1 /******************************************************************************
2  *
3  * Copyright (C) 2015 The Android Open Source Project
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at:
8  *
9  * http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  *
17  *****************************************************************************
18  * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
19 */
20 #include <string.h>
21 
22 #include "iv_datatypedef.h"
23 #include "iv.h"
24 
25 #include "impeg2_buf_mgr.h"
26 #include "impeg2_disp_mgr.h"
27 #include "impeg2_defs.h"
28 #include "impeg2_platform_macros.h"
29 #include "impeg2_inter_pred.h"
30 #include "impeg2_idct.h"
31 #include "impeg2_globals.h"
32 #include "impeg2_mem_func.h"
33 #include "impeg2_format_conv.h"
34 #include "impeg2_macros.h"
35 
36 #include "ivd.h"
37 #include "impeg2d.h"
38 #include "impeg2d_bitstream.h"
39 #include "impeg2d_structs.h"
40 #include "impeg2d_vld_tables.h"
41 #include "impeg2d_vld.h"
42 #include "impeg2d_pic_proc.h"
43 #include "impeg2d_debug.h"
44 
45 
46 /*******************************************************************************
47 * Function name : impeg2d_dec_vld_symbol
48 *
49 * Description   : Performs decoding of VLD symbol. It performs decoding by
50 *                 processing 1 bit at a time
51 *
52 * Arguments     :
53 * stream        : Bitstream
54 * ai2_code_table     : Table used for decoding
55 * maxLen        : Maximum Length of the decoded symbol in bits
56 *
57 * Value Returned: Decoded symbol
58 *******************************************************************************/
impeg2d_dec_vld_symbol(stream_t * ps_stream,const WORD16 ai2_code_table[][2],UWORD16 u2_max_len)59 WORD16 impeg2d_dec_vld_symbol(stream_t *ps_stream,const WORD16 ai2_code_table[][2],  UWORD16 u2_max_len)
60 {
61   UWORD16 u2_data;
62   WORD16  u2_end = 0;
63   UWORD16 u2_org_max_len = u2_max_len;
64   UWORD16 u2_i_bit;
65 
66   /* Get the maximum number of bits needed to decode a symbol */
67   u2_data = impeg2d_bit_stream_nxt(ps_stream,u2_max_len);
68   do
69   {
70     u2_max_len--;
71     /* Read one bit at a time from the variable to decode the huffman code */
72     u2_i_bit = (UWORD8)((u2_data >> u2_max_len) & 0x1);
73 
74     /* Get the next node pointer or the symbol from the tree */
75     u2_end = ai2_code_table[u2_end][u2_i_bit];
76   }while(u2_end > 0);
77 
78   /* Flush the appropriate number of bits from the ps_stream */
79   impeg2d_bit_stream_flush(ps_stream,(UWORD8)(u2_org_max_len - u2_max_len));
80   return(u2_end);
81 }
82 /*******************************************************************************
83 * Function name : impeg2d_fast_dec_vld_symbol
84 *
85 * Description   : Performs decoding of VLD symbol. It performs decoding by
86 *                 processing n bits at a time
87 *
88 * Arguments     :
89 * stream        : Bitstream
90 * ai2_code_table     : Code table containing huffman value
91 * indexTable    : Index table containing index
92 * maxLen        : Maximum Length of the decoded symbol in bits
93 *
94 * Value Returned: Decoded symbol
95 *******************************************************************************/
impeg2d_fast_dec_vld_symbol(stream_t * ps_stream,const WORD16 ai2_code_table[][2],const UWORD16 au2_indexTable[][2],UWORD16 u2_max_len)96 WORD16 impeg2d_fast_dec_vld_symbol(stream_t *ps_stream,
97                      const WORD16  ai2_code_table[][2],
98                      const UWORD16 au2_indexTable[][2],
99                      UWORD16 u2_max_len)
100 {
101     UWORD16 u2_cur_code;
102     UWORD16 u2_num_bits;
103     UWORD16 u2_vld_offset;
104     UWORD16 u2_start_len;
105     WORD16  u2_value;
106     UWORD16 u2_len;
107     UWORD16 u2_huffCode;
108 
109     u2_start_len  = au2_indexTable[0][0];
110     u2_vld_offset = 0;
111     u2_huffCode  = impeg2d_bit_stream_nxt(ps_stream,u2_max_len);
112     do
113     {
114         u2_cur_code = u2_huffCode >> (u2_max_len - u2_start_len);
115         u2_num_bits = ai2_code_table[u2_cur_code + u2_vld_offset][0];
116         if(u2_num_bits == 0)
117         {
118             u2_huffCode  &= ((1 << (u2_max_len - u2_start_len)) - 1);
119             u2_max_len    -= u2_start_len;
120             u2_start_len   = au2_indexTable[ai2_code_table[u2_cur_code + u2_vld_offset][1]][0];
121             u2_vld_offset  = au2_indexTable[ai2_code_table[u2_cur_code + u2_vld_offset][1]][1];
122         }
123         else
124         {
125             u2_value = ai2_code_table[u2_cur_code + u2_vld_offset][1];
126             u2_len   = u2_num_bits;
127         }
128     }while(u2_num_bits == 0);
129     impeg2d_bit_stream_flush(ps_stream,u2_len);
130     return(u2_value);
131 }
132 /******************************************************************************
133 *
134 *  Function Name   : impeg2d_dec_ac_coeff_zero
135 *
136 *  Description     : Decodes using Table B.14
137 *
138 *  Arguments       : Pointer to VideoObjectLayerStructure
139 *
140 *  Values Returned : Decoded value
141 *
142 *  Revision History:
143 *
144 *         28 02 2002  AR        Creation
145 *******************************************************************************/
impeg2d_dec_ac_coeff_zero(stream_t * ps_stream,UWORD16 * pu2_sym_len,UWORD16 * pu2_sym_val)146 UWORD16 impeg2d_dec_ac_coeff_zero(stream_t *ps_stream, UWORD16* pu2_sym_len, UWORD16* pu2_sym_val)
147 {
148     UWORD16 u2_offset,u2_decoded_value;
149     UWORD8  u1_shift;
150     UWORD32 u4_bits_read;
151 
152     u4_bits_read = (UWORD16)impeg2d_bit_stream_nxt(ps_stream,MPEG2_AC_COEFF_MAX_LEN);
153 
154     if ((UWORD16)u4_bits_read >= 0x0800)
155     {
156         u2_offset = (UWORD16)u4_bits_read >> 11;
157     }
158     else if ((UWORD16)u4_bits_read >= 0x40)
159     {
160         u2_offset = 31 + ((UWORD16)u4_bits_read >> 6);
161     }
162     else if ((UWORD16)u4_bits_read >= 0x20)
163     {
164         u2_offset = 64;
165     }
166     else
167     {
168         u2_offset      = 63;
169         u4_bits_read    = (UWORD16)u4_bits_read - 0x10;
170     }
171     /*-----------------------------------------------------------------------
172      * The table gOffset contains both the offset for the group to which the
173      * Vld code belongs in the Ac Coeff Table and the no of bits with which
174      * the BitsRead should be shifted
175      *-----------------------------------------------------------------------*/
176     u2_offset = gau2_impeg2d_offset_zero[u2_offset];
177     u1_shift  = u2_offset & 0xF;
178 
179     /*-----------------------------------------------------------------------
180      * Depending upon the vld code, we index exactly to that particular
181      * Vld codes value in the Ac Coeff Table.
