1 /* Alpha specific support for 64-bit ELF
2 Copyright (C) 1996-2014 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@tamu.edu>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* We need a published ABI spec for this. Until one comes out, don't
24 assume this'll remain unchanged forever. */
25
26 #include "sysdep.h"
27 #include "bfd.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30
31 #include "elf/alpha.h"
32
33 #define ALPHAECOFF
34
35 #define NO_COFF_RELOCS
36 #define NO_COFF_SYMBOLS
37 #define NO_COFF_LINENOS
38
39 /* Get the ECOFF swapping routines. Needed for the debug information. */
40 #include "coff/internal.h"
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/alpha.h"
45 #include "aout/ar.h"
46 #include "libcoff.h"
47 #include "libecoff.h"
48 #define ECOFF_64
49 #include "ecoffswap.h"
50
51
52 /* Instruction data for plt generation and relaxation. */
53
54 #define OP_LDA 0x08
55 #define OP_LDAH 0x09
56 #define OP_LDQ 0x29
57 #define OP_BR 0x30
58 #define OP_BSR 0x34
59
60 #define INSN_LDA (OP_LDA << 26)
61 #define INSN_LDAH (OP_LDAH << 26)
62 #define INSN_LDQ (OP_LDQ << 26)
63 #define INSN_BR (OP_BR << 26)
64
65 #define INSN_ADDQ 0x40000400
66 #define INSN_RDUNIQ 0x0000009e
67 #define INSN_SUBQ 0x40000520
68 #define INSN_S4SUBQ 0x40000560
69 #define INSN_UNOP 0x2ffe0000
70
71 #define INSN_JSR 0x68004000
72 #define INSN_JMP 0x68000000
73 #define INSN_JSR_MASK 0xfc00c000
74
75 #define INSN_A(I,A) (I | (A << 21))
76 #define INSN_AB(I,A,B) (I | (A << 21) | (B << 16))
77 #define INSN_ABC(I,A,B,C) (I | (A << 21) | (B << 16) | C)
78 #define INSN_ABO(I,A,B,O) (I | (A << 21) | (B << 16) | ((O) & 0xffff))
79 #define INSN_AD(I,A,D) (I | (A << 21) | (((D) >> 2) & 0x1fffff))
80
81 /* PLT/GOT Stuff */
82
83 /* Set by ld emulation. Putting this into the link_info or hash structure
84 is simply working too hard. */
85 #ifdef USE_SECUREPLT
86 bfd_boolean elf64_alpha_use_secureplt = TRUE;
87 #else
88 bfd_boolean elf64_alpha_use_secureplt = FALSE;
89 #endif
90
91 #define OLD_PLT_HEADER_SIZE 32
92 #define OLD_PLT_ENTRY_SIZE 12
93 #define NEW_PLT_HEADER_SIZE 36
94 #define NEW_PLT_ENTRY_SIZE 4
95
96 #define PLT_HEADER_SIZE \
97 (elf64_alpha_use_secureplt ? NEW_PLT_HEADER_SIZE : OLD_PLT_HEADER_SIZE)
98 #define PLT_ENTRY_SIZE \
99 (elf64_alpha_use_secureplt ? NEW_PLT_ENTRY_SIZE : OLD_PLT_ENTRY_SIZE)
100
101 #define MAX_GOT_SIZE (64*1024)
102
103 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so"
104
105
106 /* Used to implement multiple .got subsections. */
107 struct alpha_elf_got_entry
108 {
109 struct alpha_elf_got_entry *next;
110
111 /* Which .got subsection? */
112 bfd *gotobj;
113
114 /* The addend in effect for this entry. */
115 bfd_vma addend;
116
117 /* The .got offset for this entry. */
118 int got_offset;
119
120 /* The .plt offset for this entry. */
121 int plt_offset;
122
123 /* How many references to this entry? */
124 int use_count;
125
126 /* The relocation type of this entry. */
127 unsigned char reloc_type;
128
129 /* How a LITERAL is used. */
130 unsigned char flags;
131
132 /* Have we initialized the dynamic relocation for this entry? */
133 unsigned char reloc_done;
134
135 /* Have we adjusted this entry for SEC_MERGE? */
136 unsigned char reloc_xlated;
137 };
138
139 struct alpha_elf_reloc_entry
140 {
141 struct alpha_elf_reloc_entry *next;
142
143 /* Which .reloc section? */
144 asection *srel;
145
146 /* What kind of relocation? */
147 unsigned int rtype;
148
149 /* Is this against read-only section? */
150 unsigned int reltext : 1;
151
152 /* How many did we find? */
153 unsigned long count;
154 };
155
156 struct alpha_elf_link_hash_entry
157 {
158 struct elf_link_hash_entry root;
159
160 /* External symbol information. */
161 EXTR esym;
162
163 /* Cumulative flags for all the .got entries. */
164 int flags;
165
166 /* Contexts in which a literal was referenced. */
167 #define ALPHA_ELF_LINK_HASH_LU_ADDR 0x01
168 #define ALPHA_ELF_LINK_HASH_LU_MEM 0x02
169 #define ALPHA_ELF_LINK_HASH_LU_BYTE 0x04
170 #define ALPHA_ELF_LINK_HASH_LU_JSR 0x08
171 #define ALPHA_ELF_LINK_HASH_LU_TLSGD 0x10
172 #define ALPHA_ELF_LINK_HASH_LU_TLSLDM 0x20
173 #define ALPHA_ELF_LINK_HASH_LU_JSRDIRECT 0x40
174 #define ALPHA_ELF_LINK_HASH_LU_PLT 0x38
175 #define ALPHA_ELF_LINK_HASH_TLS_IE 0x80
176
177 /* Used to implement multiple .got subsections. */
178 struct alpha_elf_got_entry *got_entries;
179
180 /* Used to count non-got, non-plt relocations for delayed sizing
181 of relocation sections. */
182 struct alpha_elf_reloc_entry *reloc_entries;
183 };
184
185 /* Alpha ELF linker hash table. */
186
187 struct alpha_elf_link_hash_table
188 {
189 struct elf_link_hash_table root;
190
191 /* The head of a list of .got subsections linked through
192 alpha_elf_tdata(abfd)->got_link_next. */
193 bfd *got_list;
194
195 /* The most recent relax pass that we've seen. The GOTs
196 should be regenerated if this doesn't match. */
197 int relax_trip;
198 };
199
200 /* Look up an entry in a Alpha ELF linker hash table. */
201
202 #define alpha_elf_link_hash_lookup(table, string, create, copy, follow) \
203 ((struct alpha_elf_link_hash_entry *) \
204 elf_link_hash_lookup (&(table)->root, (string), (create), \
205 (copy), (follow)))
206
207 /* Traverse a Alpha ELF linker hash table. */
208
209 #define alpha_elf_link_hash_traverse(table, func, info) \
210 (elf_link_hash_traverse \
211 (&(table)->root, \
212 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
213 (info)))
214
215 /* Get the Alpha ELF linker hash table from a link_info structure. */
216
217 #define alpha_elf_hash_table(p) \
218 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
219 == ALPHA_ELF_DATA ? ((struct alpha_elf_link_hash_table *) ((p)->hash)) : NULL)
220
221 /* Get the object's symbols as our own entry type. */
222
223 #define alpha_elf_sym_hashes(abfd) \
224 ((struct alpha_elf_link_hash_entry **)elf_sym_hashes(abfd))
225
226 /* Should we do dynamic things to this symbol? This differs from the
227 generic version in that we never need to consider function pointer
228 equality wrt PLT entries -- we don't create a PLT entry if a symbol's
229 address is ever taken. */
230
231 static inline bfd_boolean
alpha_elf_dynamic_symbol_p(struct elf_link_hash_entry * h,struct bfd_link_info * info)232 alpha_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
233 struct bfd_link_info *info)
234 {
235 return _bfd_elf_dynamic_symbol_p (h, info, 0);
236 }
237
238 /* Create an entry in a Alpha ELF linker hash table. */
239
240 static struct bfd_hash_entry *
elf64_alpha_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)241 elf64_alpha_link_hash_newfunc (struct bfd_hash_entry *entry,
242 struct bfd_hash_table *table,
243 const char *string)
244 {
245 struct alpha_elf_link_hash_entry *ret =
246 (struct alpha_elf_link_hash_entry *) entry;
247
248 /* Allocate the structure if it has not already been allocated by a
249 subclass. */
250 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
251 ret = ((struct alpha_elf_link_hash_entry *)
252 bfd_hash_allocate (table,
253 sizeof (struct alpha_elf_link_hash_entry)));
254 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
255 return (struct bfd_hash_entry *) ret;
256
257 /* Call the allocation method of the superclass. */
258 ret = ((struct alpha_elf_link_hash_entry *)
259 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
260 table, string));
261 if (ret != (struct alpha_elf_link_hash_entry *) NULL)
262 {
263 /* Set local fields. */
264 memset (&ret->esym, 0, sizeof (EXTR));
265 /* We use -2 as a marker to indicate that the information has
266 not been set. -1 means there is no associated ifd. */
267 ret->esym.ifd = -2;
268 ret->flags = 0;
269 ret->got_entries = NULL;
270 ret->reloc_entries = NULL;
271 }
272
273 return (struct bfd_hash_entry *) ret;
274 }
275
276 /* Create a Alpha ELF linker hash table. */
277
278 static struct bfd_link_hash_table *
elf64_alpha_bfd_link_hash_table_create(bfd * abfd)279 elf64_alpha_bfd_link_hash_table_create (bfd *abfd)
280 {
281 struct alpha_elf_link_hash_table *ret;
282 bfd_size_type amt = sizeof (struct alpha_elf_link_hash_table);
283
284 ret = (struct alpha_elf_link_hash_table *) bfd_zmalloc (amt);
285 if (ret == (struct alpha_elf_link_hash_table *) NULL)
286 return NULL;
287
288 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
289 elf64_alpha_link_hash_newfunc,
290 sizeof (struct alpha_elf_link_hash_entry),
291 ALPHA_ELF_DATA))
292 {
293 free (ret);
294 return NULL;
295 }
296
297 return &ret->root.root;
298 }
299
300 /* Alpha ELF follows MIPS ELF in using a special find_nearest_line
301 routine in order to handle the ECOFF debugging information. */
302
303 struct alpha_elf_find_line
304 {
305 struct ecoff_debug_info d;
306 struct ecoff_find_line i;
307 };
308
309 /* We have some private fields hanging off of the elf_tdata structure. */
310
311 struct alpha_elf_obj_tdata
312 {
313 struct elf_obj_tdata root;
314
315 /* For every input file, these are the got entries for that object's
316 local symbols. */
317 struct alpha_elf_got_entry ** local_got_entries;
318
319 /* For every input file, this is the object that owns the got that
320 this input file uses. */
321 bfd *gotobj;
322
323 /* For every got, this is a linked list through the objects using this got */
324 bfd *in_got_link_next;
325
326 /* For every got, this is a link to the next got subsegment. */
327 bfd *got_link_next;
328
329 /* For every got, this is the section. */
330 asection *got;
331
332 /* For every got, this is it's total number of words. */
333 int total_got_size;
334
335 /* For every got, this is the sum of the number of words required
336 to hold all of the member object's local got. */
337 int local_got_size;
338
339 /* Used by elf64_alpha_find_nearest_line entry point. */
340 struct alpha_elf_find_line *find_line_info;
341
342 };
343
344 #define alpha_elf_tdata(abfd) \
345 ((struct alpha_elf_obj_tdata *) (abfd)->tdata.any)
346
347 #define is_alpha_elf(bfd) \
348 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
349 && elf_tdata (bfd) != NULL \
350 && elf_object_id (bfd) == ALPHA_ELF_DATA)
351
352 static bfd_boolean
elf64_alpha_mkobject(bfd * abfd)353 elf64_alpha_mkobject (bfd *abfd)
354 {
355 return bfd_elf_allocate_object (abfd, sizeof (struct alpha_elf_obj_tdata),
356 ALPHA_ELF_DATA);
357 }
358
359 static bfd_boolean
elf64_alpha_object_p(bfd * abfd)360 elf64_alpha_object_p (bfd *abfd)
361 {
362 /* Set the right machine number for an Alpha ELF file. */
363 return bfd_default_set_arch_mach (abfd, bfd_arch_alpha, 0);
364 }
365
366 /* A relocation function which doesn't do anything. */
367
368 static bfd_reloc_status_type
elf64_alpha_reloc_nil(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc,asymbol * sym ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED,asection * sec,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)369 elf64_alpha_reloc_nil (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
370 asymbol *sym ATTRIBUTE_UNUSED,
371 void * data ATTRIBUTE_UNUSED, asection *sec,
372 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
373 {
374 if (output_bfd)
375 reloc->address += sec->output_offset;
376 return bfd_reloc_ok;
377 }
378
379 /* A relocation function used for an unsupported reloc. */
380
381 static bfd_reloc_status_type
elf64_alpha_reloc_bad(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc,asymbol * sym ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED,asection * sec,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)382 elf64_alpha_reloc_bad (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
383 asymbol *sym ATTRIBUTE_UNUSED,
384 void * data ATTRIBUTE_UNUSED, asection *sec,
385 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
386 {
387 if (output_bfd)
388 reloc->address += sec->output_offset;
389 return bfd_reloc_notsupported;
390 }
391
392 /* Do the work of the GPDISP relocation. */
393
394 static bfd_reloc_status_type
elf64_alpha_do_reloc_gpdisp(bfd * abfd,bfd_vma gpdisp,bfd_byte * p_ldah,bfd_byte * p_lda)395 elf64_alpha_do_reloc_gpdisp (bfd *abfd, bfd_vma gpdisp, bfd_byte *p_ldah,
396 bfd_byte *p_lda)
397 {
398 bfd_reloc_status_type ret = bfd_reloc_ok;
399 bfd_vma addend;
400 unsigned long i_ldah, i_lda;
401
402 i_ldah = bfd_get_32 (abfd, p_ldah);
403 i_lda = bfd_get_32 (abfd, p_lda);
404
405 /* Complain if the instructions are not correct. */
406 if (((i_ldah >> 26) & 0x3f) != 0x09
407 || ((i_lda >> 26) & 0x3f) != 0x08)
408 ret = bfd_reloc_dangerous;
409
410 /* Extract the user-supplied offset, mirroring the sign extensions
411 that the instructions perform. */
412 addend = ((i_ldah & 0xffff) << 16) | (i_lda & 0xffff);
413 addend = (addend ^ 0x80008000) - 0x80008000;
414
415 gpdisp += addend;
416
417 if ((bfd_signed_vma) gpdisp < -(bfd_signed_vma) 0x80000000
418 || (bfd_signed_vma) gpdisp >= (bfd_signed_vma) 0x7fff8000)
419 ret = bfd_reloc_overflow;
420
421 /* compensate for the sign extension again. */
422 i_ldah = ((i_ldah & 0xffff0000)
423 | (((gpdisp >> 16) + ((gpdisp >> 15) & 1)) & 0xffff));
424 i_lda = (i_lda & 0xffff0000) | (gpdisp & 0xffff);
425
426 bfd_put_32 (abfd, (bfd_vma) i_ldah, p_ldah);
427 bfd_put_32 (abfd, (bfd_vma) i_lda, p_lda);
428
429 return ret;
430 }
431
432 /* The special function for the GPDISP reloc. */
433
434 static bfd_reloc_status_type
elf64_alpha_reloc_gpdisp(bfd * abfd,arelent * reloc_entry,asymbol * sym ATTRIBUTE_UNUSED,void * data,asection * input_section,bfd * output_bfd,char ** err_msg)435 elf64_alpha_reloc_gpdisp (bfd *abfd, arelent *reloc_entry,
436 asymbol *sym ATTRIBUTE_UNUSED, void * data,
437 asection *input_section, bfd *output_bfd,
438 char **err_msg)
439 {
440 bfd_reloc_status_type ret;
441 bfd_vma gp, relocation;
442 bfd_vma high_address;
443 bfd_byte *p_ldah, *p_lda;
444
445 /* Don't do anything if we're not doing a final link. */
446 if (output_bfd)
447 {
448 reloc_entry->address += input_section->output_offset;
449 return bfd_reloc_ok;
450 }
451
452 high_address = bfd_get_section_limit (abfd, input_section);
453 if (reloc_entry->address > high_address
454 || reloc_entry->address + reloc_entry->addend > high_address)
455 return bfd_reloc_outofrange;
456
457 /* The gp used in the portion of the output object to which this
458 input object belongs is cached on the input bfd. */
459 gp = _bfd_get_gp_value (abfd);
460
461 relocation = (input_section->output_section->vma
462 + input_section->output_offset
463 + reloc_entry->address);
464
465 p_ldah = (bfd_byte *) data + reloc_entry->address;
466 p_lda = p_ldah + reloc_entry->addend;
467
468 ret = elf64_alpha_do_reloc_gpdisp (abfd, gp - relocation, p_ldah, p_lda);
469
470 /* Complain if the instructions are not correct. */
471 if (ret == bfd_reloc_dangerous)
472 *err_msg = _("GPDISP relocation did not find ldah and lda instructions");
473
474 return ret;
475 }
476
477 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
478 from smaller values. Start with zero, widen, *then* decrement. */
479 #define MINUS_ONE (((bfd_vma)0) - 1)
480
481
482 #define SKIP_HOWTO(N) \
483 HOWTO(N, 0, 0, 0, 0, 0, complain_overflow_dont, elf64_alpha_reloc_bad, 0, 0, 0, 0, 0)
484
485 static reloc_howto_type elf64_alpha_howto_table[] =
486 {
487 HOWTO (R_ALPHA_NONE, /* type */
488 0, /* rightshift */
489 0, /* size (0 = byte, 1 = short, 2 = long) */
490 8, /* bitsize */
491 TRUE, /* pc_relative */
492 0, /* bitpos */
493 complain_overflow_dont, /* complain_on_overflow */
494 elf64_alpha_reloc_nil, /* special_function */
495 "NONE", /* name */
496 FALSE, /* partial_inplace */
497 0, /* src_mask */
498 0, /* dst_mask */
499 TRUE), /* pcrel_offset */
500
501 /* A 32 bit reference to a symbol. */
502 HOWTO (R_ALPHA_REFLONG, /* type */
503 0, /* rightshift */
504 2, /* size (0 = byte, 1 = short, 2 = long) */
505 32, /* bitsize */
506 FALSE, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_bitfield, /* complain_on_overflow */
509 bfd_elf_generic_reloc, /* special_function */
510 "REFLONG", /* name */
511 FALSE, /* partial_inplace */
512 0xffffffff, /* src_mask */
513 0xffffffff, /* dst_mask */
514 FALSE), /* pcrel_offset */
515
516 /* A 64 bit reference to a symbol. */
517 HOWTO (R_ALPHA_REFQUAD, /* type */
518 0, /* rightshift */
519 4, /* size (0 = byte, 1 = short, 2 = long) */
520 64, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_bitfield, /* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "REFQUAD", /* name */
526 FALSE, /* partial_inplace */
527 MINUS_ONE, /* src_mask */
528 MINUS_ONE, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 /* A 32 bit GP relative offset. This is just like REFLONG except
532 that when the value is used the value of the gp register will be
533 added in. */
534 HOWTO (R_ALPHA_GPREL32, /* type */
535 0, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 32, /* bitsize */
538 FALSE, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_bitfield, /* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 "GPREL32", /* name */
543 FALSE, /* partial_inplace */
544 0xffffffff, /* src_mask */
545 0xffffffff, /* dst_mask */
546 FALSE), /* pcrel_offset */
547
548 /* Used for an instruction that refers to memory off the GP register. */
549 HOWTO (R_ALPHA_LITERAL, /* type */
550 0, /* rightshift */
551 1, /* size (0 = byte, 1 = short, 2 = long) */
552 16, /* bitsize */
553 FALSE, /* pc_relative */
554 0, /* bitpos */
555 complain_overflow_signed, /* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "ELF_LITERAL", /* name */
558 FALSE, /* partial_inplace */
559 0xffff, /* src_mask */
560 0xffff, /* dst_mask */
561 FALSE), /* pcrel_offset */
562
563 /* This reloc only appears immediately following an ELF_LITERAL reloc.
564 It identifies a use of the literal. The symbol index is special:
565 1 means the literal address is in the base register of a memory
566 format instruction; 2 means the literal address is in the byte
567 offset register of a byte-manipulation instruction; 3 means the
568 literal address is in the target register of a jsr instruction.
569 This does not actually do any relocation. */
570 HOWTO (R_ALPHA_LITUSE, /* type */
571 0, /* rightshift */
572 1, /* size (0 = byte, 1 = short, 2 = long) */
573 32, /* bitsize */
574 FALSE, /* pc_relative */
575 0, /* bitpos */
576 complain_overflow_dont, /* complain_on_overflow */
577 elf64_alpha_reloc_nil, /* special_function */
578 "LITUSE", /* name */
579 FALSE, /* partial_inplace */
580 0, /* src_mask */
581 0, /* dst_mask */
582 FALSE), /* pcrel_offset */
583
584 /* Load the gp register. This is always used for a ldah instruction
585 which loads the upper 16 bits of the gp register. The symbol
586 index of the GPDISP instruction is an offset in bytes to the lda
587 instruction that loads the lower 16 bits. The value to use for
588 the relocation is the difference between the GP value and the
589 current location; the load will always be done against a register
590 holding the current address.
