1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2002, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistributions of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistributions in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #include "_cvaux.h"
43 
44 #if _MSC_VER >= 1200
45 #pragma warning(disable:4786) // Disable MSVC warnings in the standard library.
46 #pragma warning(disable:4100)
47 #pragma warning(disable:4512)
48 #endif
49 #include <stdio.h>
50 #include <map>
51 #include <algorithm>
52 #if _MSC_VER >= 1200
53 #pragma warning(default:4100)
54 #pragma warning(default:4512)
55 #endif
56 
57 #define ARRAY_SIZEOF(a) (sizeof(a)/sizeof((a)[0]))
58 
59 static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size);
60 static void DrawEtalon(IplImage *img, CvPoint2D32f *corners,
61                        int corner_count, CvSize etalon_size, int draw_ordered);
62 static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4]);
63 static void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4]);
64 static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p);
65 static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1,
66                          CvPoint3D32f o2, CvPoint3D32f p2,
67                          CvPoint3D32f &r1, CvPoint3D32f &r2);
68 
69 /////////////////////////////////
70 // cv3dTrackerCalibrateCameras //
71 /////////////////////////////////
cv3dTrackerCalibrateCameras(int num_cameras,const Cv3dTrackerCameraIntrinsics camera_intrinsics[],CvSize etalon_size,float square_size,IplImage * samples[],Cv3dTrackerCameraInfo camera_info[])72 CV_IMPL CvBool cv3dTrackerCalibrateCameras(int num_cameras,
73                    const Cv3dTrackerCameraIntrinsics camera_intrinsics[], // size is num_cameras
74                    CvSize etalon_size,
75                    float square_size,
76                    IplImage *samples[],                                   // size is num_cameras
77                    Cv3dTrackerCameraInfo camera_info[])                   // size is num_cameras
78 {
79     CV_FUNCNAME("cv3dTrackerCalibrateCameras");
80     const int num_points = etalon_size.width * etalon_size.height;
81     int cameras_done = 0;        // the number of cameras whose positions have been determined
82     CvPoint3D32f *object_points = NULL; // real-world coordinates of checkerboard points
83     CvPoint2D32f *points = NULL; // 2d coordinates of checkerboard points as seen by a camera
84     IplImage *gray_img = NULL;   // temporary image for color conversion
85     IplImage *tmp_img = NULL;    // temporary image used by FindChessboardCornerGuesses
86     int c, i, j;
87 
88     if (etalon_size.width < 3 || etalon_size.height < 3)
89         CV_ERROR(CV_StsBadArg, "Chess board size is invalid");
90 
91     for (c = 0; c < num_cameras; c++)
92     {
93         // CV_CHECK_IMAGE is not available in the cvaux library
94         // so perform the checks inline.
95 
96         //CV_CALL(CV_CHECK_IMAGE(samples[c]));
97 
98         if( samples[c] == NULL )
99             CV_ERROR( CV_HeaderIsNull, "Null image" );
100 
101         if( samples[c]->dataOrder != IPL_DATA_ORDER_PIXEL && samples[c]->nChannels > 1 )
102             CV_ERROR( CV_BadOrder, "Unsupported image format" );
103 
104         if( samples[c]->maskROI != 0 || samples[c]->tileInfo != 0 )
105             CV_ERROR( CV_StsBadArg, "Unsupported image format" );
106 
107         if( samples[c]->imageData == 0 )
108             CV_ERROR( CV_BadDataPtr, "Null image data" );
109 
110         if( samples[c]->roi &&
111             ((samples[c]->roi->xOffset | samples[c]->roi->yOffset
112               | samples[c]->roi->width | samples[c]->roi->height) < 0 ||
113              samples[c]->roi->xOffset + samples[c]->roi->width > samples[c]->width ||
114              samples[c]->roi->yOffset + samples[c]->roi->height > samples[c]->height ||
115              (unsigned) (samples[c]->roi->coi) > (unsigned) (samples[c]->nChannels)))
116             CV_ERROR( CV_BadROISize, "Invalid ROI" );
117 
118         // End of CV_CHECK_IMAGE inline expansion
119 
120         if (samples[c]->depth != IPL_DEPTH_8U)
121             CV_ERROR(CV_BadDepth, "Channel depth of source image must be 8");
122 
123         if (samples[c]->nChannels != 3 && samples[c]->nChannels != 1)
124             CV_ERROR(CV_BadNumChannels, "Source image must have 1 or 3 channels");
125     }
126 
127     CV_CALL(object_points = (CvPoint3D32f *)cvAlloc(num_points * sizeof(CvPoint3D32f)));
128     CV_CALL(points = (CvPoint2D32f *)cvAlloc(num_points * sizeof(CvPoint2D32f)));
129 
130     // fill in the real-world coordinates of the checkerboard points
131     FillObjectPoints(object_points, etalon_size, square_size);
132 
133     for (c = 0; c < num_cameras; c++)
134     {
135         CvSize image_size = cvSize(samples[c]->width, samples[c]->height);
136         IplImage *img;
137 
138         // The input samples are not required to all have the same size or color
139         // format. If they have different sizes, the temporary images are
140         // reallocated as necessary.
