1 /* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "alloca-conf.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29
30
31 #define ARCH_SIZE 64
32
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
36
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38
39 /* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
41 address.
42
43 LDD PLTOFF(%r27),%r1
44 BVE (%r1)
45 LDD PLTOFF+8(%r27),%r27
46
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
51
52 struct elf64_hppa_link_hash_entry
53 {
54 struct elf_link_hash_entry eh;
55
56 /* Offsets for this symbol in various linker sections. */
57 bfd_vma dlt_offset;
58 bfd_vma plt_offset;
59 bfd_vma opd_offset;
60 bfd_vma stub_offset;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* Number of relocs copied in this section. */
91 bfd_size_type count;
92
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
95 int sec_symndx;
96
97 /* The offset within the input section of the relocation. */
98 bfd_vma offset;
99
100 /* The addend for the relocation. */
101 bfd_vma addend;
102
103 } *reloc_entries;
104
105 /* Nonzero if this symbol needs an entry in one of the linker
106 sections. */
107 unsigned want_dlt;
108 unsigned want_plt;
109 unsigned want_opd;
110 unsigned want_stub;
111 };
112
113 struct elf64_hppa_link_hash_table
114 {
115 struct elf_link_hash_table root;
116
117 /* Shortcuts to get to the various linker defined sections. */
118 asection *dlt_sec;
119 asection *dlt_rel_sec;
120 asection *plt_sec;
121 asection *plt_rel_sec;
122 asection *opd_sec;
123 asection *opd_rel_sec;
124 asection *other_rel_sec;
125
126 /* Offset of __gp within .plt section. When the PLT gets large we want
127 to slide __gp into the PLT section so that we can continue to use
128 single DP relative instructions to load values out of the PLT. */
129 bfd_vma gp_offset;
130
131 /* Note this is not strictly correct. We should create a stub section for
132 each input section with calls. The stub section should be placed before
133 the section with the call. */
134 asection *stub_sec;
135
136 bfd_vma text_segment_base;
137 bfd_vma data_segment_base;
138
139 /* We build tables to map from an input section back to its
140 symbol index. This is the BFD for which we currently have
141 a map. */
142 bfd *section_syms_bfd;
143
144 /* Array of symbol numbers for each input section attached to the
145 current BFD. */
146 int *section_syms;
147 };
148
149 #define hppa_link_hash_table(p) \
150 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
152
153 #define hppa_elf_hash_entry(ent) \
154 ((struct elf64_hppa_link_hash_entry *)(ent))
155
156 #define eh_name(eh) \
157 (eh ? eh->root.root.string : "<undef>")
158
159 typedef struct bfd_hash_entry *(*new_hash_entry_func)
160 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161
162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163 (bfd *abfd);
164
165 /* This must follow the definitions of the various derived linker
166 hash tables and shared functions. */
167 #include "elf-hppa.h"
168
169 static bfd_boolean elf64_hppa_object_p
170 (bfd *);
171
172 static void elf64_hppa_post_process_headers
173 (bfd *, struct bfd_link_info *);
174
175 static bfd_boolean elf64_hppa_create_dynamic_sections
176 (bfd *, struct bfd_link_info *);
177
178 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179 (struct bfd_link_info *, struct elf_link_hash_entry *);
180
181 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182 (struct elf_link_hash_entry *, void *);
183
184 static bfd_boolean elf64_hppa_size_dynamic_sections
185 (bfd *, struct bfd_link_info *);
186
187 static int elf64_hppa_link_output_symbol_hook
188 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189 asection *, struct elf_link_hash_entry *);
190
191 static bfd_boolean elf64_hppa_finish_dynamic_symbol
192 (bfd *, struct bfd_link_info *,
193 struct elf_link_hash_entry *, Elf_Internal_Sym *);
194
195 static bfd_boolean elf64_hppa_finish_dynamic_sections
196 (bfd *, struct bfd_link_info *);
197
198 static bfd_boolean elf64_hppa_check_relocs
199 (bfd *, struct bfd_link_info *,
200 asection *, const Elf_Internal_Rela *);
201
202 static bfd_boolean elf64_hppa_dynamic_symbol_p
203 (struct elf_link_hash_entry *, struct bfd_link_info *);
204
205 static bfd_boolean elf64_hppa_mark_exported_functions
206 (struct elf_link_hash_entry *, void *);
207
208 static bfd_boolean elf64_hppa_finalize_opd
209 (struct elf_link_hash_entry *, void *);
210
211 static bfd_boolean elf64_hppa_finalize_dlt
212 (struct elf_link_hash_entry *, void *);
213
214 static bfd_boolean allocate_global_data_dlt
215 (struct elf_link_hash_entry *, void *);
216
217 static bfd_boolean allocate_global_data_plt
218 (struct elf_link_hash_entry *, void *);
219
220 static bfd_boolean allocate_global_data_stub
221 (struct elf_link_hash_entry *, void *);
222
223 static bfd_boolean allocate_global_data_opd
224 (struct elf_link_hash_entry *, void *);
225
226 static bfd_boolean get_reloc_section
227 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
228
229 static bfd_boolean count_dyn_reloc
230 (bfd *, struct elf64_hppa_link_hash_entry *,
231 int, asection *, int, bfd_vma, bfd_vma);
232
233 static bfd_boolean allocate_dynrel_entries
234 (struct elf_link_hash_entry *, void *);
235
236 static bfd_boolean elf64_hppa_finalize_dynreloc
237 (struct elf_link_hash_entry *, void *);
238
239 static bfd_boolean get_opd
240 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
241
242 static bfd_boolean get_plt
243 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244
245 static bfd_boolean get_dlt
246 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247
248 static bfd_boolean get_stub
249 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
250
251 static int elf64_hppa_elf_get_symbol_type
252 (Elf_Internal_Sym *, int);
253
254 /* Initialize an entry in the link hash table. */
255
256 static struct bfd_hash_entry *
hppa64_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)257 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
258 struct bfd_hash_table *table,
259 const char *string)
260 {
261 /* Allocate the structure if it has not already been allocated by a
262 subclass. */
263 if (entry == NULL)
264 {
265 entry = bfd_hash_allocate (table,
266 sizeof (struct elf64_hppa_link_hash_entry));
267 if (entry == NULL)
268 return entry;
269 }
270
271 /* Call the allocation method of the superclass. */
272 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
273 if (entry != NULL)
274 {
275 struct elf64_hppa_link_hash_entry *hh;
276
277 /* Initialize our local data. All zeros. */
278 hh = hppa_elf_hash_entry (entry);
279 memset (&hh->dlt_offset, 0,
280 (sizeof (struct elf64_hppa_link_hash_entry)
281 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
282 }
283
284 return entry;
285 }
286
287 /* Create the derived linker hash table. The PA64 ELF port uses this
288 derived hash table to keep information specific to the PA ElF
289 linker (without using static variables). */
290
291 static struct bfd_link_hash_table*
elf64_hppa_hash_table_create(bfd * abfd)292 elf64_hppa_hash_table_create (bfd *abfd)
293 {
294 struct elf64_hppa_link_hash_table *htab;
295 bfd_size_type amt = sizeof (*htab);
296
297 htab = bfd_zmalloc (amt);
298 if (htab == NULL)
299 return NULL;
300
301 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
302 hppa64_link_hash_newfunc,
303 sizeof (struct elf64_hppa_link_hash_entry),
304 HPPA64_ELF_DATA))
305 {
306 free (htab);
307 return NULL;
308 }
309
310 htab->text_segment_base = (bfd_vma) -1;
311 htab->data_segment_base = (bfd_vma) -1;
312
313 return &htab->root.root;
314 }
315
316 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
317
318 Additionally we set the default architecture and machine. */
319 static bfd_boolean
elf64_hppa_object_p(bfd * abfd)320 elf64_hppa_object_p (bfd *abfd)
321 {
322 Elf_Internal_Ehdr * i_ehdrp;
323 unsigned int flags;
324
325 i_ehdrp = elf_elfheader (abfd);
326 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
327 {
328 /* GCC on hppa-linux produces binaries with OSABI=GNU,
329 but the kernel produces corefiles with OSABI=SysV. */
330 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
331 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
332 return FALSE;
333 }
334 else
335 {
336 /* HPUX produces binaries with OSABI=HPUX,
337 but the kernel produces corefiles with OSABI=SysV. */
338 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
339 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
340 return FALSE;
341 }
342
343 flags = i_ehdrp->e_flags;
344 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
345 {
346 case EFA_PARISC_1_0:
347 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
348 case EFA_PARISC_1_1:
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
350 case EFA_PARISC_2_0:
351 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
352 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
353 else
354 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
355 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
356 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
357 }
358 /* Don't be fussy. */
359 return TRUE;
360 }
361
362 /* Given section type (hdr->sh_type), return a boolean indicating
363 whether or not the section is an elf64-hppa specific section. */
364 static bfd_boolean
elf64_hppa_section_from_shdr(bfd * abfd,Elf_Internal_Shdr * hdr,const char * name,int shindex)365 elf64_hppa_section_from_shdr (bfd *abfd,
366 Elf_Internal_Shdr *hdr,
367 const char *name,
368 int shindex)
369 {
370 switch (hdr->sh_type)
371 {
372 case SHT_PARISC_EXT:
373 if (strcmp (name, ".PARISC.archext") != 0)
374 return FALSE;
375 break;
376 case SHT_PARISC_UNWIND:
377 if (strcmp (name, ".PARISC.unwind") != 0)
378 return FALSE;
379 break;
380 case SHT_PARISC_DOC:
381 case SHT_PARISC_ANNOT:
382 default:
383 return FALSE;
384 }
385
386 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
387 return FALSE;
388
389 return TRUE;
390 }
391
392 /* SEC is a section containing relocs for an input BFD when linking; return
393 a suitable section for holding relocs in the output BFD for a link. */
394
395 static bfd_boolean
get_reloc_section(bfd * abfd,struct elf64_hppa_link_hash_table * hppa_info,asection * sec)396 get_reloc_section (bfd *abfd,
397 struct elf64_hppa_link_hash_table *hppa_info,
398 asection *sec)
399 {
400 const char *srel_name;
401 asection *srel;
402 bfd *dynobj;
403
404 srel_name = (bfd_elf_string_from_elf_section
405 (abfd, elf_elfheader(abfd)->e_shstrndx,
406 _bfd_elf_single_rel_hdr(sec)->sh_name));
407 if (srel_name == NULL)
408 return FALSE;
409
410 dynobj = hppa_info->root.dynobj;
411 if (!dynobj)
412 hppa_info->root.dynobj = dynobj = abfd;
413
414 srel = bfd_get_linker_section (dynobj, srel_name);
415 if (srel == NULL)
416 {
417 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
418 (SEC_ALLOC
419 | SEC_LOAD
420 | SEC_HAS_CONTENTS
421 | SEC_IN_MEMORY
422 | SEC_LINKER_CREATED
423 | SEC_READONLY));
424 if (srel == NULL
425 || !bfd_set_section_alignment (dynobj, srel, 3))
426 return FALSE;
427 }
428
429 hppa_info->other_rel_sec = srel;
430 return TRUE;
431 }
432
433 /* Add a new entry to the list of dynamic relocations against DYN_H.