591
592 NOTE: Unlike ECOFF, partial in-place relocation is not done. If
593 any offset is present in the instructions, it is an offset from
594 the register to the ldah instruction. This lets us avoid any
595 stupid hackery like inventing a gp value to do partial relocation
596 against. Also unlike ECOFF, we do the whole relocation off of
597 the GPDISP rather than a GPDISP_HI16/GPDISP_LO16 pair. An odd,
598 space consuming bit, that, since all the information was present
599 in the GPDISP_HI16 reloc. */
600 HOWTO (R_ALPHA_GPDISP, /* type */
601 16, /* rightshift */
602 2, /* size (0 = byte, 1 = short, 2 = long) */
603 16, /* bitsize */
604 FALSE, /* pc_relative */
605 0, /* bitpos */
606 complain_overflow_dont, /* complain_on_overflow */
607 elf64_alpha_reloc_gpdisp, /* special_function */
608 "GPDISP", /* name */
609 FALSE, /* partial_inplace */
610 0xffff, /* src_mask */
611 0xffff, /* dst_mask */
612 TRUE), /* pcrel_offset */
613
614 /* A 21 bit branch. */
615 HOWTO (R_ALPHA_BRADDR, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 21, /* bitsize */
619 TRUE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "BRADDR", /* name */
624 FALSE, /* partial_inplace */
625 0x1fffff, /* src_mask */
626 0x1fffff, /* dst_mask */
627 TRUE), /* pcrel_offset */
628
629 /* A hint for a jump to a register. */
630 HOWTO (R_ALPHA_HINT, /* type */
631 2, /* rightshift */
632 1, /* size (0 = byte, 1 = short, 2 = long) */
633 14, /* bitsize */
634 TRUE, /* pc_relative */
635 0, /* bitpos */
636 complain_overflow_dont, /* complain_on_overflow */
637 bfd_elf_generic_reloc, /* special_function */
638 "HINT", /* name */
639 FALSE, /* partial_inplace */
640 0x3fff, /* src_mask */
641 0x3fff, /* dst_mask */
642 TRUE), /* pcrel_offset */
643
644 /* 16 bit PC relative offset. */
645 HOWTO (R_ALPHA_SREL16, /* type */
646 0, /* rightshift */
647 1, /* size (0 = byte, 1 = short, 2 = long) */
648 16, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "SREL16", /* name */
654 FALSE, /* partial_inplace */
655 0xffff, /* src_mask */
656 0xffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* 32 bit PC relative offset. */
660 HOWTO (R_ALPHA_SREL32, /* type */
661 0, /* rightshift */
662 2, /* size (0 = byte, 1 = short, 2 = long) */
663 32, /* bitsize */
664 TRUE, /* pc_relative */
665 0, /* bitpos */
666 complain_overflow_signed, /* complain_on_overflow */
667 bfd_elf_generic_reloc, /* special_function */
668 "SREL32", /* name */
669 FALSE, /* partial_inplace */
670 0xffffffff, /* src_mask */
671 0xffffffff, /* dst_mask */
672 TRUE), /* pcrel_offset */
673
674 /* A 64 bit PC relative offset. */
675 HOWTO (R_ALPHA_SREL64, /* type */
676 0, /* rightshift */
677 4, /* size (0 = byte, 1 = short, 2 = long) */
678 64, /* bitsize */
679 TRUE, /* pc_relative */
680 0, /* bitpos */
681 complain_overflow_signed, /* complain_on_overflow */
682 bfd_elf_generic_reloc, /* special_function */
683 "SREL64", /* name */
684 FALSE, /* partial_inplace */
685 MINUS_ONE, /* src_mask */
686 MINUS_ONE, /* dst_mask */
687 TRUE), /* pcrel_offset */
688
689 /* Skip 12 - 16; deprecated ECOFF relocs. */
690 SKIP_HOWTO (12),
691 SKIP_HOWTO (13),
692 SKIP_HOWTO (14),
693 SKIP_HOWTO (15),
694 SKIP_HOWTO (16),
695
696 /* The high 16 bits of the displacement from GP to the target. */
697 HOWTO (R_ALPHA_GPRELHIGH,
698 0, /* rightshift */
699 1, /* size (0 = byte, 1 = short, 2 = long) */
700 16, /* bitsize */
701 FALSE, /* pc_relative */
702 0, /* bitpos */
703 complain_overflow_signed, /* complain_on_overflow */
704 bfd_elf_generic_reloc, /* special_function */
705 "GPRELHIGH", /* name */
706 FALSE, /* partial_inplace */
707 0xffff, /* src_mask */
708 0xffff, /* dst_mask */
709 FALSE), /* pcrel_offset */
710
711 /* The low 16 bits of the displacement from GP to the target. */
712 HOWTO (R_ALPHA_GPRELLOW,
713 0, /* rightshift */
714 1, /* size (0 = byte, 1 = short, 2 = long) */
715 16, /* bitsize */
716 FALSE, /* pc_relative */
717 0, /* bitpos */
718 complain_overflow_dont, /* complain_on_overflow */
719 bfd_elf_generic_reloc, /* special_function */
720 "GPRELLOW", /* name */
721 FALSE, /* partial_inplace */
722 0xffff, /* src_mask */
723 0xffff, /* dst_mask */
724 FALSE), /* pcrel_offset */
725
726 /* A 16-bit displacement from the GP to the target. */
727 HOWTO (R_ALPHA_GPREL16,
728 0, /* rightshift */
729 1, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 FALSE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_signed, /* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "GPREL16", /* name */
736 FALSE, /* partial_inplace */
737 0xffff, /* src_mask */
738 0xffff, /* dst_mask */
739 FALSE), /* pcrel_offset */
740
741 /* Skip 20 - 23; deprecated ECOFF relocs. */
742 SKIP_HOWTO (20),
743 SKIP_HOWTO (21),
744 SKIP_HOWTO (22),
745 SKIP_HOWTO (23),
746
747 /* Misc ELF relocations. */
748
749 /* A dynamic relocation to copy the target into our .dynbss section. */
750 /* Not generated, as all Alpha objects use PIC, so it is not needed. It
751 is present because every other ELF has one, but should not be used
752 because .dynbss is an ugly thing. */
753 HOWTO (R_ALPHA_COPY,
754 0,
755 0,
756 0,
757 FALSE,
758 0,
759 complain_overflow_dont,
760 bfd_elf_generic_reloc,
761 "COPY",
762 FALSE,
763 0,
764 0,
765 TRUE),
766
767 /* A dynamic relocation for a .got entry. */
768 HOWTO (R_ALPHA_GLOB_DAT,
769 0,
770 0,
771 0,
772 FALSE,
773 0,
774 complain_overflow_dont,
775 bfd_elf_generic_reloc,
776 "GLOB_DAT",
777 FALSE,
778 0,
779 0,
780 TRUE),
781
782 /* A dynamic relocation for a .plt entry. */
783 HOWTO (R_ALPHA_JMP_SLOT,
784 0,
785 0,
786 0,
787 FALSE,
788 0,
789 complain_overflow_dont,
790 bfd_elf_generic_reloc,
791 "JMP_SLOT",
792 FALSE,
793 0,
794 0,
795 TRUE),
796
797 /* A dynamic relocation to add the base of the DSO to a 64-bit field. */
798 HOWTO (R_ALPHA_RELATIVE,
799 0,
800 0,
801 0,
802 FALSE,
803 0,
804 complain_overflow_dont,
805 bfd_elf_generic_reloc,
806 "RELATIVE",
807 FALSE,
808 0,
809 0,
810 TRUE),
811
812 /* A 21 bit branch that adjusts for gp loads. */
813 HOWTO (R_ALPHA_BRSGP, /* type */
814 2, /* rightshift */
815 2, /* size (0 = byte, 1 = short, 2 = long) */
816 21, /* bitsize */
817 TRUE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_signed, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "BRSGP", /* name */
822 FALSE, /* partial_inplace */
823 0x1fffff, /* src_mask */
824 0x1fffff, /* dst_mask */
825 TRUE), /* pcrel_offset */
826
827 /* Creates a tls_index for the symbol in the got. */
828 HOWTO (R_ALPHA_TLSGD, /* type */
829 0, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_signed, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "TLSGD", /* name */
837 FALSE, /* partial_inplace */
838 0xffff, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* Creates a tls_index for the (current) module in the got. */
843 HOWTO (R_ALPHA_TLSLDM, /* type */
844 0, /* rightshift */
845 1, /* size (0 = byte, 1 = short, 2 = long) */
846 16, /* bitsize */
847 FALSE, /* pc_relative */
848 0, /* bitpos */
849 complain_overflow_signed, /* complain_on_overflow */
850 bfd_elf_generic_reloc, /* special_function */
851 "TLSLDM", /* name */
852 FALSE, /* partial_inplace */
853 0xffff, /* src_mask */
854 0xffff, /* dst_mask */
855 FALSE), /* pcrel_offset */
856
857 /* A dynamic relocation for a DTP module entry. */
858 HOWTO (R_ALPHA_DTPMOD64, /* type */
859 0, /* rightshift */
860 4, /* size (0 = byte, 1 = short, 2 = long) */
861 64, /* bitsize */
862 FALSE, /* pc_relative */
863 0, /* bitpos */
864 complain_overflow_bitfield, /* complain_on_overflow */
865 bfd_elf_generic_reloc, /* special_function */
866 "DTPMOD64", /* name */
867 FALSE, /* partial_inplace */
868 MINUS_ONE, /* src_mask */
869 MINUS_ONE, /* dst_mask */
870 FALSE), /* pcrel_offset */
871
872 /* Creates a 64-bit offset in the got for the displacement
873 from DTP to the target. */
874 HOWTO (R_ALPHA_GOTDTPREL, /* type */
875 0, /* rightshift */
876 1, /* size (0 = byte, 1 = short, 2 = long) */
877 16, /* bitsize */
878 FALSE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_signed, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 "GOTDTPREL", /* name */
883 FALSE, /* partial_inplace */
884 0xffff, /* src_mask */
885 0xffff, /* dst_mask */
886 FALSE), /* pcrel_offset */
887
888 /* A dynamic relocation for a displacement from DTP to the target. */
889 HOWTO (R_ALPHA_DTPREL64, /* type */
890 0, /* rightshift */
891 4, /* size (0 = byte, 1 = short, 2 = long) */
892 64, /* bitsize */
893 FALSE, /* pc_relative */
894 0, /* bitpos */
895 complain_overflow_bitfield, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 "DTPREL64", /* name */
898 FALSE, /* partial_inplace */
899 MINUS_ONE, /* src_mask */
900 MINUS_ONE, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* The high 16 bits of the displacement from DTP to the target. */
904 HOWTO (R_ALPHA_DTPRELHI, /* type */
905 0, /* rightshift */
906 1, /* size (0 = byte, 1 = short, 2 = long) */
907 16, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_signed, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 "DTPRELHI", /* name */
913 FALSE, /* partial_inplace */
914 0xffff, /* src_mask */
915 0xffff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* The low 16 bits of the displacement from DTP to the target. */
919 HOWTO (R_ALPHA_DTPRELLO, /* type */
920 0, /* rightshift */
921 1, /* size (0 = byte, 1 = short, 2 = long) */
922 16, /* bitsize */
923 FALSE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont, /* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "DTPRELLO", /* name */
928 FALSE, /* partial_inplace */
929 0xffff, /* src_mask */
930 0xffff, /* dst_mask */
931 FALSE), /* pcrel_offset */
932
933 /* A 16-bit displacement from DTP to the target. */
934 HOWTO (R_ALPHA_DTPREL16, /* type */
935 0, /* rightshift */
936 1, /* size (0 = byte, 1 = short, 2 = long) */
937 16, /* bitsize */
938 FALSE, /* pc_relative */
939 0, /* bitpos */
940 complain_overflow_signed, /* complain_on_overflow */
941 bfd_elf_generic_reloc, /* special_function */
942 "DTPREL16", /* name */
943 FALSE, /* partial_inplace */
944 0xffff, /* src_mask */
945 0xffff, /* dst_mask */
946 FALSE), /* pcrel_offset */
947
948 /* Creates a 64-bit offset in the got for the displacement
949 from TP to the target. */
950 HOWTO (R_ALPHA_GOTTPREL, /* type */
951 0, /* rightshift */
952 1, /* size (0 = byte, 1 = short, 2 = long) */
953 16, /* bitsize */
954 FALSE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_signed, /* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 "GOTTPREL", /* name */
959 FALSE, /* partial_inplace */
960 0xffff, /* src_mask */
961 0xffff, /* dst_mask */
962 FALSE), /* pcrel_offset */
963
964 /* A dynamic relocation for a displacement from TP to the target. */
965 HOWTO (R_ALPHA_TPREL64, /* type */
966 0, /* rightshift */
967 4, /* size (0 = byte, 1 = short, 2 = long) */
968 64, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_bitfield, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "TPREL64", /* name */
974 FALSE, /* partial_inplace */
975 MINUS_ONE, /* src_mask */
976 MINUS_ONE, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
979 /* The high 16 bits of the displacement from TP to the target. */
980 HOWTO (R_ALPHA_TPRELHI, /* type */
981 0, /* rightshift */
982 1, /* size (0 = byte, 1 = short, 2 = long) */
983 16, /* bitsize */
984 FALSE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_signed, /* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 "TPRELHI", /* name */
989 FALSE, /* partial_inplace */
990 0xffff, /* src_mask */
991 0xffff, /* dst_mask */
992 FALSE), /* pcrel_offset */
993
994 /* The low 16 bits of the displacement from TP to the target. */
995 HOWTO (R_ALPHA_TPRELLO, /* type */
996 0, /* rightshift */
997 1, /* size (0 = byte, 1 = short, 2 = long) */
998 16, /* bitsize */
999 FALSE, /* pc_relative */
1000 0, /* bitpos */
1001 complain_overflow_dont, /* complain_on_overflow */
1002 bfd_elf_generic_reloc, /* special_function */
1003 "TPRELLO", /* name */
1004 FALSE, /* partial_inplace */
1005 0xffff, /* src_mask */
1006 0xffff, /* dst_mask */
1007 FALSE), /* pcrel_offset */
1008
1009 /* A 16-bit displacement from TP to the target. */
1010 HOWTO (R_ALPHA_TPREL16, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_signed, /* complain_on_overflow */
1017 bfd_elf_generic_reloc, /* special_function */
1018 "TPREL16", /* name */
1019 FALSE, /* partial_inplace */
1020 0xffff, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023 };
1024
1025 /* A mapping from BFD reloc types to Alpha ELF reloc types. */
1026
1027 struct elf_reloc_map
1028 {
1029 bfd_reloc_code_real_type bfd_reloc_val;
1030 int elf_reloc_val;
1031 };
1032
1033 static const struct elf_reloc_map elf64_alpha_reloc_map[] =
1034 {
1035 {BFD_RELOC_NONE, R_ALPHA_NONE},
1036 {BFD_RELOC_32, R_ALPHA_REFLONG},
1037 {BFD_RELOC_64, R_ALPHA_REFQUAD},
1038 {BFD_RELOC_CTOR, R_ALPHA_REFQUAD},
1039 {BFD_RELOC_GPREL32, R_ALPHA_GPREL32},
1040 {BFD_RELOC_ALPHA_ELF_LITERAL, R_ALPHA_LITERAL},
1041 {BFD_RELOC_ALPHA_LITUSE, R_ALPHA_LITUSE},
1042 {BFD_RELOC_ALPHA_GPDISP, R_ALPHA_GPDISP},
1043 {BFD_RELOC_23_PCREL_S2, R_ALPHA_BRADDR},
1044 {BFD_RELOC_ALPHA_HINT, R_ALPHA_HINT},
1045 {BFD_RELOC_16_PCREL, R_ALPHA_SREL16},
1046 {BFD_RELOC_32_PCREL, R_ALPHA_SREL32},
1047 {BFD_RELOC_64_PCREL, R_ALPHA_SREL64},
1048 {BFD_RELOC_ALPHA_GPREL_HI16, R_ALPHA_GPRELHIGH},
1049 {BFD_RELOC_ALPHA_GPREL_LO16, R_ALPHA_GPRELLOW},
1050 {BFD_RELOC_GPREL16, R_ALPHA_GPREL16},
1051 {BFD_RELOC_ALPHA_BRSGP, R_ALPHA_BRSGP},
1052 {BFD_RELOC_ALPHA_TLSGD, R_ALPHA_TLSGD},
1053 {BFD_RELOC_ALPHA_TLSLDM, R_ALPHA_TLSLDM},
1054 {BFD_RELOC_ALPHA_DTPMOD64, R_ALPHA_DTPMOD64},
1055 {BFD_RELOC_ALPHA_GOTDTPREL16, R_ALPHA_GOTDTPREL},
1056 {BFD_RELOC_ALPHA_DTPREL64, R_ALPHA_DTPREL64},
1057 {BFD_RELOC_ALPHA_DTPREL_HI16, R_ALPHA_DTPRELHI},
1058 {BFD_RELOC_ALPHA_DTPREL_LO16, R_ALPHA_DTPRELLO},
1059 {BFD_RELOC_ALPHA_DTPREL16, R_ALPHA_DTPREL16},
1060 {BFD_RELOC_ALPHA_GOTTPREL16, R_ALPHA_GOTTPREL},
1061 {BFD_RELOC_ALPHA_TPREL64, R_ALPHA_TPREL64},
1062 {BFD_RELOC_ALPHA_TPREL_HI16, R_ALPHA_TPRELHI},
1063 {BFD_RELOC_ALPHA_TPREL_LO16, R_ALPHA_TPRELLO},
1064 {BFD_RELOC_ALPHA_TPREL16, R_ALPHA_TPREL16},
1065 };
1066
1067 /* Given a BFD reloc type, return a HOWTO structure. */
1068
1069 static reloc_howto_type *
elf64_alpha_bfd_reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)1070 elf64_alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1071 bfd_reloc_code_real_type code)
1072 {
1073 const struct elf_reloc_map *i, *e;
1074 i = e = elf64_alpha_reloc_map;
1075 e += sizeof (elf64_alpha_reloc_map) / sizeof (struct elf_reloc_map);
1076 for (; i != e; ++i)
1077 {
1078 if (i->bfd_reloc_val == code)
1079 return &elf64_alpha_howto_table[i->elf_reloc_val];
1080 }
1081 return 0;
1082 }
1083
1084 static reloc_howto_type *
elf64_alpha_bfd_reloc_name_lookup(bfd * abfd ATTRIBUTE_UNUSED,const char * r_name)1085 elf64_alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1086 const char *r_name)
1087 {
1088 unsigned int i;
1089
1090 for (i = 0;
1091 i < (sizeof (elf64_alpha_howto_table)
1092 / sizeof (elf64_alpha_howto_table[0]));
1093 i++)
1094 if (elf64_alpha_howto_table[i].name != NULL
1095 && strcasecmp (elf64_alpha_howto_table[i].name, r_name) == 0)
1096 return &elf64_alpha_howto_table[i];
1097
1098 return NULL;
1099 }
1100
1101 /* Given an Alpha ELF reloc type, fill in an arelent structure. */
1102
1103 static void
elf64_alpha_info_to_howto(bfd * abfd ATTRIBUTE_UNUSED,arelent * cache_ptr,Elf_Internal_Rela * dst)1104 elf64_alpha_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
1105 Elf_Internal_Rela *dst)
1106 {
1107 unsigned r_type = ELF64_R_TYPE(dst->r_info);
1108 BFD_ASSERT (r_type < (unsigned int) R_ALPHA_max);
1109 cache_ptr->howto = &elf64_alpha_howto_table[r_type];
1110 }
1111
1112 /* These two relocations create a two-word entry in the got. */
1113 #define alpha_got_entry_size(r_type) \
1114 (r_type == R_ALPHA_TLSGD || r_type == R_ALPHA_TLSLDM ? 16 : 8)
1115
1116 /* This is PT_TLS segment p_vaddr. */
1117 #define alpha_get_dtprel_base(info) \
1118 (elf_hash_table (info)->tls_sec->vma)
1119
1120 /* Main program TLS (whose template starts at PT_TLS p_vaddr)
1121 is assigned offset round(16, PT_TLS p_align). */
1122 #define alpha_get_tprel_base(info) \
1123 (elf_hash_table (info)->tls_sec->vma \
1124 - align_power ((bfd_vma) 16, \
1125 elf_hash_table (info)->tls_sec->alignment_power))
1126
1127 /* Handle an Alpha specific section when reading an object file. This
1128 is called when bfd_section_from_shdr finds a section with an unknown
1129 type.
1130 FIXME: We need to handle the SHF_ALPHA_GPREL flag, but I'm not sure
1131 how to. */
1132
1133 static bfd_boolean
elf64_alpha_section_from_shdr(bfd * abfd,Elf_Internal_Shdr * hdr,const char * name,int shindex)1134 elf64_alpha_section_from_shdr (bfd *abfd,
1135 Elf_Internal_Shdr *hdr,
1136 const char *name,
1137 int shindex)
1138 {
1139 asection *newsect;
1140
1141 /* There ought to be a place to keep ELF backend specific flags, but
1142 at the moment there isn't one. We just keep track of the
1143 sections by their name, instead. Fortunately, the ABI gives
1144 suggested names for all the MIPS specific sections, so we will
1145 probably get away with this. */
1146 switch (hdr->sh_type)
1147 {
1148 case SHT_ALPHA_DEBUG:
1149 if (strcmp (name, ".mdebug") != 0)
1150 return FALSE;
1151 break;
1152 default:
1153 return FALSE;
1154 }
1155
1156 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1157 return FALSE;
1158 newsect = hdr->bfd_section;
1159
1160 if (hdr->sh_type == SHT_ALPHA_DEBUG)
1161 {
1162 if (! bfd_set_section_flags (abfd, newsect,
1163 (bfd_get_section_flags (abfd, newsect)
1164 | SEC_DEBUGGING)))
1165 return FALSE;
1166 }
1167
1168 return TRUE;
1169 }
1170
1171 /* Convert Alpha specific section flags to bfd internal section flags. */
1172
1173 static bfd_boolean
elf64_alpha_section_flags(flagword * flags,const Elf_Internal_Shdr * hdr)1174 elf64_alpha_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
1175 {
1176 if (hdr->sh_flags & SHF_ALPHA_GPREL)
1177 *flags |= SEC_SMALL_DATA;
1178
1179 return TRUE;
1180 }
1181
1182 /* Set the correct type for an Alpha ELF section. We do this by the
1183 section name, which is a hack, but ought to work. */
1184
1185 static bfd_boolean
elf64_alpha_fake_sections(bfd * abfd,Elf_Internal_Shdr * hdr,asection * sec)1186 elf64_alpha_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
1187 {
1188 register const char *name;
1189
1190 name = bfd_get_section_name (abfd, sec);
1191
1192 if (strcmp (name, ".mdebug") == 0)
1193 {
1194 hdr->sh_type = SHT_ALPHA_DEBUG;
1195 /* In a shared object on Irix 5.3, the .mdebug section has an
1196 entsize of 0. FIXME: Does this matter? */
1197 if ((abfd->flags & DYNAMIC) != 0 )
1198 hdr->sh_entsize = 0;
1199 else
1200 hdr->sh_entsize = 1;
1201 }
1202 else if ((sec->flags & SEC_SMALL_DATA)
1203 || strcmp (name, ".sdata") == 0
1204 || strcmp (name, ".sbss") == 0
1205 || strcmp (name, ".lit4") == 0
1206 || strcmp (name, ".lit8") == 0)
1207 hdr->sh_flags |= SHF_ALPHA_GPREL;
1208
1209 return TRUE;
1210 }
1211
1212 /* Hook called by the linker routine which adds symbols from an object
1213 file. We use it to put .comm items in .sbss, and not .bss. */
1214
1215 static bfd_boolean
elf64_alpha_add_symbol_hook(bfd * abfd,struct bfd_link_info * info,Elf_Internal_Sym * sym,const char ** namep ATTRIBUTE_UNUSED,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp,bfd_vma * valp)1216 elf64_alpha_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
1217 Elf_Internal_Sym *sym,
1218 const char **namep ATTRIBUTE_UNUSED,
1219 flagword *flagsp ATTRIBUTE_UNUSED,
1220 asection **secp, bfd_vma *valp)
1221 {
1222 if (sym->st_shndx == SHN_COMMON
1223 && !info->relocatable
1224 && sym->st_size <= elf_gp_size (abfd))
1225 {
1226 /* Common symbols less than or equal to -G nn bytes are
1227 automatically put into .sbss. */
1228
1229 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1230
1231 if (scomm == NULL)
1232 {
1233 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1234 (SEC_ALLOC
1235 | SEC_IS_COMMON
1236 | SEC_LINKER_CREATED));
1237 if (scomm == NULL)
1238 return FALSE;
1239 }
1240
1241 *secp = scomm;
1242 *valp = sym->st_size;
1243 }
1244
1245 return TRUE;
1246 }
1247
1248 /* Create the .got section. */
1249
1250 static bfd_boolean
elf64_alpha_create_got_section(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)1251 elf64_alpha_create_got_section (bfd *abfd,
1252 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1253 {
1254 flagword flags;
1255 asection *s;
1256
1257 if (! is_alpha_elf (abfd))
1258 return FALSE;
1259
1260 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1261 | SEC_LINKER_CREATED);
1262 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
1263 if (s == NULL
1264 || !bfd_set_section_alignment (abfd, s, 3))
1265 return FALSE;
1266
1267 alpha_elf_tdata (abfd)->got = s;
1268
1269 /* Make sure the object's gotobj is set to itself so that we default
1270 to every object with its own .got. We'll merge .gots later once
1271 we've collected each object's info. */
1272 alpha_elf_tdata (abfd)->gotobj = abfd;
1273
1274 return TRUE;
1275 }
1276
1277 /* Create all the dynamic sections. */
1278
1279 static bfd_boolean
elf64_alpha_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)1280 elf64_alpha_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1281 {
1282 asection *s;
1283 flagword flags;
1284 struct elf_link_hash_entry *h;
1285
1286 if (! is_alpha_elf (abfd))
1287 return FALSE;
1288
1289 /* We need to create .plt, .rela.plt, .got, and .rela.got sections. */
1290
1291 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1292 | SEC_LINKER_CREATED
1293 | (elf64_alpha_use_secureplt ? SEC_READONLY : 0));
1294 s = bfd_make_section_anyway_with_flags (abfd, ".plt", flags);
1295 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 4))
1296 return FALSE;
1297
1298 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
1299 .plt section. */
1300 h = _bfd_elf_define_linkage_sym (abfd, info, s,
1301 "_PROCEDURE_LINKAGE_TABLE_");
1302 elf_hash_table (info)->hplt = h;
1303 if (h == NULL)
1304 return FALSE;
1305
1306 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1307 | SEC_LINKER_CREATED | SEC_READONLY);
1308 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt", flags);
1309 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1310 return FALSE;
1311
1312 if (elf64_alpha_use_secureplt)
1313 {
1314 flags = SEC_ALLOC | SEC_LINKER_CREATED;
1315 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
1316 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1317 return FALSE;
1318 }
1319
1320 /* We may or may not have created a .got section for this object, but
1321 we definitely havn't done the rest of the work. */
1322
1323 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1324 {
1325 if (!elf64_alpha_create_got_section (abfd, info))
1326 return FALSE;
1327 }
1328
1329 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1330 | SEC_LINKER_CREATED | SEC_READONLY);
1331 s = bfd_make_section_anyway_with_flags (abfd, ".rela.got", flags);
1332 if (s == NULL
1333 || !bfd_set_section_alignment (abfd, s, 3))
1334 return FALSE;
1335
1336 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
1337 dynobj's .got section. We don't do this in the linker script
1338 because we don't want to define the symbol if we are not creating
1339 a global offset table. */
1340 h = _bfd_elf_define_linkage_sym (abfd, info, alpha_elf_tdata(abfd)->got,
1341 "_GLOBAL_OFFSET_TABLE_");
1342 elf_hash_table (info)->hgot = h;
1343 if (h == NULL)
1344 return FALSE;
1345
1346 return TRUE;
1347 }
1348
1349 /* Read ECOFF debugging information from a .mdebug section into a
1350 ecoff_debug_info structure. */
1351
1352 static bfd_boolean
elf64_alpha_read_ecoff_info(bfd * abfd,asection * section,struct ecoff_debug_info * debug)1353 elf64_alpha_read_ecoff_info (bfd *abfd, asection *section,
1354 struct ecoff_debug_info *debug)
1355 {
1356 HDRR *symhdr;
1357 const struct ecoff_debug_swap *swap;
1358 char *ext_hdr = NULL;
1359
1360 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1361 memset (debug, 0, sizeof (*debug));
1362
1363 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
1364 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1365 goto error_return;
1366
1367 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
1368 swap->external_hdr_size))
1369 goto error_return;
1370
1371 symhdr = &debug->symbolic_header;
1372 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1373
1374 /* The symbolic header contains absolute file offsets and sizes to
1375 read. */
1376 #define READ(ptr, offset, count, size, type) \
1377 if (symhdr->count == 0) \
1378 debug->ptr = NULL; \
1379 else \
1380 { \
1381 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1382 debug->ptr = (type) bfd_malloc (amt); \
1383 if (debug->ptr == NULL) \
1384 goto error_return; \
1385 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
1386 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1387 goto error_return; \
1388 }
1389
1390 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1391 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1392 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1393 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1394 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1395 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1396 union aux_ext *);
1397 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1398 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1399 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1400 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1401 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1402 #undef READ
1403
1404 debug->fdr = NULL;
1405
1406 return TRUE;
1407
1408 error_return:
1409 if (ext_hdr != NULL)
1410 free (ext_hdr);
1411 if (debug->line != NULL)
1412 free (debug->line);
1413 if (debug->external_dnr != NULL)
1414 free (debug->external_dnr);
1415 if (debug->external_pdr != NULL)
1416 free (debug->external_pdr);
1417 if (debug->external_sym != NULL)
1418 free (debug->external_sym);
1419 if (debug->external_opt != NULL)
1420 free (debug->external_opt);
1421 if (debug->external_aux != NULL)
1422 free (debug->external_aux);
1423 if (debug->ss != NULL)
1424 free (debug->ss);
1425 if (debug->ssext != NULL)
1426 free (debug->ssext);
1427 if (debug->external_fdr != NULL)
1428 free (debug->external_fdr);
1429 if (debug->external_rfd != NULL)
1430 free (debug->external_rfd);
1431 if (debug->external_ext != NULL)
1432 free (debug->external_ext);
1433 return FALSE;
1434 }
1435
1436 /* Alpha ELF local labels start with '$'. */
1437
1438 static bfd_boolean
elf64_alpha_is_local_label_name(bfd * abfd ATTRIBUTE_UNUSED,const char * name)1439 elf64_alpha_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, const char *name)
1440 {
1441 return name[0] == '$';
1442 }
1443
1444 static bfd_boolean
elf64_alpha_find_nearest_line(bfd * abfd,asymbol ** symbols,asection * section,bfd_vma offset,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * line_ptr,unsigned int * discriminator_ptr)1445 elf64_alpha_find_nearest_line (bfd *abfd, asymbol **symbols,
1446 asection *section, bfd_vma offset,
1447 const char **filename_ptr,
1448 const char **functionname_ptr,
1449 unsigned int *line_ptr,
1450 unsigned int *discriminator_ptr)
1451 {
1452 asection *msec;
1453
1454 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
1455 filename_ptr, functionname_ptr,
1456 line_ptr, discriminator_ptr,
1457 dwarf_debug_sections, 0,
1458 &elf_tdata (abfd)->dwarf2_find_line_info))
1459 return TRUE;
1460
1461 msec = bfd_get_section_by_name (abfd, ".mdebug");
1462 if (msec != NULL)
1463 {
1464 flagword origflags;
1465 struct alpha_elf_find_line *fi;
1466 const struct ecoff_debug_swap * const swap =
1467 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1468
1469 /* If we are called during a link, alpha_elf_final_link may have
1470 cleared the SEC_HAS_CONTENTS field. We force it back on here
1471 if appropriate (which it normally will be). */
1472 origflags = msec->flags;
1473 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
1474 msec->flags |= SEC_HAS_CONTENTS;
1475
1476 fi = alpha_elf_tdata (abfd)->find_line_info;
1477 if (fi == NULL)
1478 {
1479 bfd_size_type external_fdr_size;
1480 char *fraw_src;
1481 char *fraw_end;
1482 struct fdr *fdr_ptr;
1483 bfd_size_type amt = sizeof (struct alpha_elf_find_line);
1484
1485 fi = (struct alpha_elf_find_line *) bfd_zalloc (abfd, amt);
1486 if (fi == NULL)
1487 {
1488 msec->flags = origflags;
1489 return FALSE;
1490 }
1491
1492 if (!elf64_alpha_read_ecoff_info (abfd, msec, &fi->d))
1493 {
1494 msec->flags = origflags;
1495 return FALSE;
1496 }
1497
1498 /* Swap in the FDR information. */
1499 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
1500 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
1501 if (fi->d.fdr == NULL)
1502 {
1503 msec->flags = origflags;
1504 return FALSE;
1505 }
1506 external_fdr_size = swap->external_fdr_size;
1507 fdr_ptr = fi->d.fdr;
1508 fraw_src = (char *) fi->d.external_fdr;
1509 fraw_end = (fraw_src
1510 + fi->d.symbolic_header.ifdMax * external_fdr_size);
1511 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
1512 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
1513
1514 alpha_elf_tdata (abfd)->find_line_info = fi;
1515
1516 /* Note that we don't bother to ever free this information.