182      * (Offset >> 4)       gives the offset for the group in the AcCoeffTable.
183      * (BitsRead >> shift) gives the offset within its group
184      *-----------------------------------------------------------------------*/
185      u2_offset = (u2_offset >> 4) + ((UWORD16)u4_bits_read >> u1_shift);
186     /*-----------------------------------------------------------------------
187      * DecodedValue has the Run, Level and the number of bits used by Vld code
188      *-----------------------------------------------------------------------*/
189     u2_decoded_value = gau2_impeg2d_dct_coeff_zero[u2_offset];
190     if(u2_decoded_value == END_OF_BLOCK)
191     {
192         *pu2_sym_len = 2;
193         *pu2_sym_val = EOB_CODE_VALUE;
194     }
195     else if(u2_decoded_value == ESCAPE_CODE)
196     {
197         *pu2_sym_len     = u2_decoded_value & 0x1F;
198         *pu2_sym_val = ESC_CODE_VALUE;
199     }
200     else
201     {
202         *pu2_sym_len = u2_decoded_value & 0x1F;
203         *pu2_sym_val = u2_decoded_value >> 5;
204     }
205     return(u2_decoded_value);
206 }
207 
208 /******************************************************************************
209 *
210 *  Function Name   : impeg2d_dec_ac_coeff_one
211 *
212 *  Description     : Decodes using Table B.15
213 *
214 *  Arguments       : Pointer to VideoObjectLayerStructure
215 *
216 *  Values Returned : Decoded value
217 *
218 *  Revision History:
219 *
220 *         28 02 2002  AR        Creation
221 *******************************************************************************/
impeg2d_dec_ac_coeff_one(stream_t * ps_stream,UWORD16 * pu2_sym_len,UWORD16 * pu2_sym_val)222 UWORD16 impeg2d_dec_ac_coeff_one(stream_t *ps_stream, UWORD16* pu2_sym_len, UWORD16* pu2_sym_val)
223 {
224     UWORD16 u2_offset, u2_decoded_value;
225     UWORD8  u1_shift;
226     UWORD32 u4_bits_read;
227 
228 
229     u4_bits_read = (UWORD16)impeg2d_bit_stream_nxt(ps_stream,MPEG2_AC_COEFF_MAX_LEN);
230 
231     if ((UWORD16)u4_bits_read >= 0x8000)
232     {
233         /* If the MSB of the vld code is 1 */
234         if (((UWORD16)u4_bits_read >> 12) == 0xF)
235             u2_offset = ((UWORD16)u4_bits_read >> 8) & 0xF;
236         else
237             u2_offset = (UWORD16)u4_bits_read >> 11;
238         u2_offset += gau2_impeg2d_offset_one[0];
239     }
240     else if ((UWORD16)u4_bits_read >= 0x400)
241     {
242         u2_offset =(UWORD16) u4_bits_read >> 10;
243         u2_offset = gau2_impeg2d_offset_one[u2_offset];
244         u1_shift = u2_offset & 0xF;
245         u2_offset = (u2_offset >> 4) + ((UWORD16)u4_bits_read >> u1_shift);
246     }
247     else if ((UWORD16)u4_bits_read >= 0x20)
248     {
249         u2_offset = ((UWORD16)u4_bits_read >> 5) + 31;
250         u2_offset = gau2_impeg2d_offset_one[u2_offset];
251         u1_shift = u2_offset & 0xF;
252         u2_offset = (u2_offset >> 4) + ((UWORD16)u4_bits_read >> u1_shift);
253     }
254     else
255     {
256         u2_offset = gau2_impeg2d_offset_one[63] + ((UWORD16)u4_bits_read & 0xF);
257     }
258     /*-----------------------------------------------------------------------
259     * DecodedValue has the Run, Level and the number of bits used by Vld code
260     *-----------------------------------------------------------------------*/
261     u2_decoded_value = gau2_impeg2d_dct_coeff_one[u2_offset];
262 
263     if(u2_decoded_value == END_OF_BLOCK)
264     {
265         *pu2_sym_len = 4;
266         *pu2_sym_val = EOB_CODE_VALUE;
267     }
268     else if(u2_decoded_value == ESCAPE_CODE)
269     {
270         *pu2_sym_len     = u2_decoded_value & 0x1F;
271         *pu2_sym_val = ESC_CODE_VALUE;
272     }
273     else
274     {
275         *pu2_sym_len = u2_decoded_value & 0x1F;
276         *pu2_sym_val = u2_decoded_value >> 5;
277     }
278 
279     return(u2_decoded_value);
280 }
281 
282 /******************************************************************************
283  *
284  *  Function Name   : impeg2d_vld_inv_quant_mpeg1
285  *
286  *  Description     : Performs VLD operation for MPEG1/2
287  *
288  *  Arguments       :
289  *  state           : VLCD state parameter
290  *  regs            : Registers of VLCD
291  *
292  *  Values Returned : None
293  ******************************************************************************/
impeg2d_vld_inv_quant_mpeg1(void * pv_dec,WORD16 * pi2_out_addr,const UWORD8 * pu1_scan,UWORD16 u2_intra_flag,UWORD16 u2_colr_comp,UWORD16 u2_d_picture)294 IMPEG2D_ERROR_CODES_T impeg2d_vld_inv_quant_mpeg1(
295                              void  *pv_dec,           /* Decoder State */
296                              WORD16       *pi2_out_addr,       /*!< Address where decoded symbols will be stored */
297                              const UWORD8 *pu1_scan,          /*!< Scan table to be used */
298                              UWORD16      u2_intra_flag,      /*!< Intra Macroblock or not */
299                              UWORD16      u2_colr_comp,      /*!< 0 - Luma,1 - U comp, 2 - V comp */
300                              UWORD16      u2_d_picture        /*!< D Picture or not */
301                              )
302 {
303     UWORD8  *pu1_weighting_matrix;
304     dec_state_t *ps_dec    = (dec_state_t *) pv_dec;
305     IMPEG2D_ERROR_CODES_T e_error   = (IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE;
306 
307     WORD16  pi2_coeffs[NUM_COEFFS];
308     UWORD8  pu1_pos[NUM_COEFFS];
309     WORD32  i4_num_coeffs;
310 
311     /* Perform VLD on the stream to get the coefficients and their positions */