434
435 We use this to keep a record of all the FPTR relocations against a
436 particular symbol so that we can create FPTR relocations in the
437 output file. */
438
439 static bfd_boolean
count_dyn_reloc(bfd * abfd,struct elf64_hppa_link_hash_entry * hh,int type,asection * sec,int sec_symndx,bfd_vma offset,bfd_vma addend)440 count_dyn_reloc (bfd *abfd,
441 struct elf64_hppa_link_hash_entry *hh,
442 int type,
443 asection *sec,
444 int sec_symndx,
445 bfd_vma offset,
446 bfd_vma addend)
447 {
448 struct elf64_hppa_dyn_reloc_entry *rent;
449
450 rent = (struct elf64_hppa_dyn_reloc_entry *)
451 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
452 if (!rent)
453 return FALSE;
454
455 rent->next = hh->reloc_entries;
456 rent->type = type;
457 rent->sec = sec;
458 rent->sec_symndx = sec_symndx;
459 rent->offset = offset;
460 rent->addend = addend;
461 hh->reloc_entries = rent;
462
463 return TRUE;
464 }
465
466 /* Return a pointer to the local DLT, PLT and OPD reference counts
467 for ABFD. Returns NULL if the storage allocation fails. */
468
469 static bfd_signed_vma *
hppa64_elf_local_refcounts(bfd * abfd)470 hppa64_elf_local_refcounts (bfd *abfd)
471 {
472 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
473 bfd_signed_vma *local_refcounts;
474
475 local_refcounts = elf_local_got_refcounts (abfd);
476 if (local_refcounts == NULL)
477 {
478 bfd_size_type size;
479
480 /* Allocate space for local DLT, PLT and OPD reference
481 counts. Done this way to save polluting elf_obj_tdata
482 with another target specific pointer. */
483 size = symtab_hdr->sh_info;
484 size *= 3 * sizeof (bfd_signed_vma);
485 local_refcounts = bfd_zalloc (abfd, size);
486 elf_local_got_refcounts (abfd) = local_refcounts;
487 }
488 return local_refcounts;
489 }
490
491 /* Scan the RELOCS and record the type of dynamic entries that each
492 referenced symbol needs. */
493
494 static bfd_boolean
elf64_hppa_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)495 elf64_hppa_check_relocs (bfd *abfd,
496 struct bfd_link_info *info,
497 asection *sec,
498 const Elf_Internal_Rela *relocs)
499 {
500 struct elf64_hppa_link_hash_table *hppa_info;
501 const Elf_Internal_Rela *relend;
502 Elf_Internal_Shdr *symtab_hdr;
503 const Elf_Internal_Rela *rel;
504 unsigned int sec_symndx;
505
506 if (info->relocatable)
507 return TRUE;
508
509 /* If this is the first dynamic object found in the link, create
510 the special sections required for dynamic linking. */
511 if (! elf_hash_table (info)->dynamic_sections_created)
512 {
513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
514 return FALSE;
515 }
516
517 hppa_info = hppa_link_hash_table (info);
518 if (hppa_info == NULL)
519 return FALSE;
520 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
521
522 /* If necessary, build a new table holding section symbols indices
523 for this BFD. */
524
525 if (info->shared && hppa_info->section_syms_bfd != abfd)
526 {
527 unsigned long i;
528 unsigned int highest_shndx;
529 Elf_Internal_Sym *local_syms = NULL;
530 Elf_Internal_Sym *isym, *isymend;
531 bfd_size_type amt;
532
533 /* We're done with the old cache of section index to section symbol
534 index information. Free it.
535
536 ?!? Note we leak the last section_syms array. Presumably we
537 could free it in one of the later routines in this file. */
538 if (hppa_info->section_syms)
539 free (hppa_info->section_syms);
540
541 /* Read this BFD's local symbols. */
542 if (symtab_hdr->sh_info != 0)
543 {
544 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
545 if (local_syms == NULL)
546 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
547 symtab_hdr->sh_info, 0,
548 NULL, NULL, NULL);
549 if (local_syms == NULL)
550 return FALSE;
551 }
552
553 /* Record the highest section index referenced by the local symbols. */
554 highest_shndx = 0;
555 isymend = local_syms + symtab_hdr->sh_info;
556 for (isym = local_syms; isym < isymend; isym++)
557 {
558 if (isym->st_shndx > highest_shndx
559 && isym->st_shndx < SHN_LORESERVE)
560 highest_shndx = isym->st_shndx;
561 }
562
563 /* Allocate an array to hold the section index to section symbol index
564 mapping. Bump by one since we start counting at zero. */
565 highest_shndx++;
566 amt = highest_shndx;
567 amt *= sizeof (int);
568 hppa_info->section_syms = (int *) bfd_malloc (amt);
569
570 /* Now walk the local symbols again. If we find a section symbol,
571 record the index of the symbol into the section_syms array. */
572 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
573 {
574 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
575 hppa_info->section_syms[isym->st_shndx] = i;
576 }
577
578 /* We are finished with the local symbols. */
579 if (local_syms != NULL
580 && symtab_hdr->contents != (unsigned char *) local_syms)
581 {
582 if (! info->keep_memory)
583 free (local_syms);
584 else
585 {
586 /* Cache the symbols for elf_link_input_bfd. */
587 symtab_hdr->contents = (unsigned char *) local_syms;
588 }
589 }
590
591 /* Record which BFD we built the section_syms mapping for. */
592 hppa_info->section_syms_bfd = abfd;
593 }
594
595 /* Record the symbol index for this input section. We may need it for
596 relocations when building shared libraries. When not building shared
597 libraries this value is never really used, but assign it to zero to
598 prevent out of bounds memory accesses in other routines. */
599 if (info->shared)
600 {
601 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
602
603 /* If we did not find a section symbol for this section, then
604 something went terribly wrong above. */
605 if (sec_symndx == SHN_BAD)
606 return FALSE;
607
608 if (sec_symndx < SHN_LORESERVE)
609 sec_symndx = hppa_info->section_syms[sec_symndx];
610 else
611 sec_symndx = 0;
612 }
613 else
614 sec_symndx = 0;
615
616 relend = relocs + sec->reloc_count;
617 for (rel = relocs; rel < relend; ++rel)
618 {
619 enum
620 {
621 NEED_DLT = 1,
622 NEED_PLT = 2,
623 NEED_STUB = 4,
624 NEED_OPD = 8,
625 NEED_DYNREL = 16,
626 };
627
628 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
629 struct elf64_hppa_link_hash_entry *hh;
630 int need_entry;
631 bfd_boolean maybe_dynamic;
632 int dynrel_type = R_PARISC_NONE;
633 static reloc_howto_type *howto;
634
635 if (r_symndx >= symtab_hdr->sh_info)
636 {
637 /* We're dealing with a global symbol -- find its hash entry
638 and mark it as being referenced. */
639 long indx = r_symndx - symtab_hdr->sh_info;
640 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
641 while (hh->eh.root.type == bfd_link_hash_indirect
642 || hh->eh.root.type == bfd_link_hash_warning)
643 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
644
645 /* PR15323, ref flags aren't set for references in the same
646 object. */
647 hh->eh.root.non_ir_ref = 1;
648 hh->eh.ref_regular = 1;
649 }
650 else
651 hh = NULL;
652
653 /* We can only get preliminary data on whether a symbol is
654 locally or externally defined, as not all of the input files
655 have yet been processed. Do something with what we know, as
656 this may help reduce memory usage and processing time later. */
657 maybe_dynamic = FALSE;
658 if (hh && ((info->shared
659 && (!info->symbolic
660 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
661 || !hh->eh.def_regular
662 || hh->eh.root.type == bfd_link_hash_defweak))
663 maybe_dynamic = TRUE;
664
665 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
666 need_entry = 0;
667 switch (howto->type)
668 {
669 /* These are simple indirect references to symbols through the
670 DLT. We need to create a DLT entry for any symbols which
671 appears in a DLTIND relocation. */
672 case R_PARISC_DLTIND21L:
673 case R_PARISC_DLTIND14R:
674 case R_PARISC_DLTIND14F:
675 case R_PARISC_DLTIND14WR:
676 case R_PARISC_DLTIND14DR:
677 need_entry = NEED_DLT;
678 break;
679
680 /* ?!? These need a DLT entry. But I have no idea what to do with
681 the "link time TP value. */
682 case R_PARISC_LTOFF_TP21L:
683 case R_PARISC_LTOFF_TP14R:
684 case R_PARISC_LTOFF_TP14F:
685 case R_PARISC_LTOFF_TP64:
686 case R_PARISC_LTOFF_TP14WR:
687 case R_PARISC_LTOFF_TP14DR:
688 case R_PARISC_LTOFF_TP16F:
689 case R_PARISC_LTOFF_TP16WF:
690 case R_PARISC_LTOFF_TP16DF:
691 need_entry = NEED_DLT;
692 break;
693
694 /* These are function calls. Depending on their precise target we
695 may need to make a stub for them. The stub uses the PLT, so we
696 need to create PLT entries for these symbols too. */
697 case R_PARISC_PCREL12F:
698 case R_PARISC_PCREL17F:
699 case R_PARISC_PCREL22F:
700 case R_PARISC_PCREL32:
701 case R_PARISC_PCREL64:
702 case R_PARISC_PCREL21L:
703 case R_PARISC_PCREL17R:
704 case R_PARISC_PCREL17C:
705 case R_PARISC_PCREL14R:
706 case R_PARISC_PCREL14F:
707 case R_PARISC_PCREL22C:
708 case R_PARISC_PCREL14WR:
709 case R_PARISC_PCREL14DR:
710 case R_PARISC_PCREL16F:
711 case R_PARISC_PCREL16WF:
712 case R_PARISC_PCREL16DF:
713 /* Function calls might need to go through the .plt, and
714 might need a long branch stub. */
715 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
716 need_entry = (NEED_PLT | NEED_STUB);
717 else
718 need_entry = 0;
719 break;
720
721 case R_PARISC_PLTOFF21L:
722 case R_PARISC_PLTOFF14R:
723 case R_PARISC_PLTOFF14F:
724 case R_PARISC_PLTOFF14WR:
725 case R_PARISC_PLTOFF14DR:
726 case R_PARISC_PLTOFF16F:
727 case R_PARISC_PLTOFF16WF:
728 case R_PARISC_PLTOFF16DF:
729 need_entry = (NEED_PLT);
730 break;
731
732 case R_PARISC_DIR64:
733 if (info->shared || maybe_dynamic)
734 need_entry = (NEED_DYNREL);
735 dynrel_type = R_PARISC_DIR64;
736 break;
737
738 /* This is an indirect reference through the DLT to get the address
739 of a OPD descriptor. Thus we need to make a DLT entry that points
740 to an OPD entry. */
741 case R_PARISC_LTOFF_FPTR21L:
742 case R_PARISC_LTOFF_FPTR14R:
743 case R_PARISC_LTOFF_FPTR14WR:
744 case R_PARISC_LTOFF_FPTR14DR:
745 case R_PARISC_LTOFF_FPTR32:
746 case R_PARISC_LTOFF_FPTR64:
747 case R_PARISC_LTOFF_FPTR16F:
748 case R_PARISC_LTOFF_FPTR16WF:
749 case R_PARISC_LTOFF_FPTR16DF:
750 if (info->shared || maybe_dynamic)
751 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
752 else
753 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
754 dynrel_type = R_PARISC_FPTR64;
755 break;
756
757 /* This is a simple OPD entry. */
758 case R_PARISC_FPTR64:
759 if (info->shared || maybe_dynamic)
760 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
761 else
762 need_entry = (NEED_OPD | NEED_PLT);
763 dynrel_type = R_PARISC_FPTR64;
764 break;
765
766 /* Add more cases as needed. */
767 }
768
769 if (!need_entry)
770 continue;
771
772 if (hh)
773 {
774 /* Stash away enough information to be able to find this symbol
775 regardless of whether or not it is local or global. */
776 hh->owner = abfd;
777 hh->sym_indx = r_symndx;
778 }
779
780 /* Create what's needed. */
781 if (need_entry & NEED_DLT)
782 {
783 /* Allocate space for a DLT entry, as well as a dynamic
784 relocation for this entry. */
785 if (! hppa_info->dlt_sec
786 && ! get_dlt (abfd, info, hppa_info))
787 goto err_out;
788
789 if (hh != NULL)
790 {
791 hh->want_dlt = 1;
792 hh->eh.got.refcount += 1;
793 }
794 else
795 {
796 bfd_signed_vma *local_dlt_refcounts;
797
798 /* This is a DLT entry for a local symbol. */
799 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
800 if (local_dlt_refcounts == NULL)
801 return FALSE;
802 local_dlt_refcounts[r_symndx] += 1;
803 }
804 }
805
806 if (need_entry & NEED_PLT)
807 {
808 if (! hppa_info->plt_sec
809 && ! get_plt (abfd, info, hppa_info))
810 goto err_out;
811
812 if (hh != NULL)
813 {
814 hh->want_plt = 1;
815 hh->eh.needs_plt = 1;
816 hh->eh.plt.refcount += 1;
817 }
818 else
819 {
820 bfd_signed_vma *local_dlt_refcounts;
821 bfd_signed_vma *local_plt_refcounts;
822
823 /* This is a PLT entry for a local symbol. */
824 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
825 if (local_dlt_refcounts == NULL)
826 return FALSE;
827 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
828 local_plt_refcounts[r_symndx] += 1;
829 }
830 }
831
832 if (need_entry & NEED_STUB)
833 {
834 if (! hppa_info->stub_sec
835 && ! get_stub (abfd, info, hppa_info))
836 goto err_out;
837 if (hh)
838 hh->want_stub = 1;
839 }
840
841 if (need_entry & NEED_OPD)
842 {
843 if (! hppa_info->opd_sec
844 && ! get_opd (abfd, info, hppa_info))
845 goto err_out;
846
847 /* FPTRs are not allocated by the dynamic linker for PA64,
848 though it is possible that will change in the future. */
849
850 if (hh != NULL)
851 hh->want_opd = 1;
852 else
853 {
854 bfd_signed_vma *local_dlt_refcounts;
855 bfd_signed_vma *local_opd_refcounts;
856
857 /* This is a OPD for a local symbol. */
858 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
859 if (local_dlt_refcounts == NULL)
860 return FALSE;
861 local_opd_refcounts = (local_dlt_refcounts
862 + 2 * symtab_hdr->sh_info);
863 local_opd_refcounts[r_symndx] += 1;
864 }
865 }
866
867 /* Add a new dynamic relocation to the chain of dynamic
868 relocations for this symbol. */
869 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
870 {
871 if (! hppa_info->other_rel_sec
872 && ! get_reloc_section (abfd, hppa_info, sec))
873 goto err_out;
874
875 /* Count dynamic relocations against global symbols. */
876 if (hh != NULL
877 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
878 sec_symndx, rel->r_offset, rel->r_addend))
879 goto err_out;
880
881 /* If we are building a shared library and we just recorded
882 a dynamic R_PARISC_FPTR64 relocation, then make sure the
883 section symbol for this section ends up in the dynamic
884 symbol table. */
885 if (info->shared && dynrel_type == R_PARISC_FPTR64
886 && ! (bfd_elf_link_record_local_dynamic_symbol
887 (info, abfd, sec_symndx)))
888 return FALSE;
889 }
890 }
891
892 return TRUE;
893
894 err_out:
895 return FALSE;
896 }
897
898 struct elf64_hppa_allocate_data
899 {
900 struct bfd_link_info *info;
901 bfd_size_type ofs;
902 };
903
904 /* Should we do dynamic things to this symbol? */
905
906 static bfd_boolean
elf64_hppa_dynamic_symbol_p(struct elf_link_hash_entry * eh,struct bfd_link_info * info)907 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
908 struct bfd_link_info *info)
909 {
910 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
911 and relocations that retrieve a function descriptor? Assume the
912 worst for now. */
913 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
914 {
915 /* ??? Why is this here and not elsewhere is_local_label_name. */
916 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
917 return FALSE;
918
919 return TRUE;
920 }
921 else
922 return FALSE;
923 }
924
925 /* Mark all functions exported by this file so that we can later allocate
926 entries in .opd for them. */
927
928 static bfd_boolean
elf64_hppa_mark_exported_functions(struct elf_link_hash_entry * eh,void * data)929 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
930 {
931 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
932 struct bfd_link_info *info = (struct bfd_link_info *)data;
933 struct elf64_hppa_link_hash_table *hppa_info;
934
935 hppa_info = hppa_link_hash_table (info);
936 if (hppa_info == NULL)
937 return FALSE;
938
939 if (eh
940 && (eh->root.type == bfd_link_hash_defined
941 || eh->root.type == bfd_link_hash_defweak)
942 && eh->root.u.def.section->output_section != NULL
943 && eh->type == STT_FUNC)
944 {
945 if (! hppa_info->opd_sec
946 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
947 return FALSE;
948
949 hh->want_opd = 1;
950
951 /* Put a flag here for output_symbol_hook. */
952 hh->st_shndx = -1;
953 eh->needs_plt = 1;
954 }
955
956 return TRUE;
957 }
958
959 /* Allocate space for a DLT entry. */
960
961 static bfd_boolean
allocate_global_data_dlt(struct elf_link_hash_entry * eh,void * data)962 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
963 {
964 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
965 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
966
967 if (hh->want_dlt)
968 {
969 if (x->info->shared)
970 {
971 /* Possibly add the symbol to the local dynamic symbol
972 table since we might need to create a dynamic relocation
973 against it. */
974 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
975 {
976 bfd *owner = eh->root.u.def.section->owner;
977
978 if (! (bfd_elf_link_record_local_dynamic_symbol
979 (x->info, owner, hh->sym_indx)))
980 return FALSE;
981 }
982 }
983
984 hh->dlt_offset = x->ofs;
985 x->ofs += DLT_ENTRY_SIZE;
986 }
987 return TRUE;
988 }
989
990 /* Allocate space for a DLT.PLT entry. */
991
992 static bfd_boolean
allocate_global_data_plt(struct elf_link_hash_entry * eh,void * data)993 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
994 {
995 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
996 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
997
998 if (hh->want_plt
999 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1000 && !((eh->root.type == bfd_link_hash_defined
1001 || eh->root.type == bfd_link_hash_defweak)
1002 && eh->root.u.def.section->output_section != NULL))
1003 {
1004 hh->plt_offset = x->ofs;
1005 x->ofs += PLT_ENTRY_SIZE;
1006 if (hh->plt_offset < 0x2000)
1007 {
1008 struct elf64_hppa_link_hash_table *hppa_info;
1009
1010 hppa_info = hppa_link_hash_table (x->info);
1011 if (hppa_info == NULL)