1517 find_nearest_line is either called all the time, as in
1518 objdump -l, so the information should be saved, or it is
1519 rarely called, as in ld error messages, so the memory
1520 wasted is unimportant. Still, it would probably be a
1521 good idea for free_cached_info to throw it away. */
1522 }
1523
1524 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
1525 &fi->i, filename_ptr, functionname_ptr,
1526 line_ptr))
1527 {
1528 msec->flags = origflags;
1529 return TRUE;
1530 }
1531
1532 msec->flags = origflags;
1533 }
1534
1535 /* Fall back on the generic ELF find_nearest_line routine. */
1536
1537 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
1538 filename_ptr, functionname_ptr,
1539 line_ptr, discriminator_ptr);
1540 }
1541
1542 /* Structure used to pass information to alpha_elf_output_extsym. */
1543
1544 struct extsym_info
1545 {
1546 bfd *abfd;
1547 struct bfd_link_info *info;
1548 struct ecoff_debug_info *debug;
1549 const struct ecoff_debug_swap *swap;
1550 bfd_boolean failed;
1551 };
1552
1553 static bfd_boolean
elf64_alpha_output_extsym(struct alpha_elf_link_hash_entry * h,void * data)1554 elf64_alpha_output_extsym (struct alpha_elf_link_hash_entry *h, void * data)
1555 {
1556 struct extsym_info *einfo = (struct extsym_info *) data;
1557 bfd_boolean strip;
1558 asection *sec, *output_section;
1559
1560 if (h->root.indx == -2)
1561 strip = FALSE;
1562 else if ((h->root.def_dynamic
1563 || h->root.ref_dynamic
1564 || h->root.root.type == bfd_link_hash_new)
1565 && !h->root.def_regular
1566 && !h->root.ref_regular)
1567 strip = TRUE;
1568 else if (einfo->info->strip == strip_all
1569 || (einfo->info->strip == strip_some
1570 && bfd_hash_lookup (einfo->info->keep_hash,
1571 h->root.root.root.string,
1572 FALSE, FALSE) == NULL))
1573 strip = TRUE;
1574 else
1575 strip = FALSE;
1576
1577 if (strip)
1578 return TRUE;
1579
1580 if (h->esym.ifd == -2)
1581 {
1582 h->esym.jmptbl = 0;
1583 h->esym.cobol_main = 0;
1584 h->esym.weakext = 0;
1585 h->esym.reserved = 0;
1586 h->esym.ifd = ifdNil;
1587 h->esym.asym.value = 0;
1588 h->esym.asym.st = stGlobal;
1589
1590 if (h->root.root.type != bfd_link_hash_defined
1591 && h->root.root.type != bfd_link_hash_defweak)
1592 h->esym.asym.sc = scAbs;
1593 else
1594 {
1595 const char *name;
1596
1597 sec = h->root.root.u.def.section;
1598 output_section = sec->output_section;
1599
1600 /* When making a shared library and symbol h is the one from
1601 the another shared library, OUTPUT_SECTION may be null. */
1602 if (output_section == NULL)
1603 h->esym.asym.sc = scUndefined;
1604 else
1605 {
1606 name = bfd_section_name (output_section->owner, output_section);
1607
1608 if (strcmp (name, ".text") == 0)
1609 h->esym.asym.sc = scText;
1610 else if (strcmp (name, ".data") == 0)
1611 h->esym.asym.sc = scData;
1612 else if (strcmp (name, ".sdata") == 0)
1613 h->esym.asym.sc = scSData;
1614 else if (strcmp (name, ".rodata") == 0
1615 || strcmp (name, ".rdata") == 0)
1616 h->esym.asym.sc = scRData;
1617 else if (strcmp (name, ".bss") == 0)
1618 h->esym.asym.sc = scBss;
1619 else if (strcmp (name, ".sbss") == 0)
1620 h->esym.asym.sc = scSBss;
1621 else if (strcmp (name, ".init") == 0)
1622 h->esym.asym.sc = scInit;
1623 else if (strcmp (name, ".fini") == 0)
1624 h->esym.asym.sc = scFini;
1625 else
1626 h->esym.asym.sc = scAbs;
1627 }
1628 }
1629
1630 h->esym.asym.reserved = 0;
1631 h->esym.asym.index = indexNil;
1632 }
1633
1634 if (h->root.root.type == bfd_link_hash_common)
1635 h->esym.asym.value = h->root.root.u.c.size;
1636 else if (h->root.root.type == bfd_link_hash_defined
1637 || h->root.root.type == bfd_link_hash_defweak)
1638 {
1639 if (h->esym.asym.sc == scCommon)
1640 h->esym.asym.sc = scBss;
1641 else if (h->esym.asym.sc == scSCommon)
1642 h->esym.asym.sc = scSBss;
1643
1644 sec = h->root.root.u.def.section;
1645 output_section = sec->output_section;
1646 if (output_section != NULL)
1647 h->esym.asym.value = (h->root.root.u.def.value
1648 + sec->output_offset
1649 + output_section->vma);
1650 else
1651 h->esym.asym.value = 0;
1652 }
1653
1654 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1655 h->root.root.root.string,
1656 &h->esym))
1657 {
1658 einfo->failed = TRUE;
1659 return FALSE;
1660 }
1661
1662 return TRUE;
1663 }
1664
1665 /* Search for and possibly create a got entry. */
1666
1667 static struct alpha_elf_got_entry *
get_got_entry(bfd * abfd,struct alpha_elf_link_hash_entry * h,unsigned long r_type,unsigned long r_symndx,bfd_vma r_addend)1668 get_got_entry (bfd *abfd, struct alpha_elf_link_hash_entry *h,
1669 unsigned long r_type, unsigned long r_symndx,
1670 bfd_vma r_addend)
1671 {
1672 struct alpha_elf_got_entry *gotent;
1673 struct alpha_elf_got_entry **slot;
1674
1675 if (h)
1676 slot = &h->got_entries;
1677 else
1678 {
1679 /* This is a local .got entry -- record for merge. */
1680
1681 struct alpha_elf_got_entry **local_got_entries;
1682
1683 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
1684 if (!local_got_entries)
1685 {
1686 bfd_size_type size;
1687 Elf_Internal_Shdr *symtab_hdr;
1688
1689 symtab_hdr = &elf_tdata(abfd)->symtab_hdr;
1690 size = symtab_hdr->sh_info;
1691 size *= sizeof (struct alpha_elf_got_entry *);
1692
1693 local_got_entries
1694 = (struct alpha_elf_got_entry **) bfd_zalloc (abfd, size);
1695 if (!local_got_entries)
1696 return NULL;
1697
1698 alpha_elf_tdata (abfd)->local_got_entries = local_got_entries;
1699 }
1700
1701 slot = &local_got_entries[r_symndx];
1702 }
1703
1704 for (gotent = *slot; gotent ; gotent = gotent->next)
1705 if (gotent->gotobj == abfd
1706 && gotent->reloc_type == r_type
1707 && gotent->addend == r_addend)
1708 break;
1709
1710 if (!gotent)
1711 {
1712 int entry_size;
1713 bfd_size_type amt;
1714
1715 amt = sizeof (struct alpha_elf_got_entry);
1716 gotent = (struct alpha_elf_got_entry *) bfd_alloc (abfd, amt);
1717 if (!gotent)
1718 return NULL;
1719
1720 gotent->gotobj = abfd;
1721 gotent->addend = r_addend;
1722 gotent->got_offset = -1;
1723 gotent->plt_offset = -1;
1724 gotent->use_count = 1;
1725 gotent->reloc_type = r_type;
1726 gotent->reloc_done = 0;
1727 gotent->reloc_xlated = 0;
1728
1729 gotent->next = *slot;
1730 *slot = gotent;
1731
1732 entry_size = alpha_got_entry_size (r_type);
1733 alpha_elf_tdata (abfd)->total_got_size += entry_size;
1734 if (!h)
1735 alpha_elf_tdata(abfd)->local_got_size += entry_size;
1736 }
1737 else
1738 gotent->use_count += 1;
1739
1740 return gotent;
1741 }
1742
1743 static bfd_boolean
elf64_alpha_want_plt(struct alpha_elf_link_hash_entry * ah)1744 elf64_alpha_want_plt (struct alpha_elf_link_hash_entry *ah)
1745 {
1746 return ((ah->root.type == STT_FUNC
1747 || ah->root.root.type == bfd_link_hash_undefweak
1748 || ah->root.root.type == bfd_link_hash_undefined)
1749 && (ah->flags & ALPHA_ELF_LINK_HASH_LU_PLT) != 0
1750 && (ah->flags & ~ALPHA_ELF_LINK_HASH_LU_PLT) == 0);
1751 }
1752
1753 /* Handle dynamic relocations when doing an Alpha ELF link. */
1754
1755 static bfd_boolean
elf64_alpha_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1756 elf64_alpha_check_relocs (bfd *abfd, struct bfd_link_info *info,
1757 asection *sec, const Elf_Internal_Rela *relocs)
1758 {
1759 bfd *dynobj;
1760 asection *sreloc;
1761 Elf_Internal_Shdr *symtab_hdr;
1762 struct alpha_elf_link_hash_entry **sym_hashes;
1763 const Elf_Internal_Rela *rel, *relend;
1764 bfd_size_type amt;
1765
1766 if (info->relocatable)
1767 return TRUE;
1768
1769 /* Don't do anything special with non-loaded, non-alloced sections.
1770 In particular, any relocs in such sections should not affect GOT
1771 and PLT reference counting (ie. we don't allow them to create GOT
1772 or PLT entries), there's no possibility or desire to optimize TLS
1773 relocs, and there's not much point in propagating relocs to shared
1774 libs that the dynamic linker won't relocate. */
1775 if ((sec->flags & SEC_ALLOC) == 0)
1776 return TRUE;
1777
1778 BFD_ASSERT (is_alpha_elf (abfd));
1779
1780 dynobj = elf_hash_table (info)->dynobj;
1781 if (dynobj == NULL)
1782 elf_hash_table (info)->dynobj = dynobj = abfd;
1783
1784 sreloc = NULL;
1785 symtab_hdr = &elf_symtab_hdr (abfd);
1786 sym_hashes = alpha_elf_sym_hashes (abfd);
1787
1788 relend = relocs + sec->reloc_count;
1789 for (rel = relocs; rel < relend; ++rel)
1790 {
1791 enum {
1792 NEED_GOT = 1,
1793 NEED_GOT_ENTRY = 2,
1794 NEED_DYNREL = 4
1795 };
1796
1797 unsigned long r_symndx, r_type;
1798 struct alpha_elf_link_hash_entry *h;
1799 unsigned int gotent_flags;
1800 bfd_boolean maybe_dynamic;
1801 unsigned int need;
1802 bfd_vma addend;
1803
1804 r_symndx = ELF64_R_SYM (rel->r_info);
1805 if (r_symndx < symtab_hdr->sh_info)
1806 h = NULL;
1807 else
1808 {
1809 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1810
1811 while (h->root.root.type == bfd_link_hash_indirect
1812 || h->root.root.type == bfd_link_hash_warning)
1813 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
1814
1815 /* PR15323, ref flags aren't set for references in the same
1816 object. */
1817 h->root.root.non_ir_ref = 1;
1818 h->root.ref_regular = 1;
1819 }
1820
1821 /* We can only get preliminary data on whether a symbol is
1822 locally or externally defined, as not all of the input files
1823 have yet been processed. Do something with what we know, as
1824 this may help reduce memory usage and processing time later. */
1825 maybe_dynamic = FALSE;
1826 if (h && ((info->shared
1827 && (!info->symbolic
1828 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
1829 || !h->root.def_regular
1830 || h->root.root.type == bfd_link_hash_defweak))
1831 maybe_dynamic = TRUE;
1832
1833 need = 0;
1834 gotent_flags = 0;
1835 r_type = ELF64_R_TYPE (rel->r_info);
1836 addend = rel->r_addend;
1837
1838 switch (r_type)
1839 {
1840 case R_ALPHA_LITERAL:
1841 need = NEED_GOT | NEED_GOT_ENTRY;
1842
1843 /* Remember how this literal is used from its LITUSEs.
1844 This will be important when it comes to decide if we can
1845 create a .plt entry for a function symbol. */
1846 while (++rel < relend && ELF64_R_TYPE (rel->r_info) == R_ALPHA_LITUSE)
1847 if (rel->r_addend >= 1 && rel->r_addend <= 6)
1848 gotent_flags |= 1 << rel->r_addend;
1849 --rel;
1850
1851 /* No LITUSEs -- presumably the address is used somehow. */
1852 if (gotent_flags == 0)
1853 gotent_flags = ALPHA_ELF_LINK_HASH_LU_ADDR;
1854 break;
1855
1856 case R_ALPHA_GPDISP:
1857 case R_ALPHA_GPREL16:
1858 case R_ALPHA_GPREL32:
1859 case R_ALPHA_GPRELHIGH:
1860 case R_ALPHA_GPRELLOW:
1861 case R_ALPHA_BRSGP:
1862 need = NEED_GOT;
1863 break;
1864
1865 case R_ALPHA_REFLONG:
1866 case R_ALPHA_REFQUAD:
1867 if (info->shared || maybe_dynamic)
1868 need = NEED_DYNREL;
1869 break;
1870
1871 case R_ALPHA_TLSLDM:
1872 /* The symbol for a TLSLDM reloc is ignored. Collapse the
1873 reloc to the STN_UNDEF (0) symbol so that they all match. */
1874 r_symndx = STN_UNDEF;
1875 h = 0;
1876 maybe_dynamic = FALSE;
1877 /* FALLTHRU */
1878
1879 case R_ALPHA_TLSGD:
1880 case R_ALPHA_GOTDTPREL:
1881 need = NEED_GOT | NEED_GOT_ENTRY;
1882 break;
1883
1884 case R_ALPHA_GOTTPREL:
1885 need = NEED_GOT | NEED_GOT_ENTRY;
1886 gotent_flags = ALPHA_ELF_LINK_HASH_TLS_IE;
1887 if (info->shared)
1888 info->flags |= DF_STATIC_TLS;
1889 break;
1890
1891 case R_ALPHA_TPREL64:
1892 if (info->shared && !info->pie)
1893 {
1894 info->flags |= DF_STATIC_TLS;
1895 need = NEED_DYNREL;
1896 }
1897 else if (maybe_dynamic)
1898 need = NEED_DYNREL;
1899 break;
1900 }
1901
1902 if (need & NEED_GOT)
1903 {
1904 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1905 {
1906 if (!elf64_alpha_create_got_section (abfd, info))
1907 return FALSE;
1908 }
1909 }
1910
1911 if (need & NEED_GOT_ENTRY)
1912 {
1913 struct alpha_elf_got_entry *gotent;
1914
1915 gotent = get_got_entry (abfd, h, r_type, r_symndx, addend);
1916 if (!gotent)
1917 return FALSE;
1918
1919 if (gotent_flags)
1920 {
1921 gotent->flags |= gotent_flags;
1922 if (h)
1923 {
1924 gotent_flags |= h->flags;
1925 h->flags = gotent_flags;
1926
1927 /* Make a guess as to whether a .plt entry is needed. */
1928 /* ??? It appears that we won't make it into
1929 adjust_dynamic_symbol for symbols that remain
1930 totally undefined. Copying this check here means
1931 we can create a plt entry for them too. */
1932 h->root.needs_plt
1933 = (maybe_dynamic && elf64_alpha_want_plt (h));
1934 }
1935 }
1936 }
1937
1938 if (need & NEED_DYNREL)
1939 {
1940 /* We need to create the section here now whether we eventually
1941 use it or not so that it gets mapped to an output section by
1942 the linker. If not used, we'll kill it in size_dynamic_sections. */
1943 if (sreloc == NULL)
1944 {
1945 sreloc = _bfd_elf_make_dynamic_reloc_section
1946 (sec, dynobj, 3, abfd, /*rela?*/ TRUE);
1947
1948 if (sreloc == NULL)
1949 return FALSE;
1950 }
1951
1952 if (h)
1953 {
1954 /* Since we havn't seen all of the input symbols yet, we
1955 don't know whether we'll actually need a dynamic relocation
1956 entry for this reloc. So make a record of it. Once we
1957 find out if this thing needs dynamic relocation we'll
1958 expand the relocation sections by the appropriate amount. */
1959
1960 struct alpha_elf_reloc_entry *rent;
1961
1962 for (rent = h->reloc_entries; rent; rent = rent->next)
1963 if (rent->rtype == r_type && rent->srel == sreloc)
1964 break;
1965
1966 if (!rent)
1967 {
1968 amt = sizeof (struct alpha_elf_reloc_entry);
1969 rent = (struct alpha_elf_reloc_entry *) bfd_alloc (abfd, amt);
1970 if (!rent)
1971 return FALSE;
1972
1973 rent->srel = sreloc;
1974 rent->rtype = r_type;
1975 rent->count = 1;
1976 rent->reltext = (sec->flags & SEC_READONLY) != 0;
1977
1978 rent->next = h->reloc_entries;
1979 h->reloc_entries = rent;
1980 }
1981 else
1982 rent->count++;
1983 }
1984 else if (info->shared)
1985 {
1986 /* If this is a shared library, and the section is to be
1987 loaded into memory, we need a RELATIVE reloc. */
1988 sreloc->size += sizeof (Elf64_External_Rela);
1989 if (sec->flags & SEC_READONLY)
1990 info->flags |= DF_TEXTREL;
1991 }
1992 }
1993 }
1994
1995 return TRUE;
1996 }
1997
1998 /* Return the section that should be marked against GC for a given
1999 relocation. */
2000
2001 static asection *
elf64_alpha_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)2002 elf64_alpha_gc_mark_hook (asection *sec, struct bfd_link_info *info,
2003 Elf_Internal_Rela *rel,
2004 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym)
2005 {
2006 /* These relocations don't really reference a symbol. Instead we store
2007 extra data in their addend slot. Ignore the symbol. */
2008 switch (ELF64_R_TYPE (rel->r_info))
2009 {
2010 case R_ALPHA_LITUSE:
2011 case R_ALPHA_GPDISP:
2012 case R_ALPHA_HINT:
2013 return NULL;
2014 }
2015
2016 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2017 }
2018
2019 /* Update the got entry reference counts for the section being removed. */
2020
2021 static bfd_boolean
elf64_alpha_gc_sweep_hook(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)2022 elf64_alpha_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2023 asection *sec, const Elf_Internal_Rela *relocs)
2024 {
2025 Elf_Internal_Shdr *symtab_hdr;
2026 struct alpha_elf_link_hash_entry **sym_hashes;
2027 const Elf_Internal_Rela *rel, *relend;
2028
2029 if (info->relocatable)
2030 return TRUE;
2031
2032 symtab_hdr = &elf_symtab_hdr (abfd);
2033 sym_hashes = alpha_elf_sym_hashes (abfd);
2034
2035 relend = relocs + sec->reloc_count;
2036 for (rel = relocs; rel < relend; rel++)
2037 {
2038 unsigned long r_symndx, r_type;
2039 struct alpha_elf_link_hash_entry *h = NULL;
2040 struct alpha_elf_got_entry *gotent;
2041
2042 r_symndx = ELF64_R_SYM (rel->r_info);
2043 if (r_symndx >= symtab_hdr->sh_info)
2044 {
2045 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2046 while (h->root.root.type == bfd_link_hash_indirect
2047 || h->root.root.type == bfd_link_hash_warning)
2048 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2049 }
2050
2051 r_type = ELF64_R_TYPE (rel->r_info);
2052 switch (r_type)
2053 {
2054 case R_ALPHA_LITERAL:
2055 /* ??? Ignore re-computation of gotent_flags. We're not
2056 carrying a use-count for each bit in that mask. */
2057
2058 case R_ALPHA_TLSGD:
2059 case R_ALPHA_GOTDTPREL:
2060 case R_ALPHA_GOTTPREL:
2061 /* Fetch the got entry from the tables. */
2062 gotent = get_got_entry (abfd, h, r_type, r_symndx, rel->r_addend);
2063
2064 /* The got entry *must* exist, since we should have created it
2065 before during check_relocs. Also note that get_got_entry
2066 assumed this was going to be another use, and so incremented
2067 the use count again. Thus the use count must be at least the
2068 one real use and the "use" we just added. */
2069 if (gotent == NULL || gotent->use_count < 2)
2070 {
2071 abort ();
2072 return FALSE;
2073 }
2074 gotent->use_count -= 2;
2075 break;
2076
2077 default:
2078 break;
2079 }
2080 }
2081
2082 return TRUE;
2083 }
2084
2085 /* Adjust a symbol defined by a dynamic object and referenced by a
2086 regular object. The current definition is in some section of the
2087 dynamic object, but we're not including those sections. We have to
2088 change the definition to something the rest of the link can
2089 understand. */
2090
2091 static bfd_boolean
elf64_alpha_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)2092 elf64_alpha_adjust_dynamic_symbol (struct bfd_link_info *info,
2093 struct elf_link_hash_entry *h)
2094 {
2095 bfd *dynobj;
2096 asection *s;
2097 struct alpha_elf_link_hash_entry *ah;
2098
2099 dynobj = elf_hash_table(info)->dynobj;
2100 ah = (struct alpha_elf_link_hash_entry *)h;
2101
2102 /* Now that we've seen all of the input symbols, finalize our decision
2103 about whether this symbol should get a .plt entry. Irritatingly, it
2104 is common for folk to leave undefined symbols in shared libraries,
2105 and they still expect lazy binding; accept undefined symbols in lieu
2106 of STT_FUNC. */
2107 if (alpha_elf_dynamic_symbol_p (h, info) && elf64_alpha_want_plt (ah))
2108 {
2109 h->needs_plt = TRUE;
2110
2111 s = bfd_get_linker_section (dynobj, ".plt");
2112 if (!s && !elf64_alpha_create_dynamic_sections (dynobj, info))
2113 return FALSE;
2114
2115 /* We need one plt entry per got subsection. Delay allocation of
2116 the actual plt entries until size_plt_section, called from
2117 size_dynamic_sections or during relaxation. */
2118
2119 return TRUE;
2120 }
2121 else
2122 h->needs_plt = FALSE;
2123
2124 /* If this is a weak symbol, and there is a real definition, the
2125 processor independent code will have arranged for us to see the
2126 real definition first, and we can just use the same value. */
2127 if (h->u.weakdef != NULL)
2128 {
2129 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2130 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2131 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2132 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2133 return TRUE;
2134 }
2135
2136 /* This is a reference to a symbol defined by a dynamic object which
2137 is not a function. The Alpha, since it uses .got entries for all
2138 symbols even in regular objects, does not need the hackery of a
2139 .dynbss section and COPY dynamic relocations. */
2140
2141 return TRUE;
2142 }
2143
2144 /* Record STO_ALPHA_NOPV and STO_ALPHA_STD_GPLOAD. */
2145
2146 static void
elf64_alpha_merge_symbol_attribute(struct elf_link_hash_entry * h,const Elf_Internal_Sym * isym,bfd_boolean definition,bfd_boolean dynamic)2147 elf64_alpha_merge_symbol_attribute (struct elf_link_hash_entry *h,
2148 const Elf_Internal_Sym *isym,
2149 bfd_boolean definition,
2150 bfd_boolean dynamic)
2151 {
2152 if (!dynamic && definition)
2153 h->other = ((h->other & ELF_ST_VISIBILITY (-1))
2154 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
2155 }
2156
2157 /* Symbol versioning can create new symbols, and make our old symbols
2158 indirect to the new ones. Consolidate the got and reloc information
2159 in these situations. */
2160
2161 static void
elf64_alpha_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)2162 elf64_alpha_copy_indirect_symbol (struct bfd_link_info *info,
2163 struct elf_link_hash_entry *dir,
2164 struct elf_link_hash_entry *ind)
2165 {
2166 struct alpha_elf_link_hash_entry *hi
2167 = (struct alpha_elf_link_hash_entry *) ind;
2168 struct alpha_elf_link_hash_entry *hs
2169 = (struct alpha_elf_link_hash_entry *) dir;
2170
2171 /* Do the merging in the superclass. */
2172 _bfd_elf_link_hash_copy_indirect(info, dir, ind);
2173
2174 /* Merge the flags. Whee. */
2175 hs->flags |= hi->flags;
2176
2177 /* ??? It's unclear to me what's really supposed to happen when
2178 "merging" defweak and defined symbols, given that we don't
2179 actually throw away the defweak. This more-or-less copies
2180 the logic related to got and plt entries in the superclass. */
2181 if (ind->root.type != bfd_link_hash_indirect)
2182 return;
2183
2184 /* Merge the .got entries. Cannibalize the old symbol's list in
2185 doing so, since we don't need it anymore. */
2186
2187 if (hs->got_entries == NULL)
2188 hs->got_entries = hi->got_entries;
2189 else
2190 {
2191 struct alpha_elf_got_entry *gi, *gs, *gin, *gsh;
2192
2193 gsh = hs->got_entries;
2194 for (gi = hi->got_entries; gi ; gi = gin)
2195 {
2196 gin = gi->next;
2197 for (gs = gsh; gs ; gs = gs->next)
2198 if (gi->gotobj == gs->gotobj
2199 && gi->reloc_type == gs->reloc_type
2200 && gi->addend == gs->addend)
2201 {
2202 gi->use_count += gs->use_count;
2203 goto got_found;
2204 }
2205 gi->next = hs->got_entries;
2206 hs->got_entries = gi;
2207 got_found:;
2208 }
2209 }
2210 hi->got_entries = NULL;
2211
2212 /* And similar for the reloc entries. */
2213
2214 if (hs->reloc_entries == NULL)
2215 hs->reloc_entries = hi->reloc_entries;
2216 else