141         if (samples[c]->nChannels == 3)
142         {
143             // convert to gray
144             if (gray_img == NULL || gray_img->width != samples[c]->width ||
145                 gray_img->height != samples[c]->height )
146             {
147                 if (gray_img != NULL)
148                     cvReleaseImage(&gray_img);
149                 CV_CALL(gray_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1));
150             }
151 
152             CV_CALL(cvCvtColor(samples[c], gray_img, CV_BGR2GRAY));
153 
154             img = gray_img;
155         }
156         else
157         {
158             // no color conversion required
159             img = samples[c];
160         }
161 
162         if (tmp_img == NULL || tmp_img->width != samples[c]->width ||
163             tmp_img->height != samples[c]->height )
164         {
165             if (tmp_img != NULL)
166                 cvReleaseImage(&tmp_img);
167             CV_CALL(tmp_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1));
168         }
169 
170         int count = num_points;
171         bool found = cvFindChessBoardCornerGuesses(img, tmp_img, 0,
172                                                    etalon_size, points, &count) != 0;
173         if (count == 0)
174             continue;
175 
176         // If found is true, it means all the points were found (count = num_points).
177         // If found is false but count is non-zero, it means that not all points were found.
178 
179         cvFindCornerSubPix(img, points, count, cvSize(5,5), cvSize(-1,-1),
180                     cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10, 0.01f));
181 
182         // If the image origin is BL (bottom-left), fix the y coordinates
183         // so they are relative to the true top of the image.
184         if (samples[c]->origin == IPL_ORIGIN_BL)
185         {
186             for (i = 0; i < count; i++)
187                 points[i].y = samples[c]->height - 1 - points[i].y;
188         }
189 
190         if (found)
191         {
192             // Make sure x coordinates are increasing and y coordinates are decreasing.
193             // (The y coordinate of point (0,0) should be the greatest, because the point
194             // on the checkerboard that is the origin is nearest the bottom of the image.)
195             // This is done after adjusting the y coordinates according to the image origin.
196             if (points[0].x > points[1].x)
197             {
198                 // reverse points in each row
199                 for (j = 0; j < etalon_size.height; j++)
200                 {
201                     CvPoint2D32f *row = &points[j*etalon_size.width];
202                     for (i = 0; i < etalon_size.width/2; i++)
203                         std::swap(row[i], row[etalon_size.width-i-1]);
204                 }
205             }
206 
207             if (points[0].y < points[etalon_size.width].y)
208             {
209                 // reverse points in each column
210                 for (i = 0; i < etalon_size.width; i++)
211                 {
212                     for (j = 0; j < etalon_size.height/2; j++)
213                         std::swap(points[i+j*etalon_size.width],
214                                   points[i+(etalon_size.height-j-1)*etalon_size.width]);
215                 }
216             }
217         }
218 
219         DrawEtalon(samples[c], points, count, etalon_size, found);
220 
221         if (!found)
222             continue;
223 
224         float rotVect[3];
225         float rotMatr[9];
226         float transVect[3];
227 
228         cvFindExtrinsicCameraParams(count,
229                                     image_size,
230                                     points,
231                                     object_points,
232                                     const_cast<float *>(camera_intrinsics[c].focal_length),
233                                     camera_intrinsics[c].principal_point,
234                                     const_cast<float *>(camera_intrinsics[c].distortion),
235                                     rotVect,
236                                     transVect);
237 
238         // Check result against an arbitrary limit to eliminate impossible values.