1012 return FALSE;
1013
1014 hppa_info->gp_offset = hh->plt_offset;
1015 }
1016 }
1017 else
1018 hh->want_plt = 0;
1019
1020 return TRUE;
1021 }
1022
1023 /* Allocate space for a STUB entry. */
1024
1025 static bfd_boolean
allocate_global_data_stub(struct elf_link_hash_entry * eh,void * data)1026 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1027 {
1028 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1029 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1030
1031 if (hh->want_stub
1032 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1033 && !((eh->root.type == bfd_link_hash_defined
1034 || eh->root.type == bfd_link_hash_defweak)
1035 && eh->root.u.def.section->output_section != NULL))
1036 {
1037 hh->stub_offset = x->ofs;
1038 x->ofs += sizeof (plt_stub);
1039 }
1040 else
1041 hh->want_stub = 0;
1042 return TRUE;
1043 }
1044
1045 /* Allocate space for a FPTR entry. */
1046
1047 static bfd_boolean
allocate_global_data_opd(struct elf_link_hash_entry * eh,void * data)1048 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1049 {
1050 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1051 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1052
1053 if (hh && hh->want_opd)
1054 {
1055 /* We never need an opd entry for a symbol which is not
1056 defined by this output file. */
1057 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1058 || hh->eh.root.type == bfd_link_hash_undefweak
1059 || hh->eh.root.u.def.section->output_section == NULL))
1060 hh->want_opd = 0;
1061
1062 /* If we are creating a shared library, took the address of a local
1063 function or might export this function from this object file, then
1064 we have to create an opd descriptor. */
1065 else if (x->info->shared
1066 || hh == NULL
1067 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1068 || (hh->eh.root.type == bfd_link_hash_defined
1069 || hh->eh.root.type == bfd_link_hash_defweak))
1070 {
1071 /* If we are creating a shared library, then we will have to
1072 create a runtime relocation for the symbol to properly
1073 initialize the .opd entry. Make sure the symbol gets
1074 added to the dynamic symbol table. */
1075 if (x->info->shared
1076 && (hh == NULL || (hh->eh.dynindx == -1)))
1077 {
1078 bfd *owner;
1079 /* PR 6511: Default to using the dynamic symbol table. */
1080 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1081
1082 if (!bfd_elf_link_record_local_dynamic_symbol
1083 (x->info, owner, hh->sym_indx))
1084 return FALSE;
1085 }
1086
1087 /* This may not be necessary or desirable anymore now that
1088 we have some support for dealing with section symbols
1089 in dynamic relocs. But name munging does make the result
1090 much easier to debug. ie, the EPLT reloc will reference
1091 a symbol like .foobar, instead of .text + offset. */
1092 if (x->info->shared && eh)
1093 {
1094 char *new_name;
1095 struct elf_link_hash_entry *nh;
1096
1097 new_name = alloca (strlen (eh->root.root.string) + 2);
1098 new_name[0] = '.';
1099 strcpy (new_name + 1, eh->root.root.string);
1100
1101 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1102 new_name, TRUE, TRUE, TRUE);
1103
1104 nh->root.type = eh->root.type;
1105 nh->root.u.def.value = eh->root.u.def.value;
1106 nh->root.u.def.section = eh->root.u.def.section;
1107
1108 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1109 return FALSE;
1110
1111 }
1112 hh->opd_offset = x->ofs;
1113 x->ofs += OPD_ENTRY_SIZE;
1114 }
1115
1116 /* Otherwise we do not need an opd entry. */
1117 else
1118 hh->want_opd = 0;
1119 }
1120 return TRUE;
1121 }
1122
1123 /* HP requires the EI_OSABI field to be filled in. The assignment to
1124 EI_ABIVERSION may not be strictly necessary. */
1125
1126 static void
elf64_hppa_post_process_headers(bfd * abfd,struct bfd_link_info * link_info ATTRIBUTE_UNUSED)1127 elf64_hppa_post_process_headers (bfd *abfd,
1128 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1129 {
1130 Elf_Internal_Ehdr * i_ehdrp;
1131
1132 i_ehdrp = elf_elfheader (abfd);
1133
1134 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1135 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1136 }
1137
1138 /* Create function descriptor section (.opd). This section is called .opd
1139 because it contains "official procedure descriptors". The "official"
1140 refers to the fact that these descriptors are used when taking the address
1141 of a procedure, thus ensuring a unique address for each procedure. */
1142
1143 static bfd_boolean
get_opd(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf64_hppa_link_hash_table * hppa_info)1144 get_opd (bfd *abfd,
1145 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1146 struct elf64_hppa_link_hash_table *hppa_info)
1147 {
1148 asection *opd;
1149 bfd *dynobj;
1150
1151 opd = hppa_info->opd_sec;
1152 if (!opd)
1153 {
1154 dynobj = hppa_info->root.dynobj;
1155 if (!dynobj)
1156 hppa_info->root.dynobj = dynobj = abfd;
1157
1158 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1159 (SEC_ALLOC
1160 | SEC_LOAD
1161 | SEC_HAS_CONTENTS
1162 | SEC_IN_MEMORY
1163 | SEC_LINKER_CREATED));
1164 if (!opd
1165 || !bfd_set_section_alignment (abfd, opd, 3))
1166 {
1167 BFD_ASSERT (0);
1168 return FALSE;
1169 }
1170
1171 hppa_info->opd_sec = opd;
1172 }
1173
1174 return TRUE;
1175 }
1176
1177 /* Create the PLT section. */
1178
1179 static bfd_boolean
get_plt(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf64_hppa_link_hash_table * hppa_info)1180 get_plt (bfd *abfd,
1181 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1182 struct elf64_hppa_link_hash_table *hppa_info)
1183 {
1184 asection *plt;
1185 bfd *dynobj;
1186
1187 plt = hppa_info->plt_sec;
1188 if (!plt)
1189 {
1190 dynobj = hppa_info->root.dynobj;
1191 if (!dynobj)
1192 hppa_info->root.dynobj = dynobj = abfd;
1193
1194 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1195 (SEC_ALLOC
1196 | SEC_LOAD
1197 | SEC_HAS_CONTENTS
1198 | SEC_IN_MEMORY
1199 | SEC_LINKER_CREATED));
1200 if (!plt
1201 || !bfd_set_section_alignment (abfd, plt, 3))
1202 {
1203 BFD_ASSERT (0);
1204 return FALSE;
1205 }
1206
1207 hppa_info->plt_sec = plt;
1208 }
1209
1210 return TRUE;
1211 }
1212
1213 /* Create the DLT section. */
1214
1215 static bfd_boolean
get_dlt(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf64_hppa_link_hash_table * hppa_info)1216 get_dlt (bfd *abfd,
1217 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1218 struct elf64_hppa_link_hash_table *hppa_info)
1219 {
1220 asection *dlt;
1221 bfd *dynobj;
1222
1223 dlt = hppa_info->dlt_sec;
1224 if (!dlt)
1225 {
1226 dynobj = hppa_info->root.dynobj;
1227 if (!dynobj)
1228 hppa_info->root.dynobj = dynobj = abfd;
1229
1230 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1231 (SEC_ALLOC
1232 | SEC_LOAD
1233 | SEC_HAS_CONTENTS
1234 | SEC_IN_MEMORY
1235 | SEC_LINKER_CREATED));
1236 if (!dlt
1237 || !bfd_set_section_alignment (abfd, dlt, 3))
1238 {
1239 BFD_ASSERT (0);
1240 return FALSE;
1241 }
1242
1243 hppa_info->dlt_sec = dlt;
1244 }
1245
1246 return TRUE;
1247 }
1248
1249 /* Create the stubs section. */
1250
1251 static bfd_boolean
get_stub(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf64_hppa_link_hash_table * hppa_info)1252 get_stub (bfd *abfd,
1253 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1254 struct elf64_hppa_link_hash_table *hppa_info)
1255 {
1256 asection *stub;
1257 bfd *dynobj;
1258
1259 stub = hppa_info->stub_sec;
1260 if (!stub)
1261 {
1262 dynobj = hppa_info->root.dynobj;
1263 if (!dynobj)
1264 hppa_info->root.dynobj = dynobj = abfd;
1265
1266 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1267 (SEC_ALLOC | SEC_LOAD
1268 | SEC_HAS_CONTENTS
1269 | SEC_IN_MEMORY
1270 | SEC_READONLY
1271 | SEC_LINKER_CREATED));
1272 if (!stub
1273 || !bfd_set_section_alignment (abfd, stub, 3))
1274 {
1275 BFD_ASSERT (0);
1276 return FALSE;
1277 }
1278
1279 hppa_info->stub_sec = stub;
1280 }
1281
1282 return TRUE;
1283 }
1284
1285 /* Create sections necessary for dynamic linking. This is only a rough
1286 cut and will likely change as we learn more about the somewhat
1287 unusual dynamic linking scheme HP uses.
1288
1289 .stub:
1290 Contains code to implement cross-space calls. The first time one
1291 of the stubs is used it will call into the dynamic linker, later
1292 calls will go straight to the target.
1293
1294 The only stub we support right now looks like
1295
1296 ldd OFFSET(%dp),%r1
1297 bve %r0(%r1)
1298 ldd OFFSET+8(%dp),%dp
1299
1300 Other stubs may be needed in the future. We may want the remove
1301 the break/nop instruction. It is only used right now to keep the
1302 offset of a .plt entry and a .stub entry in sync.