2217 {
2218 struct alpha_elf_reloc_entry *ri, *rs, *rin, *rsh;
2219
2220 rsh = hs->reloc_entries;
2221 for (ri = hi->reloc_entries; ri ; ri = rin)
2222 {
2223 rin = ri->next;
2224 for (rs = rsh; rs ; rs = rs->next)
2225 if (ri->rtype == rs->rtype && ri->srel == rs->srel)
2226 {
2227 rs->count += ri->count;
2228 goto found_reloc;
2229 }
2230 ri->next = hs->reloc_entries;
2231 hs->reloc_entries = ri;
2232 found_reloc:;
2233 }
2234 }
2235 hi->reloc_entries = NULL;
2236 }
2237
2238 /* Is it possible to merge two object file's .got tables? */
2239
2240 static bfd_boolean
elf64_alpha_can_merge_gots(bfd * a,bfd * b)2241 elf64_alpha_can_merge_gots (bfd *a, bfd *b)
2242 {
2243 int total = alpha_elf_tdata (a)->total_got_size;
2244 bfd *bsub;
2245
2246 /* Trivial quick fallout test. */
2247 if (total + alpha_elf_tdata (b)->total_got_size <= MAX_GOT_SIZE)
2248 return TRUE;
2249
2250 /* By their nature, local .got entries cannot be merged. */
2251 if ((total += alpha_elf_tdata (b)->local_got_size) > MAX_GOT_SIZE)
2252 return FALSE;
2253
2254 /* Failing the common trivial comparison, we must effectively
2255 perform the merge. Not actually performing the merge means that
2256 we don't have to store undo information in case we fail. */
2257 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2258 {
2259 struct alpha_elf_link_hash_entry **hashes = alpha_elf_sym_hashes (bsub);
2260 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2261 int i, n;
2262
2263 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2264 for (i = 0; i < n; ++i)
2265 {
2266 struct alpha_elf_got_entry *ae, *be;
2267 struct alpha_elf_link_hash_entry *h;
2268
2269 h = hashes[i];
2270 while (h->root.root.type == bfd_link_hash_indirect
2271 || h->root.root.type == bfd_link_hash_warning)
2272 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2273
2274 for (be = h->got_entries; be ; be = be->next)
2275 {
2276 if (be->use_count == 0)
2277 continue;
2278 if (be->gotobj != b)
2279 continue;
2280
2281 for (ae = h->got_entries; ae ; ae = ae->next)
2282 if (ae->gotobj == a
2283 && ae->reloc_type == be->reloc_type
2284 && ae->addend == be->addend)
2285 goto global_found;
2286
2287 total += alpha_got_entry_size (be->reloc_type);
2288 if (total > MAX_GOT_SIZE)
2289 return FALSE;
2290 global_found:;
2291 }
2292 }
2293 }
2294
2295 return TRUE;
2296 }
2297
2298 /* Actually merge two .got tables. */
2299
2300 static void
elf64_alpha_merge_gots(bfd * a,bfd * b)2301 elf64_alpha_merge_gots (bfd *a, bfd *b)
2302 {
2303 int total = alpha_elf_tdata (a)->total_got_size;
2304 bfd *bsub;
2305
2306 /* Remember local expansion. */
2307 {
2308 int e = alpha_elf_tdata (b)->local_got_size;
2309 total += e;
2310 alpha_elf_tdata (a)->local_got_size += e;
2311 }
2312
2313 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2314 {
2315 struct alpha_elf_got_entry **local_got_entries;
2316 struct alpha_elf_link_hash_entry **hashes;
2317 Elf_Internal_Shdr *symtab_hdr;
2318 int i, n;
2319
2320 /* Let the local .got entries know they are part of a new subsegment. */
2321 local_got_entries = alpha_elf_tdata (bsub)->local_got_entries;
2322 if (local_got_entries)
2323 {
2324 n = elf_tdata (bsub)->symtab_hdr.sh_info;
2325 for (i = 0; i < n; ++i)
2326 {
2327 struct alpha_elf_got_entry *ent;
2328 for (ent = local_got_entries[i]; ent; ent = ent->next)
2329 ent->gotobj = a;
2330 }
2331 }
2332
2333 /* Merge the global .got entries. */
2334 hashes = alpha_elf_sym_hashes (bsub);
2335 symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2336
2337 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2338 for (i = 0; i < n; ++i)
2339 {
2340 struct alpha_elf_got_entry *ae, *be, **pbe, **start;
2341 struct alpha_elf_link_hash_entry *h;
2342
2343 h = hashes[i];
2344 while (h->root.root.type == bfd_link_hash_indirect
2345 || h->root.root.type == bfd_link_hash_warning)
2346 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2347
2348 pbe = start = &h->got_entries;
2349 while ((be = *pbe) != NULL)
2350 {
2351 if (be->use_count == 0)
2352 {
2353 *pbe = be->next;
2354 memset (be, 0xa5, sizeof (*be));
2355 goto kill;
2356 }
2357 if (be->gotobj != b)
2358 goto next;
2359
2360 for (ae = *start; ae ; ae = ae->next)
2361 if (ae->gotobj == a
2362 && ae->reloc_type == be->reloc_type
2363 && ae->addend == be->addend)
2364 {
2365 ae->flags |= be->flags;
2366 ae->use_count += be->use_count;
2367 *pbe = be->next;
2368 memset (be, 0xa5, sizeof (*be));
2369 goto kill;
2370 }
2371 be->gotobj = a;
2372 total += alpha_got_entry_size (be->reloc_type);
2373
2374 next:;
2375 pbe = &be->next;
2376 kill:;
2377 }
2378 }
2379
2380 alpha_elf_tdata (bsub)->gotobj = a;
2381 }
2382 alpha_elf_tdata (a)->total_got_size = total;
2383
2384 /* Merge the two in_got chains. */
2385 {
2386 bfd *next;
2387
2388 bsub = a;
2389 while ((next = alpha_elf_tdata (bsub)->in_got_link_next) != NULL)
2390 bsub = next;
2391
2392 alpha_elf_tdata (bsub)->in_got_link_next = b;
2393 }
2394 }
2395
2396 /* Calculate the offsets for the got entries. */
2397
2398 static bfd_boolean
elf64_alpha_calc_got_offsets_for_symbol(struct alpha_elf_link_hash_entry * h,void * arg ATTRIBUTE_UNUSED)2399 elf64_alpha_calc_got_offsets_for_symbol (struct alpha_elf_link_hash_entry *h,
2400 void * arg ATTRIBUTE_UNUSED)
2401 {
2402 struct alpha_elf_got_entry *gotent;
2403
2404 for (gotent = h->got_entries; gotent; gotent = gotent->next)
2405 if (gotent->use_count > 0)
2406 {
2407 struct alpha_elf_obj_tdata *td;
2408 bfd_size_type *plge;
2409
2410 td = alpha_elf_tdata (gotent->gotobj);
2411 plge = &td->got->size;
2412 gotent->got_offset = *plge;
2413 *plge += alpha_got_entry_size (gotent->reloc_type);
2414 }
2415
2416 return TRUE;
2417 }
2418
2419 static void
elf64_alpha_calc_got_offsets(struct bfd_link_info * info)2420 elf64_alpha_calc_got_offsets (struct bfd_link_info *info)
2421 {
2422 bfd *i, *got_list;
2423 struct alpha_elf_link_hash_table * htab;
2424
2425 htab = alpha_elf_hash_table (info);
2426 if (htab == NULL)
2427 return;
2428 got_list = htab->got_list;
2429
2430 /* First, zero out the .got sizes, as we may be recalculating the
2431 .got after optimizing it. */
2432 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2433 alpha_elf_tdata(i)->got->size = 0;
2434
2435 /* Next, fill in the offsets for all the global entries. */
2436 alpha_elf_link_hash_traverse (htab,
2437 elf64_alpha_calc_got_offsets_for_symbol,
2438 NULL);
2439
2440 /* Finally, fill in the offsets for the local entries. */
2441 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2442 {
2443 bfd_size_type got_offset = alpha_elf_tdata(i)->got->size;
2444 bfd *j;
2445
2446 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2447 {
2448 struct alpha_elf_got_entry **local_got_entries, *gotent;
2449 int k, n;
2450
2451 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2452 if (!local_got_entries)
2453 continue;
2454
2455 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2456 for (gotent = local_got_entries[k]; gotent; gotent = gotent->next)
2457 if (gotent->use_count > 0)
2458 {
2459 gotent->got_offset = got_offset;
2460 got_offset += alpha_got_entry_size (gotent->reloc_type);
2461 }
2462 }
2463
2464 alpha_elf_tdata(i)->got->size = got_offset;
2465 }
2466 }
2467
2468 /* Constructs the gots. */
2469
2470 static bfd_boolean
elf64_alpha_size_got_sections(struct bfd_link_info * info,bfd_boolean may_merge)2471 elf64_alpha_size_got_sections (struct bfd_link_info *info,
2472 bfd_boolean may_merge)
2473 {
2474 bfd *i, *got_list, *cur_got_obj = NULL;
2475 struct alpha_elf_link_hash_table * htab;
2476
2477 htab = alpha_elf_hash_table (info);
2478 if (htab == NULL)
2479 return FALSE;
2480 got_list = htab->got_list;
2481
2482 /* On the first time through, pretend we have an existing got list
2483 consisting of all of the input files. */
2484 if (got_list == NULL)
2485 {
2486 for (i = info->input_bfds; i ; i = i->link.next)
2487 {
2488 bfd *this_got;
2489
2490 if (! is_alpha_elf (i))
2491 continue;
2492
2493 this_got = alpha_elf_tdata (i)->gotobj;
2494 if (this_got == NULL)
2495 continue;
2496
2497 /* We are assuming no merging has yet occurred. */
2498 BFD_ASSERT (this_got == i);
2499
2500 if (alpha_elf_tdata (this_got)->total_got_size > MAX_GOT_SIZE)
2501 {
2502 /* Yikes! A single object file has too many entries. */
2503 (*_bfd_error_handler)
2504 (_("%B: .got subsegment exceeds 64K (size %d)"),
2505 i, alpha_elf_tdata (this_got)->total_got_size);
2506 return FALSE;
2507 }
2508
2509 if (got_list == NULL)
2510 got_list = this_got;
2511 else
2512 alpha_elf_tdata(cur_got_obj)->got_link_next = this_got;
2513 cur_got_obj = this_got;
2514 }
2515
2516 /* Strange degenerate case of no got references. */
2517 if (got_list == NULL)
2518 return TRUE;
2519
2520 htab->got_list = got_list;
2521 }
2522
2523 cur_got_obj = got_list;
2524 if (cur_got_obj == NULL)
2525 return FALSE;
2526
2527 if (may_merge)
2528 {
2529 i = alpha_elf_tdata(cur_got_obj)->got_link_next;
2530 while (i != NULL)
2531 {
2532 if (elf64_alpha_can_merge_gots (cur_got_obj, i))
2533 {
2534 elf64_alpha_merge_gots (cur_got_obj, i);
2535
2536 alpha_elf_tdata(i)->got->size = 0;
2537 i = alpha_elf_tdata(i)->got_link_next;
2538 alpha_elf_tdata(cur_got_obj)->got_link_next = i;
2539 }
2540 else
2541 {
2542 cur_got_obj = i;
2543 i = alpha_elf_tdata(i)->got_link_next;
2544 }
2545 }
2546 }
2547
2548 /* Once the gots have been merged, fill in the got offsets for
2549 everything therein. */
2550 elf64_alpha_calc_got_offsets (info);
2551
2552 return TRUE;
2553 }
2554
2555 static bfd_boolean
elf64_alpha_size_plt_section_1(struct alpha_elf_link_hash_entry * h,void * data)2556 elf64_alpha_size_plt_section_1 (struct alpha_elf_link_hash_entry *h,
2557 void * data)
2558 {
2559 asection *splt = (asection *) data;
2560 struct alpha_elf_got_entry *gotent;
2561 bfd_boolean saw_one = FALSE;
2562
2563 /* If we didn't need an entry before, we still don't. */
2564 if (!h->root.needs_plt)
2565 return TRUE;
2566
2567 /* For each LITERAL got entry still in use, allocate a plt entry. */
2568 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2569 if (gotent->reloc_type == R_ALPHA_LITERAL
2570 && gotent->use_count > 0)
2571 {
2572 if (splt->size == 0)
2573 splt->size = PLT_HEADER_SIZE;
2574 gotent->plt_offset = splt->size;
2575 splt->size += PLT_ENTRY_SIZE;
2576 saw_one = TRUE;
2577 }
2578
2579 /* If there weren't any, there's no longer a need for the PLT entry. */
2580 if (!saw_one)
2581 h->root.needs_plt = FALSE;
2582
2583 return TRUE;
2584 }
2585
2586 /* Called from relax_section to rebuild the PLT in light of potential changes
2587 in the function's status. */
2588
2589 static void
elf64_alpha_size_plt_section(struct bfd_link_info * info)2590 elf64_alpha_size_plt_section (struct bfd_link_info *info)
2591 {
2592 asection *splt, *spltrel, *sgotplt;
2593 unsigned long entries;
2594 bfd *dynobj;
2595 struct alpha_elf_link_hash_table * htab;
2596
2597 htab = alpha_elf_hash_table (info);
2598 if (htab == NULL)
2599 return;
2600
2601 dynobj = elf_hash_table(info)->dynobj;
2602 splt = bfd_get_linker_section (dynobj, ".plt");
2603 if (splt == NULL)
2604 return;
2605
2606 splt->size = 0;
2607
2608 alpha_elf_link_hash_traverse (htab,
2609 elf64_alpha_size_plt_section_1, splt);
2610
2611 /* Every plt entry requires a JMP_SLOT relocation. */
2612 spltrel = bfd_get_linker_section (dynobj, ".rela.plt");
2613 entries = 0;
2614 if (splt->size)
2615 {
2616 if (elf64_alpha_use_secureplt)
2617 entries = (splt->size - NEW_PLT_HEADER_SIZE) / NEW_PLT_ENTRY_SIZE;
2618 else
2619 entries = (splt->size - OLD_PLT_HEADER_SIZE) / OLD_PLT_ENTRY_SIZE;
2620 }
2621 spltrel->size = entries * sizeof (Elf64_External_Rela);
2622
2623 /* When using the secureplt, we need two words somewhere in the data
2624 segment for the dynamic linker to tell us where to go. This is the
2625 entire contents of the .got.plt section. */
2626 if (elf64_alpha_use_secureplt)
2627 {
2628 sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
2629 sgotplt->size = entries ? 16 : 0;
2630 }
2631 }
2632
2633 static bfd_boolean
elf64_alpha_always_size_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)2634 elf64_alpha_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2635 struct bfd_link_info *info)
2636 {
2637 bfd *i;
2638 struct alpha_elf_link_hash_table * htab;
2639
2640 if (info->relocatable)
2641 return TRUE;
2642
2643 htab = alpha_elf_hash_table (info);
2644 if (htab == NULL)
2645 return FALSE;
2646
2647 if (!elf64_alpha_size_got_sections (info, TRUE))
2648 return FALSE;
2649
2650 /* Allocate space for all of the .got subsections. */
2651 i = htab->got_list;
2652 for ( ; i ; i = alpha_elf_tdata(i)->got_link_next)
2653 {
2654 asection *s = alpha_elf_tdata(i)->got;
2655 if (s->size > 0)
2656 {
2657 s->contents = (bfd_byte *) bfd_zalloc (i, s->size);
2658 if (s->contents == NULL)
2659 return FALSE;
2660 }
2661 }
2662
2663 return TRUE;
2664 }
2665
2666 /* The number of dynamic relocations required by a static relocation. */
2667
2668 static int
alpha_dynamic_entries_for_reloc(int r_type,int dynamic,int shared,int pie)2669 alpha_dynamic_entries_for_reloc (int r_type, int dynamic, int shared, int pie)
2670 {
2671 switch (r_type)
2672 {
2673 /* May appear in GOT entries. */
2674 case R_ALPHA_TLSGD:
2675 return (dynamic ? 2 : shared ? 1 : 0);
2676 case R_ALPHA_TLSLDM:
2677 return shared;
2678 case R_ALPHA_LITERAL:
2679 return dynamic || shared;
2680 case R_ALPHA_GOTTPREL:
2681 return dynamic || (shared && !pie);
2682 case R_ALPHA_GOTDTPREL:
2683 return dynamic;
2684
2685 /* May appear in data sections. */
2686 case R_ALPHA_REFLONG:
2687 case R_ALPHA_REFQUAD:
2688 return dynamic || shared;
2689 case R_ALPHA_TPREL64:
2690 return dynamic || (shared && !pie);
2691
2692 /* Everything else is illegal. We'll issue an error during
2693 relocate_section. */
2694 default:
2695 return 0;
2696 }
2697 }
2698
2699 /* Work out the sizes of the dynamic relocation entries. */
2700
2701 static bfd_boolean
elf64_alpha_calc_dynrel_sizes(struct alpha_elf_link_hash_entry * h,struct bfd_link_info * info)2702 elf64_alpha_calc_dynrel_sizes (struct alpha_elf_link_hash_entry *h,
2703 struct bfd_link_info *info)
2704 {
2705 bfd_boolean dynamic;
2706 struct alpha_elf_reloc_entry *relent;
2707 unsigned long entries;
2708
2709 /* If the symbol was defined as a common symbol in a regular object
2710 file, and there was no definition in any dynamic object, then the
2711 linker will have allocated space for the symbol in a common
2712 section but the ELF_LINK_HASH_DEF_REGULAR flag will not have been
2713 set. This is done for dynamic symbols in
2714 elf_adjust_dynamic_symbol but this is not done for non-dynamic
2715 symbols, somehow. */
2716 if (!h->root.def_regular
2717 && h->root.ref_regular
2718 && !h->root.def_dynamic
2719 && (h->root.root.type == bfd_link_hash_defined
2720 || h->root.root.type == bfd_link_hash_defweak)
2721 && !(h->root.root.u.def.section->owner->flags & DYNAMIC))
2722 h->root.def_regular = 1;
2723
2724 /* If the symbol is dynamic, we'll need all the relocations in their
2725 natural form. If this is a shared object, and it has been forced
2726 local, we'll need the same number of RELATIVE relocations. */
2727 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2728
2729 /* If the symbol is a hidden undefined weak, then we never have any
2730 relocations. Avoid the loop which may want to add RELATIVE relocs
2731 based on info->shared. */
2732 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2733 return TRUE;
2734
2735 for (relent = h->reloc_entries; relent; relent = relent->next)
2736 {
2737 entries = alpha_dynamic_entries_for_reloc (relent->rtype, dynamic,
2738 info->shared, info->pie);
2739 if (entries)
2740 {
2741 relent->srel->size +=
2742 entries * sizeof (Elf64_External_Rela) * relent->count;
2743 if (relent->reltext)
2744 info->flags |= DT_TEXTREL;
2745 }
2746 }
2747
2748 return TRUE;
2749 }
2750
2751 /* Subroutine of elf64_alpha_size_rela_got_section for doing the
2752 global symbols. */
2753
2754 static bfd_boolean
elf64_alpha_size_rela_got_1(struct alpha_elf_link_hash_entry * h,struct bfd_link_info * info)2755 elf64_alpha_size_rela_got_1 (struct alpha_elf_link_hash_entry *h,
2756 struct bfd_link_info *info)
2757 {
2758 bfd_boolean dynamic;
2759 struct alpha_elf_got_entry *gotent;
2760 unsigned long entries;
2761
2762 /* If we're using a plt for this symbol, then all of its relocations
2763 for its got entries go into .rela.plt. */
2764 if (h->root.needs_plt)
2765 return TRUE;
2766
2767 /* If the symbol is dynamic, we'll need all the relocations in their
2768 natural form. If this is a shared object, and it has been forced
2769 local, we'll need the same number of RELATIVE relocations. */
2770 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2771
2772 /* If the symbol is a hidden undefined weak, then we never have any
2773 relocations. Avoid the loop which may want to add RELATIVE relocs
2774 based on info->shared. */
2775 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2776 return TRUE;
2777
2778 entries = 0;
2779 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2780 if (gotent->use_count > 0)
2781 entries += alpha_dynamic_entries_for_reloc (gotent->reloc_type, dynamic,
2782 info->shared, info->pie);
2783
2784 if (entries > 0)
2785 {
2786 bfd *dynobj = elf_hash_table(info)->dynobj;
2787 asection *srel = bfd_get_linker_section (dynobj, ".rela.got");
2788 BFD_ASSERT (srel != NULL);
2789 srel->size += sizeof (Elf64_External_Rela) * entries;
2790 }
2791
2792 return TRUE;
2793 }
2794
2795 /* Set the sizes of the dynamic relocation sections. */
2796
2797 static void
elf64_alpha_size_rela_got_section(struct bfd_link_info * info)2798 elf64_alpha_size_rela_got_section (struct bfd_link_info *info)
2799 {
2800 unsigned long entries;
2801 bfd *i, *dynobj;
2802 asection *srel;
2803 struct alpha_elf_link_hash_table * htab;
2804
2805 htab = alpha_elf_hash_table (info);
2806 if (htab == NULL)
2807 return;
2808
2809 /* Shared libraries often require RELATIVE relocs, and some relocs
2810 require attention for the main application as well. */
2811
2812 entries = 0;
2813 for (i = htab->got_list;
2814 i ; i = alpha_elf_tdata(i)->got_link_next)
2815 {
2816 bfd *j;
2817
2818 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2819 {
2820 struct alpha_elf_got_entry **local_got_entries, *gotent;
2821 int k, n;
2822
2823 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2824 if (!local_got_entries)
2825 continue;
2826
2827 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2828 for (gotent = local_got_entries[k];
2829 gotent ; gotent = gotent->next)
2830 if (gotent->use_count > 0)
2831 entries += (alpha_dynamic_entries_for_reloc
2832 (gotent->reloc_type, 0, info->shared, info->pie));
2833 }
2834 }
2835
2836 dynobj = elf_hash_table(info)->dynobj;
2837 srel = bfd_get_linker_section (dynobj, ".rela.got");
2838 if (!srel)
2839 {
2840 BFD_ASSERT (entries == 0);
2841 return;
2842 }
2843 srel->size = sizeof (Elf64_External_Rela) * entries;
2844
2845 /* Now do the non-local symbols. */
2846 alpha_elf_link_hash_traverse (htab,
2847 elf64_alpha_size_rela_got_1, info);
2848 }
2849
2850 /* Set the sizes of the dynamic sections. */
2851
2852 static bfd_boolean
elf64_alpha_size_dynamic_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)2853 elf64_alpha_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2854 struct bfd_link_info *info)
2855 {
2856 bfd *dynobj;
2857 asection *s;
2858 bfd_boolean relplt;
2859 struct alpha_elf_link_hash_table * htab;
2860
2861 htab = alpha_elf_hash_table (info);
2862 if (htab == NULL)
2863 return FALSE;
2864
2865 dynobj = elf_hash_table(info)->dynobj;
2866 BFD_ASSERT(dynobj != NULL);
2867
2868 if (elf_hash_table (info)->dynamic_sections_created)
2869 {
2870 /* Set the contents of the .interp section to the interpreter. */
2871 if (info->executable)
2872 {
2873 s = bfd_get_linker_section (dynobj, ".interp");
2874 BFD_ASSERT (s != NULL);
2875 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2876 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2877 }
2878
2879 /* Now that we've seen all of the input files, we can decide which
2880 symbols need dynamic relocation entries and which don't. We've
2881 collected information in check_relocs that we can now apply to
2882 size the dynamic relocation sections. */
2883 alpha_elf_link_hash_traverse (htab,
2884 elf64_alpha_calc_dynrel_sizes, info);
2885
2886 elf64_alpha_size_rela_got_section (info);
2887 elf64_alpha_size_plt_section (info);
2888 }
2889 /* else we're not dynamic and by definition we don't need such things. */
2890
2891 /* The check_relocs and adjust_dynamic_symbol entry points have
2892 determined the sizes of the various dynamic sections. Allocate
2893 memory for them. */
2894 relplt = FALSE;
2895 for (s = dynobj->sections; s != NULL; s = s->next)
2896 {
2897 const char *name;
2898
2899 if (!(s->flags & SEC_LINKER_CREATED))
2900 continue;
2901
2902 /* It's OK to base decisions on the section name, because none
2903 of the dynobj section names depend upon the input files. */
2904 name = bfd_get_section_name (dynobj, s);
2905
2906 if (CONST_STRNEQ (name, ".rela"))
2907 {
2908 if (s->size != 0)
2909 {
2910 if (strcmp (name, ".rela.plt") == 0)
2911 relplt = TRUE;
2912
2913 /* We use the reloc_count field as a counter if we need
2914 to copy relocs into the output file. */
2915 s->reloc_count = 0;
2916 }
2917 }
2918 else if (! CONST_STRNEQ (name, ".got")
2919 && strcmp (name, ".plt") != 0
2920 && strcmp (name, ".dynbss") != 0)
2921 {
2922 /* It's not one of our dynamic sections, so don't allocate space. */
2923 continue;
2924 }
2925
2926 if (s->size == 0)
2927 {
2928 /* If we don't need this section, strip it from the output file.