312     e_error = impeg2d_vld_decode(ps_dec, pi2_coeffs, pu1_scan, pu1_pos, u2_intra_flag,
313                                  u2_colr_comp, u2_d_picture, ps_dec->u2_intra_vlc_format,
314                                  ps_dec->u2_is_mpeg2, &i4_num_coeffs);
315     if ((IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE != e_error)
316     {
317         return e_error;
318     }
319 
320     /* For YUV420 format,Select the weighting matrix according to Table 7.5 */
321     pu1_weighting_matrix = (u2_intra_flag == 1) ? ps_dec->au1_intra_quant_matrix:
322                     ps_dec->au1_inter_quant_matrix;
323 
324     IMPEG2D_IQNT_INP_STATISTICS(pi2_out_addr, ps_dec->u4_non_zero_cols, ps_dec->u4_non_zero_rows);
325     /* Inverse Quantize the Output of VLD */
326     PROFILE_DISABLE_INVQUANT_IF0
327 
328     {
329         /* Clear output matrix */
330         PROFILE_DISABLE_MEMSET_RESBUF_IF0
331         if (1 != (ps_dec->u4_non_zero_cols | ps_dec->u4_non_zero_rows))
332         {
333             ps_dec->pf_memset_16bit_8x8_linear_block (pi2_out_addr);
334         }
335 
336         impeg2d_inv_quant_mpeg1(pi2_out_addr, pu1_weighting_matrix,
337                                   ps_dec->u1_quant_scale, u2_intra_flag,
338                                   i4_num_coeffs, pi2_coeffs, pu1_pos,
339                                   pu1_scan, &ps_dec->u2_def_dc_pred[u2_colr_comp],
340                                   ps_dec->u2_intra_dc_precision);
341 
342         if (0 != pi2_out_addr[0])
343         {
344             /* The first coeff might've become non-zero due to intra_dc_decision
345              * value. So, check here after inverse quantization.
346              */
347             ps_dec->u4_non_zero_cols  |= 0x1;
348             ps_dec->u4_non_zero_rows  |= 0x1;
349         }
350     }
351 
352     return e_error;
353 }
354 
355 /******************************************************************************
356   *
357   *  Function Name   : impeg2d_vld_inv_quant_mpeg2
358   *
359   *  Description     : Performs VLD operation for MPEG1/2
360   *
361   *  Arguments       :
362   *  state           : VLCD state parameter
363   *  regs            : Registers of VLCD
364   *
365   *  Values Returned : None
366   ******************************************************************************/
impeg2d_vld_inv_quant_mpeg2(void * pv_dec,WORD16 * pi2_out_addr,const UWORD8 * pu1_scan,UWORD16 u2_intra_flag,UWORD16 u2_colr_comp,UWORD16 u2_d_picture)367 IMPEG2D_ERROR_CODES_T impeg2d_vld_inv_quant_mpeg2(
368                              void  *pv_dec,           /* Decoder State */
369                              WORD16       *pi2_out_addr,       /*!< Address where decoded symbols will be stored */
370                              const UWORD8 *pu1_scan,          /*!< Scan table to be used */
371                              UWORD16      u2_intra_flag,      /*!< Intra Macroblock or not */
372                              UWORD16      u2_colr_comp,      /*!< 0 - Luma,1 - U comp, 2 - V comp */
373                              UWORD16      u2_d_picture        /*!< D Picture or not */
374                              )
375 {
376     UWORD8  *pu1_weighting_matrix;
377     WORD32 u4_sum_is_even;
378     dec_state_t *ps_dec = (dec_state_t *)pv_dec;
379     IMPEG2D_ERROR_CODES_T e_error = (IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE;
380 
381     WORD16  pi2_coeffs[NUM_COEFFS];
382     UWORD8  pi4_pos[NUM_COEFFS];
383     WORD32  i4_num_coeffs;
384 
385     /* Perform VLD on the stream to get the coefficients and their positions */
386     e_error = impeg2d_vld_decode(ps_dec, pi2_coeffs, pu1_scan, pi4_pos, u2_intra_flag,
387                                  u2_colr_comp, u2_d_picture, ps_dec->u2_intra_vlc_format,
388                                  ps_dec->u2_is_mpeg2, &i4_num_coeffs);
389     if ((IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE != e_error)
390     {
391         return e_error;
392     }
393 
394     /* For YUV420 format,Select the weighting matrix according to Table 7.5 */
395     pu1_weighting_matrix = (u2_intra_flag == 1) ? ps_dec->au1_intra_quant_matrix:
396                     ps_dec->au1_inter_quant_matrix;
397 
398     /*mismatch control for mpeg2*/
399     /* Check if the block has only one non-zero coeff which is DC  */
400     ps_dec->i4_last_value_one = 0;
401 
402     IMPEG2D_IQNT_INP_STATISTICS(pi2_out_addr, ps_dec->u4_non_zero_cols, ps_dec->u4_non_zero_rows);
403 
404     /* Inverse Quantize the Output of VLD */
405     PROFILE_DISABLE_INVQUANT_IF0
406 
407     {
408         /* Clear output matrix */
409         PROFILE_DISABLE_MEMSET_RESBUF_IF0
410         if (1 != (ps_dec->u4_non_zero_cols | ps_dec->u4_non_zero_rows))
411         {
412             ps_dec->pf_memset_16bit_8x8_linear_block (pi2_out_addr);
413         }
414 
415         u4_sum_is_even  = impeg2d_inv_quant_mpeg2(pi2_out_addr, pu1_weighting_matrix,
416                                                  ps_dec->u1_quant_scale, u2_intra_flag,
417                                                  i4_num_coeffs, pi2_coeffs,
418                                                  pi4_pos, pu1_scan,
419                                                  &ps_dec->u2_def_dc_pred[u2_colr_comp],
420                                                  ps_dec->u2_intra_dc_precision);
421 
422         if (0 != pi2_out_addr[0])
423         {
424             /* The first coeff might've become non-zero due to intra_dc_decision
425              * value. So, check here after inverse quantization.