1303
1304 .dlt:
1305 This is what most people call the .got. HP used a different name.
1306 Losers.
1307
1308 .rela.dlt:
1309 Relocations for the DLT.
1310
1311 .plt:
1312 Function pointers as address,gp pairs.
1313
1314 .rela.plt:
1315 Should contain dynamic IPLT (and EPLT?) relocations.
1316
1317 .opd:
1318 FPTRS
1319
1320 .rela.opd:
1321 EPLT relocations for symbols exported from shared libraries. */
1322
1323 static bfd_boolean
elf64_hppa_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)1324 elf64_hppa_create_dynamic_sections (bfd *abfd,
1325 struct bfd_link_info *info)
1326 {
1327 asection *s;
1328 struct elf64_hppa_link_hash_table *hppa_info;
1329
1330 hppa_info = hppa_link_hash_table (info);
1331 if (hppa_info == NULL)
1332 return FALSE;
1333
1334 if (! get_stub (abfd, info, hppa_info))
1335 return FALSE;
1336
1337 if (! get_dlt (abfd, info, hppa_info))
1338 return FALSE;
1339
1340 if (! get_plt (abfd, info, hppa_info))
1341 return FALSE;
1342
1343 if (! get_opd (abfd, info, hppa_info))
1344 return FALSE;
1345
1346 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1347 (SEC_ALLOC | SEC_LOAD
1348 | SEC_HAS_CONTENTS
1349 | SEC_IN_MEMORY
1350 | SEC_READONLY
1351 | SEC_LINKER_CREATED));
1352 if (s == NULL
1353 || !bfd_set_section_alignment (abfd, s, 3))
1354 return FALSE;
1355 hppa_info->dlt_rel_sec = s;
1356
1357 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1358 (SEC_ALLOC | SEC_LOAD
1359 | SEC_HAS_CONTENTS
1360 | SEC_IN_MEMORY
1361 | SEC_READONLY
1362 | SEC_LINKER_CREATED));
1363 if (s == NULL
1364 || !bfd_set_section_alignment (abfd, s, 3))
1365 return FALSE;
1366 hppa_info->plt_rel_sec = s;
1367
1368 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1369 (SEC_ALLOC | SEC_LOAD
1370 | SEC_HAS_CONTENTS
1371 | SEC_IN_MEMORY
1372 | SEC_READONLY
1373 | SEC_LINKER_CREATED));
1374 if (s == NULL
1375 || !bfd_set_section_alignment (abfd, s, 3))
1376 return FALSE;
1377 hppa_info->other_rel_sec = s;
1378
1379 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1380 (SEC_ALLOC | SEC_LOAD
1381 | SEC_HAS_CONTENTS
1382 | SEC_IN_MEMORY
1383 | SEC_READONLY
1384 | SEC_LINKER_CREATED));
1385 if (s == NULL
1386 || !bfd_set_section_alignment (abfd, s, 3))
1387 return FALSE;
1388 hppa_info->opd_rel_sec = s;
1389
1390 return TRUE;
1391 }
1392
1393 /* Allocate dynamic relocations for those symbols that turned out
1394 to be dynamic. */
1395
1396 static bfd_boolean
allocate_dynrel_entries(struct elf_link_hash_entry * eh,void * data)1397 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1398 {
1399 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1400 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1401 struct elf64_hppa_link_hash_table *hppa_info;
1402 struct elf64_hppa_dyn_reloc_entry *rent;
1403 bfd_boolean dynamic_symbol, shared;
1404
1405 hppa_info = hppa_link_hash_table (x->info);
1406 if (hppa_info == NULL)
1407 return FALSE;
1408
1409 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1410 shared = x->info->shared;
1411
1412 /* We may need to allocate relocations for a non-dynamic symbol
1413 when creating a shared library. */
1414 if (!dynamic_symbol && !shared)
1415 return TRUE;
1416
1417 /* Take care of the normal data relocations. */
1418
1419 for (rent = hh->reloc_entries; rent; rent = rent->next)
1420 {
1421 /* Allocate one iff we are building a shared library, the relocation
1422 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1423 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1424 continue;
1425
1426 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1427
1428 /* Make sure this symbol gets into the dynamic symbol table if it is
1429 not already recorded. ?!? This should not be in the loop since
1430 the symbol need only be added once. */
1431 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1432 if (!bfd_elf_link_record_local_dynamic_symbol
1433 (x->info, rent->sec->owner, hh->sym_indx))
1434 return FALSE;
1435 }
1436
1437 /* Take care of the GOT and PLT relocations. */
1438
1439 if ((dynamic_symbol || shared) && hh->want_dlt)
1440 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1441
1442 /* If we are building a shared library, then every symbol that has an
1443 opd entry will need an EPLT relocation to relocate the symbol's address
1444 and __gp value based on the runtime load address. */
1445 if (shared && hh->want_opd)
1446 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1447
1448 if (hh->want_plt && dynamic_symbol)
1449 {
1450 bfd_size_type t = 0;
1451
1452 /* Dynamic symbols get one IPLT relocation. Local symbols in
1453 shared libraries get two REL relocations. Local symbols in
1454 main applications get nothing. */
1455 if (dynamic_symbol)
1456 t = sizeof (Elf64_External_Rela);
1457 else if (shared)
1458 t = 2 * sizeof (Elf64_External_Rela);
1459
1460 hppa_info->plt_rel_sec->size += t;
1461 }
1462
1463 return TRUE;
1464 }
1465
1466 /* Adjust a symbol defined by a dynamic object and referenced by a
1467 regular object. */
1468
1469 static bfd_boolean
elf64_hppa_adjust_dynamic_symbol(struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf_link_hash_entry * eh)1470 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1471 struct elf_link_hash_entry *eh)
1472 {
1473 /* ??? Undefined symbols with PLT entries should be re-defined
1474 to be the PLT entry. */
1475
1476 /* If this is a weak symbol, and there is a real definition, the
1477 processor independent code will have arranged for us to see the
1478 real definition first, and we can just use the same value. */
1479 if (eh->u.weakdef != NULL)
1480 {
1481 BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1482 || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1483 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1484 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1485 return TRUE;
1486 }
1487
1488 /* If this is a reference to a symbol defined by a dynamic object which
1489 is not a function, we might allocate the symbol in our .dynbss section
1490 and allocate a COPY dynamic relocation.
1491
1492 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1493 of hackery. */
1494
1495 return TRUE;
1496 }
1497
1498 /* This function is called via elf_link_hash_traverse to mark millicode
1499 symbols with a dynindx of -1 and to remove the string table reference
1500 from the dynamic symbol table. If the symbol is not a millicode symbol,
1501 elf64_hppa_mark_exported_functions is called. */
1502
1503 static bfd_boolean
elf64_hppa_mark_milli_and_exported_functions(struct elf_link_hash_entry * eh,void * data)1504 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1505 void *data)
1506 {
1507 struct bfd_link_info *info = (struct bfd_link_info *) data;
1508
1509 if (eh->type == STT_PARISC_MILLI)
1510 {
1511 if (eh->dynindx != -1)
1512 {
1513 eh->dynindx = -1;
1514 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1515 eh->dynstr_index);
1516 }
1517 return TRUE;
1518 }
1519
1520 return elf64_hppa_mark_exported_functions (eh, data);
1521 }
1522
1523 /* Set the final sizes of the dynamic sections and allocate memory for
1524 the contents of our special sections. */
1525
1526 static bfd_boolean
elf64_hppa_size_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)1527 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1528 {
1529 struct elf64_hppa_link_hash_table *hppa_info;
1530 struct elf64_hppa_allocate_data data;
1531 bfd *dynobj;
1532 bfd *ibfd;
1533 asection *sec;
1534 bfd_boolean plt;
1535 bfd_boolean relocs;
1536 bfd_boolean reltext;
1537
1538 hppa_info = hppa_link_hash_table (info);
1539 if (hppa_info == NULL)
1540 return FALSE;
1541
1542 dynobj = elf_hash_table (info)->dynobj;
1543 BFD_ASSERT (dynobj != NULL);
1544
1545 /* Mark each function this program exports so that we will allocate
1546 space in the .opd section for each function's FPTR. If we are
1547 creating dynamic sections, change the dynamic index of millicode
1548 symbols to -1 and remove them from the string table for .dynstr.
1549
1550 We have to traverse the main linker hash table since we have to
1551 find functions which may not have been mentioned in any relocs. */
1552 elf_link_hash_traverse (elf_hash_table (info),
1553 (elf_hash_table (info)->dynamic_sections_created
1554 ? elf64_hppa_mark_milli_and_exported_functions
1555 : elf64_hppa_mark_exported_functions),
1556 info);
1557
1558 if (elf_hash_table (info)->dynamic_sections_created)
1559 {
1560 /* Set the contents of the .interp section to the interpreter. */
1561 if (info->executable)
1562 {
1563 sec = bfd_get_linker_section (dynobj, ".interp");
1564 BFD_ASSERT (sec != NULL);
1565 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1566 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1567 }
1568 }
1569 else
1570 {
1571 /* We may have created entries in the .rela.got section.