239         // (If the chess board were truly that far away, the camera wouldn't be able to
240         // see the squares.)
241         if (transVect[0] > 1000*square_size
242             || transVect[1] > 1000*square_size
243             || transVect[2] > 1000*square_size)
244         {
245             // ignore impossible results
246             continue;
247         }
248 
249         CvMat rotMatrDescr = cvMat(3, 3, CV_32FC1, rotMatr);
250         CvMat rotVectDescr = cvMat(3, 1, CV_32FC1, rotVect);
251 
252         /* Calc rotation matrix by Rodrigues Transform */
253         cvRodrigues2( &rotVectDescr, &rotMatrDescr );
254 
255         //combine the two transformations into one matrix
256         //order is important! rotations are not commutative
257         float tmat[4][4] = { { 1.f, 0.f, 0.f, 0.f },
258                              { 0.f, 1.f, 0.f, 0.f },
259                              { 0.f, 0.f, 1.f, 0.f },
260                              { transVect[0], transVect[1], transVect[2], 1.f } };
261 
262         float rmat[4][4] = { { rotMatr[0], rotMatr[1], rotMatr[2], 0.f },
263                              { rotMatr[3], rotMatr[4], rotMatr[5], 0.f },
264                              { rotMatr[6], rotMatr[7], rotMatr[8], 0.f },
265                              { 0.f, 0.f, 0.f, 1.f } };
266 
267 
268         MultMatrix(camera_info[c].mat, tmat, rmat);
269 
270         // change the transformation of the cameras to put them in the world coordinate
271         // system we want to work with.
272 
273         // Start with an identity matrix; then fill in the values to accomplish
274         // the desired transformation.
275         float smat[4][4] = { { 1.f, 0.f, 0.f, 0.f },
276                              { 0.f, 1.f, 0.f, 0.f },
277                              { 0.f, 0.f, 1.f, 0.f },
278                              { 0.f, 0.f, 0.f, 1.f } };
279 
280         // First, reflect through the origin by inverting all three axes.
281         smat[0][0] = -1.f;
282         smat[1][1] = -1.f;
283         smat[2][2] = -1.f;
284         MultMatrix(tmat, camera_info[c].mat, smat);
285 
286         // Scale x and y coordinates by the focal length (allowing for non-square pixels
287         // and/or non-symmetrical lenses).
288         smat[0][0] = 1.0f / camera_intrinsics[c].focal_length[0];
289         smat[1][1] = 1.0f / camera_intrinsics[c].focal_length[1];
290         smat[2][2] = 1.0f;
291         MultMatrix(camera_info[c].mat, smat, tmat);
292 
293         camera_info[c].principal_point = camera_intrinsics[c].principal_point;
294         camera_info[c].valid = true;
295 
296         cameras_done++;
297     }
298 
299 exit:
300     cvReleaseImage(&gray_img);
301     cvReleaseImage(&tmp_img);
302     cvFree(&object_points);
303     cvFree(&points);
304 
305     return cameras_done == num_cameras;
306 }
307 
308 // fill in the real-world coordinates of the checkerboard points
FillObjectPoints(CvPoint3D32f * obj_points,CvSize etalon_size,float square_size)309 static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size)
310 {
311     int x, y, i;
312 
313     for (y = 0, i = 0; y < etalon_size.height; y++)
314     {
315         for (x = 0; x < etalon_size.width; x++, i++)
316         {
317             obj_points[i].x = square_size * x;
318             obj_points[i].y = square_size * y;
319             obj_points[i].z = 0;
320         }
321     }
322 }
323 
324 
325 // Mark the points found on the input image
326 // The marks are drawn multi-colored if all the points were found.