426              */
427             ps_dec->u4_non_zero_cols  |= 0x1;
428             ps_dec->u4_non_zero_rows  |= 0x1;
429         }
430 
431         if (1 == (ps_dec->u4_non_zero_cols | ps_dec->u4_non_zero_rows))
432         {
433             ps_dec->i4_last_value_one = 1 - (pi2_out_addr[0] & 1);
434         }
435         else
436         {
437             /*toggle last bit if sum is even ,else retain it as it is*/
438             pi2_out_addr[63]        ^= (u4_sum_is_even & 1);
439 
440             if (0 != pi2_out_addr[63])
441             {
442                 ps_dec->u4_non_zero_cols  |= 0x80;
443                 ps_dec->u4_non_zero_rows  |= 0x80;
444             }
445         }
446     }
447 
448     return e_error;
449 }
450 
451 
452 /******************************************************************************
453 *
454 *  Function Name   : impeg2d_vld_decode
455 *
456 *  Description     : Performs VLD operation for MPEG1/2
457 *
458 *  Arguments       :
459 *  state           : VLCD state parameter
460 *  regs            : Registers of VLCD
461 *
462 *  Values Returned : None
463 ******************************************************************************/
impeg2d_vld_decode(dec_state_t * ps_dec,WORD16 * pi2_outAddr,const UWORD8 * pu1_scan,UWORD8 * pu1_pos,UWORD16 u2_intra_flag,UWORD16 u2_chroma_flag,UWORD16 u2_d_picture,UWORD16 u2_intra_vlc_format,UWORD16 u2_mpeg2,WORD32 * pi4_num_coeffs)464 IMPEG2D_ERROR_CODES_T impeg2d_vld_decode(
465     dec_state_t *ps_dec,
466     WORD16      *pi2_outAddr,       /*!< Address where decoded symbols will be stored */
467     const UWORD8 *pu1_scan,         /*!< Scan table to be used */
468     UWORD8      *pu1_pos,       /*!< Scan table to be used */
469     UWORD16     u2_intra_flag,      /*!< Intra Macroblock or not */
470     UWORD16     u2_chroma_flag,     /*!< Chroma Block or not */
471     UWORD16     u2_d_picture,       /*!< D Picture or not */
472     UWORD16     u2_intra_vlc_format, /*!< Intra VLC format */
473     UWORD16     u2_mpeg2,          /*!< MPEG-2 or not */
474     WORD32      *pi4_num_coeffs /*!< Returns the number of coeffs in block */
475     )
476 {
477 
478     UWORD32 u4_sym_len;
479 
480     UWORD32 u4_decoded_value;
481     UWORD32 u4_level_first_byte;
482     WORD32  u4_level;
483     UWORD32 u4_run, u4_numCoeffs;
484     UWORD32 u4_buf;
485     UWORD32 u4_buf_nxt;
486     UWORD32 u4_offset;
487     UWORD32 *pu4_buf_aligned;
488     UWORD32 u4_bits;
489     stream_t *ps_stream = &ps_dec->s_bit_stream;
490     WORD32  u4_pos;
491     UWORD32 u4_nz_cols;
492     UWORD32 u4_nz_rows;
493 
494     *pi4_num_coeffs = 0;
495 
496     ps_dec->u4_non_zero_cols = 0;
497     ps_dec->u4_non_zero_rows = 0;
498     u4_nz_cols = ps_dec->u4_non_zero_cols;
499     u4_nz_rows = ps_dec->u4_non_zero_rows;
500 
501     GET_TEMP_STREAM_DATA(u4_buf,u4_buf_nxt,u4_offset,pu4_buf_aligned,ps_stream)
502     /**************************************************************************/
503     /* Decode the DC coefficient in case of Intra block                       */
504     /**************************************************************************/
505     if(u2_intra_flag)
506     {
507         WORD32 dc_size;
508         WORD32 dc_diff;
509         WORD32 maxLen;
510         WORD32 idx;
511 
512 
513         maxLen = MPEG2_DCT_DC_SIZE_LEN;
514         idx = 0;
515         if(u2_chroma_flag != 0)
516         {
517             maxLen += 1;
518             idx++;
519         }
520 
521 
522         {
523             WORD16  end = 0;
524             UWORD32 maxLen_tmp = maxLen;
525             UWORD16 m_iBit;
526 
527 
528             /* Get the maximum number of bits needed to decode a symbol */
529             IBITS_NXT(u4_buf,u4_buf_nxt,u4_offset,u4_bits,maxLen)
530             do
531             {
532                 maxLen_tmp--;
533                 /* Read one bit at a time from the variable to decode the huffman code */
534                 m_iBit = (UWORD8)((u4_bits >> maxLen_tmp) & 0x1);
535 
536                 /* Get the next node pointer or the symbol from the tree */
537                 end = gai2_impeg2d_dct_dc_size[idx][end][m_iBit];
538             }while(end > 0);
539             dc_size = end + MPEG2_DCT_DC_SIZE_OFFSET;
540 
541             /* Flush the appropriate number of bits from the stream */
542             FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,(maxLen - maxLen_tmp),pu4_buf_aligned)
543 
544         }
545 
546 
547 
548         if (dc_size != 0)
549         {
550             UWORD32 u4_bits;
551 
552             IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned, dc_size)
553             dc_diff = u4_bits;
554 
555             if ((dc_diff & (1 << (dc_size - 1))) == 0) //v Probably the prediction algo?
556                 dc_diff -= (1 << dc_size) - 1;
557         }
558         else
559         {
560             dc_diff = 0;
561         }
562 
563 
564         pi2_outAddr[*pi4_num_coeffs]    = dc_diff;
565         /* This indicates the position of the coefficient. Since this is the DC
566          * coefficient, we put the position as 0.