1572 However, if we are not creating the dynamic sections, we will
1573 not actually use these entries. Reset the size of .rela.dlt,
1574 which will cause it to get stripped from the output file
1575 below. */
1576 sec = bfd_get_linker_section (dynobj, ".rela.dlt");
1577 if (sec != NULL)
1578 sec->size = 0;
1579 }
1580
1581 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1582 dynamic relocs. */
1583 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1584 {
1585 bfd_signed_vma *local_dlt;
1586 bfd_signed_vma *end_local_dlt;
1587 bfd_signed_vma *local_plt;
1588 bfd_signed_vma *end_local_plt;
1589 bfd_signed_vma *local_opd;
1590 bfd_signed_vma *end_local_opd;
1591 bfd_size_type locsymcount;
1592 Elf_Internal_Shdr *symtab_hdr;
1593 asection *srel;
1594
1595 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1596 continue;
1597
1598 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1599 {
1600 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1601
1602 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1603 elf_section_data (sec)->local_dynrel);
1604 hdh_p != NULL;
1605 hdh_p = hdh_p->next)
1606 {
1607 if (!bfd_is_abs_section (hdh_p->sec)
1608 && bfd_is_abs_section (hdh_p->sec->output_section))
1609 {
1610 /* Input section has been discarded, either because
1611 it is a copy of a linkonce section or due to
1612 linker script /DISCARD/, so we'll be discarding
1613 the relocs too. */
1614 }
1615 else if (hdh_p->count != 0)
1616 {
1617 srel = elf_section_data (hdh_p->sec)->sreloc;
1618 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1619 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1620 info->flags |= DF_TEXTREL;
1621 }
1622 }
1623 }
1624
1625 local_dlt = elf_local_got_refcounts (ibfd);
1626 if (!local_dlt)
1627 continue;
1628
1629 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1630 locsymcount = symtab_hdr->sh_info;
1631 end_local_dlt = local_dlt + locsymcount;
1632 sec = hppa_info->dlt_sec;
1633 srel = hppa_info->dlt_rel_sec;
1634 for (; local_dlt < end_local_dlt; ++local_dlt)
1635 {
1636 if (*local_dlt > 0)
1637 {
1638 *local_dlt = sec->size;
1639 sec->size += DLT_ENTRY_SIZE;
1640 if (info->shared)
1641 {
1642 srel->size += sizeof (Elf64_External_Rela);
1643 }
1644 }
1645 else
1646 *local_dlt = (bfd_vma) -1;
1647 }
1648
1649 local_plt = end_local_dlt;
1650 end_local_plt = local_plt + locsymcount;
1651 if (! hppa_info->root.dynamic_sections_created)
1652 {
1653 /* Won't be used, but be safe. */
1654 for (; local_plt < end_local_plt; ++local_plt)
1655 *local_plt = (bfd_vma) -1;
1656 }
1657 else
1658 {
1659 sec = hppa_info->plt_sec;
1660 srel = hppa_info->plt_rel_sec;
1661 for (; local_plt < end_local_plt; ++local_plt)
1662 {
1663 if (*local_plt > 0)
1664 {
1665 *local_plt = sec->size;
1666 sec->size += PLT_ENTRY_SIZE;
1667 if (info->shared)
1668 srel->size += sizeof (Elf64_External_Rela);
1669 }
1670 else
1671 *local_plt = (bfd_vma) -1;
1672 }
1673 }
1674
1675 local_opd = end_local_plt;
1676 end_local_opd = local_opd + locsymcount;
1677 if (! hppa_info->root.dynamic_sections_created)
1678 {
1679 /* Won't be used, but be safe. */
1680 for (; local_opd < end_local_opd; ++local_opd)
1681 *local_opd = (bfd_vma) -1;
1682 }
1683 else
1684 {
1685 sec = hppa_info->opd_sec;
1686 srel = hppa_info->opd_rel_sec;
1687 for (; local_opd < end_local_opd; ++local_opd)
1688 {
1689 if (*local_opd > 0)
1690 {
1691 *local_opd = sec->size;
1692 sec->size += OPD_ENTRY_SIZE;
1693 if (info->shared)
1694 srel->size += sizeof (Elf64_External_Rela);
1695 }
1696 else
1697 *local_opd = (bfd_vma) -1;
1698 }
1699 }
1700 }
1701
1702 /* Allocate the GOT entries. */
1703
1704 data.info = info;
1705 if (hppa_info->dlt_sec)
1706 {
1707 data.ofs = hppa_info->dlt_sec->size;
1708 elf_link_hash_traverse (elf_hash_table (info),
1709 allocate_global_data_dlt, &data);
1710 hppa_info->dlt_sec->size = data.ofs;
1711 }
1712
1713 if (hppa_info->plt_sec)
1714 {
1715 data.ofs = hppa_info->plt_sec->size;
1716 elf_link_hash_traverse (elf_hash_table (info),
1717 allocate_global_data_plt, &data);
1718 hppa_info->plt_sec->size = data.ofs;
1719 }
1720
1721 if (hppa_info->stub_sec)
1722 {
1723 data.ofs = 0x0;
1724 elf_link_hash_traverse (elf_hash_table (info),
1725 allocate_global_data_stub, &data);
1726 hppa_info->stub_sec->size = data.ofs;
1727 }
1728
1729 /* Allocate space for entries in the .opd section. */
1730 if (hppa_info->opd_sec)
1731 {
1732 data.ofs = hppa_info->opd_sec->size;
1733 elf_link_hash_traverse (elf_hash_table (info),
1734 allocate_global_data_opd, &data);
1735 hppa_info->opd_sec->size = data.ofs;
1736 }
1737
1738 /* Now allocate space for dynamic relocations, if necessary. */
1739 if (hppa_info->root.dynamic_sections_created)
1740 elf_link_hash_traverse (elf_hash_table (info),
1741 allocate_dynrel_entries, &data);
1742
1743 /* The sizes of all the sections are set. Allocate memory for them. */
1744 plt = FALSE;
1745 relocs = FALSE;
1746 reltext = FALSE;
1747 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1748 {
1749 const char *name;
1750
1751 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1752 continue;
1753
1754 /* It's OK to base decisions on the section name, because none
1755 of the dynobj section names depend upon the input files. */
1756 name = bfd_get_section_name (dynobj, sec);
1757
1758 if (strcmp (name, ".plt") == 0)
1759 {
1760 /* Remember whether there is a PLT. */
1761 plt = sec->size != 0;
1762 }
1763 else if (strcmp (name, ".opd") == 0
1764 || CONST_STRNEQ (name, ".dlt")
1765 || strcmp (name, ".stub") == 0
1766 || strcmp (name, ".got") == 0)
1767 {
1768 /* Strip this section if we don't need it; see the comment below. */
1769 }
1770 else if (CONST_STRNEQ (name, ".rela"))
1771 {
1772 if (sec->size != 0)
1773 {
1774 asection *target;
1775
1776 /* Remember whether there are any reloc sections other
1777 than .rela.plt. */
1778 if (strcmp (name, ".rela.plt") != 0)
1779 {
1780 const char *outname;
1781
1782 relocs = TRUE;
1783
1784 /* If this relocation section applies to a read only
1785 section, then we probably need a DT_TEXTREL
1786 entry. The entries in the .rela.plt section
1787 really apply to the .got section, which we
1788 created ourselves and so know is not readonly. */
1789 outname = bfd_get_section_name (output_bfd,
1790 sec->output_section);
1791 target = bfd_get_section_by_name (output_bfd, outname + 4);
1792 if (target != NULL
1793 && (target->flags & SEC_READONLY) != 0
1794 && (target->flags & SEC_ALLOC) != 0)
1795 reltext = TRUE;
1796 }
1797
1798 /* We use the reloc_count field as a counter if we need
1799 to copy relocs into the output file. */
1800 sec->reloc_count = 0;
1801 }
1802 }
1803 else
1804 {
1805 /* It's not one of our sections, so don't allocate space. */
1806 continue;
1807 }
1808
1809 if (sec->size == 0)
1810 {
1811 /* If we don't need this section, strip it from the
1812 output file. This is mostly to handle .rela.bss and
1813 .rela.plt. We must create both sections in
1814 create_dynamic_sections, because they must be created
1815 before the linker maps input sections to output
1816 sections. The linker does that before
1817 adjust_dynamic_symbol is called, and it is that
1818 function which decides whether anything needs to go
1819 into these sections. */
1820 sec->flags |= SEC_EXCLUDE;
1821 continue;
1822 }
1823
1824 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1825 continue;
1826
1827 /* Allocate memory for the section contents if it has not
1828 been allocated already. We use bfd_zalloc here in case
1829 unused entries are not reclaimed before the section's
1830 contents are written out. This should not happen, but this
1831 way if it does, we get a R_PARISC_NONE reloc instead of
1832 garbage. */
1833 if (sec->contents == NULL)
1834 {
1835 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1836 if (sec->contents == NULL)
1837 return FALSE;
1838 }
1839 }
1840
1841 if (elf_hash_table (info)->dynamic_sections_created)
1842 {
1843 /* Always create a DT_PLTGOT. It actually has nothing to do with
1844 the PLT, it is how we communicate the __gp value of a load
1845 module to the dynamic linker. */
1846 #define add_dynamic_entry(TAG, VAL) \
1847 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1848
1849 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1850 || !add_dynamic_entry (DT_PLTGOT, 0))
1851 return FALSE;
1852
1853 /* Add some entries to the .dynamic section. We fill in the
1854 values later, in elf64_hppa_finish_dynamic_sections, but we
1855 must add the entries now so that we get the correct size for
1856 the .dynamic section. The DT_DEBUG entry is filled in by the
1857 dynamic linker and used by the debugger. */
1858 if (! info->shared)
1859 {
1860 if (!add_dynamic_entry (DT_DEBUG, 0)
1861 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1862 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1863 return FALSE;
1864 }
1865
1866 /* Force DT_FLAGS to always be set.
1867 Required by HPUX 11.00 patch PHSS_26559. */
1868 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1869 return FALSE;
1870
1871 if (plt)
1872 {
1873 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1874 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1875 || !add_dynamic_entry (DT_JMPREL, 0))
1876 return FALSE;
1877 }
1878
1879 if (relocs)
1880 {
1881 if (!add_dynamic_entry (DT_RELA, 0)
1882 || !add_dynamic_entry (DT_RELASZ, 0)
1883 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1884 return FALSE;
1885 }
1886
1887 if (reltext)
1888 {
1889 if (!add_dynamic_entry (DT_TEXTREL, 0))
1890 return FALSE;
1891 info->flags |= DF_TEXTREL;
1892 }
1893 }
1894 #undef add_dynamic_entry
1895
1896 return TRUE;
1897 }
1898
1899 /* Called after we have output the symbol into the dynamic symbol
1900 table, but before we output the symbol into the normal symbol
1901 table.
1902
1903 For some symbols we had to change their address when outputting
1904 the dynamic symbol table. We undo that change here so that
1905 the symbols have their expected value in the normal symbol
1906 table. Ick. */
1907
1908 static int
elf64_hppa_link_output_symbol_hook(struct bfd_link_info * info ATTRIBUTE_UNUSED,const char * name,Elf_Internal_Sym * sym,asection * input_sec ATTRIBUTE_UNUSED,struct elf_link_hash_entry * eh)1909 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1910 const char *name,
1911 Elf_Internal_Sym *sym,
1912 asection *input_sec ATTRIBUTE_UNUSED,
1913 struct elf_link_hash_entry *eh)
1914 {
1915 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1916
1917 /* We may be called with the file symbol or section symbols.
1918 They never need munging, so it is safe to ignore them. */
1919 if (!name || !eh)
1920 return 1;
1921
1922 /* Function symbols for which we created .opd entries *may* have been
1923 munged by finish_dynamic_symbol and have to be un-munged here.