DrawEtalon(IplImage * img,CvPoint2D32f * corners,int corner_count,CvSize etalon_size,int draw_ordered)327 static void DrawEtalon(IplImage *img, CvPoint2D32f *corners,
328                        int corner_count, CvSize etalon_size, int draw_ordered)
329 {
330     const int r = 4;
331     int i;
332     int x, y;
333     CvPoint prev_pt = { 0, 0 };
334     static const CvScalar rgb_colors[] = {
335         {{0,0,255}},
336         {{0,128,255}},
337         {{0,200,200}},
338         {{0,255,0}},
339         {{200,200,0}},
340         {{255,0,0}},
341         {{255,0,255}} };
342     static const CvScalar gray_colors[] = {
343         {{80}}, {{120}}, {{160}}, {{200}}, {{100}}, {{140}}, {{180}}
344     };
345     const CvScalar* colors = img->nChannels == 3 ? rgb_colors : gray_colors;
346 
347     CvScalar color = colors[0];
348     for (y = 0, i = 0; y < etalon_size.height; y++)
349     {
350         if (draw_ordered)
351             color = colors[y % ARRAY_SIZEOF(rgb_colors)];
352 
353         for (x = 0; x < etalon_size.width && i < corner_count; x++, i++)
354         {
355             CvPoint pt;
356             pt.x = cvRound(corners[i].x);
357             pt.y = cvRound(corners[i].y);
358             if (img->origin == IPL_ORIGIN_BL)
359                 pt.y = img->height - 1 - pt.y;
360 
361             if (draw_ordered)
362             {
363                 if (i != 0)
364                    cvLine(img, prev_pt, pt, color, 1, CV_AA);
365                 prev_pt = pt;
366             }
367 
368             cvLine( img, cvPoint(pt.x - r, pt.y - r),
369                     cvPoint(pt.x + r, pt.y + r), color, 1, CV_AA );
370             cvLine( img, cvPoint(pt.x - r, pt.y + r),
371                     cvPoint(pt.x + r, pt.y - r), color, 1, CV_AA );
372             cvCircle( img, pt, r+1, color, 1, CV_AA );
373         }
374     }
375 }
376 
377 // Find the midpoint of the line segment between two points.
midpoint(const CvPoint3D32f & p1,const CvPoint3D32f & p2)378 static CvPoint3D32f midpoint(const CvPoint3D32f &p1, const CvPoint3D32f &p2)
379 {
380     return cvPoint3D32f((p1.x+p2.x)/2, (p1.y+p2.y)/2, (p1.z+p2.z)/2);
381 }
382 
operator +=(CvPoint3D32f & p1,const CvPoint3D32f & p2)383 static void operator +=(CvPoint3D32f &p1, const CvPoint3D32f &p2)
384 {
385     p1.x += p2.x;
386     p1.y += p2.y;
387     p1.z += p2.z;
388 }
389 
operator /(const CvPoint3D32f & p,int d)390 static CvPoint3D32f operator /(const CvPoint3D32f &p, int d)
391 {
392     return cvPoint3D32f(p.x/d, p.y/d, p.z/d);
393 }
394 
find(const Cv3dTracker2dTrackedObject v[],int num_objects,int id)395 static const Cv3dTracker2dTrackedObject *find(const Cv3dTracker2dTrackedObject v[], int num_objects, int id)
396 {
397     for (int i = 0; i < num_objects; i++)
398     {
399         if (v[i].id == id)
400             return &v[i];
401     }
402     return NULL;
403 }
404 
405 #define CAMERA_POS(c) (cvPoint3D32f((c).mat[3][0], (c).mat[3][1], (c).mat[3][2]))
406 
407 //////////////////////////////
408 // cv3dTrackerLocateObjects //
409 //////////////////////////////
cv3dTrackerLocateObjects(int num_cameras,int num_objects,const Cv3dTrackerCameraInfo camera_info[],const Cv3dTracker2dTrackedObject tracking_info[],Cv3dTrackerTrackedObject tracked_objects[])410 CV_IMPL int  cv3dTrackerLocateObjects(int num_cameras, int num_objects,
411                  const Cv3dTrackerCameraInfo camera_info[],      // size is num_cameras