2929 This is to handle .rela.bss and .rela.plt. We must create it
2930 in create_dynamic_sections, because it must be created before
2931 the linker maps input sections to output sections. The
2932 linker does that before adjust_dynamic_symbol is called, and
2933 it is that function which decides whether anything needs to
2934 go into these sections. */
2935 if (!CONST_STRNEQ (name, ".got"))
2936 s->flags |= SEC_EXCLUDE;
2937 }
2938 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
2939 {
2940 /* Allocate memory for the section contents. */
2941 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2942 if (s->contents == NULL)
2943 return FALSE;
2944 }
2945 }
2946
2947 if (elf_hash_table (info)->dynamic_sections_created)
2948 {
2949 /* Add some entries to the .dynamic section. We fill in the
2950 values later, in elf64_alpha_finish_dynamic_sections, but we
2951 must add the entries now so that we get the correct size for
2952 the .dynamic section. The DT_DEBUG entry is filled in by the
2953 dynamic linker and used by the debugger. */
2954 #define add_dynamic_entry(TAG, VAL) \
2955 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2956
2957 if (info->executable)
2958 {
2959 if (!add_dynamic_entry (DT_DEBUG, 0))
2960 return FALSE;
2961 }
2962
2963 if (relplt)
2964 {
2965 if (!add_dynamic_entry (DT_PLTGOT, 0)
2966 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2967 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2968 || !add_dynamic_entry (DT_JMPREL, 0))
2969 return FALSE;
2970
2971 if (elf64_alpha_use_secureplt
2972 && !add_dynamic_entry (DT_ALPHA_PLTRO, 1))
2973 return FALSE;
2974 }
2975
2976 if (!add_dynamic_entry (DT_RELA, 0)
2977 || !add_dynamic_entry (DT_RELASZ, 0)
2978 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2979 return FALSE;
2980
2981 if (info->flags & DF_TEXTREL)
2982 {
2983 if (!add_dynamic_entry (DT_TEXTREL, 0))
2984 return FALSE;
2985 }
2986 }
2987 #undef add_dynamic_entry
2988
2989 return TRUE;
2990 }
2991
2992 /* These functions do relaxation for Alpha ELF.
2993
2994 Currently I'm only handling what I can do with existing compiler
2995 and assembler support, which means no instructions are removed,
2996 though some may be nopped. At this time GCC does not emit enough
2997 information to do all of the relaxing that is possible. It will
2998 take some not small amount of work for that to happen.
2999
3000 There are a couple of interesting papers that I once read on this
3001 subject, that I cannot find references to at the moment, that
3002 related to Alpha in particular. They are by David Wall, then of
3003 DEC WRL. */
3004
3005 struct alpha_relax_info
3006 {
3007 bfd *abfd;
3008 asection *sec;
3009 bfd_byte *contents;
3010 Elf_Internal_Shdr *symtab_hdr;
3011 Elf_Internal_Rela *relocs, *relend;
3012 struct bfd_link_info *link_info;
3013 bfd_vma gp;
3014 bfd *gotobj;
3015 asection *tsec;
3016 struct alpha_elf_link_hash_entry *h;
3017 struct alpha_elf_got_entry **first_gotent;
3018 struct alpha_elf_got_entry *gotent;
3019 bfd_boolean changed_contents;
3020 bfd_boolean changed_relocs;
3021 unsigned char other;
3022 };
3023
3024 static Elf_Internal_Rela *
elf64_alpha_find_reloc_at_ofs(Elf_Internal_Rela * rel,Elf_Internal_Rela * relend,bfd_vma offset,int type)3025 elf64_alpha_find_reloc_at_ofs (Elf_Internal_Rela *rel,
3026 Elf_Internal_Rela *relend,
3027 bfd_vma offset, int type)
3028 {
3029 while (rel < relend)
3030 {
3031 if (rel->r_offset == offset
3032 && ELF64_R_TYPE (rel->r_info) == (unsigned int) type)
3033 return rel;
3034 ++rel;
3035 }
3036 return NULL;
3037 }
3038
3039 static bfd_boolean
elf64_alpha_relax_got_load(struct alpha_relax_info * info,bfd_vma symval,Elf_Internal_Rela * irel,unsigned long r_type)3040 elf64_alpha_relax_got_load (struct alpha_relax_info *info, bfd_vma symval,
3041 Elf_Internal_Rela *irel, unsigned long r_type)
3042 {
3043 unsigned int insn;
3044 bfd_signed_vma disp;
3045
3046 /* Get the instruction. */
3047 insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
3048
3049 if (insn >> 26 != OP_LDQ)
3050 {
3051 reloc_howto_type *howto = elf64_alpha_howto_table + r_type;
3052 ((*_bfd_error_handler)
3053 ("%B: %A+0x%lx: warning: %s relocation against unexpected insn",
3054 info->abfd, info->sec,
3055 (unsigned long) irel->r_offset, howto->name));
3056 return TRUE;
3057 }
3058
3059 /* Can't relax dynamic symbols. */
3060 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3061 return TRUE;
3062
3063 /* Can't use local-exec relocations in shared libraries. */
3064 if (r_type == R_ALPHA_GOTTPREL
3065 && (info->link_info->shared && !info->link_info->pie))
3066 return TRUE;
3067
3068 if (r_type == R_ALPHA_LITERAL)
3069 {
3070 /* Look for nice constant addresses. This includes the not-uncommon
3071 special case of 0 for undefweak symbols. */
3072 if ((info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3073 || (!info->link_info->shared
3074 && (symval >= (bfd_vma)-0x8000 || symval < 0x8000)))
3075 {
3076 disp = 0;
3077 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3078 insn |= (symval & 0xffff);
3079 r_type = R_ALPHA_NONE;
3080 }
3081 else
3082 {
3083 /* We may only create GPREL relocs during the second pass. */
3084 if (info->link_info->relax_pass == 0)
3085 return TRUE;
3086
3087 disp = symval - info->gp;
3088 insn = (OP_LDA << 26) | (insn & 0x03ff0000);
3089 r_type = R_ALPHA_GPREL16;
3090 }
3091 }
3092 else
3093 {
3094 bfd_vma dtp_base, tp_base;
3095
3096 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3097 dtp_base = alpha_get_dtprel_base (info->link_info);
3098 tp_base = alpha_get_tprel_base (info->link_info);
3099 disp = symval - (r_type == R_ALPHA_GOTDTPREL ? dtp_base : tp_base);
3100
3101 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3102
3103 switch (r_type)
3104 {
3105 case R_ALPHA_GOTDTPREL:
3106 r_type = R_ALPHA_DTPREL16;
3107 break;
3108 case R_ALPHA_GOTTPREL:
3109 r_type = R_ALPHA_TPREL16;
3110 break;
3111 default:
3112 BFD_ASSERT (0);
3113 return FALSE;
3114 }
3115 }
3116
3117 if (disp < -0x8000 || disp >= 0x8000)
3118 return TRUE;
3119
3120 bfd_put_32 (info->abfd, (bfd_vma) insn, info->contents + irel->r_offset);
3121 info->changed_contents = TRUE;
3122
3123 /* Reduce the use count on this got entry by one, possibly
3124 eliminating it. */
3125 if (--info->gotent->use_count == 0)
3126 {
3127 int sz = alpha_got_entry_size (r_type);
3128 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3129 if (!info->h)
3130 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3131 }
3132
3133 /* Smash the existing GOT relocation for its 16-bit immediate pair. */
3134 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), r_type);
3135 info->changed_relocs = TRUE;
3136
3137 /* ??? Search forward through this basic block looking for insns
3138 that use the target register. Stop after an insn modifying the
3139 register is seen, or after a branch or call.
3140
3141 Any such memory load insn may be substituted by a load directly
3142 off the GP. This allows the memory load insn to be issued before
3143 the calculated GP register would otherwise be ready.
3144
3145 Any such jsr insn can be replaced by a bsr if it is in range.
3146
3147 This would mean that we'd have to _add_ relocations, the pain of
3148 which gives one pause. */
3149
3150 return TRUE;
3151 }
3152
3153 static bfd_vma
elf64_alpha_relax_opt_call(struct alpha_relax_info * info,bfd_vma symval)3154 elf64_alpha_relax_opt_call (struct alpha_relax_info *info, bfd_vma symval)
3155 {
3156 /* If the function has the same gp, and we can identify that the
3157 function does not use its function pointer, we can eliminate the
3158 address load. */
3159
3160 /* If the symbol is marked NOPV, we are being told the function never
3161 needs its procedure value. */
3162 if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_NOPV)
3163 return symval;
3164
3165 /* If the symbol is marked STD_GP, we are being told the function does
3166 a normal ldgp in the first two words. */
3167 else if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_STD_GPLOAD)
3168 ;
3169
3170 /* Otherwise, we may be able to identify a GP load in the first two
3171 words, which we can then skip. */
3172 else
3173 {
3174 Elf_Internal_Rela *tsec_relocs, *tsec_relend, *tsec_free, *gpdisp;
3175 bfd_vma ofs;
3176
3177 /* Load the relocations from the section that the target symbol is in. */
3178 if (info->sec == info->tsec)
3179 {
3180 tsec_relocs = info->relocs;
3181 tsec_relend = info->relend;
3182 tsec_free = NULL;
3183 }
3184 else
3185 {
3186 tsec_relocs = (_bfd_elf_link_read_relocs
3187 (info->abfd, info->tsec, NULL,
3188 (Elf_Internal_Rela *) NULL,
3189 info->link_info->keep_memory));
3190 if (tsec_relocs == NULL)
3191 return 0;
3192 tsec_relend = tsec_relocs + info->tsec->reloc_count;
3193 tsec_free = (info->link_info->keep_memory ? NULL : tsec_relocs);
3194 }
3195
3196 /* Recover the symbol's offset within the section. */
3197 ofs = (symval - info->tsec->output_section->vma
3198 - info->tsec->output_offset);
3199
3200 /* Look for a GPDISP reloc. */
3201 gpdisp = (elf64_alpha_find_reloc_at_ofs
3202 (tsec_relocs, tsec_relend, ofs, R_ALPHA_GPDISP));
3203
3204 if (!gpdisp || gpdisp->r_addend != 4)
3205 {
3206 if (tsec_free)
3207 free (tsec_free);
3208 return 0;
3209 }
3210 if (tsec_free)
3211 free (tsec_free);
3212 }
3213
3214 /* We've now determined that we can skip an initial gp load. Verify
3215 that the call and the target use the same gp. */
3216 if (info->link_info->output_bfd->xvec != info->tsec->owner->xvec
3217 || info->gotobj != alpha_elf_tdata (info->tsec->owner)->gotobj)
3218 return 0;
3219
3220 return symval + 8;
3221 }
3222
3223 static bfd_boolean
elf64_alpha_relax_with_lituse(struct alpha_relax_info * info,bfd_vma symval,Elf_Internal_Rela * irel)3224 elf64_alpha_relax_with_lituse (struct alpha_relax_info *info,
3225 bfd_vma symval, Elf_Internal_Rela *irel)
3226 {
3227 Elf_Internal_Rela *urel, *erel, *irelend = info->relend;
3228 int flags;
3229 bfd_signed_vma disp;
3230 bfd_boolean fits16;
3231 bfd_boolean fits32;
3232 bfd_boolean lit_reused = FALSE;
3233 bfd_boolean all_optimized = TRUE;
3234 bfd_boolean changed_contents;
3235 bfd_boolean changed_relocs;
3236 bfd_byte *contents = info->contents;
3237 bfd *abfd = info->abfd;
3238 bfd_vma sec_output_vma;
3239 unsigned int lit_insn;
3240 int relax_pass;
3241
3242 lit_insn = bfd_get_32 (abfd, contents + irel->r_offset);
3243 if (lit_insn >> 26 != OP_LDQ)
3244 {
3245 ((*_bfd_error_handler)
3246 ("%B: %A+0x%lx: warning: LITERAL relocation against unexpected insn",
3247 abfd, info->sec,
3248 (unsigned long) irel->r_offset));
3249 return TRUE;
3250 }
3251
3252 /* Can't relax dynamic symbols. */
3253 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3254 return TRUE;
3255
3256 changed_contents = info->changed_contents;
3257 changed_relocs = info->changed_relocs;
3258 sec_output_vma = info->sec->output_section->vma + info->sec->output_offset;
3259 relax_pass = info->link_info->relax_pass;
3260
3261 /* Summarize how this particular LITERAL is used. */
3262 for (erel = irel+1, flags = 0; erel < irelend; ++erel)
3263 {
3264 if (ELF64_R_TYPE (erel->r_info) != R_ALPHA_LITUSE)
3265 break;
3266 if (erel->r_addend <= 6)
3267 flags |= 1 << erel->r_addend;
3268 }
3269
3270 /* A little preparation for the loop... */
3271 disp = symval - info->gp;
3272
3273 for (urel = irel+1; urel < erel; ++urel)
3274 {
3275 bfd_vma urel_r_offset = urel->r_offset;
3276 unsigned int insn;
3277 int insn_disp;
3278 bfd_signed_vma xdisp;
3279 Elf_Internal_Rela nrel;
3280
3281 insn = bfd_get_32 (abfd, contents + urel_r_offset);
3282
3283 switch (urel->r_addend)
3284 {
3285 case LITUSE_ALPHA_ADDR:
3286 default:
3287 /* This type is really just a placeholder to note that all
3288 uses cannot be optimized, but to still allow some. */
3289 all_optimized = FALSE;
3290 break;
3291
3292 case LITUSE_ALPHA_BASE:
3293 /* We may only create GPREL relocs during the second pass. */
3294 if (relax_pass == 0)
3295 {
3296 all_optimized = FALSE;
3297 break;
3298 }
3299
3300 /* We can always optimize 16-bit displacements. */
3301
3302 /* Extract the displacement from the instruction, sign-extending
3303 it if necessary, then test whether it is within 16 or 32 bits
3304 displacement from GP. */
3305 insn_disp = ((insn & 0xffff) ^ 0x8000) - 0x8000;
3306
3307 xdisp = disp + insn_disp;
3308 fits16 = (xdisp >= - (bfd_signed_vma) 0x8000 && xdisp < 0x8000);
3309 fits32 = (xdisp >= - (bfd_signed_vma) 0x80000000
3310 && xdisp < 0x7fff8000);
3311
3312 if (fits16)
3313 {
3314 /* Take the op code and dest from this insn, take the base
3315 register from the literal insn. Leave the offset alone. */
3316 insn = (insn & 0xffe0ffff) | (lit_insn & 0x001f0000);
3317 bfd_put_32 (abfd, (bfd_vma) insn, contents + urel_r_offset);
3318 changed_contents = TRUE;
3319
3320 nrel = *urel;
3321 nrel.r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3322 R_ALPHA_GPREL16);
3323 nrel.r_addend = irel->r_addend;
3324
3325 /* As we adjust, move the reloc to the end so that we don't
3326 break the LITERAL+LITUSE chain. */
3327 if (urel < --erel)
3328 *urel-- = *erel;
3329 *erel = nrel;
3330 changed_relocs = TRUE;
3331 }
3332
3333 /* If all mem+byte, we can optimize 32-bit mem displacements. */
3334 else if (fits32 && !(flags & ~6))
3335 {
3336 /* FIXME: sanity check that lit insn Ra is mem insn Rb. */
3337
3338 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3339 R_ALPHA_GPRELHIGH);
3340 lit_insn = (OP_LDAH << 26) | (lit_insn & 0x03ff0000);
3341 bfd_put_32 (abfd, (bfd_vma) lit_insn, contents + irel->r_offset);
3342 lit_reused = TRUE;
3343 changed_contents = TRUE;
3344
3345 /* Since all relocs must be optimized, don't bother swapping
3346 this relocation to the end. */
3347 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3348 R_ALPHA_GPRELLOW);
3349 urel->r_addend = irel->r_addend;
3350 changed_relocs = TRUE;
3351 }
3352 else
3353 all_optimized = FALSE;
3354 break;
3355
3356 case LITUSE_ALPHA_BYTOFF:
3357 /* We can always optimize byte instructions. */
3358
3359 /* FIXME: sanity check the insn for byte op. Check that the
3360 literal dest reg is indeed Rb in the byte insn. */
3361
3362 insn &= ~ (unsigned) 0x001ff000;
3363 insn |= ((symval & 7) << 13) | 0x1000;
3364 bfd_put_32 (abfd, (bfd_vma) insn, contents + urel_r_offset);
3365 changed_contents = TRUE;
3366
3367 nrel = *urel;
3368 nrel.r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3369 nrel.r_addend = 0;
3370
3371 /* As we adjust, move the reloc to the end so that we don't
3372 break the LITERAL+LITUSE chain. */
3373 if (urel < --erel)
3374 *urel-- = *erel;
3375 *erel = nrel;
3376 changed_relocs = TRUE;
3377 break;
3378
3379 case LITUSE_ALPHA_JSR:
3380 case LITUSE_ALPHA_TLSGD:
3381 case LITUSE_ALPHA_TLSLDM:
3382 case LITUSE_ALPHA_JSRDIRECT:
3383 {
3384 bfd_vma optdest, org;
3385 bfd_signed_vma odisp;
3386
3387 /* For undefined weak symbols, we're mostly interested in getting
3388 rid of the got entry whenever possible, so optimize this to a
3389 use of the zero register. */
3390 if (info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3391 {
3392 insn |= 31 << 16;
3393 bfd_put_32 (abfd, (bfd_vma) insn, contents + urel_r_offset);
3394
3395 changed_contents = TRUE;
3396 break;
3397 }
3398
3399 /* If not zero, place to jump without needing pv. */
3400 optdest = elf64_alpha_relax_opt_call (info, symval);
3401 org = sec_output_vma + urel_r_offset + 4;
3402 odisp = (optdest ? optdest : symval) - org;
3403
3404 if (odisp >= -0x400000 && odisp < 0x400000)
3405 {
3406 Elf_Internal_Rela *xrel;
3407
3408 /* Preserve branch prediction call stack when possible. */
3409 if ((insn & INSN_JSR_MASK) == INSN_JSR)
3410 insn = (OP_BSR << 26) | (insn & 0x03e00000);
3411 else
3412 insn = (OP_BR << 26) | (insn & 0x03e00000);
3413 bfd_put_32 (abfd, (bfd_vma) insn, contents + urel_r_offset);
3414 changed_contents = TRUE;
3415
3416 nrel = *urel;
3417 nrel.r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3418 R_ALPHA_BRADDR);
3419 nrel.r_addend = irel->r_addend;
3420
3421 if (optdest)
3422 nrel.r_addend += optdest - symval;
3423 else
3424 all_optimized = FALSE;
3425
3426 /* Kill any HINT reloc that might exist for this insn. */
3427 xrel = (elf64_alpha_find_reloc_at_ofs
3428 (info->relocs, info->relend, urel_r_offset,
3429 R_ALPHA_HINT));
3430 if (xrel)
3431 xrel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3432
3433 /* As we adjust, move the reloc to the end so that we don't
3434 break the LITERAL+LITUSE chain. */
3435 if (urel < --erel)
3436 *urel-- = *erel;
3437 *erel = nrel;
3438
3439 info->changed_relocs = TRUE;
3440 }
3441 else
3442 all_optimized = FALSE;
3443
3444 /* Even if the target is not in range for a direct branch,
3445 if we share a GP, we can eliminate the gp reload. */
3446 if (optdest)
3447 {
3448 Elf_Internal_Rela *gpdisp
3449 = (elf64_alpha_find_reloc_at_ofs
3450 (info->relocs, irelend, urel_r_offset + 4,
3451 R_ALPHA_GPDISP));
3452 if (gpdisp)
3453 {
3454 bfd_byte *p_ldah = contents + gpdisp->r_offset;
3455 bfd_byte *p_lda = p_ldah + gpdisp->r_addend;
3456 unsigned int ldah = bfd_get_32 (abfd, p_ldah);
3457 unsigned int lda = bfd_get_32 (abfd, p_lda);
3458
3459 /* Verify that the instruction is "ldah $29,0($26)".
3460 Consider a function that ends in a noreturn call,
3461 and that the next function begins with an ldgp,
3462 and that by accident there is no padding between.