567          */
568         pu1_pos[*pi4_num_coeffs]    = pu1_scan[0];
569         (*pi4_num_coeffs)++;
570 
571         if (0 != dc_diff)
572         {
573             u4_nz_cols |= 0x01;
574             u4_nz_rows |= 0x01;
575         }
576 
577         u4_numCoeffs = 1;
578     }
579     /**************************************************************************/
580     /* Decoding of first AC coefficient in case of non Intra block            */
581     /**************************************************************************/
582     else
583     {
584         /* First symbol can be 1s */
585         UWORD32 u4_bits;
586 
587         IBITS_NXT(u4_buf,u4_buf_nxt,u4_offset,u4_bits,1)
588 
589         if(u4_bits == 1)
590         {
591 
592             FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,1, pu4_buf_aligned)
593             IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned, 1)
594             if(u4_bits == 1)
595             {
596                 pi2_outAddr[*pi4_num_coeffs] = -1;
597             }
598             else
599             {
600                 pi2_outAddr[*pi4_num_coeffs] = 1;
601             }
602 
603             /* This indicates the position of the coefficient. Since this is the DC
604              * coefficient, we put the position as 0.
605              */
606             pu1_pos[*pi4_num_coeffs]    = pu1_scan[0];
607             (*pi4_num_coeffs)++;
608             u4_numCoeffs = 1;
609 
610             u4_nz_cols |= 0x01;
611             u4_nz_rows |= 0x01;
612         }
613         else
614         {
615             u4_numCoeffs = 0;
616         }
617     }
618     if (1 == u2_d_picture)
619     {
620         PUT_TEMP_STREAM_DATA(u4_buf, u4_buf_nxt, u4_offset, pu4_buf_aligned, ps_stream)
621         ps_dec->u4_non_zero_cols  = u4_nz_cols;
622         ps_dec->u4_non_zero_rows  = u4_nz_rows;
623         return ((IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE);
624     }
625 
626 
627 
628         if (1 == u2_intra_vlc_format && u2_intra_flag)
629         {
630 
631             while(1)
632             {
633                 //Putting the impeg2d_dec_ac_coeff_one function inline.
634 
635                 UWORD32 lead_zeros;
636                 WORD16 DecodedValue;
637 
638                 u4_sym_len = 17;
639                 IBITS_NXT(u4_buf,u4_buf_nxt,u4_offset,u4_bits,u4_sym_len)
640 
641                 DecodedValue = gau2_impeg2d_tab_one_1_9[u4_bits >> 8];
642                 u4_sym_len = (DecodedValue & 0xf);
643                 u4_level = DecodedValue >> 9;
644                 /* One table lookup */
645                 if(0 != u4_level)
646                 {
647                     u4_run = ((DecodedValue >> 4) & 0x1f);
648                     u4_numCoeffs       += u4_run;
649                     u4_pos             = pu1_scan[u4_numCoeffs++ & 63];
650                     pu1_pos[*pi4_num_coeffs]    = u4_pos;
651 
652                     FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
653                     pi2_outAddr[*pi4_num_coeffs]    = u4_level;
654 
655                     (*pi4_num_coeffs)++;
656                 }
657                 else
658                 {
659                     if (DecodedValue == END_OF_BLOCK_ONE)
660                     {
661                         u4_sym_len = 4;
662 
663                         break;
664                     }
665                     else
666                     {
667                         /*Second table lookup*/
668                         lead_zeros = CLZ(u4_bits) - 20;/* -16 since we are dealing with WORD32 */
669                         if (0 != lead_zeros)
670                         {
671 
672                             u4_bits         = (u4_bits >> (6 - lead_zeros)) & 0x001F;
673 
674                             /* Flush the number of bits */
675                             if (1 == lead_zeros)
676                             {
677                                 u4_sym_len         = ((u4_bits & 0x18) >> 3) == 2 ? 11:10;
678                             }
679                             else
680                             {
681                                 u4_sym_len         = 11 + lead_zeros;
682                             }
683                             /* flushing */
684                             FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
685 
686                             /* Calculate the address */
687                             u4_bits         = ((lead_zeros - 1) << 5) + u4_bits;
688 
689                             DecodedValue    = gau2_impeg2d_tab_one_10_16[u4_bits];
690 
691                             u4_run = BITS(DecodedValue, 8,4);
692                             u4_level = ((WORD16) DecodedValue) >> 9;
693 
694                             u4_numCoeffs       += u4_run;
695                             u4_pos             = pu1_scan[u4_numCoeffs++ & 63];
696                             pu1_pos[*pi4_num_coeffs]    = u4_pos;
697                             pi2_outAddr[*pi4_num_coeffs]    = u4_level;
698                             (*pi4_num_coeffs)++;
699                         }
700                         /*********************************************************************/
701                         /* MPEG2 Escape Code                                                 */
702                         /*********************************************************************/
703                         else if(u2_mpeg2 == 1)
704                         {
705                             u4_sym_len         = 6;
706                             FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
707                                 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,18)
708                                 u4_decoded_value    = u4_bits;
709                             u4_run             = (u4_decoded_value >> 12);
710                             u4_level           = (u4_decoded_value & 0x0FFF);
711 
712                             if (u4_level)
713                                 u4_level = (u4_level - ((u4_level & 0x0800) << 1));
714 
715                             u4_numCoeffs       += u4_run;
716                             u4_pos             = pu1_scan[u4_numCoeffs++ & 63];
717                             pu1_pos[*pi4_num_coeffs]    = u4_pos;
718                             pi2_outAddr[*pi4_num_coeffs]    = u4_level;
719                             (*pi4_num_coeffs)++;
720                         }
721                         /*********************************************************************/
722                         /* MPEG1 Escape Code                                                 */
723                         /*********************************************************************/
724                         else
725                         {
726                             /*-----------------------------------------------------------
727                             * MPEG-1 Stream
728                             *
729                             * <See D.9.3 of MPEG-2> Run-level escape syntax
730                             * Run-level values that cannot be coded with a VLC are coded
731                             * by the escape code '0000 01' followed by
732                             * either a 14-bit FLC (127 <= level <= 127),
733                             * or a 22-bit FLC (255 <= level <= 255).
734                             * This is described in Annex B,B.5f of MPEG-1.standard
735                             *-----------------------------------------------------------*/
736 
737                             /*-----------------------------------------------------------
738                             * First 6 bits are the value of the Run. Next is First 8 bits
739                             * of Level. These bits decide whether it is 14 bit FLC or
740                             * 22-bit FLC.