412                  const Cv3dTracker2dTrackedObject tracking_info[], // size is num_objects*num_cameras
413                  Cv3dTrackerTrackedObject tracked_objects[])     // size is num_objects
414 {
415     /*CV_FUNCNAME("cv3dTrackerLocateObjects");*/
416     int found_objects = 0;
417 
418     // count how many cameras could see each object
419     std::map<int, int> count;
420     for (int c = 0; c < num_cameras; c++)
421     {
422         if (!camera_info[c].valid)
423             continue;
424 
425         for (int i = 0; i < num_objects; i++)
426         {
427             const Cv3dTracker2dTrackedObject *o = &tracking_info[c*num_objects+i];
428             if (o->id != -1)
429                 count[o->id]++;
430         }
431     }
432 
433     // process each object that was seen by at least two cameras
434     for (std::map<int, int>::iterator i = count.begin(); i != count.end(); i++)
435     {
436         if (i->second < 2)
437             continue; // ignore object seen by only one camera
438         int id = i->first;
439 
440         // find an approximation of the objects location for each pair of cameras that
441         // could see this object, and average them
442         CvPoint3D32f total = cvPoint3D32f(0, 0, 0);
443         int weight = 0;
444 
445         for (int c1 = 0; c1 < num_cameras-1; c1++)
446         {
447             if (!camera_info[c1].valid)
448                 continue;
449 
450             const Cv3dTracker2dTrackedObject *o1 = find(&tracking_info[c1*num_objects],
451                                                         num_objects, id);
452             if (o1 == NULL)
453                 continue; // this camera didn't see this object
454 
455             CvPoint3D32f p1a = CAMERA_POS(camera_info[c1]);
456             CvPoint3D32f p1b = ImageCStoWorldCS(camera_info[c1], o1->p);
457 
458             for (int c2 = c1 + 1; c2 < num_cameras; c2++)
459             {
460                 if (!camera_info[c2].valid)
461                     continue;
462 
463                 const Cv3dTracker2dTrackedObject *o2 = find(&tracking_info[c2*num_objects],
464                                                             num_objects, id);
465                 if (o2 == NULL)
466                     continue; // this camera didn't see this object
467 
468                 CvPoint3D32f p2a = CAMERA_POS(camera_info[c2]);
469                 CvPoint3D32f p2b = ImageCStoWorldCS(camera_info[c2], o2->p);
470 
471                 // these variables are initialized simply to avoid erroneous error messages
472                 // from the compiler
473                 CvPoint3D32f r1 = cvPoint3D32f(0, 0, 0);
474                 CvPoint3D32f r2 = cvPoint3D32f(0, 0, 0);
475 
476                 // find the intersection of the two lines (or the points of closest
477                 // approach, if they don't intersect)
478                 if (!intersection(p1a, p1b, p2a, p2b, r1, r2))
479                     continue;
480 
481                 total += midpoint(r1, r2);
482                 weight++;
483             }
484         }
485 
486         CvPoint3D32f center = total/weight;
487         tracked_objects[found_objects++] = cv3dTrackerTrackedObject(id, center);
488     }
489 
490     return found_objects;
491 }
492 
493 #define EPS 1e-9
494 
495 // Compute the determinant of the 3x3 matrix represented by 3 row vectors.