3463 In that case the insn would use $27 as the base. */
3464 if (ldah == 0x27ba0000 && lda == 0x23bd0000)
3465 {
3466 bfd_put_32 (abfd, (bfd_vma) INSN_UNOP, p_ldah);
3467 bfd_put_32 (abfd, (bfd_vma) INSN_UNOP, p_lda);
3468
3469 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3470 changed_contents = TRUE;
3471 changed_relocs = TRUE;
3472 }
3473 }
3474 }
3475 }
3476 break;
3477 }
3478 }
3479
3480 /* If we reused the literal instruction, we must have optimized all. */
3481 BFD_ASSERT(!lit_reused || all_optimized);
3482
3483 /* If all cases were optimized, we can reduce the use count on this
3484 got entry by one, possibly eliminating it. */
3485 if (all_optimized)
3486 {
3487 if (--info->gotent->use_count == 0)
3488 {
3489 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3490 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3491 if (!info->h)
3492 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3493 }
3494
3495 /* If the literal instruction is no longer needed (it may have been
3496 reused. We can eliminate it. */
3497 /* ??? For now, I don't want to deal with compacting the section,
3498 so just nop it out. */
3499 if (!lit_reused)
3500 {
3501 irel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3502 changed_relocs = TRUE;
3503
3504 bfd_put_32 (abfd, (bfd_vma) INSN_UNOP, contents + irel->r_offset);
3505 changed_contents = TRUE;
3506 }
3507 }
3508
3509 info->changed_contents = changed_contents;
3510 info->changed_relocs = changed_relocs;
3511
3512 if (all_optimized || relax_pass == 0)
3513 return TRUE;
3514 return elf64_alpha_relax_got_load (info, symval, irel, R_ALPHA_LITERAL);
3515 }
3516
3517 static bfd_boolean
elf64_alpha_relax_tls_get_addr(struct alpha_relax_info * info,bfd_vma symval,Elf_Internal_Rela * irel,bfd_boolean is_gd)3518 elf64_alpha_relax_tls_get_addr (struct alpha_relax_info *info, bfd_vma symval,
3519 Elf_Internal_Rela *irel, bfd_boolean is_gd)
3520 {
3521 bfd_byte *pos[5];
3522 unsigned int insn, tlsgd_reg;
3523 Elf_Internal_Rela *gpdisp, *hint;
3524 bfd_boolean dynamic, use_gottprel;
3525 unsigned long new_symndx;
3526
3527 dynamic = alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info);
3528
3529 /* If a TLS symbol is accessed using IE at least once, there is no point
3530 to use dynamic model for it. */
3531 if (is_gd && info->h && (info->h->flags & ALPHA_ELF_LINK_HASH_TLS_IE))
3532 ;
3533
3534 /* If the symbol is local, and we've already committed to DF_STATIC_TLS,
3535 then we might as well relax to IE. */
3536 else if (info->link_info->shared && !dynamic
3537 && (info->link_info->flags & DF_STATIC_TLS))
3538 ;
3539
3540 /* Otherwise we must be building an executable to do anything. */
3541 else if (info->link_info->shared)
3542 return TRUE;
3543
3544 /* The TLSGD/TLSLDM relocation must be followed by a LITERAL and
3545 the matching LITUSE_TLS relocations. */
3546 if (irel + 2 >= info->relend)
3547 return TRUE;
3548 if (ELF64_R_TYPE (irel[1].r_info) != R_ALPHA_LITERAL
3549 || ELF64_R_TYPE (irel[2].r_info) != R_ALPHA_LITUSE
3550 || irel[2].r_addend != (is_gd ? LITUSE_ALPHA_TLSGD : LITUSE_ALPHA_TLSLDM))
3551 return TRUE;
3552
3553 /* There must be a GPDISP relocation positioned immediately after the
3554 LITUSE relocation. */
3555 gpdisp = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3556 irel[2].r_offset + 4, R_ALPHA_GPDISP);
3557 if (!gpdisp)
3558 return TRUE;
3559
3560 pos[0] = info->contents + irel[0].r_offset;
3561 pos[1] = info->contents + irel[1].r_offset;
3562 pos[2] = info->contents + irel[2].r_offset;
3563 pos[3] = info->contents + gpdisp->r_offset;
3564 pos[4] = pos[3] + gpdisp->r_addend;
3565
3566 /* Beware of the compiler hoisting part of the sequence out a loop
3567 and adjusting the destination register for the TLSGD insn. If this
3568 happens, there will be a move into $16 before the JSR insn, so only
3569 transformations of the first insn pair should use this register. */
3570 tlsgd_reg = bfd_get_32 (info->abfd, pos[0]);
3571 tlsgd_reg = (tlsgd_reg >> 21) & 31;
3572
3573 /* Generally, the positions are not allowed to be out of order, lest the
3574 modified insn sequence have different register lifetimes. We can make
3575 an exception when pos 1 is adjacent to pos 0. */
3576 if (pos[1] + 4 == pos[0])
3577 {
3578 bfd_byte *tmp = pos[0];
3579 pos[0] = pos[1];
3580 pos[1] = tmp;
3581 }
3582 if (pos[1] >= pos[2] || pos[2] >= pos[3])
3583 return TRUE;
3584
3585 /* Reduce the use count on the LITERAL relocation. Do this before we
3586 smash the symndx when we adjust the relocations below. */
3587 {
3588 struct alpha_elf_got_entry *lit_gotent;
3589 struct alpha_elf_link_hash_entry *lit_h;
3590 unsigned long indx;
3591
3592 BFD_ASSERT (ELF64_R_SYM (irel[1].r_info) >= info->symtab_hdr->sh_info);
3593 indx = ELF64_R_SYM (irel[1].r_info) - info->symtab_hdr->sh_info;
3594 lit_h = alpha_elf_sym_hashes (info->abfd)[indx];
3595
3596 while (lit_h->root.root.type == bfd_link_hash_indirect
3597 || lit_h->root.root.type == bfd_link_hash_warning)
3598 lit_h = (struct alpha_elf_link_hash_entry *) lit_h->root.root.u.i.link;
3599
3600 for (lit_gotent = lit_h->got_entries; lit_gotent ;
3601 lit_gotent = lit_gotent->next)
3602 if (lit_gotent->gotobj == info->gotobj
3603 && lit_gotent->reloc_type == R_ALPHA_LITERAL
3604 && lit_gotent->addend == irel[1].r_addend)
3605 break;
3606 BFD_ASSERT (lit_gotent);
3607
3608 if (--lit_gotent->use_count == 0)
3609 {
3610 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3611 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3612 }
3613 }
3614
3615 /* Change
3616
3617 lda $16,x($gp) !tlsgd!1
3618 ldq $27,__tls_get_addr($gp) !literal!1
3619 jsr $26,($27),__tls_get_addr !lituse_tlsgd!1
3620 ldah $29,0($26) !gpdisp!2
3621 lda $29,0($29) !gpdisp!2
3622 to
3623 ldq $16,x($gp) !gottprel
3624 unop
3625 call_pal rduniq
3626 addq $16,$0,$0
3627 unop
3628 or the first pair to
3629 lda $16,x($gp) !tprel
3630 unop
3631 or
3632 ldah $16,x($gp) !tprelhi
3633 lda $16,x($16) !tprello
3634
3635 as appropriate. */
3636
3637 use_gottprel = FALSE;
3638 new_symndx = is_gd ? ELF64_R_SYM (irel->r_info) : STN_UNDEF;
3639
3640 /* Some compilers warn about a Boolean-looking expression being
3641 used in a switch. The explicit cast silences them. */
3642 switch ((int) (!dynamic && !info->link_info->shared))
3643 {
3644 case 1:
3645 {
3646 bfd_vma tp_base;
3647 bfd_signed_vma disp;
3648
3649 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3650 tp_base = alpha_get_tprel_base (info->link_info);
3651 disp = symval - tp_base;
3652
3653 if (disp >= -0x8000 && disp < 0x8000)
3654 {
3655 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (31 << 16);
3656 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3657 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3658
3659 irel[0].r_offset = pos[0] - info->contents;
3660 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPREL16);
3661 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3662 break;
3663 }
3664 else if (disp >= -(bfd_signed_vma) 0x80000000
3665 && disp < (bfd_signed_vma) 0x7fff8000
3666 && pos[0] + 4 == pos[1])
3667 {
3668 insn = (OP_LDAH << 26) | (tlsgd_reg << 21) | (31 << 16);
3669 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3670 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (tlsgd_reg << 16);
3671 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[1]);
3672
3673 irel[0].r_offset = pos[0] - info->contents;
3674 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELHI);
3675 irel[1].r_offset = pos[1] - info->contents;
3676 irel[1].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELLO);
3677 break;
3678 }
3679 }
3680 /* FALLTHRU */
3681
3682 default:
3683 use_gottprel = TRUE;
3684
3685 insn = (OP_LDQ << 26) | (tlsgd_reg << 21) | (29 << 16);
3686 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3687 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3688
3689 irel[0].r_offset = pos[0] - info->contents;
3690 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_GOTTPREL);
3691 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3692 break;
3693 }
3694
3695 bfd_put_32 (info->abfd, (bfd_vma) INSN_RDUNIQ, pos[2]);
3696
3697 insn = INSN_ADDQ | (16 << 21) | (0 << 16) | (0 << 0);
3698 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[3]);
3699
3700 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[4]);
3701
3702 irel[2].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3703 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3704
3705 hint = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3706 irel[2].r_offset, R_ALPHA_HINT);
3707 if (hint)
3708 hint->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3709
3710 info->changed_contents = TRUE;
3711 info->changed_relocs = TRUE;
3712
3713 /* Reduce the use count on the TLSGD/TLSLDM relocation. */
3714 if (--info->gotent->use_count == 0)
3715 {
3716 int sz = alpha_got_entry_size (info->gotent->reloc_type);
3717 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3718 if (!info->h)
3719 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3720 }
3721
3722 /* If we've switched to a GOTTPREL relocation, increment the reference
3723 count on that got entry. */
3724 if (use_gottprel)
3725 {
3726 struct alpha_elf_got_entry *tprel_gotent;
3727
3728 for (tprel_gotent = *info->first_gotent; tprel_gotent ;
3729 tprel_gotent = tprel_gotent->next)
3730 if (tprel_gotent->gotobj == info->gotobj
3731 && tprel_gotent->reloc_type == R_ALPHA_GOTTPREL
3732 && tprel_gotent->addend == irel->r_addend)
3733 break;
3734 if (tprel_gotent)
3735 tprel_gotent->use_count++;
3736 else
3737 {
3738 if (info->gotent->use_count == 0)
3739 tprel_gotent = info->gotent;
3740 else
3741 {
3742 tprel_gotent = (struct alpha_elf_got_entry *)
3743 bfd_alloc (info->abfd, sizeof (struct alpha_elf_got_entry));
3744 if (!tprel_gotent)
3745 return FALSE;
3746
3747 tprel_gotent->next = *info->first_gotent;
3748 *info->first_gotent = tprel_gotent;
3749
3750 tprel_gotent->gotobj = info->gotobj;
3751 tprel_gotent->addend = irel->r_addend;
3752 tprel_gotent->got_offset = -1;
3753 tprel_gotent->reloc_done = 0;
3754 tprel_gotent->reloc_xlated = 0;
3755 }
3756
3757 tprel_gotent->use_count = 1;
3758 tprel_gotent->reloc_type = R_ALPHA_GOTTPREL;
3759 }
3760 }
3761
3762 return TRUE;
3763 }
3764
3765 static bfd_boolean
elf64_alpha_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * again)3766 elf64_alpha_relax_section (bfd *abfd, asection *sec,
3767 struct bfd_link_info *link_info, bfd_boolean *again)
3768 {
3769 Elf_Internal_Shdr *symtab_hdr;
3770 Elf_Internal_Rela *internal_relocs;
3771 Elf_Internal_Rela *irel, *irelend;
3772 Elf_Internal_Sym *isymbuf = NULL;
3773 struct alpha_elf_got_entry **local_got_entries;
3774 struct alpha_relax_info info;
3775 struct alpha_elf_link_hash_table * htab;
3776 int relax_pass;
3777
3778 htab = alpha_elf_hash_table (link_info);
3779 if (htab == NULL)
3780 return FALSE;
3781
3782 /* There's nothing to change, yet. */
3783 *again = FALSE;
3784
3785 if (link_info->relocatable
3786 || ((sec->flags & (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3787 != (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3788 || sec->reloc_count == 0)
3789 return TRUE;
3790
3791 BFD_ASSERT (is_alpha_elf (abfd));
3792 relax_pass = link_info->relax_pass;
3793
3794 /* Make sure our GOT and PLT tables are up-to-date. */
3795 if (htab->relax_trip != link_info->relax_trip)
3796 {
3797 htab->relax_trip = link_info->relax_trip;
3798
3799 /* This should never fail after the initial round, since the only error
3800 is GOT overflow, and relaxation only shrinks the table. However, we
3801 may only merge got sections during the first pass. If we merge
3802 sections after we've created GPREL relocs, the GP for the merged
3803 section backs up which may put the relocs out of range. */
3804 if (!elf64_alpha_size_got_sections (link_info, relax_pass == 0))
3805 abort ();
3806 if (elf_hash_table (link_info)->dynamic_sections_created)
3807 {
3808 elf64_alpha_size_plt_section (link_info);
3809 elf64_alpha_size_rela_got_section (link_info);
3810 }
3811 }
3812
3813 symtab_hdr = &elf_symtab_hdr (abfd);
3814 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
3815
3816 /* Load the relocations for this section. */
3817 internal_relocs = (_bfd_elf_link_read_relocs
3818 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
3819 link_info->keep_memory));
3820 if (internal_relocs == NULL)
3821 return FALSE;
3822
3823 memset(&info, 0, sizeof (info));
3824 info.abfd = abfd;
3825 info.sec = sec;
3826 info.link_info = link_info;
3827 info.symtab_hdr = symtab_hdr;
3828 info.relocs = internal_relocs;
3829 info.relend = irelend = internal_relocs + sec->reloc_count;
3830
3831 /* Find the GP for this object. Do not store the result back via
3832 _bfd_set_gp_value, since this could change again before final. */
3833 info.gotobj = alpha_elf_tdata (abfd)->gotobj;
3834 if (info.gotobj)
3835 {
3836 asection *sgot = alpha_elf_tdata (info.gotobj)->got;
3837 info.gp = (sgot->output_section->vma
3838 + sgot->output_offset
3839 + 0x8000);
3840 }
3841
3842 /* Get the section contents. */
3843 if (elf_section_data (sec)->this_hdr.contents != NULL)
3844 info.contents = elf_section_data (sec)->this_hdr.contents;
3845 else
3846 {
3847 if (!bfd_malloc_and_get_section (abfd, sec, &info.contents))
3848 goto error_return;
3849 }
3850
3851 for (irel = internal_relocs; irel < irelend; irel++)
3852 {
3853 bfd_vma symval;
3854 struct alpha_elf_got_entry *gotent;
3855 unsigned long r_type = ELF64_R_TYPE (irel->r_info);
3856 unsigned long r_symndx = ELF64_R_SYM (irel->r_info);
3857
3858 /* Early exit for unhandled or unrelaxable relocations. */
3859 if (r_type != R_ALPHA_LITERAL)
3860 {
3861 /* We complete everything except LITERAL in the first pass. */
3862 if (relax_pass != 0)
3863 continue;
3864 if (r_type == R_ALPHA_TLSLDM)
3865 {
3866 /* The symbol for a TLSLDM reloc is ignored. Collapse the
3867 reloc to the STN_UNDEF (0) symbol so that they all match. */
3868 r_symndx = STN_UNDEF;
3869 }
3870 else if (r_type != R_ALPHA_GOTDTPREL
3871 && r_type != R_ALPHA_GOTTPREL
3872 && r_type != R_ALPHA_TLSGD)
3873 continue;
3874 }
3875
3876 /* Get the value of the symbol referred to by the reloc. */
3877 if (r_symndx < symtab_hdr->sh_info)
3878 {
3879 /* A local symbol. */
3880 Elf_Internal_Sym *isym;
3881
3882 /* Read this BFD's local symbols. */
3883 if (isymbuf == NULL)
3884 {
3885 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3886 if (isymbuf == NULL)
3887 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3888 symtab_hdr->sh_info, 0,
3889 NULL, NULL, NULL);
3890 if (isymbuf == NULL)
3891 goto error_return;
3892 }
3893
3894 isym = isymbuf + r_symndx;
3895
3896 /* Given the symbol for a TLSLDM reloc is ignored, this also
3897 means forcing the symbol value to the tp base. */
3898 if (r_type == R_ALPHA_TLSLDM)
3899 {
3900 info.tsec = bfd_abs_section_ptr;
3901 symval = alpha_get_tprel_base (info.link_info);
3902 }
3903 else
3904 {
3905 symval = isym->st_value;
3906 if (isym->st_shndx == SHN_UNDEF)
3907 continue;
3908 else if (isym->st_shndx == SHN_ABS)
3909 info.tsec = bfd_abs_section_ptr;
3910 else if (isym->st_shndx == SHN_COMMON)
3911 info.tsec = bfd_com_section_ptr;
3912 else
3913 info.tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3914 }
3915
3916 info.h = NULL;
3917 info.other = isym->st_other;
3918 if (local_got_entries)
3919 info.first_gotent = &local_got_entries[r_symndx];
3920 else
3921 {
3922 info.first_gotent = &info.gotent;
3923 info.gotent = NULL;
3924 }
3925 }
3926 else
3927 {
3928 unsigned long indx;
3929 struct alpha_elf_link_hash_entry *h;
3930
3931 indx = r_symndx - symtab_hdr->sh_info;
3932 h = alpha_elf_sym_hashes (abfd)[indx];
3933 BFD_ASSERT (h != NULL);
3934
3935 while (h->root.root.type == bfd_link_hash_indirect
3936 || h->root.root.type == bfd_link_hash_warning)
3937 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
3938
3939 /* If the symbol is undefined, we can't do anything with it. */
3940 if (h->root.root.type == bfd_link_hash_undefined)
3941 continue;
3942
3943 /* If the symbol isn't defined in the current module,
3944 again we can't do anything. */
3945 if (h->root.root.type == bfd_link_hash_undefweak)
3946 {
3947 info.tsec = bfd_abs_section_ptr;
3948 symval = 0;
3949 }
3950 else if (!h->root.def_regular)
3951 {
3952 /* Except for TLSGD relocs, which can sometimes be
3953 relaxed to GOTTPREL relocs. */
3954 if (r_type != R_ALPHA_TLSGD)
3955 continue;
3956 info.tsec = bfd_abs_section_ptr;
3957 symval = 0;
3958 }
3959 else
3960 {
3961 info.tsec = h->root.root.u.def.section;
3962 symval = h->root.root.u.def.value;
3963 }
3964
3965 info.h = h;
3966 info.other = h->root.other;
3967 info.first_gotent = &h->got_entries;
3968 }
3969
3970 /* Search for the got entry to be used by this relocation. */
3971 for (gotent = *info.first_gotent; gotent ; gotent = gotent->next)
3972 if (gotent->gotobj == info.gotobj
3973 && gotent->reloc_type == r_type
3974 && gotent->addend == irel->r_addend)
3975 break;
3976 info.gotent = gotent;
3977
3978 symval += info.tsec->output_section->vma + info.tsec->output_offset;
3979 symval += irel->r_addend;
3980
3981 switch (r_type)
3982 {
3983 case R_ALPHA_LITERAL:
3984 BFD_ASSERT(info.gotent != NULL);
3985
3986 /* If there exist LITUSE relocations immediately following, this
3987 opens up all sorts of interesting optimizations, because we
3988 now know every location that this address load is used. */
3989 if (irel+1 < irelend
3990 && ELF64_R_TYPE (irel[1].r_info) == R_ALPHA_LITUSE)
3991 {
3992 if (!elf64_alpha_relax_with_lituse (&info, symval, irel))
3993 goto error_return;
3994 }
3995 else
3996 {
3997 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
3998 goto error_return;
3999 }
4000 break;
4001
4002 case R_ALPHA_GOTDTPREL:
4003 case R_ALPHA_GOTTPREL:
4004 BFD_ASSERT(info.gotent != NULL);
4005 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
4006 goto error_return;
4007 break;
4008
4009 case R_ALPHA_TLSGD:
4010 case R_ALPHA_TLSLDM:
4011 BFD_ASSERT(info.gotent != NULL);
4012 if (!elf64_alpha_relax_tls_get_addr (&info, symval, irel,
4013 r_type == R_ALPHA_TLSGD))
4014 goto error_return;
4015 break;
4016 }
4017 }
4018
4019 if (isymbuf != NULL
4020 && symtab_hdr->contents != (unsigned char *) isymbuf)
4021 {
4022 if (!link_info->keep_memory)
4023 free (isymbuf);
4024 else
4025 {
4026 /* Cache the symbols for elf_link_input_bfd. */
4027 symtab_hdr->contents = (unsigned char *) isymbuf;
4028 }
4029 }
4030
4031 if (info.contents != NULL
4032 && elf_section_data (sec)->this_hdr.contents != info.contents)
4033 {
4034 if (!info.changed_contents && !link_info->keep_memory)
4035 free (info.contents);
4036 else
4037 {
4038 /* Cache the section contents for elf_link_input_bfd. */
4039 elf_section_data (sec)->this_hdr.contents = info.contents;
4040 }
4041 }
4042
4043 if (elf_section_data (sec)->relocs != internal_relocs)
4044 {
4045 if (!info.changed_relocs)
4046 free (internal_relocs);
4047 else
4048 elf_section_data (sec)->relocs = internal_relocs;
4049 }
4050
4051 *again = info.changed_contents || info.changed_relocs;
4052
4053 return TRUE;
4054
4055 error_return:
4056 if (isymbuf != NULL
4057 && symtab_hdr->contents != (unsigned char *) isymbuf)
4058 free (isymbuf);
4059 if (info.contents != NULL
4060 && elf_section_data (sec)->this_hdr.contents != info.contents)
4061 free (info.contents);
4062 if (internal_relocs != NULL
4063 && elf_section_data (sec)->relocs != internal_relocs)
4064 free (internal_relocs);
4065 return FALSE;
4066 }
4067
4068 /* Emit a dynamic relocation for (DYNINDX, RTYPE, ADDEND) at (SEC, OFFSET)
4069 into the next available slot in SREL. */
4070
4071 static void
elf64_alpha_emit_dynrel(bfd * abfd,struct bfd_link_info * info,asection * sec,asection * srel,bfd_vma offset,long dynindx,long rtype,bfd_vma addend)4072 elf64_alpha_emit_dynrel (bfd *abfd, struct bfd_link_info *info,
4073 asection *sec, asection *srel, bfd_vma offset,
4074 long dynindx, long rtype, bfd_vma addend)
4075 {
4076 Elf_Internal_Rela outrel;
4077 bfd_byte *loc;
4078
4079 BFD_ASSERT (srel != NULL);
4080
4081 outrel.r_info = ELF64_R_INFO (dynindx, rtype);
4082 outrel.r_addend = addend;
4083
4084 offset = _bfd_elf_section_offset (abfd, info, sec, offset);
4085 if ((offset | 1) != (bfd_vma) -1)
4086 outrel.r_offset = sec->output_section->vma + sec->output_offset + offset;
4087 else
4088 memset (&outrel, 0, sizeof (outrel));
4089
4090 loc = srel->contents;
4091 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
4092 bfd_elf64_swap_reloca_out (abfd, &outrel, loc);
4093 BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count <= srel->size);
4094 }
4095
4096 /* Relocate an Alpha ELF section for a relocatable link.