1924
1925 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1926 into non-dynamic ones, so we initialize st_shndx to -1 in
1927 mark_exported_functions and check to see if it was overwritten
1928 here instead of just checking eh->dynindx. */
1929 if (hh->want_opd && hh->st_shndx != -1)
1930 {
1931 /* Restore the saved value and section index. */
1932 sym->st_value = hh->st_value;
1933 sym->st_shndx = hh->st_shndx;
1934 }
1935
1936 return 1;
1937 }
1938
1939 /* Finish up dynamic symbol handling. We set the contents of various
1940 dynamic sections here. */
1941
1942 static bfd_boolean
elf64_hppa_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * eh,Elf_Internal_Sym * sym)1943 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1944 struct bfd_link_info *info,
1945 struct elf_link_hash_entry *eh,
1946 Elf_Internal_Sym *sym)
1947 {
1948 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1949 asection *stub, *splt, *sopd, *spltrel;
1950 struct elf64_hppa_link_hash_table *hppa_info;
1951
1952 hppa_info = hppa_link_hash_table (info);
1953 if (hppa_info == NULL)
1954 return FALSE;
1955
1956 stub = hppa_info->stub_sec;
1957 splt = hppa_info->plt_sec;
1958 sopd = hppa_info->opd_sec;
1959 spltrel = hppa_info->plt_rel_sec;
1960
1961 /* Incredible. It is actually necessary to NOT use the symbol's real
1962 value when building the dynamic symbol table for a shared library.
1963 At least for symbols that refer to functions.
1964
1965 We will store a new value and section index into the symbol long
1966 enough to output it into the dynamic symbol table, then we restore
1967 the original values (in elf64_hppa_link_output_symbol_hook). */
1968 if (hh->want_opd)
1969 {
1970 BFD_ASSERT (sopd != NULL);
1971
1972 /* Save away the original value and section index so that we
1973 can restore them later. */
1974 hh->st_value = sym->st_value;
1975 hh->st_shndx = sym->st_shndx;
1976
1977 /* For the dynamic symbol table entry, we want the value to be
1978 address of this symbol's entry within the .opd section. */
1979 sym->st_value = (hh->opd_offset
1980 + sopd->output_offset
1981 + sopd->output_section->vma);
1982 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1983 sopd->output_section);
1984 }
1985
1986 /* Initialize a .plt entry if requested. */
1987 if (hh->want_plt
1988 && elf64_hppa_dynamic_symbol_p (eh, info))
1989 {
1990 bfd_vma value;
1991 Elf_Internal_Rela rel;
1992 bfd_byte *loc;
1993
1994 BFD_ASSERT (splt != NULL && spltrel != NULL);
1995
1996 /* We do not actually care about the value in the PLT entry
1997 if we are creating a shared library and the symbol is
1998 still undefined, we create a dynamic relocation to fill
1999 in the correct value. */
2000 if (info->shared && eh->root.type == bfd_link_hash_undefined)
2001 value = 0;
2002 else
2003 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2004
2005 /* Fill in the entry in the procedure linkage table.
2006
2007 The format of a plt entry is
2008 <funcaddr> <__gp>.
2009
2010 plt_offset is the offset within the PLT section at which to
2011 install the PLT entry.
2012
2013 We are modifying the in-memory PLT contents here, so we do not add
2014 in the output_offset of the PLT section. */
2015
2016 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2017 value = _bfd_get_gp_value (splt->output_section->owner);
2018 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2019
2020 /* Create a dynamic IPLT relocation for this entry.
2021
2022 We are creating a relocation in the output file's PLT section,
2023 which is included within the DLT secton. So we do need to include
2024 the PLT's output_offset in the computation of the relocation's
2025 address. */
2026 rel.r_offset = (hh->plt_offset + splt->output_offset
2027 + splt->output_section->vma);
2028 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2029 rel.r_addend = 0;
2030
2031 loc = spltrel->contents;
2032 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2033 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2034 }
2035
2036 /* Initialize an external call stub entry if requested. */
2037 if (hh->want_stub
2038 && elf64_hppa_dynamic_symbol_p (eh, info))
2039 {
2040 bfd_vma value;
2041 int insn;
2042 unsigned int max_offset;
2043
2044 BFD_ASSERT (stub != NULL);
2045
2046 /* Install the generic stub template.
2047
2048 We are modifying the contents of the stub section, so we do not
2049 need to include the stub section's output_offset here. */
2050 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2051
2052 /* Fix up the first ldd instruction.
2053
2054 We are modifying the contents of the STUB section in memory,
2055 so we do not need to include its output offset in this computation.
2056
2057 Note the plt_offset value is the value of the PLT entry relative to
2058 the start of the PLT section. These instructions will reference
2059 data relative to the value of __gp, which may not necessarily have
2060 the same address as the start of the PLT section.
2061
2062 gp_offset contains the offset of __gp within the PLT section. */
2063 value = hh->plt_offset - hppa_info->gp_offset;
2064
2065 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2066 if (output_bfd->arch_info->mach >= 25)
2067 {
2068 /* Wide mode allows 16 bit offsets. */
2069 max_offset = 32768;
2070 insn &= ~ 0xfff1;
2071 insn |= re_assemble_16 ((int) value);
2072 }
2073 else
2074 {
2075 max_offset = 8192;
2076 insn &= ~ 0x3ff1;
2077 insn |= re_assemble_14 ((int) value);
2078 }
2079
2080 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2081 {
2082 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2083 hh->eh.root.root.string,
2084 (long) value);
2085 return FALSE;
2086 }
2087
2088 bfd_put_32 (stub->owner, (bfd_vma) insn,
2089 stub->contents + hh->stub_offset);
2090
2091 /* Fix up the second ldd instruction. */
2092 value += 8;
2093 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2094 if (output_bfd->arch_info->mach >= 25)
2095 {
2096 insn &= ~ 0xfff1;
2097 insn |= re_assemble_16 ((int) value);
2098 }
2099 else
2100 {
2101 insn &= ~ 0x3ff1;
2102 insn |= re_assemble_14 ((int) value);
2103 }
2104 bfd_put_32 (stub->owner, (bfd_vma) insn,
2105 stub->contents + hh->stub_offset + 8);
2106 }
2107
2108 return TRUE;
2109 }
2110
2111 /* The .opd section contains FPTRs for each function this file
2112 exports. Initialize the FPTR entries. */
2113
2114 static bfd_boolean
elf64_hppa_finalize_opd(struct elf_link_hash_entry * eh,void * data)2115 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2116 {
2117 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2118 struct bfd_link_info *info = (struct bfd_link_info *)data;
2119 struct elf64_hppa_link_hash_table *hppa_info;
2120 asection *sopd;
2121 asection *sopdrel;
2122
2123 hppa_info = hppa_link_hash_table (info);
2124 if (hppa_info == NULL)
2125 return FALSE;
2126
2127 sopd = hppa_info->opd_sec;
2128 sopdrel = hppa_info->opd_rel_sec;
2129
2130 if (hh->want_opd)
2131 {
2132 bfd_vma value;
2133
2134 /* The first two words of an .opd entry are zero.
2135
2136 We are modifying the contents of the OPD section in memory, so we
2137 do not need to include its output offset in this computation. */
2138 memset (sopd->contents + hh->opd_offset, 0, 16);
2139
2140 value = (eh->root.u.def.value
2141 + eh->root.u.def.section->output_section->vma
2142 + eh->root.u.def.section->output_offset);
2143
2144 /* The next word is the address of the function. */
2145 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2146
2147 /* The last word is our local __gp value. */
2148 value = _bfd_get_gp_value (sopd->output_section->owner);
2149 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2150 }
2151
2152 /* If we are generating a shared library, we must generate EPLT relocations
2153 for each entry in the .opd, even for static functions (they may have
2154 had their address taken). */
2155 if (info->shared && hh->want_opd)
2156 {
2157 Elf_Internal_Rela rel;
2158 bfd_byte *loc;
2159 int dynindx;
2160
2161 /* We may need to do a relocation against a local symbol, in
2162 which case we have to look up it's dynamic symbol index off
2163 the local symbol hash table. */
2164 if (eh->dynindx != -1)
2165 dynindx = eh->dynindx;
2166 else
2167 dynindx
2168 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2169 hh->sym_indx);
2170
2171 /* The offset of this relocation is the absolute address of the
2172 .opd entry for this symbol. */
2173 rel.r_offset = (hh->opd_offset + sopd->output_offset
2174 + sopd->output_section->vma);
2175
2176 /* If H is non-null, then we have an external symbol.
2177
2178 It is imperative that we use a different dynamic symbol for the
2179 EPLT relocation if the symbol has global scope.
2180
2181 In the dynamic symbol table, the function symbol will have a value
2182 which is address of the function's .opd entry.
2183
2184 Thus, we can not use that dynamic symbol for the EPLT relocation
2185 (if we did, the data in the .opd would reference itself rather
2186 than the actual address of the function). Instead we have to use
2187 a new dynamic symbol which has the same value as the original global
2188 function symbol.
2189
2190 We prefix the original symbol with a "." and use the new symbol in
2191 the EPLT relocation. This new symbol has already been recorded in
2192 the symbol table, we just have to look it up and use it.
2193
2194 We do not have such problems with static functions because we do
2195 not make their addresses in the dynamic symbol table point to
2196 the .opd entry. Ultimately this should be safe since a static
2197 function can not be directly referenced outside of its shared
2198 library.
2199
2200 We do have to play similar games for FPTR relocations in shared
2201 libraries, including those for static symbols. See the FPTR
2202 handling in elf64_hppa_finalize_dynreloc. */
2203 if (eh)
2204 {
2205 char *new_name;
2206 struct elf_link_hash_entry *nh;
2207
2208 new_name = alloca (strlen (eh->root.root.string) + 2);
2209 new_name[0] = '.';
2210 strcpy (new_name + 1, eh->root.root.string);
2211
2212 nh = elf_link_hash_lookup (elf_hash_table (info),
2213 new_name, TRUE, TRUE, FALSE);
2214
2215 /* All we really want from the new symbol is its dynamic
2216 symbol index. */
2217 if (nh)
2218 dynindx = nh->dynindx;
2219 }
2220
2221 rel.r_addend = 0;
2222 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2223
2224 loc = sopdrel->contents;
2225 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2226 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2227 }
2228 return TRUE;
2229 }
2230
2231 /* The .dlt section contains addresses for items referenced through the
2232 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2233 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2234
2235 static bfd_boolean
elf64_hppa_finalize_dlt(struct elf_link_hash_entry * eh,void * data)2236 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2237 {
2238 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2239 struct bfd_link_info *info = (struct bfd_link_info *)data;
2240 struct elf64_hppa_link_hash_table *hppa_info;
2241 asection *sdlt, *sdltrel;
2242
2243 hppa_info = hppa_link_hash_table (info);
2244 if (hppa_info == NULL)
2245 return FALSE;
2246
2247 sdlt = hppa_info->dlt_sec;
2248 sdltrel = hppa_info->dlt_rel_sec;
2249
2250 /* H/DYN_H may refer to a local variable and we know it's
2251 address, so there is no need to create a relocation. Just install
2252 the proper value into the DLT, note this shortcut can not be
2253 skipped when building a shared library. */
2254 if (! info->shared && hh && hh->want_dlt)
2255 {
2256 bfd_vma value;
2257
2258 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2259 to point to the FPTR entry in the .opd section.
