endif
1219                 for( int _iy = start_y; _iy < end_y; _iy++ )
1220                 {
1221                     int thread_id = cvGetThreadNum();
1222                     int iy = cvRound(_iy*ystep);
1223                     int _ix, _xstep = 1;
1224                     uchar* mask_row = temp->data.ptr + temp->step * iy;
1225 
1226                     for( _ix = start_x; _ix < end_x; _ix += _xstep )
1227                     {
1228                         int ix = cvRound(_ix*ystep); // it really should be ystep
1229 
1230                         if( pass == 0 )
1231                         {
1232                             int result;
1233                             _xstep = 2;
1234 
1235 //                            if( do_canny_pruning )
1236 //                            {
1237 //                                int offset;
1238 //                                int s, sq;
1239 //
1240 //                                offset = iy*(sum->step/sizeof(p0[0])) + ix;
1241 //                                s = p0[offset] - p1[offset] - p2[offset] + p3[offset];
1242 //                                sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset];
1243 //                                if( s < 100 || sq < 20 )
1244 //                                    continue;
1245 //                            }
1246 
1247                             result = mycvRunHaarClassifierCascade( cascade, cvPoint(ix,iy), 0 );
1248                             if( result > 0 )
1249                             {
1250                                 if( pass < npass - 1 )
1251                                     mask_row[ix] = 1;
1252                                 else
1253                                 {
1254                                     CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
1255                                     cvSeqPush( seq_thread[thread_id], &rect );
1256                                 }
1257                             }
1258                             if( result < 0 )
1259                                 _xstep = 1;
1260                         }
1261                         else if( mask_row[ix] )
1262                         {
1263                             int result = mycvRunHaarClassifierCascade( cascade, cvPoint(ix,iy),
1264 																	stage_offset );
1265                             if( result > 0 )
1266                             {
1267                                 if( pass == npass - 1 )
1268                                 {
1269                                     CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
1270                                     cvSeqPush( seq_thread[thread_id], &rect );
1271                                 }
1272                             }
1273                             else
1274                                 mask_row[ix] = 0;
1275                         }
1276                     }
1277                 }
1278                 stage_offset = ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->count;
1279                 ((MyCvHidHaarClassifierCascade*)cascade->hid_cascade)->count = cascade->count;
1280             }
1281 
1282             // gather the results
1283             if( max_threads > 1 )
1284 	            for( i = 0; i < max_threads; i++ )
1285 	            {
1286 		            CvSeq* s = seq_thread[i];
1287                     int j, total = s->total;
1288                     CvSeqBlock* b = s->first;
1289                     for( j = 0; j < total; j += b->count, b = b->next )
1290                         cvSeqPushMulti( seq, b->data, b->count );
1291 	            }
1292 
1293             if( find_biggest_object )
1294             {
1295                 CvSeq* bseq = min_neighbors > 0 ? big_seq : seq;
1296 
1297                 if( min_neighbors > 0 && !scan_roi )
1298                 {
1299                     // group retrieved rectangles in order to filter out noise
1300                     int ncomp = cvSeqPartition( seq, 0, &idx_seq, myis_equal, 0 );
1301                     CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
1302                     memset( comps, 0, (ncomp+1)*sizeof(comps[0]));
1303 
1304 #if VERY_ROUGH_SEARCH
1305                     if( rough_search )
1306                     {
1307                         for( i = 0; i < seq->total; i++ )
1308                         {
1309                             CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
1310                             int idx = *(int*)cvGetSeqElem( idx_seq, i );
1311                             assert( (unsigned)idx < (unsigned)ncomp );
1312 
1313                             comps[idx].neighbors++;
1314                             comps[idx].rect.x += r1.x;
1315                             comps[idx].rect.y += r1.y;
1316                             comps[idx].rect.width += r1.width;
1317                             comps[idx].rect.height += r1.height;
1318                         }
1319 
1320                         // calculate average bounding box
1321                         for( i = 0; i < ncomp; i++ )
1322                         {
1323                             int n = comps[i].neighbors;
1324                             if( n >= min_neighbors )
1325                             {