4097
4098 We don't have to change anything unless the reloc is against a section
4099 symbol, in which case we have to adjust according to where the section
4100 symbol winds up in the output section. */
4101
4102 static bfd_boolean
elf64_alpha_relocate_section_r(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info ATTRIBUTE_UNUSED,bfd * input_bfd,asection * input_section,bfd_byte * contents ATTRIBUTE_UNUSED,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)4103 elf64_alpha_relocate_section_r (bfd *output_bfd ATTRIBUTE_UNUSED,
4104 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4105 bfd *input_bfd, asection *input_section,
4106 bfd_byte *contents ATTRIBUTE_UNUSED,
4107 Elf_Internal_Rela *relocs,
4108 Elf_Internal_Sym *local_syms,
4109 asection **local_sections)
4110 {
4111 unsigned long symtab_hdr_sh_info;
4112 Elf_Internal_Rela *rel;
4113 Elf_Internal_Rela *relend;
4114 struct elf_link_hash_entry **sym_hashes;
4115 bfd_boolean ret_val = TRUE;
4116
4117 symtab_hdr_sh_info = elf_symtab_hdr (input_bfd).sh_info;
4118 sym_hashes = elf_sym_hashes (input_bfd);
4119
4120 relend = relocs + input_section->reloc_count;
4121 for (rel = relocs; rel < relend; rel++)
4122 {
4123 unsigned long r_symndx;
4124 Elf_Internal_Sym *sym;
4125 asection *sec;
4126 unsigned long r_type;
4127
4128 r_type = ELF64_R_TYPE (rel->r_info);
4129 if (r_type >= R_ALPHA_max)
4130 {
4131 (*_bfd_error_handler)
4132 (_("%B: unknown relocation type %d"),
4133 input_bfd, (int) r_type);
4134 bfd_set_error (bfd_error_bad_value);
4135 ret_val = FALSE;
4136 continue;
4137 }
4138
4139 /* The symbol associated with GPDISP and LITUSE is
4140 immaterial. Only the addend is significant. */
4141 if (r_type == R_ALPHA_GPDISP || r_type == R_ALPHA_LITUSE)
4142 continue;
4143
4144 r_symndx = ELF64_R_SYM (rel->r_info);
4145 if (r_symndx < symtab_hdr_sh_info)
4146 {
4147 sym = local_syms + r_symndx;
4148 sec = local_sections[r_symndx];
4149 }
4150 else
4151 {
4152 struct elf_link_hash_entry *h;
4153
4154 h = sym_hashes[r_symndx - symtab_hdr_sh_info];
4155
4156 while (h->root.type == bfd_link_hash_indirect
4157 || h->root.type == bfd_link_hash_warning)
4158 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4159
4160 if (h->root.type != bfd_link_hash_defined
4161 && h->root.type != bfd_link_hash_defweak)
4162 continue;
4163
4164 sym = NULL;
4165 sec = h->root.u.def.section;
4166 }
4167
4168 if (sec != NULL && discarded_section (sec))
4169 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4170 rel, 1, relend,
4171 elf64_alpha_howto_table + r_type, 0,
4172 contents);
4173
4174 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4175 rel->r_addend += sec->output_offset;
4176 }
4177
4178 return ret_val;
4179 }
4180
4181 /* Relocate an Alpha ELF section. */
4182
4183 static bfd_boolean
elf64_alpha_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)4184 elf64_alpha_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
4185 bfd *input_bfd, asection *input_section,
4186 bfd_byte *contents, Elf_Internal_Rela *relocs,
4187 Elf_Internal_Sym *local_syms,
4188 asection **local_sections)
4189 {
4190 Elf_Internal_Shdr *symtab_hdr;
4191 Elf_Internal_Rela *rel;
4192 Elf_Internal_Rela *relend;
4193 asection *sgot, *srel, *srelgot;
4194 bfd *dynobj, *gotobj;
4195 bfd_vma gp, tp_base, dtp_base;
4196 struct alpha_elf_got_entry **local_got_entries;
4197 bfd_boolean ret_val;
4198
4199 BFD_ASSERT (is_alpha_elf (input_bfd));
4200
4201 /* Handle relocatable links with a smaller loop. */
4202 if (info->relocatable)
4203 return elf64_alpha_relocate_section_r (output_bfd, info, input_bfd,
4204 input_section, contents, relocs,
4205 local_syms, local_sections);
4206
4207 /* This is a final link. */
4208
4209 ret_val = TRUE;
4210
4211 symtab_hdr = &elf_symtab_hdr (input_bfd);
4212
4213 dynobj = elf_hash_table (info)->dynobj;
4214 if (dynobj)
4215 srelgot = bfd_get_linker_section (dynobj, ".rela.got");
4216 else
4217 srelgot = NULL;
4218
4219 if (input_section->flags & SEC_ALLOC)
4220 {
4221 const char *section_name;
4222 section_name = (bfd_elf_string_from_elf_section
4223 (input_bfd, elf_elfheader(input_bfd)->e_shstrndx,
4224 _bfd_elf_single_rel_hdr (input_section)->sh_name));
4225 BFD_ASSERT(section_name != NULL);
4226 srel = bfd_get_linker_section (dynobj, section_name);
4227 }
4228 else
4229 srel = NULL;
4230
4231 /* Find the gp value for this input bfd. */
4232 gotobj = alpha_elf_tdata (input_bfd)->gotobj;
4233 if (gotobj)
4234 {
4235 sgot = alpha_elf_tdata (gotobj)->got;
4236 gp = _bfd_get_gp_value (gotobj);
4237 if (gp == 0)
4238 {
4239 gp = (sgot->output_section->vma
4240 + sgot->output_offset
4241 + 0x8000);
4242 _bfd_set_gp_value (gotobj, gp);
4243 }
4244 }
4245 else
4246 {
4247 sgot = NULL;
4248 gp = 0;
4249 }
4250
4251 local_got_entries = alpha_elf_tdata(input_bfd)->local_got_entries;
4252
4253 if (elf_hash_table (info)->tls_sec != NULL)
4254 {
4255 dtp_base = alpha_get_dtprel_base (info);
4256 tp_base = alpha_get_tprel_base (info);
4257 }
4258 else
4259 dtp_base = tp_base = 0;
4260
4261 relend = relocs + input_section->reloc_count;
4262 for (rel = relocs; rel < relend; rel++)
4263 {
4264 struct alpha_elf_link_hash_entry *h = NULL;
4265 struct alpha_elf_got_entry *gotent;
4266 bfd_reloc_status_type r;
4267 reloc_howto_type *howto;
4268 unsigned long r_symndx;
4269 Elf_Internal_Sym *sym = NULL;
4270 asection *sec = NULL;
4271 bfd_vma value;
4272 bfd_vma addend;
4273 bfd_boolean dynamic_symbol_p;
4274 bfd_boolean unresolved_reloc = FALSE;
4275 bfd_boolean undef_weak_ref = FALSE;
4276 unsigned long r_type;
4277
4278 r_type = ELF64_R_TYPE(rel->r_info);
4279 if (r_type >= R_ALPHA_max)
4280 {
4281 (*_bfd_error_handler)
4282 (_("%B: unknown relocation type %d"),
4283 input_bfd, (int) r_type);
4284 bfd_set_error (bfd_error_bad_value);
4285 ret_val = FALSE;
4286 continue;
4287 }
4288
4289 howto = elf64_alpha_howto_table + r_type;
4290 r_symndx = ELF64_R_SYM(rel->r_info);
4291
4292 /* The symbol for a TLSLDM reloc is ignored. Collapse the
4293 reloc to the STN_UNDEF (0) symbol so that they all match. */
4294 if (r_type == R_ALPHA_TLSLDM)
4295 r_symndx = STN_UNDEF;
4296
4297 if (r_symndx < symtab_hdr->sh_info)
4298 {
4299 asection *msec;
4300 sym = local_syms + r_symndx;
4301 sec = local_sections[r_symndx];
4302 msec = sec;
4303 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4304
4305 /* If this is a tp-relative relocation against sym STN_UNDEF (0),
4306 this is hackery from relax_section. Force the value to
4307 be the tls module base. */
4308 if (r_symndx == STN_UNDEF
4309 && (r_type == R_ALPHA_TLSLDM
4310 || r_type == R_ALPHA_GOTTPREL
4311 || r_type == R_ALPHA_TPREL64
4312 || r_type == R_ALPHA_TPRELHI
4313 || r_type == R_ALPHA_TPRELLO
4314 || r_type == R_ALPHA_TPREL16))
4315 value = dtp_base;
4316
4317 if (local_got_entries)
4318 gotent = local_got_entries[r_symndx];
4319 else
4320 gotent = NULL;
4321
4322 /* Need to adjust local GOT entries' addends for SEC_MERGE
4323 unless it has been done already. */
4324 if ((sec->flags & SEC_MERGE)
4325 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4326 && sec->sec_info_type == SEC_INFO_TYPE_MERGE
4327 && gotent
4328 && !gotent->reloc_xlated)
4329 {
4330 struct alpha_elf_got_entry *ent;
4331
4332 for (ent = gotent; ent; ent = ent->next)
4333 {
4334 ent->reloc_xlated = 1;
4335 if (ent->use_count == 0)
4336 continue;
4337 msec = sec;
4338 ent->addend =
4339 _bfd_merged_section_offset (output_bfd, &msec,
4340 elf_section_data (sec)->
4341 sec_info,
4342 sym->st_value + ent->addend);
4343 ent->addend -= sym->st_value;
4344 ent->addend += msec->output_section->vma
4345 + msec->output_offset
4346 - sec->output_section->vma
4347 - sec->output_offset;
4348 }
4349 }
4350
4351 dynamic_symbol_p = FALSE;
4352 }
4353 else
4354 {
4355 bfd_boolean warned, ignored;
4356 struct elf_link_hash_entry *hh;
4357 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4358
4359 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4360 r_symndx, symtab_hdr, sym_hashes,
4361 hh, sec, value,
4362 unresolved_reloc, warned, ignored);
4363
4364 if (warned)
4365 continue;
4366
4367 if (value == 0
4368 && ! unresolved_reloc
4369 && hh->root.type == bfd_link_hash_undefweak)
4370 undef_weak_ref = TRUE;
4371
4372 h = (struct alpha_elf_link_hash_entry *) hh;
4373 dynamic_symbol_p = alpha_elf_dynamic_symbol_p (&h->root, info);
4374 gotent = h->got_entries;
4375 }
4376
4377 if (sec != NULL && discarded_section (sec))
4378 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4379 rel, 1, relend, howto, 0, contents);
4380
4381 addend = rel->r_addend;
4382 value += addend;
4383
4384 /* Search for the proper got entry. */
4385 for (; gotent ; gotent = gotent->next)
4386 if (gotent->gotobj == gotobj
4387 && gotent->reloc_type == r_type
4388 && gotent->addend == addend)
4389 break;
4390
4391 switch (r_type)
4392 {
4393 case R_ALPHA_GPDISP:
4394 {
4395 bfd_byte *p_ldah, *p_lda;
4396
4397 BFD_ASSERT(gp != 0);
4398
4399 value = (input_section->output_section->vma
4400 + input_section->output_offset
4401 + rel->r_offset);
4402
4403 p_ldah = contents + rel->r_offset;
4404 p_lda = p_ldah + rel->r_addend;
4405
4406 r = elf64_alpha_do_reloc_gpdisp (input_bfd, gp - value,
4407 p_ldah, p_lda);
4408 }
4409 break;
4410
4411 case R_ALPHA_LITERAL:
4412 BFD_ASSERT(sgot != NULL);
4413 BFD_ASSERT(gp != 0);
4414 BFD_ASSERT(gotent != NULL);
4415 BFD_ASSERT(gotent->use_count >= 1);
4416
4417 if (!gotent->reloc_done)
4418 {
4419 gotent->reloc_done = 1;
4420
4421 bfd_put_64 (output_bfd, value,
4422 sgot->contents + gotent->got_offset);
4423
4424 /* If the symbol has been forced local, output a
4425 RELATIVE reloc, otherwise it will be handled in
4426 finish_dynamic_symbol. */
4427 if (info->shared && !dynamic_symbol_p && !undef_weak_ref)
4428 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4429 gotent->got_offset, 0,
4430 R_ALPHA_RELATIVE, value);
4431 }
4432
4433 value = (sgot->output_section->vma
4434 + sgot->output_offset
4435 + gotent->got_offset);
4436 value -= gp;
4437 goto default_reloc;
4438
4439 case R_ALPHA_GPREL32:
4440 case R_ALPHA_GPREL16:
4441 case R_ALPHA_GPRELLOW:
4442 if (dynamic_symbol_p)
4443 {
4444 (*_bfd_error_handler)
4445 (_("%B: gp-relative relocation against dynamic symbol %s"),
4446 input_bfd, h->root.root.root.string);
4447 ret_val = FALSE;
4448 }
4449 BFD_ASSERT(gp != 0);
4450 value -= gp;
4451 goto default_reloc;
4452
4453 case R_ALPHA_GPRELHIGH:
4454 if (dynamic_symbol_p)
4455 {
4456 (*_bfd_error_handler)
4457 (_("%B: gp-relative relocation against dynamic symbol %s"),
4458 input_bfd, h->root.root.root.string);
4459 ret_val = FALSE;
4460 }
4461 BFD_ASSERT(gp != 0);
4462 value -= gp;
4463 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4464 goto default_reloc;
4465
4466 case R_ALPHA_HINT:
4467 /* A call to a dynamic symbol is definitely out of range of
4468 the 16-bit displacement. Don't bother writing anything. */
4469 if (dynamic_symbol_p)
4470 {
4471 r = bfd_reloc_ok;
4472 break;
4473 }
4474 /* The regular PC-relative stuff measures from the start of
4475 the instruction rather than the end. */
4476 value -= 4;
4477 goto default_reloc;
4478
4479 case R_ALPHA_BRADDR:
4480 if (dynamic_symbol_p)
4481 {
4482 (*_bfd_error_handler)
4483 (_("%B: pc-relative relocation against dynamic symbol %s"),
4484 input_bfd, h->root.root.root.string);
4485 ret_val = FALSE;
4486 }
4487 /* The regular PC-relative stuff measures from the start of
4488 the instruction rather than the end. */
4489 value -= 4;
4490 goto default_reloc;
4491
4492 case R_ALPHA_BRSGP:
4493 {
4494 int other;
4495 const char *name;
4496
4497 /* The regular PC-relative stuff measures from the start of
4498 the instruction rather than the end. */
4499 value -= 4;
4500
4501 /* The source and destination gp must be the same. Note that
4502 the source will always have an assigned gp, since we forced
4503 one in check_relocs, but that the destination may not, as
4504 it might not have had any relocations at all. Also take
4505 care not to crash if H is an undefined symbol. */
4506 if (h != NULL && sec != NULL
4507 && alpha_elf_tdata (sec->owner)->gotobj
4508 && gotobj != alpha_elf_tdata (sec->owner)->gotobj)
4509 {
4510 (*_bfd_error_handler)
4511 (_("%B: change in gp: BRSGP %s"),
4512 input_bfd, h->root.root.root.string);
4513 ret_val = FALSE;
4514 }
4515
4516 /* The symbol should be marked either NOPV or STD_GPLOAD. */
4517 if (h != NULL)
4518 other = h->root.other;
4519 else
4520 other = sym->st_other;
4521 switch (other & STO_ALPHA_STD_GPLOAD)
4522 {
4523 case STO_ALPHA_NOPV:
4524 break;
4525 case STO_ALPHA_STD_GPLOAD:
4526 value += 8;
4527 break;
4528 default:
4529 if (h != NULL)
4530 name = h->root.root.root.string;
4531 else
4532 {
4533 name = (bfd_elf_string_from_elf_section
4534 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4535 if (name == NULL)
4536 name = _("<unknown>");
4537 else if (name[0] == 0)
4538 name = bfd_section_name (input_bfd, sec);
4539 }
4540 (*_bfd_error_handler)
4541 (_("%B: !samegp reloc against symbol without .prologue: %s"),
4542 input_bfd, name);
4543 ret_val = FALSE;
4544 break;
4545 }
4546
4547 goto default_reloc;
4548 }
4549
4550 case R_ALPHA_REFLONG:
4551 case R_ALPHA_REFQUAD:
4552 case R_ALPHA_DTPREL64:
4553 case R_ALPHA_TPREL64:
4554 {
4555 long dynindx, dyntype = r_type;
4556 bfd_vma dynaddend;
4557
4558 /* Careful here to remember RELATIVE relocations for global
4559 variables for symbolic shared objects. */
4560
4561 if (dynamic_symbol_p)
4562 {
4563 BFD_ASSERT(h->root.dynindx != -1);
4564 dynindx = h->root.dynindx;
4565 dynaddend = addend;
4566 addend = 0, value = 0;
4567 }
4568 else if (r_type == R_ALPHA_DTPREL64)
4569 {
4570 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4571 value -= dtp_base;
4572 goto default_reloc;
4573 }
4574 else if (r_type == R_ALPHA_TPREL64)
4575 {
4576 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4577 if (!info->shared || info->pie)
4578 {
4579 value -= tp_base;
4580 goto default_reloc;
4581 }
4582 dynindx = 0;
4583 dynaddend = value - dtp_base;
4584 }
4585 else if (info->shared
4586 && r_symndx != STN_UNDEF
4587 && (input_section->flags & SEC_ALLOC)
4588 && !undef_weak_ref
4589 && !(unresolved_reloc
4590 && (_bfd_elf_section_offset (output_bfd, info,
4591 input_section,
4592 rel->r_offset)
4593 == (bfd_vma) -1)))
4594 {
4595 if (r_type == R_ALPHA_REFLONG)
4596 {
4597 (*_bfd_error_handler)
4598 (_("%B: unhandled dynamic relocation against %s"),
4599 input_bfd,
4600 h->root.root.root.string);
4601 ret_val = FALSE;
4602 }
4603 dynindx = 0;
4604 dyntype = R_ALPHA_RELATIVE;
4605 dynaddend = value;
4606 }
4607 else
4608 goto default_reloc;
4609
4610 if (input_section->flags & SEC_ALLOC)
4611 elf64_alpha_emit_dynrel (output_bfd, info, input_section,
4612 srel, rel->r_offset, dynindx,
4613 dyntype, dynaddend);
4614 }
4615 goto default_reloc;
4616
4617 case R_ALPHA_SREL16:
4618 case R_ALPHA_SREL32:
4619 case R_ALPHA_SREL64:
4620 if (dynamic_symbol_p)
4621 {
4622 (*_bfd_error_handler)
4623 (_("%B: pc-relative relocation against dynamic symbol %s"),
4624 input_bfd, h->root.root.root.string);
4625 ret_val = FALSE;
4626 }
4627 else if ((info->shared || info->pie) && undef_weak_ref)
4628 {
4629 (*_bfd_error_handler)
4630 (_("%B: pc-relative relocation against undefined weak symbol %s"),
4631 input_bfd, h->root.root.root.string);
4632 ret_val = FALSE;
4633 }
4634
4635
4636 /* ??? .eh_frame references to discarded sections will be smashed
4637 to relocations against SHN_UNDEF. The .eh_frame format allows
4638 NULL to be encoded as 0 in any format, so this works here. */
4639 if (r_symndx == STN_UNDEF
4640 || (unresolved_reloc
4641 && _bfd_elf_section_offset (output_bfd, info,
4642 input_section,
4643 rel->r_offset) == (bfd_vma) -1))
4644 howto = (elf64_alpha_howto_table
4645 + (r_type - R_ALPHA_SREL32 + R_ALPHA_REFLONG));
4646 goto default_reloc;
4647
4648 case R_ALPHA_TLSLDM:
4649 /* Ignore the symbol for the relocation. The result is always
4650 the current module. */
4651 dynamic_symbol_p = 0;
4652 /* FALLTHRU */
4653
4654 case R_ALPHA_TLSGD:
4655 if (!gotent->reloc_done)
4656 {
4657 gotent->reloc_done = 1;
4658
4659 /* Note that the module index for the main program is 1. */
4660 bfd_put_64 (output_bfd, !info->shared && !dynamic_symbol_p,
4661 sgot->contents + gotent->got_offset);
4662
4663 /* If the symbol has been forced local, output a
4664 DTPMOD64 reloc, otherwise it will be handled in
4665 finish_dynamic_symbol. */
4666 if (info->shared && !dynamic_symbol_p)
4667 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4668 gotent->got_offset, 0,
4669 R_ALPHA_DTPMOD64, 0);
4670
4671 if (dynamic_symbol_p || r_type == R_ALPHA_TLSLDM)
4672 value = 0;
4673 else
4674 {
4675 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4676 value -= dtp_base;
4677 }
4678 bfd_put_64 (output_bfd, value,
4679 sgot->contents + gotent->got_offset + 8);
4680 }
4681
4682 value = (sgot->output_section->vma
4683 + sgot->output_offset
4684 + gotent->got_offset);
4685 value -= gp;
4686 goto default_reloc;
4687
4688 case R_ALPHA_DTPRELHI:
4689 case R_ALPHA_DTPRELLO:
4690 case R_ALPHA_DTPREL16:
4691 if (dynamic_symbol_p)
4692 {
4693 (*_bfd_error_handler)
4694 (_("%B: dtp-relative relocation against dynamic symbol %s"),
4695 input_bfd, h->root.root.root.string);
4696 ret_val = FALSE;
4697 }
4698 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4699 value -= dtp_base;
4700 if (r_type == R_ALPHA_DTPRELHI)
4701 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4702 goto default_reloc;
4703
4704 case R_ALPHA_TPRELHI:
4705 case R_ALPHA_TPRELLO:
4706 case R_ALPHA_TPREL16:
4707 if (info->shared && !info->pie)
4708 {
4709 (*_bfd_error_handler)
4710 (_("%B: TLS local exec code cannot be linked into shared objects"),
4711 input_bfd);
4712 ret_val = FALSE;
4713 }
4714 else if (dynamic_symbol_p)
4715 {
4716 (*_bfd_error_handler)
4717 (_("%B: tp-relative relocation against dynamic symbol %s"),
4718 input_bfd, h->root.root.root.string);
4719 ret_val = FALSE;
4720 }
4721 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4722 value -= tp_base;
4723 if (r_type == R_ALPHA_TPRELHI)
4724 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4725 goto default_reloc;
4726
4727 case R_ALPHA_GOTDTPREL:
4728 case R_ALPHA_GOTTPREL:
4729 BFD_ASSERT(sgot != NULL);
4730 BFD_ASSERT(gp != 0);
4731 BFD_ASSERT(gotent != NULL);
4732 BFD_ASSERT(gotent->use_count >= 1);
4733
4734 if (!gotent->reloc_done)
4735 {
4736 gotent->reloc_done = 1;
4737
4738 if (dynamic_symbol_p)
4739 value = 0;
4740 else
4741 {
4742 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4743 if (r_type == R_ALPHA_GOTDTPREL)
4744 value -= dtp_base;
4745 else if (!info->shared)
4746 value -= tp_base;
4747 else
4748 {
4749 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4750 gotent->got_offset, 0,
4751 R_ALPHA_TPREL64,
4752 value - dtp_base);
4753 value = 0;
4754 }
4755 }
4756 bfd_put_64 (output_bfd, value,
4757 sgot->contents + gotent->got_offset);
4758 }
4759
4760 value = (sgot->output_section->vma
4761 + sgot->output_offset
4762 + gotent->got_offset);
4763 value -= gp;
4764 goto default_reloc;
4765
4766 default:
4767 default_reloc:
4768 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4769 contents, rel->r_offset, value, 0);
4770 break;
4771 }
4772
4773 switch (r)
4774 {
4775 case bfd_reloc_ok:
4776 break;
4777
4778 case bfd_reloc_overflow:
4779 {
4780 const char *name;
4781
4782 /* Don't warn if the overflow is due to pc relative reloc
4783 against discarded section. Section optimization code should
4784 handle it. */
4785
4786 if (r_symndx < symtab_hdr->sh_info
4787 && sec != NULL && howto->pc_relative
4788 && discarded_section (sec))
4789 break;
4790
4791 if (h != NULL)
4792 name = NULL;
4793 else
4794 {
4795 name = (bfd_elf_string_from_elf_section
4796 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4797 if (name == NULL)
4798 return FALSE;
4799 if (*name == '\0')
4800 name = bfd_section_name (input_bfd, sec);
4801 }
4802 if (! ((*info->callbacks->reloc_overflow)
4803 (info, (h ? &h->root.root : NULL), name, howto->name,
4804 (bfd_vma) 0, input_bfd, input_section,
4805 rel->r_offset)))
4806 ret_val = FALSE;
4807 }
4808 break;
4809
4810 default:
4811 case bfd_reloc_outofrange:
4812 abort ();
4813 }
4814 }
4815
4816 return ret_val;
4817 }
4818
4819 /* Finish up dynamic symbol handling. We set the contents of various
4820 dynamic sections here. */
4821
4822 static bfd_boolean
elf64_alpha_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)4823 elf64_alpha_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
4824 struct elf_link_hash_entry *h,
4825 Elf_Internal_Sym *sym)
4826 {
4827 struct alpha_elf_link_hash_entry *ah = (struct alpha_elf_link_hash_entry *)h;
4828 bfd *dynobj = elf_hash_table(info)->dynobj;
4829
4830 if (h->needs_plt)
4831 {
4832 /* Fill in the .plt entry for this symbol. */
4833 asection *splt, *sgot, *srel;
4834 Elf_Internal_Rela outrel;
4835 bfd_byte *loc;
4836 bfd_vma got_addr, plt_addr;
4837 bfd_vma plt_index;
4838 struct alpha_elf_got_entry *gotent;
4839
4840 BFD_ASSERT (h->dynindx != -1);
4841
4842 splt = bfd_get_linker_section (dynobj, ".plt");
4843 BFD_ASSERT (splt != NULL);
4844 srel = bfd_get_linker_section (dynobj, ".rela.plt");
4845 BFD_ASSERT (srel != NULL);
4846
4847 for (gotent = ah->got_entries; gotent ; gotent = gotent->next)
4848 if (gotent->reloc_type == R_ALPHA_LITERAL
4849 && gotent->use_count > 0)
4850 {
4851 unsigned int insn;
4852 int disp;
4853
4854 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4855 BFD_ASSERT (sgot != NULL);
4856
4857 BFD_ASSERT (gotent->got_offset != -1);
4858 BFD_ASSERT (gotent->plt_offset != -1);
4859
4860 got_addr = (sgot->output_section->vma
4861 + sgot->output_offset
4862 + gotent->got_offset);
4863 plt_addr = (splt->output_section->vma
4864 + splt->output_offset
4865 + gotent->plt_offset);
4866
4867 plt_index = (gotent->plt_offset-PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
4868
4869 /* Fill in the entry in the procedure linkage table. */
4870 if (elf64_alpha_use_secureplt)
4871 {
4872 disp = (PLT_HEADER_SIZE - 4) - (gotent->plt_offset + 4);
4873 insn = INSN_AD (INSN_BR, 31, disp);
4874 bfd_put_32 (output_bfd, insn,
4875 splt->contents + gotent->plt_offset);
4876
4877 plt_index = ((gotent->plt_offset - NEW_PLT_HEADER_SIZE)
4878 / NEW_PLT_ENTRY_SIZE);
4879 }
4880 else
4881 {
4882 disp = -(gotent->plt_offset + 4);
4883 insn = INSN_AD (INSN_BR, 28, disp);
4884 bfd_put_32 (output_bfd, insn,
4885 splt->contents + gotent->plt_offset);
4886 bfd_put_32 (output_bfd, INSN_UNOP,
4887 splt->contents + gotent->plt_offset + 4);
4888 bfd_put_32 (output_bfd, INSN_UNOP,
4889 splt->contents + gotent->plt_offset + 8);
4890
4891 plt_index = ((gotent->plt_offset - OLD_PLT_HEADER_SIZE)
4892 / OLD_PLT_ENTRY_SIZE);
4893 }
4894
4895 /* Fill in the entry in the .rela.plt section. */
4896 outrel.r_offset = got_addr;
4897 outrel.r_info = ELF64_R_INFO(h->dynindx, R_ALPHA_JMP_SLOT);
4898 outrel.r_addend = 0;
4899
4900 loc = srel->contents + plt_index * sizeof (Elf64_External_Rela);
4901 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
4902
4903 /* Fill in the entry in the .got. */
4904 bfd_put_64 (output_bfd, plt_addr,
4905 sgot->contents + gotent->got_offset);
4906 }
4907 }
4908 else if (alpha_elf_dynamic_symbol_p (h, info))
4909 {
4910 /* Fill in the dynamic relocations for this symbol's .got entries. */
4911 asection *srel;
4912 struct alpha_elf_got_entry *gotent;
4913
4914 srel = bfd_get_linker_section (dynobj, ".rela.got");
4915 BFD_ASSERT (srel != NULL);
4916
4917 for (gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries;
4918 gotent != NULL;
4919 gotent = gotent->next)
4920 {
4921 asection *sgot;
4922 long r_type;
4923
4924 if (gotent->use_count == 0)
4925 continue;
4926
4927 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4928
4929 r_type = gotent->reloc_type;
4930 switch (r_type)
4931 {
4932 case R_ALPHA_LITERAL:
4933 r_type = R_ALPHA_GLOB_DAT;
4934 break;
4935 case R_ALPHA_TLSGD:
4936 r_type = R_ALPHA_DTPMOD64;
4937 break;
4938 case R_ALPHA_GOTDTPREL:
4939 r_type = R_ALPHA_DTPREL64;
4940 break;
4941 case R_ALPHA_GOTTPREL:
4942 r_type = R_ALPHA_TPREL64;
4943 break;
4944 case R_ALPHA_TLSLDM:
4945 default:
4946 abort ();
4947 }
4948
4949 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4950 gotent->got_offset, h->dynindx,
4951 r_type, gotent->addend);
4952
4953 if (gotent->reloc_type == R_ALPHA_TLSGD)
4954 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4955 gotent->got_offset + 8, h->dynindx,
4956 R_ALPHA_DTPREL64, gotent->addend);
4957 }
4958 }
4959
4960 /* Mark some specially defined symbols as absolute. */
4961 if (h == elf_hash_table (info)->hdynamic
4962 || h == elf_hash_table (info)->hgot
4963 || h == elf_hash_table (info)->hplt)
4964 sym->st_shndx = SHN_ABS;
4965
4966 return TRUE;
4967 }
4968
4969 /* Finish up the dynamic sections. */
4970
4971 static bfd_boolean
elf64_alpha_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)4972 elf64_alpha_finish_dynamic_sections (bfd *output_bfd,
4973 struct bfd_link_info *info)
4974 {
4975 bfd *dynobj;
4976 asection *sdyn;
4977
4978 dynobj = elf_hash_table (info)->dynobj;
4979 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4980
4981 if (elf_hash_table (info)->dynamic_sections_created)
4982 {
4983 asection *splt, *sgotplt, *srelaplt;
4984 Elf64_External_Dyn *dyncon, *dynconend;
4985 bfd_vma plt_vma, gotplt_vma;
4986
4987 splt = bfd_get_linker_section (dynobj, ".plt");
4988 srelaplt = bfd_get_linker_section (output_bfd, ".rela.plt");
4989 BFD_ASSERT (splt != NULL && sdyn != NULL);
4990
4991 plt_vma = splt->output_section->vma + splt->output_offset;
4992
4993 gotplt_vma = 0;
4994 if (elf64_alpha_use_secureplt)
4995 {
4996 sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
4997 BFD_ASSERT (sgotplt != NULL);
4998 if (sgotplt->size > 0)
4999 gotplt_vma = sgotplt->output_section->vma + sgotplt->output_offset;
5000 }
5001
5002 dyncon = (Elf64_External_Dyn *) sdyn->contents;
5003 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
5004 for (; dyncon < dynconend; dyncon++)
5005 {
5006 Elf_Internal_Dyn dyn;
5007
5008 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
5009
5010 switch (dyn.d_tag)
5011 {
5012 case DT_PLTGOT:
5013 dyn.d_un.d_ptr
5014 = elf64_alpha_use_secureplt ? gotplt_vma : plt_vma;
5015 break;
5016 case DT_PLTRELSZ:
5017 dyn.d_un.d_val = srelaplt ? srelaplt->size : 0;
5018 break;
5019 case DT_JMPREL:
5020 dyn.d_un.d_ptr = srelaplt ? srelaplt->vma : 0;
5021 break;
5022
5023 case DT_RELASZ:
5024 /* My interpretation of the TIS v1.1 ELF document indicates
5025 that RELASZ should not include JMPREL. This is not what
5026 the rest of the BFD does. It is, however, what the
5027 glibc ld.so wants. Do this fixup here until we found
5028 out who is right. */
5029 if (srelaplt)
5030 dyn.d_un.d_val -= srelaplt->size;
5031 break;
5032 }
5033
5034 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
5035 }
5036
5037 /* Initialize the plt header. */
5038 if (splt->size > 0)
5039 {
5040 unsigned int insn;
5041 int ofs;
5042
5043 if (elf64_alpha_use_secureplt)
5044 {
5045 ofs = gotplt_vma - (plt_vma + PLT_HEADER_SIZE);
5046
5047 insn = INSN_ABC (INSN_SUBQ, 27, 28, 25);
5048 bfd_put_32 (output_bfd, insn, splt->contents);
5049
5050 insn = INSN_ABO (INSN_LDAH, 28, 28, (ofs + 0x8000) >> 16);
5051 bfd_put_32 (output_bfd, insn, splt->contents + 4);
5052
5053 insn = INSN_ABC (INSN_S4SUBQ, 25, 25, 25);
5054 bfd_put_32 (output_bfd, insn, splt->contents + 8);
5055
5056 insn = INSN_ABO (INSN_LDA, 28, 28, ofs);
5057 bfd_put_32 (output_bfd, insn, splt->contents + 12);
5058
5059 insn = INSN_ABO (INSN_LDQ, 27, 28, 0);
5060 bfd_put_32 (output_bfd, insn, splt->contents + 16);
5061
5062 insn = INSN_ABC (INSN_ADDQ, 25, 25, 25);
5063 bfd_put_32 (output_bfd, insn, splt->contents + 20);
5064
5065 insn = INSN_ABO (INSN_LDQ, 28, 28, 8);
5066 bfd_put_32 (output_bfd, insn, splt->contents + 24);
5067
5068 insn = INSN_AB (INSN_JMP, 31, 27);
5069 bfd_put_32 (output_bfd, insn, splt->contents + 28);
5070
5071 insn = INSN_AD (INSN_BR, 28, -PLT_HEADER_SIZE);
5072 bfd_put_32 (output_bfd, insn, splt->contents + 32);
5073 }
5074 else
5075 {
5076 insn = INSN_AD (INSN_BR, 27, 0); /* br $27, .+4 */
5077 bfd_put_32 (output_bfd, insn, splt->contents);
5078
5079 insn = INSN_ABO (INSN_LDQ, 27, 27, 12);
5080 bfd_put_32 (output_bfd, insn, splt->contents + 4);
5081
5082 insn = INSN_UNOP;
5083 bfd_put_32 (output_bfd, insn, splt->contents + 8);
5084
5085 insn = INSN_AB (INSN_JMP, 27, 27);
5086 bfd_put_32 (output_bfd, insn, splt->contents + 12);
5087
5088 /* The next two words will be filled in by ld.so. */
5089 bfd_put_64 (output_bfd, 0, splt->contents + 16);
5090 bfd_put_64 (output_bfd, 0, splt->contents + 24);
5091 }
5092
5093 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 0;
5094 }
5095 }
5096
5097 return TRUE;
5098 }
5099
5100 /* We need to use a special link routine to handle the .mdebug section.