741                             *
742                             * If( first 8 bits of Level == '1000000' or '00000000')
743                             *      then its is 22-bit FLC.
744                             * else
745                             *      it is 14-bit FLC.
746                             *-----------------------------------------------------------*/
747                             u4_sym_len         = 6;
748                             FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
749                                 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,14)
750                                 u4_decoded_value     = u4_bits;
751                             u4_run              = (u4_decoded_value >> 8);
752                             u4_level_first_byte = (u4_decoded_value & 0x0FF);
753                             if(u4_level_first_byte & 0x7F)
754                             {
755                                 /*-------------------------------------------------------
756                                 * First 8 bits of level are neither 1000000 nor 00000000
757                                 * Hence 14-bit FLC (Last 8 bits are used to get level)
758                                 *
759                                 *  Level = (msb of Level_First_Byte is 1)?
760                                 *          Level_First_Byte - 256 : Level_First_Byte
761                                 *-------------------------------------------------------*/
762                                 u4_level = (u4_level_first_byte -
763                                     ((u4_level_first_byte & 0x80) << 1));
764                             }
765                             else
766                             {
767                                 /*-------------------------------------------------------
768                                 * Next 8 bits are either 1000000 or 00000000
769                                 * Hence 22-bit FLC (Last 16 bits are used to get level)
770                                 *
771                                 *  Level = (msb of Level_First_Byte is 1)?
772                                 *          Level_Second_Byte - 256 : Level_Second_Byte
773                                 *-------------------------------------------------------*/
774                                 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,8)
775                                     u4_level = u4_bits;
776                                 u4_level = (u4_level - (u4_level_first_byte << 1));
777                             }
778                             u4_numCoeffs += u4_run;
779 
780                             u4_pos = pu1_scan[u4_numCoeffs++ & 63];
781 
782                             pu1_pos[*pi4_num_coeffs]    = u4_pos;
783                             pi2_outAddr[*pi4_num_coeffs]    = u4_level;
784                             (*pi4_num_coeffs)++;
785                         }
786                     }
787                 }
788 
789                 u4_nz_cols |= 1 << (u4_pos & 0x7);
790                 u4_nz_rows |= 1 << (u4_pos >> 0x3);
791 
792                 if (u4_numCoeffs > 64)
793                 {
794                     return IMPEG2D_MB_TEX_DECODE_ERR;
795                 }
796 
797             }
798             IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,u4_sym_len)
799         }
800         else
801         {
802             // Inline
803             while(1)
804             {
805 
806                 UWORD32 lead_zeros;
807                 UWORD16 DecodedValue;
808 
809                 u4_sym_len = 17;
810                 IBITS_NXT(u4_buf, u4_buf_nxt, u4_offset, u4_bits, u4_sym_len)
811 
812 
813                 DecodedValue = gau2_impeg2d_tab_zero_1_9[u4_bits >> 8];
814                 u4_sym_len = BITS(DecodedValue, 3, 0);
815                 u4_level = ((WORD16) DecodedValue) >> 9;
816 
817                 if (0 != u4_level)
818                 {
819                     u4_run = BITS(DecodedValue, 8,4);
820 
821                     u4_numCoeffs       += u4_run;
822 
823                     u4_pos                 = pu1_scan[u4_numCoeffs++ & 63];
824                     pu1_pos[*pi4_num_coeffs]    = u4_pos;
825 
826                     FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
827                     pi2_outAddr[*pi4_num_coeffs]    = u4_level;
828                     (*pi4_num_coeffs)++;
829                 }
830                 else
831                 {
832                     if(DecodedValue == END_OF_BLOCK_ZERO)
833                     {
834                         u4_sym_len = 2;
835 
836                         break;
837                     }
838                     else
839                     {
840                         lead_zeros = CLZ(u4_bits) - 20;/* -15 since we are dealing with WORD32 */
841                         /*Second table lookup*/
842                         if (0 != lead_zeros)
843                         {
844                             u4_bits         = (u4_bits >> (6 - lead_zeros)) & 0x001F;
845 
846                             /* Flush the number of bits */
847                             u4_sym_len         = 11 + lead_zeros;
848 
849                             /* Calculate the address */
850                             u4_bits         = ((lead_zeros - 1) << 5) + u4_bits;
851 
852                             DecodedValue    = gau2_impeg2d_tab_zero_10_16[u4_bits];
853 
854                             u4_run = BITS(DecodedValue, 8,4);
855                             u4_level = ((WORD16) DecodedValue) >> 9;
856 
857                             u4_numCoeffs       += u4_run;
858 
859                             u4_pos                 = pu1_scan[u4_numCoeffs++ & 63];
860                             pu1_pos[*pi4_num_coeffs]    = u4_pos;
861                             if (1 == lead_zeros)
862                                 u4_sym_len--;
863                             /* flushing */
864                             FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
865                             pi2_outAddr[*pi4_num_coeffs]    = u4_level;
866 
867                             (*pi4_num_coeffs)++;
868                         }
869                         /*Escape Sequence*/
870                         else if(u2_mpeg2 == 1)
871                         {
872                             u4_sym_len         = 6;
873                             FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
874                             IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,18)
875                             u4_decoded_value    = u4_bits;
876                             u4_run             = (u4_decoded_value >> 12);
877                             u4_level           = (u4_decoded_value & 0x0FFF);
878 
879                             if (u4_level)
880                                 u4_level = (u4_level - ((u4_level & 0x0800) << 1));
881 
882                             u4_numCoeffs           += u4_run;
883 
884                             u4_pos                 = pu1_scan[u4_numCoeffs++ & 63];
885                             pu1_pos[*pi4_num_coeffs]    = u4_pos;
886                             pi2_outAddr[*pi4_num_coeffs]    = u4_level;
887 
888                             (*pi4_num_coeffs)++;
889                         }
890                         /*********************************************************************/
891                         /* MPEG1 Escape Code                                                 */
892                         /*********************************************************************/
893                         else
894                         {
895                             /*-----------------------------------------------------------
896                             * MPEG-1 Stream
897                             *
898                             * <See D.9.3 of MPEG-2> Run-level escape syntax
899                             * Run-level values that cannot be coded with a VLC are coded
900                             * by the escape code '0000 01' followed by
901                             * either a 14-bit FLC (127 <= level <= 127),
902                             * or a 22-bit FLC (255 <= level <= 255).