1326                                 CvAvgComp comp;
1327                                 comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
1328                                 comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
1329                                 comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
1330                                 comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
1331                                 comp.neighbors = n;
1332                                 cvSeqPush( bseq, &comp );
1333                             }
1334                         }
1335                     }
1336                     else
1337 #endif
1338                     {
1339                         for( i = 0 ; i <= ncomp; i++ )
1340                             comps[i].rect.x = comps[i].rect.y = INT_MAX;
1341 
1342                         // count number of neighbors
1343                         for( i = 0; i < seq->total; i++ )
1344                         {
1345                             CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
1346                             int idx = *(int*)cvGetSeqElem( idx_seq, i );
1347                             assert( (unsigned)idx < (unsigned)ncomp );
1348 
1349                             comps[idx].neighbors++;
1350 
1351                             // rect.width and rect.height will store coordinate of right-bottom corner
1352                             comps[idx].rect.x = MIN(comps[idx].rect.x, r1.x);
1353                             comps[idx].rect.y = MIN(comps[idx].rect.y, r1.y);
1354                             comps[idx].rect.width = MAX(comps[idx].rect.width, r1.x+r1.width-1);
1355                             comps[idx].rect.height = MAX(comps[idx].rect.height, r1.y+r1.height-1);
1356                         }
1357 
1358                         // calculate enclosing box
1359                         for( i = 0; i < ncomp; i++ )
1360                         {
1361                             int n = comps[i].neighbors;
1362                             if( n >= min_neighbors )
1363                             {
1364                                 CvAvgComp comp;
1365                                 int t;
1366                                 double min_scale = rough_search ? 0.6 : 0.4;
1367                                 comp.rect.x = comps[i].rect.x;
1368                                 comp.rect.y = comps[i].rect.y;
1369                                 comp.rect.width = comps[i].rect.width - comps[i].rect.x + 1;
1370                                 comp.rect.height = comps[i].rect.height - comps[i].rect.y + 1;
1371 
1372                                 // update min_size
1373                                 t = cvRound( comp.rect.width*min_scale );
1374                                 min_size.width = MAX( min_size.width, t );
1375 
1376                                 t = cvRound( comp.rect.height*min_scale );
1377                                 min_size.height = MAX( min_size.height, t );
1378 
1379                                 //expand the box by 20% because we could miss some neighbours
1380                                 //see 'is_equal' function
1381 #if 1
1382                                 int offset = cvRound(comp.rect.width * 0.2);
1383                                 int right = MIN( img->cols-1, comp.rect.x+comp.rect.width-1 + offset );
1384                                 int bottom = MIN( img->rows-1, comp.rect.y+comp.rect.height-1 + offset);
1385                                 comp.rect.x = MAX( comp.rect.x - offset, 0 );
1386                                 comp.rect.y = MAX( comp.rect.y - offset, 0 );
1387                                 comp.rect.width = right - comp.rect.x + 1;
1388                                 comp.rect.height = bottom - comp.rect.y + 1;
1389 #endif
1390 
1391                                 comp.neighbors = n;
1392                                 cvSeqPush( bseq, &comp );
1393                             }
1394                         }
1395                     }
1396 
1397                     cvFree( &comps );
1398                 }
1399 
1400                 // extract the biggest rect
1401                 if( bseq->total > 0 )
1402                 {
1403                     int max_area = 0;
1404                     for( i = 0; i < bseq->total; i++ )
1405                     {
1406                         CvAvgComp* comp = (CvAvgComp*)cvGetSeqElem( bseq, i );
1407                         int area = comp->rect.width * comp->rect.height;
1408                         if( max_area < area )
1409                         {
1410                             max_area = area;
1411                             result_comp.rect = comp->rect;
1412                             result_comp.neighbors = bseq == seq ? 1 : comp->neighbors;
1413                         }
1414                     }
1415 
1416                     //Prepare information for further scanning inside the biggest rectangle
1417 
1418 #if VERY_ROUGH_SEARCH
1419                     // change scan ranges to roi in case of required
1420                     if( !rough_search && !scan_roi )
1421                     {
1422                         scan_roi = true;
1423                         scan_roi_rect = result_comp.rect;