5101 We need to merge all instances of these sections together, not write
5102 them all out sequentially. */
5103
5104 static bfd_boolean
elf64_alpha_final_link(bfd * abfd,struct bfd_link_info * info)5105 elf64_alpha_final_link (bfd *abfd, struct bfd_link_info *info)
5106 {
5107 asection *o;
5108 struct bfd_link_order *p;
5109 asection *mdebug_sec;
5110 struct ecoff_debug_info debug;
5111 const struct ecoff_debug_swap *swap
5112 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
5113 HDRR *symhdr = &debug.symbolic_header;
5114 void * mdebug_handle = NULL;
5115 struct alpha_elf_link_hash_table * htab;
5116
5117 htab = alpha_elf_hash_table (info);
5118 if (htab == NULL)
5119 return FALSE;
5120
5121 /* Go through the sections and collect the mdebug information. */
5122 mdebug_sec = NULL;
5123 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5124 {
5125 if (strcmp (o->name, ".mdebug") == 0)
5126 {
5127 struct extsym_info einfo;
5128
5129 /* We have found the .mdebug section in the output file.
5130 Look through all the link_orders comprising it and merge
5131 the information together. */
5132 symhdr->magic = swap->sym_magic;
5133 /* FIXME: What should the version stamp be? */
5134 symhdr->vstamp = 0;
5135 symhdr->ilineMax = 0;
5136 symhdr->cbLine = 0;
5137 symhdr->idnMax = 0;
5138 symhdr->ipdMax = 0;
5139 symhdr->isymMax = 0;
5140 symhdr->ioptMax = 0;
5141 symhdr->iauxMax = 0;
5142 symhdr->issMax = 0;
5143 symhdr->issExtMax = 0;
5144 symhdr->ifdMax = 0;
5145 symhdr->crfd = 0;
5146 symhdr->iextMax = 0;
5147
5148 /* We accumulate the debugging information itself in the
5149 debug_info structure. */
5150 debug.line = NULL;
5151 debug.external_dnr = NULL;
5152 debug.external_pdr = NULL;
5153 debug.external_sym = NULL;
5154 debug.external_opt = NULL;
5155 debug.external_aux = NULL;
5156 debug.ss = NULL;
5157 debug.ssext = debug.ssext_end = NULL;
5158 debug.external_fdr = NULL;
5159 debug.external_rfd = NULL;
5160 debug.external_ext = debug.external_ext_end = NULL;
5161
5162 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
5163 if (mdebug_handle == NULL)
5164 return FALSE;
5165
5166 if (1)
5167 {
5168 asection *s;
5169 EXTR esym;
5170 bfd_vma last = 0;
5171 unsigned int i;
5172 static const char * const name[] =
5173 {
5174 ".text", ".init", ".fini", ".data",
5175 ".rodata", ".sdata", ".sbss", ".bss"
5176 };
5177 static const int sc[] = { scText, scInit, scFini, scData,
5178 scRData, scSData, scSBss, scBss };
5179
5180 esym.jmptbl = 0;
5181 esym.cobol_main = 0;
5182 esym.weakext = 0;
5183 esym.reserved = 0;
5184 esym.ifd = ifdNil;
5185 esym.asym.iss = issNil;
5186 esym.asym.st = stLocal;
5187 esym.asym.reserved = 0;
5188 esym.asym.index = indexNil;
5189 for (i = 0; i < 8; i++)
5190 {
5191 esym.asym.sc = sc[i];
5192 s = bfd_get_section_by_name (abfd, name[i]);
5193 if (s != NULL)
5194 {
5195 esym.asym.value = s->vma;
5196 last = s->vma + s->size;
5197 }
5198 else
5199 esym.asym.value = last;
5200
5201 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
5202 name[i], &esym))
5203 return FALSE;
5204 }
5205 }
5206
5207 for (p = o->map_head.link_order;
5208 p != (struct bfd_link_order *) NULL;
5209 p = p->next)
5210 {
5211 asection *input_section;
5212 bfd *input_bfd;
5213 const struct ecoff_debug_swap *input_swap;
5214 struct ecoff_debug_info input_debug;
5215 char *eraw_src;
5216 char *eraw_end;
5217
5218 if (p->type != bfd_indirect_link_order)
5219 {
5220 if (p->type == bfd_data_link_order)
5221 continue;
5222 abort ();
5223 }
5224
5225 input_section = p->u.indirect.section;
5226 input_bfd = input_section->owner;
5227
5228 if (! is_alpha_elf (input_bfd))
5229 /* I don't know what a non ALPHA ELF bfd would be
5230 doing with a .mdebug section, but I don't really
5231 want to deal with it. */
5232 continue;
5233
5234 input_swap = (get_elf_backend_data (input_bfd)
5235 ->elf_backend_ecoff_debug_swap);
5236
5237 BFD_ASSERT (p->size == input_section->size);
5238
5239 /* The ECOFF linking code expects that we have already
5240 read in the debugging information and set up an
5241 ecoff_debug_info structure, so we do that now. */
5242 if (!elf64_alpha_read_ecoff_info (input_bfd, input_section,
5243 &input_debug))
5244 return FALSE;
5245
5246 if (! (bfd_ecoff_debug_accumulate
5247 (mdebug_handle, abfd, &debug, swap, input_bfd,
5248 &input_debug, input_swap, info)))
5249 return FALSE;
5250
5251 /* Loop through the external symbols. For each one with
5252 interesting information, try to find the symbol in
5253 the linker global hash table and save the information
5254 for the output external symbols. */
5255 eraw_src = (char *) input_debug.external_ext;
5256 eraw_end = (eraw_src
5257 + (input_debug.symbolic_header.iextMax
5258 * input_swap->external_ext_size));
5259 for (;
5260 eraw_src < eraw_end;
5261 eraw_src += input_swap->external_ext_size)
5262 {
5263 EXTR ext;
5264 const char *name;
5265 struct alpha_elf_link_hash_entry *h;
5266
5267 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
5268 if (ext.asym.sc == scNil
5269 || ext.asym.sc == scUndefined
5270 || ext.asym.sc == scSUndefined)
5271 continue;
5272
5273 name = input_debug.ssext + ext.asym.iss;
5274 h = alpha_elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
5275 if (h == NULL || h->esym.ifd != -2)
5276 continue;
5277
5278 if (ext.ifd != -1)
5279 {
5280 BFD_ASSERT (ext.ifd
5281 < input_debug.symbolic_header.ifdMax);
5282 ext.ifd = input_debug.ifdmap[ext.ifd];
5283 }
5284
5285 h->esym = ext;
5286 }
5287
5288 /* Free up the information we just read. */
5289 free (input_debug.line);
5290 free (input_debug.external_dnr);
5291 free (input_debug.external_pdr);
5292 free (input_debug.external_sym);
5293 free (input_debug.external_opt);
5294 free (input_debug.external_aux);
5295 free (input_debug.ss);
5296 free (input_debug.ssext);
5297 free (input_debug.external_fdr);
5298 free (input_debug.external_rfd);
5299 free (input_debug.external_ext);
5300
5301 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5302 elf_link_input_bfd ignores this section. */
5303 input_section->flags &=~ SEC_HAS_CONTENTS;
5304 }
5305
5306 /* Build the external symbol information. */
5307 einfo.abfd = abfd;
5308 einfo.info = info;
5309 einfo.debug = &debug;
5310 einfo.swap = swap;
5311 einfo.failed = FALSE;
5312 elf_link_hash_traverse (elf_hash_table (info),
5313 elf64_alpha_output_extsym,
5314 &einfo);
5315 if (einfo.failed)
5316 return FALSE;
5317
5318 /* Set the size of the .mdebug section. */
5319 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
5320
5321 /* Skip this section later on (I don't think this currently
5322 matters, but someday it might). */
5323 o->map_head.link_order = (struct bfd_link_order *) NULL;
5324
5325 mdebug_sec = o;
5326 }
5327 }
5328
5329 /* Invoke the regular ELF backend linker to do all the work. */
5330 if (! bfd_elf_final_link (abfd, info))
5331 return FALSE;
5332
5333 /* Now write out the computed sections. */
5334
5335 /* The .got subsections... */
5336 {
5337 bfd *i, *dynobj = elf_hash_table(info)->dynobj;
5338 for (i = htab->got_list;
5339 i != NULL;
5340 i = alpha_elf_tdata(i)->got_link_next)
5341 {
5342 asection *sgot;
5343
5344 /* elf_bfd_final_link already did everything in dynobj. */
5345 if (i == dynobj)
5346 continue;
5347
5348 sgot = alpha_elf_tdata(i)->got;
5349 if (! bfd_set_section_contents (abfd, sgot->output_section,
5350 sgot->contents,
5351 (file_ptr) sgot->output_offset,
5352 sgot->size))
5353 return FALSE;
5354 }
5355 }
5356
5357 if (mdebug_sec != (asection *) NULL)
5358 {
5359 BFD_ASSERT (abfd->output_has_begun);
5360 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5361 swap, info,
5362 mdebug_sec->filepos))
5363 return FALSE;
5364
5365 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5366 }
5367
5368 return TRUE;
5369 }
5370
5371 static enum elf_reloc_type_class
elf64_alpha_reloc_type_class(const struct bfd_link_info * info ATTRIBUTE_UNUSED,const asection * rel_sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * rela)5372 elf64_alpha_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5373 const asection *rel_sec ATTRIBUTE_UNUSED,
5374 const Elf_Internal_Rela *rela)
5375 {
5376 switch ((int) ELF64_R_TYPE (rela->r_info))
5377 {
5378 case R_ALPHA_RELATIVE:
5379 return reloc_class_relative;
5380 case R_ALPHA_JMP_SLOT:
5381 return reloc_class_plt;
5382 case R_ALPHA_COPY:
5383 return reloc_class_copy;
5384 default:
5385 return reloc_class_normal;
5386 }
5387 }
5388
5389 static const struct bfd_elf_special_section elf64_alpha_special_sections[] =
5390 {
5391 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5392 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5393 { NULL, 0, 0, 0, 0 }
5394 };
5395
5396 /* ECOFF swapping routines. These are used when dealing with the
5397 .mdebug section, which is in the ECOFF debugging format. Copied
5398 from elf32-mips.c. */
5399 static const struct ecoff_debug_swap
5400 elf64_alpha_ecoff_debug_swap =
5401 {
5402 /* Symbol table magic number. */
5403 magicSym2,
5404 /* Alignment of debugging information. E.g., 4. */
5405 8,
5406 /* Sizes of external symbolic information. */
5407 sizeof (struct hdr_ext),
5408 sizeof (struct dnr_ext),
5409 sizeof (struct pdr_ext),
5410 sizeof (struct sym_ext),
5411 sizeof (struct opt_ext),
5412 sizeof (struct fdr_ext),
5413 sizeof (struct rfd_ext),
5414 sizeof (struct ext_ext),
5415 /* Functions to swap in external symbolic data. */
5416 ecoff_swap_hdr_in,
5417 ecoff_swap_dnr_in,
5418 ecoff_swap_pdr_in,
5419 ecoff_swap_sym_in,
5420 ecoff_swap_opt_in,
5421 ecoff_swap_fdr_in,
5422 ecoff_swap_rfd_in,
5423 ecoff_swap_ext_in,
5424 _bfd_ecoff_swap_tir_in,
5425 _bfd_ecoff_swap_rndx_in,
5426 /* Functions to swap out external symbolic data. */
5427 ecoff_swap_hdr_out,
5428 ecoff_swap_dnr_out,
5429 ecoff_swap_pdr_out,
5430 ecoff_swap_sym_out,
5431 ecoff_swap_opt_out,
5432 ecoff_swap_fdr_out,
5433 ecoff_swap_rfd_out,
5434 ecoff_swap_ext_out,
5435 _bfd_ecoff_swap_tir_out,
5436 _bfd_ecoff_swap_rndx_out,
5437 /* Function to read in symbolic data. */
5438 elf64_alpha_read_ecoff_info
5439 };
5440
5441 /* Use a non-standard hash bucket size of 8. */
5442
5443 static const struct elf_size_info alpha_elf_size_info =
5444 {
5445 sizeof (Elf64_External_Ehdr),
5446 sizeof (Elf64_External_Phdr),
5447 sizeof (Elf64_External_Shdr),
5448 sizeof (Elf64_External_Rel),
5449 sizeof (Elf64_External_Rela),
5450 sizeof (Elf64_External_Sym),
5451 sizeof (Elf64_External_Dyn),
5452 sizeof (Elf_External_Note),
5453 8,
5454 1,
5455 64, 3,
5456 ELFCLASS64, EV_CURRENT,
5457 bfd_elf64_write_out_phdrs,
5458 bfd_elf64_write_shdrs_and_ehdr,
5459 bfd_elf64_checksum_contents,
5460 bfd_elf64_write_relocs,
5461 bfd_elf64_swap_symbol_in,
5462 bfd_elf64_swap_symbol_out,
5463 bfd_elf64_slurp_reloc_table,
5464 bfd_elf64_slurp_symbol_table,
5465 bfd_elf64_swap_dyn_in,
5466 bfd_elf64_swap_dyn_out,
5467 bfd_elf64_swap_reloc_in,
5468 bfd_elf64_swap_reloc_out,
5469 bfd_elf64_swap_reloca_in,
5470 bfd_elf64_swap_reloca_out
5471 };
5472
5473 #define TARGET_LITTLE_SYM alpha_elf64_vec
5474 #define TARGET_LITTLE_NAME "elf64-alpha"
5475 #define ELF_ARCH bfd_arch_alpha
5476 #define ELF_TARGET_ID ALPHA_ELF_DATA
5477 #define ELF_MACHINE_CODE EM_ALPHA
5478 #define ELF_MAXPAGESIZE 0x10000
5479 #define ELF_COMMONPAGESIZE 0x2000
5480
5481 #define bfd_elf64_bfd_link_hash_table_create \
5482 elf64_alpha_bfd_link_hash_table_create
5483
5484 #define bfd_elf64_bfd_reloc_type_lookup \
5485 elf64_alpha_bfd_reloc_type_lookup
5486 #define bfd_elf64_bfd_reloc_name_lookup \
5487 elf64_alpha_bfd_reloc_name_lookup
5488 #define elf_info_to_howto \
5489 elf64_alpha_info_to_howto
5490
5491 #define bfd_elf64_mkobject \
5492 elf64_alpha_mkobject
5493 #define elf_backend_object_p \
5494 elf64_alpha_object_p
5495
5496 #define elf_backend_section_from_shdr \
5497 elf64_alpha_section_from_shdr
5498 #define elf_backend_section_flags \
5499 elf64_alpha_section_flags
5500 #define elf_backend_fake_sections \
5501 elf64_alpha_fake_sections
5502
5503 #define bfd_elf64_bfd_is_local_label_name \
5504 elf64_alpha_is_local_label_name
5505 #define bfd_elf64_find_nearest_line \
5506 elf64_alpha_find_nearest_line
5507 #define bfd_elf64_bfd_relax_section \
5508 elf64_alpha_relax_section
5509
5510 #define elf_backend_add_symbol_hook \
5511 elf64_alpha_add_symbol_hook
5512 #define elf_backend_relocs_compatible \
5513 _bfd_elf_relocs_compatible
5514 #define elf_backend_check_relocs \
5515 elf64_alpha_check_relocs
5516 #define elf_backend_create_dynamic_sections \
5517 elf64_alpha_create_dynamic_sections
5518 #define elf_backend_adjust_dynamic_symbol \
5519 elf64_alpha_adjust_dynamic_symbol
5520 #define elf_backend_merge_symbol_attribute \
5521 elf64_alpha_merge_symbol_attribute
5522 #define elf_backend_copy_indirect_symbol \
5523 elf64_alpha_copy_indirect_symbol
5524 #define elf_backend_always_size_sections \
5525 elf64_alpha_always_size_sections
5526 #define elf_backend_size_dynamic_sections \
5527 elf64_alpha_size_dynamic_sections
5528 #define elf_backend_omit_section_dynsym \
5529 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5530 #define elf_backend_relocate_section \
5531 elf64_alpha_relocate_section
5532 #define elf_backend_finish_dynamic_symbol \
5533 elf64_alpha_finish_dynamic_symbol
5534 #define elf_backend_finish_dynamic_sections \
5535 elf64_alpha_finish_dynamic_sections
5536 #define bfd_elf64_bfd_final_link \
5537 elf64_alpha_final_link
5538 #define elf_backend_reloc_type_class \
5539 elf64_alpha_reloc_type_class
5540
5541 #define elf_backend_can_gc_sections 1
5542 #define elf_backend_gc_mark_hook elf64_alpha_gc_mark_hook
5543 #define elf_backend_gc_sweep_hook elf64_alpha_gc_sweep_hook
5544
5545 #define elf_backend_ecoff_debug_swap \
5546 &elf64_alpha_ecoff_debug_swap
5547
5548 #define elf_backend_size_info \
5549 alpha_elf_size_info
5550
5551 #define elf_backend_special_sections \
5552 elf64_alpha_special_sections
5553
5554 /* A few constants that determine how the .plt section is set up. */
5555 #define elf_backend_want_got_plt 0
5556 #define elf_backend_plt_readonly 0
5557 #define elf_backend_want_plt_sym 1
5558 #define elf_backend_got_header_size 0
5559
5560 #include "elf64-target.h"
5561
5562 /* FreeBSD support. */
5563
5564 #undef TARGET_LITTLE_SYM
5565 #define TARGET_LITTLE_SYM alpha_elf64_fbsd_vec
5566 #undef TARGET_LITTLE_NAME
5567 #define TARGET_LITTLE_NAME "elf64-alpha-freebsd"
5568 #undef ELF_OSABI
5569 #define ELF_OSABI ELFOSABI_FREEBSD
5570
5571 /* The kernel recognizes executables as valid only if they carry a
5572 "FreeBSD" label in the ELF header. So we put this label on all
5573 executables and (for simplicity) also all other object files. */
5574
5575 static void
elf64_alpha_fbsd_post_process_headers(bfd * abfd,struct bfd_link_info * link_info ATTRIBUTE_UNUSED)5576 elf64_alpha_fbsd_post_process_headers (bfd * abfd,
5577 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
5578 {
5579 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
5580
5581 i_ehdrp = elf_elfheader (abfd);
5582
5583 /* Put an ABI label supported by FreeBSD >= 4.1. */
5584 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5585 #ifdef OLD_FREEBSD_ABI_LABEL
5586 /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */
5587 memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
5588 #endif
5589 }
5590
5591 #undef elf_backend_post_process_headers
5592 #define elf_backend_post_process_headers \
5593 elf64_alpha_fbsd_post_process_headers
5594
5595 #undef elf64_bed
5596 #define elf64_bed elf64_alpha_fbsd_bed
5597
5598 #include "elf64-target.h"
5599