det(CvPoint3D32f v1,CvPoint3D32f v2,CvPoint3D32f v3)496 static inline double det(CvPoint3D32f v1, CvPoint3D32f v2, CvPoint3D32f v3)
497 {
498     return v1.x*v2.y*v3.z + v1.z*v2.x*v3.y + v1.y*v2.z*v3.x
499            - v1.z*v2.y*v3.x - v1.x*v2.z*v3.y - v1.y*v2.x*v3.z;
500 }
501 
operator +(CvPoint3D32f a,CvPoint3D32f b)502 static CvPoint3D32f operator +(CvPoint3D32f a, CvPoint3D32f b)
503 {
504     return cvPoint3D32f(a.x + b.x, a.y + b.y, a.z + b.z);
505 }
506 
operator -(CvPoint3D32f a,CvPoint3D32f b)507 static CvPoint3D32f operator -(CvPoint3D32f a, CvPoint3D32f b)
508 {
509     return cvPoint3D32f(a.x - b.x, a.y - b.y, a.z - b.z);
510 }
511 
operator *(CvPoint3D32f v,double f)512 static CvPoint3D32f operator *(CvPoint3D32f v, double f)
513 {
514     return cvPoint3D32f(f*v.x, f*v.y, f*v.z);
515 }
516 
517 
518 // Find the intersection of two lines, or if they don't intersect,
519 // the points of closest approach.
520 // The lines are defined by (o1,p1) and (o2, p2).
521 // If they intersect, r1 and r2 will be the same.
522 // Returns false on error.
intersection(CvPoint3D32f o1,CvPoint3D32f p1,CvPoint3D32f o2,CvPoint3D32f p2,CvPoint3D32f & r1,CvPoint3D32f & r2)523 static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1,
524                          CvPoint3D32f o2, CvPoint3D32f p2,
525                          CvPoint3D32f &r1, CvPoint3D32f &r2)
526 {
527     CvPoint3D32f x = o2 - o1;
528     CvPoint3D32f d1 = p1 - o1;
529     CvPoint3D32f d2 = p2 - o2;
530 
531     CvPoint3D32f cross = cvPoint3D32f(d1.y*d2.z - d1.z*d2.y,
532                                       d1.z*d2.x - d1.x*d2.z,
533                                       d1.x*d2.y - d1.y*d2.x);
534     double den = cross.x*cross.x + cross.y*cross.y + cross.z*cross.z;
535 
536     if (den < EPS)
537         return false;
538 
539     double t1 = det(x, d2, cross) / den;
540     double t2 = det(x, d1, cross) / den;
541 
542     r1 = o1 + d1 * t1;
543     r2 = o2 + d2 * t2;
544 
545     return true;
546 }
547 
548 // Convert from image to camera space by transforming point p in
549 // the image plane by the camera matrix.
ImageCStoWorldCS(const Cv3dTrackerCameraInfo & camera_info,CvPoint2D32f p)550 static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p)
551 {
552     float tp[4];
553     tp[0] = (float)p.x - camera_info.principal_point.x;
554     tp[1] = (float)p.y - camera_info.principal_point.y;
555     tp[2] = 1.f;
556     tp[3] = 1.f;
557 
558     float tr[4];
559     //multiply tp by mat to get tr
560     MultVectorMatrix(tr, tp, camera_info.mat);
561 
562     return cvPoint3D32f(tr[0]/tr[3], tr[1]/tr[3], tr[2]/tr[3]);
563 }
564 
565 // Multiply affine transformation m1 by the affine transformation m2 and
566 // return the result in rm.
MultMatrix(float rm[4][4],const float m1[4][4],const float m2[4][4])567 static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4])
568 {
569     for (int i=0; i<=3; i++)
570         for (int j=0; j<=3; j++)
571         {
572             rm[i][j]= 0.0;
573             for (int k=0; k <= 3; k++)
574                 rm[i][j] += m1[i][k]*m2[k][j];
575         }
576 }
577 
578 // Multiply the vector v by the affine transformation matrix m and return the
579 // result in rv.
MultVectorMatrix(float rv[4],const float v[4],const float m[4][4])580 void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4])
581 {
582     for (int i=0; i<=3; i++)
583     {
584         rv[i] = 0.f;
585         for (int j=0;j<=3;j++)
586             rv[i] += v[j] * m[j][i];
587     }
588 }
589