903                             * This is described in Annex B,B.5f of MPEG-1.standard
904                             *-----------------------------------------------------------*/
905 
906                             /*-----------------------------------------------------------
907                             * First 6 bits are the value of the Run. Next is First 8 bits
908                             * of Level. These bits decide whether it is 14 bit FLC or
909                             * 22-bit FLC.
910                             *
911                             * If( first 8 bits of Level == '1000000' or '00000000')
912                             *      then its is 22-bit FLC.
913                             * else
914                             *      it is 14-bit FLC.
915                             *-----------------------------------------------------------*/
916                             u4_sym_len             = 6;
917                             FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
918                             IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,14)
919                             u4_decoded_value        = u4_bits;
920                             u4_run                 = (u4_decoded_value >> 8);
921                             u4_level_first_byte    = (u4_decoded_value & 0x0FF);
922                             if(u4_level_first_byte & 0x7F)
923                             {
924                                 /*-------------------------------------------------------
925                                 * First 8 bits of level are neither 1000000 nor 00000000
926                                 * Hence 14-bit FLC (Last 8 bits are used to get level)
927                                 *
928                                 *  Level = (msb of Level_First_Byte is 1)?
929                                 *          Level_First_Byte - 256 : Level_First_Byte
930                                 *-------------------------------------------------------*/
931                                 u4_level = (u4_level_first_byte -
932                                     ((u4_level_first_byte & 0x80) << 1));
933                             }
934                             else
935                             {
936                                 /*-------------------------------------------------------
937                                 * Next 8 bits are either 1000000 or 00000000
938                                 * Hence 22-bit FLC (Last 16 bits are used to get level)
939                                 *
940                                 *  Level = (msb of Level_First_Byte is 1)?
941                                 *          Level_Second_Byte - 256 : Level_Second_Byte
942                                 *-------------------------------------------------------*/
943                                 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,8)
944                                 u4_level = u4_bits;
945                                 u4_level = (u4_level - (u4_level_first_byte << 1));
946                             }
947                             u4_numCoeffs           += u4_run;
948 
949                             u4_pos                 = pu1_scan[u4_numCoeffs++ & 63];
950                             pu1_pos[*pi4_num_coeffs]    = u4_pos;
951                             pi2_outAddr[*pi4_num_coeffs]    = u4_level;
952 
953                             (*pi4_num_coeffs)++;
954                         }
955                     }
956                 }
957 
958                 u4_nz_cols |= 1 << (u4_pos & 0x7);
959                 u4_nz_rows |= 1 << (u4_pos >> 0x3);
960                 if (u4_numCoeffs > 64)
961                 {
962                     return IMPEG2D_MB_TEX_DECODE_ERR;
963                 }
964 
965             }
966 
967             IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,u4_sym_len)
968 
969         }
970 
971         PUT_TEMP_STREAM_DATA(u4_buf, u4_buf_nxt, u4_offset, pu4_buf_aligned, ps_stream)
972 
973         ps_dec->u4_non_zero_cols  = u4_nz_cols;
974         ps_dec->u4_non_zero_rows  = u4_nz_rows;
975 
976             return (IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE;
977 }
978 
979 
980 
981 /*****************************************************************************/
982 /*                                                                           */
983 /*  Function Name : impeg2d_inv_quant_mpeg1                                   */
984 /*                                                                           */
985 /*  Description   : Inverse quantizes the output of VLD                      */
986 /*                                                                           */
987 /*  Inputs        :                                                          */
988 /*  blk,              - Block to be inverse quantized                        */
989 /*  weighting_matrix  - Matrix to be used in inverse quant                   */
990 /*  intra_dc_precision- Precision reqd to scale intra DC value               */
991 /*  quant_scale       - Quanization scale for inverse quant                  */
992 /*  intra_flag        - Intra or Not                                         */
993 /*                                                                           */
994 /*  Globals       : None                                                     */
995 /*                                                                           */
996 /*  Processing    : Implements the inverse quantize equation                 */
997 /*                                                                           */
998 /*  Outputs       : Inverse quantized values in the block                    */
999 /*                                                                           */
1000 /*  Returns       : None                                                     */
1001 /*                                                                           */
1002 /*  Issues        : None                                                     */
1003 /*                                                                           */
1004 /*  Revision History:                                                        */
1005 /*                                                                           */
1006 /*         DD MM YYYY   Author(s)       Changes                              */
1007 /*         05 09 2005   Harish M        First Version                        */
1008 /*                                                                           */
1009 /*****************************************************************************/
impeg2d_inv_quant_mpeg1(WORD16 * pi2_blk,UWORD8 * pu1_weighting_matrix,UWORD8 u1_quant_scale,WORD32 u4_intra_flag,WORD32 i4_num_coeffs,WORD16 * pi2_coeffs,UWORD8 * pu1_pos,const UWORD8 * pu1_scan,UWORD16 * pu2_def_dc_pred,UWORD16 u2_intra_dc_precision)1010 UWORD8 impeg2d_inv_quant_mpeg1(WORD16 *pi2_blk,
1011                               UWORD8 *pu1_weighting_matrix,
1012                               UWORD8 u1_quant_scale,
1013                               WORD32 u4_intra_flag,
1014                               WORD32 i4_num_coeffs,
1015                               WORD16 *pi2_coeffs,
1016                               UWORD8 *pu1_pos,
1017                               const UWORD8 *pu1_scan,
1018                               UWORD16 *pu2_def_dc_pred,
1019                               UWORD16 u2_intra_dc_precision)
1020 {
1021     UWORD16 i4_pos;
1022 
1023     WORD32  i4_iter;
1024 
1025     /* Inverse Quantize the predicted DC value for intra MB*/
1026     if(u4_intra_flag == 1)
1027     {
1028         /**************************************************************************/
1029         /* Decode the DC coefficient in case of Intra block and also update       */
1030         /* DC predictor value of the corresponding color component                */
1031         /**************************************************************************/
1032         {
1033             pi2_coeffs[0]   += *pu2_def_dc_pred;
1034             *pu2_def_dc_pred      = pi2_coeffs[0];
1035             pi2_coeffs[0]   <<= (3 - u2_intra_dc_precision);
1036             pi2_coeffs[0]   = CLIP_S12(pi2_coeffs[0]);
1037         }
1038 
1039         pi2_blk[pu1_scan[0]]  = pi2_coeffs[0];
1040     }
1041     /************************************************************************/
1042     /* Inverse quantization of other DCT coefficients                       */
1043     /************************************************************************/
1044     for(i4_iter = u4_intra_flag; i4_iter < i4_num_coeffs; i4_iter++)
1045     {
1046 
1047         WORD16 sign;
1048         WORD32 temp, temp1;
1049 
1050         /* Position is the inverse scan of the index stored */
1051         i4_pos      = pu1_pos[i4_iter];
1052         pi2_blk[i4_pos] = pi2_coeffs[i4_iter];
1053 
1054         sign = SIGN(pi2_blk[i4_pos]);
1055         temp = ABS(pi2_blk[i4_pos] << 1);
1056 
1057         /* pi2_coeffs has only non-zero elements. So no need to check
1058          * if the coeff is non-zero.