1424                         cvClearSeq(bseq);
1425                     }
1426                     else if( rough_search )
1427                         is_found = true;
1428 #else
1429                     if( !scan_roi )
1430                     {
1431                         scan_roi = true;
1432                         scan_roi_rect = result_comp.rect;
1433                         cvClearSeq(bseq);
1434                     }
1435 #endif
1436                 }
1437             }
1438         }
1439     }
1440 
1441 //	t1 = (double)cvGetTickCount();
1442 //	printf( "factors time = %gms\n", (t1 - t)/tickFreqTimes1000);
1443 //	t = t1;
1444 
1445     if( min_neighbors == 0 && !find_biggest_object )
1446     {
1447         for( i = 0; i < seq->total; i++ )
1448         {
1449             CvRect* rect = (CvRect*)cvGetSeqElem( seq, i );
1450             CvAvgComp comp;
1451             comp.rect = *rect;
1452             comp.neighbors = 1;
1453             cvSeqPush( result_seq, &comp );
1454         }
1455     }
1456 
1457     if( min_neighbors != 0
1458 #if VERY_ROUGH_SEARCH
1459 	   && (!find_biggest_object || !rough_search)
1460 #endif
1461 	   )
1462     {
1463         // group retrieved rectangles in order to filter out noise
1464         int ncomp = cvSeqPartition( seq, 0, &idx_seq, myis_equal, 0 );
1465         CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
1466         memset( comps, 0, (ncomp+1)*sizeof(comps[0]));
1467 
1468         // count number of neighbors
1469         for( i = 0; i < seq->total; i++ )
1470         {
1471             CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
1472             int idx = *(int*)cvGetSeqElem( idx_seq, i );
1473             assert( (unsigned)idx < (unsigned)ncomp );
1474 
1475             comps[idx].neighbors++;
1476 
1477             comps[idx].rect.x += r1.x;
1478             comps[idx].rect.y += r1.y;
1479             comps[idx].rect.width += r1.width;
1480             comps[idx].rect.height += r1.height;
1481         }
1482 
1483         // calculate average bounding box
1484         for( i = 0; i < ncomp; i++ )
1485         {
1486             int n = comps[i].neighbors;
1487             if( n >= min_neighbors )
1488             {
1489                 CvAvgComp comp;
1490                 comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
1491                 comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
1492                 comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
1493                 comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
1494                 comp.neighbors = comps[i].neighbors;
1495 
1496                 cvSeqPush( seq2, &comp );
1497             }
1498         }
1499 
1500         if( !find_biggest_object )
1501         {
1502             // filter out small face rectangles inside large face rectangles
1503             for( i = 0; i < seq2->total; i++ )
1504             {
1505                 CvAvgComp r1 = *(CvAvgComp*)cvGetSeqElem( seq2, i );
1506                 int j, flag = 1;
1507 
1508                 for( j = 0; j < seq2->total; j++ )
1509                 {
1510                     CvAvgComp r2 = *(CvAvgComp*)cvGetSeqElem( seq2, j );
1511                     int distance = cvRound( r2.rect.width * 0.2 );
1512 
1513                     if( i != j &&
1514 					   r1.rect.x >= r2.rect.x - distance &&
1515 					   r1.rect.y >= r2.rect.y - distance &&
1516 					   r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
1517 					   r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
1518 					   (r2.neighbors > MAX( 3, r1.neighbors ) || r1.neighbors < 3) )
1519                     {
1520                         flag = 0;
1521                         break;
1522                     }
1523                 }
1524 
1525                 if( flag )
1526                     cvSeqPush( result_seq, &r1 );
1527             }
1528         }
1529         else
1530         {
1531             int max_area = 0;
1532             for( i = 0; i < seq2->total; i++ )
1533             {
1534                 CvAvgComp* comp = (CvAvgComp*)cvGetSeqElem( seq2, i );
1535                 int area = comp->rect.width * comp->rect.height;
1536                 if( max_area < area )
1537                 {
1538                     max_area = area;
1539                     result_comp = *comp;
1540                 }
1541             }
1542         }
1543     }
1544 
1545 	t1 = (double)cvGetTickCount();
1546 //	printf( "results eval time = %gms\n", (t1 - t)/tickFreqTimes1000);
1547 	t = t1;
1548 
1549     if( find_biggest_object && result_comp.rect.width > 0 )
1550         cvSeqPush( result_seq, &result_comp );
1551 
1552     __END__;
1553 
1554     if( max_threads > 1 )
1555 	    for( i = 0; i < max_threads; i++ )
1556 	    {
1557 		    if( seq_thread[i] )
1558                 cvReleaseMemStorage( &seq_thread[i]->storage );
1559 	    }
1560 
1561     cvReleaseMemStorage( &temp_storage );
1562     cvReleaseMat( &sum );
1563     cvReleaseMat( &sqsum );
1564     cvReleaseMat( &tilted );
1565     cvReleaseMat( &temp );
1566     cvReleaseMat( &sumcanny );
1567     cvReleaseMat( &norm_img );
1568     cvReleaseMat( &img_small );
1569     cvFree( &comps );
1570 
1571     return result_seq;
1572 }
1573