1059          */
1060         temp = temp + (1 * !u4_intra_flag);
1061 
1062         temp = temp * pu1_weighting_matrix[i4_pos] * u1_quant_scale;
1063 
1064         temp = temp >> 5;
1065 
1066         temp1 = temp | 1;
1067 
1068         temp1 = (temp1 > temp) ? (temp1 - temp) : (temp - temp1);
1069 
1070         temp = temp - temp1;
1071 
1072         if(temp < 0)
1073         {
1074             temp = 0;
1075         }
1076 
1077         temp = temp * sign;
1078 
1079         temp = CLIP_S12(temp);
1080 
1081         pi2_blk[i4_pos] = temp;
1082     }
1083 
1084     /*return value is used in the case of mpeg2 for mismatch control*/
1085     return  (0);
1086 } /* End of inv_quant() */
1087 
1088 
1089 
1090 /*****************************************************************************/
1091 /*                                                                           */
1092 /*  Function Name : impeg2d_inv_quant_mpeg2                                   */
1093 /*                                                                           */
1094 /*  Description   : Inverse quantizes the output of VLD                      */
1095 /*                                                                           */
1096 /*  Inputs        :                                                          */
1097 /*  blk,              - Block to be inverse quantized                        */
1098 /*  weighting_matrix  - Matrix to be used in inverse quant                   */
1099 /*  intra_dc_precision- Precision reqd to scale intra DC value               */
1100 /*  quant_scale       - Quanization scale for inverse quant                  */
1101 /*  intra_flag        - Intra or Not                                         */
1102 /*                                                                           */
1103 /*  Globals       : None                                                     */
1104 /*                                                                           */
1105 /*  Processing    : Implements the inverse quantize equation                 */
1106 /*                                                                           */
1107 /*  Outputs       : Inverse quantized values in the block                    */
1108 /*                                                                           */
1109 /*  Returns       : None                                                     */
1110 /*                                                                           */
1111 /*  Issues        : None                                                     */
1112 /*                                                                           */
1113 /*  Revision History:                                                        */
1114 /*                                                                           */
1115 /*         DD MM YYYY   Author(s)       Changes                              */
1116 /*         05 09 2005   Harish M        First Version                        */
1117 /*                                                                           */
1118 /*****************************************************************************/
impeg2d_inv_quant_mpeg2(WORD16 * pi2_blk,UWORD8 * pu1_weighting_matrix,UWORD8 u1_quant_scale,WORD32 u4_intra_flag,WORD32 i4_num_coeffs,WORD16 * pi2_coeffs,UWORD8 * pu1_pos,const UWORD8 * pu1_scan,UWORD16 * pu2_def_dc_pred,UWORD16 u2_intra_dc_precision)1119 UWORD8 impeg2d_inv_quant_mpeg2(WORD16 *pi2_blk,
1120                               UWORD8 *pu1_weighting_matrix,
1121                               UWORD8 u1_quant_scale,
1122                               WORD32 u4_intra_flag,
1123                               WORD32 i4_num_coeffs,
1124                               WORD16 *pi2_coeffs,
1125                               UWORD8 *pu1_pos,
1126                               const UWORD8 *pu1_scan,
1127                               UWORD16 *pu2_def_dc_pred,
1128                               UWORD16 u2_intra_dc_precision)
1129 {
1130 
1131     WORD32  i4_pos;
1132     /* Used for Mismatch control */
1133     UWORD32 sum;
1134 
1135     WORD32  i4_iter;
1136 
1137     sum = 0;
1138 
1139     /* Inverse Quantize the predicted DC value for intra MB*/
1140     if(u4_intra_flag == 1)
1141     {
1142         /**************************************************************************/
1143         /* Decode the DC coefficient in case of Intra block and also update       */
1144         /* DC predictor value of the corresponding color component                */
1145         /**************************************************************************/
1146         {
1147             pi2_coeffs[0]   += *pu2_def_dc_pred;
1148             *pu2_def_dc_pred      = pi2_coeffs[0];
1149             pi2_coeffs[0]   <<= (3 - u2_intra_dc_precision);
1150             pi2_coeffs[0]   = CLIP_S12(pi2_coeffs[0]);
1151         }
1152 
1153         pi2_blk[pu1_scan[0]]  = pi2_coeffs[0];
1154         sum = pi2_blk[0];
1155     }
1156 
1157     /************************************************************************/
1158     /* Inverse quantization of other DCT coefficients                       */
1159     /************************************************************************/
1160     for(i4_iter = u4_intra_flag; i4_iter < i4_num_coeffs; i4_iter++)
1161     {
1162         WORD16 sign;
1163         WORD32 temp;
1164         /* Position is the inverse scan of the index stored */
1165         i4_pos      = pu1_pos[i4_iter];
1166         pi2_blk[i4_pos] = pi2_coeffs[i4_iter];
1167 
1168         sign = SIGN(pi2_blk[i4_pos]);
1169         temp = ABS(pi2_blk[i4_pos] << 1);
1170         temp = temp + (1 * !u4_intra_flag);
1171         temp = temp * pu1_weighting_matrix[i4_pos] * u1_quant_scale;
1172 
1173         temp = temp >> 5;
1174 
1175         temp = temp * sign;
1176 
1177         temp = CLIP_S12(temp);
1178 
1179         pi2_blk[i4_pos] = temp;
1180 
1181         sum += temp;
1182     }
1183     return (sum ^ 1);
1184 } /* End of inv_quant() */
1185