2260
2261 We include the OPD's output offset in this computation as
2262 we are referring to an absolute address in the resulting
2263 object file. */
2264 if (hh->want_opd)
2265 {
2266 value = (hh->opd_offset
2267 + hppa_info->opd_sec->output_offset
2268 + hppa_info->opd_sec->output_section->vma);
2269 }
2270 else if ((eh->root.type == bfd_link_hash_defined
2271 || eh->root.type == bfd_link_hash_defweak)
2272 && eh->root.u.def.section)
2273 {
2274 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2275 if (eh->root.u.def.section->output_section)
2276 value += eh->root.u.def.section->output_section->vma;
2277 else
2278 value += eh->root.u.def.section->vma;
2279 }
2280 else
2281 /* We have an undefined function reference. */
2282 value = 0;
2283
2284 /* We do not need to include the output offset of the DLT section
2285 here because we are modifying the in-memory contents. */
2286 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2287 }
2288
2289 /* Create a relocation for the DLT entry associated with this symbol.
2290 When building a shared library the symbol does not have to be dynamic. */
2291 if (hh->want_dlt
2292 && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
2293 {
2294 Elf_Internal_Rela rel;
2295 bfd_byte *loc;
2296 int dynindx;
2297
2298 /* We may need to do a relocation against a local symbol, in
2299 which case we have to look up it's dynamic symbol index off
2300 the local symbol hash table. */
2301 if (eh && eh->dynindx != -1)
2302 dynindx = eh->dynindx;
2303 else
2304 dynindx
2305 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2306 hh->sym_indx);
2307
2308 /* Create a dynamic relocation for this entry. Do include the output
2309 offset of the DLT entry since we need an absolute address in the
2310 resulting object file. */
2311 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2312 + sdlt->output_section->vma);
2313 if (eh && eh->type == STT_FUNC)
2314 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2315 else
2316 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2317 rel.r_addend = 0;
2318
2319 loc = sdltrel->contents;
2320 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2321 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2322 }
2323 return TRUE;
2324 }
2325
2326 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2327 for dynamic functions used to initialize static data. */
2328
2329 static bfd_boolean
elf64_hppa_finalize_dynreloc(struct elf_link_hash_entry * eh,void * data)2330 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2331 void *data)
2332 {
2333 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2334 struct bfd_link_info *info = (struct bfd_link_info *)data;
2335 struct elf64_hppa_link_hash_table *hppa_info;
2336 int dynamic_symbol;
2337
2338 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2339
2340 if (!dynamic_symbol && !info->shared)
2341 return TRUE;
2342
2343 if (hh->reloc_entries)
2344 {
2345 struct elf64_hppa_dyn_reloc_entry *rent;
2346 int dynindx;
2347
2348 hppa_info = hppa_link_hash_table (info);
2349 if (hppa_info == NULL)
2350 return FALSE;
2351
2352 /* We may need to do a relocation against a local symbol, in
2353 which case we have to look up it's dynamic symbol index off
2354 the local symbol hash table. */
2355 if (eh->dynindx != -1)
2356 dynindx = eh->dynindx;
2357 else
2358 dynindx
2359 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2360 hh->sym_indx);
2361
2362 for (rent = hh->reloc_entries; rent; rent = rent->next)
2363 {
2364 Elf_Internal_Rela rel;
2365 bfd_byte *loc;
2366
2367 /* Allocate one iff we are building a shared library, the relocation
2368 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2369 if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2370 continue;
2371
2372 /* Create a dynamic relocation for this entry.
2373
2374 We need the output offset for the reloc's section because
2375 we are creating an absolute address in the resulting object
2376 file. */
2377 rel.r_offset = (rent->offset + rent->sec->output_offset
2378 + rent->sec->output_section->vma);
2379
2380 /* An FPTR64 relocation implies that we took the address of
2381 a function and that the function has an entry in the .opd
2382 section. We want the FPTR64 relocation to reference the
2383 entry in .opd.
2384
2385 We could munge the symbol value in the dynamic symbol table
2386 (in fact we already do for functions with global scope) to point
2387 to the .opd entry. Then we could use that dynamic symbol in
2388 this relocation.
2389
2390 Or we could do something sensible, not munge the symbol's
2391 address and instead just use a different symbol to reference
2392 the .opd entry. At least that seems sensible until you
2393 realize there's no local dynamic symbols we can use for that
2394 purpose. Thus the hair in the check_relocs routine.
2395
2396 We use a section symbol recorded by check_relocs as the
2397 base symbol for the relocation. The addend is the difference
2398 between the section symbol and the address of the .opd entry. */
2399 if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2400 {
2401 bfd_vma value, value2;
2402
2403 /* First compute the address of the opd entry for this symbol. */
2404 value = (hh->opd_offset
2405 + hppa_info->opd_sec->output_section->vma
2406 + hppa_info->opd_sec->output_offset);
2407
2408 /* Compute the value of the start of the section with
2409 the relocation. */
2410 value2 = (rent->sec->output_section->vma
2411 + rent->sec->output_offset);
2412
2413 /* Compute the difference between the start of the section
2414 with the relocation and the opd entry. */
2415 value -= value2;
2416
2417 /* The result becomes the addend of the relocation. */
2418 rel.r_addend = value;
2419
2420 /* The section symbol becomes the symbol for the dynamic
2421 relocation. */
2422 dynindx
2423 = _bfd_elf_link_lookup_local_dynindx (info,
2424 rent->sec->owner,
2425 rent->sec_symndx);
2426 }
2427 else
2428 rel.r_addend = rent->addend;
2429
2430 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2431
2432 loc = hppa_info->other_rel_sec->contents;
2433 loc += (hppa_info->other_rel_sec->reloc_count++
2434 * sizeof (Elf64_External_Rela));
2435 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2436 &rel, loc);
2437 }
2438 }
2439
2440 return TRUE;
2441 }
2442
2443 /* Used to decide how to sort relocs in an optimal manner for the
2444 dynamic linker, before writing them out. */
2445
2446 static enum elf_reloc_type_class
elf64_hppa_reloc_type_class(const struct bfd_link_info * info ATTRIBUTE_UNUSED,const asection * rel_sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * rela)2447 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2448 const asection *rel_sec ATTRIBUTE_UNUSED,
2449 const Elf_Internal_Rela *rela)
2450 {
2451 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2452 return reloc_class_relative;
2453
2454 switch ((int) ELF64_R_TYPE (rela->r_info))
2455 {
2456 case R_PARISC_IPLT:
2457 return reloc_class_plt;
2458 case R_PARISC_COPY:
2459 return reloc_class_copy;
2460 default:
2461 return reloc_class_normal;
2462 }
2463 }
2464
2465 /* Finish up the dynamic sections. */
2466
2467 static bfd_boolean
elf64_hppa_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)2468 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2469 struct bfd_link_info *info)
2470 {
2471 bfd *dynobj;
2472 asection *sdyn;
2473 struct elf64_hppa_link_hash_table *hppa_info;
2474
2475 hppa_info = hppa_link_hash_table (info);
2476 if (hppa_info == NULL)
2477 return FALSE;
2478
2479 /* Finalize the contents of the .opd section. */
2480 elf_link_hash_traverse (elf_hash_table (info),
2481 elf64_hppa_finalize_opd,
2482 info);
2483
2484 elf_link_hash_traverse (elf_hash_table (info),
2485 elf64_hppa_finalize_dynreloc,
2486 info);
2487
2488 /* Finalize the contents of the .dlt section. */
2489 dynobj = elf_hash_table (info)->dynobj;
2490 /* Finalize the contents of the .dlt section. */
2491 elf_link_hash_traverse (elf_hash_table (info),
2492 elf64_hppa_finalize_dlt,
2493 info);
2494
2495 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2496
2497 if (elf_hash_table (info)->dynamic_sections_created)
2498 {
2499 Elf64_External_Dyn *dyncon, *dynconend;
2500
2501 BFD_ASSERT (sdyn != NULL);
2502
2503 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2504 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2505 for (; dyncon < dynconend; dyncon++)
2506 {
2507 Elf_Internal_Dyn dyn;
2508 asection *s;
2509
2510 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2511
2512 switch (dyn.d_tag)
2513 {
2514 default:
2515 break;
2516
2517 case DT_HP_LOAD_MAP:
2518 /* Compute the absolute address of 16byte scratchpad area
2519 for the dynamic linker.
2520
2521 By convention the linker script will allocate the scratchpad
2522 area at the start of the .data section. So all we have to
2523 to is find the start of the .data section. */
2524 s = bfd_get_section_by_name (output_bfd, ".data");
2525 if (!s)
2526 return FALSE;
2527 dyn.d_un.d_ptr = s->vma;
2528 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529 break;
2530
2531 case DT_PLTGOT:
2532 /* HP's use PLTGOT to set the GOT register. */
2533 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2534 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2535 break;
2536
2537 case DT_JMPREL:
2538 s = hppa_info->plt_rel_sec;
2539 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2540 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2541 break;
2542
2543 case DT_PLTRELSZ:
2544 s = hppa_info->plt_rel_sec;
2545 dyn.d_un.d_val = s->size;
2546 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2547 break;
2548
2549 case DT_RELA:
2550 s = hppa_info->other_rel_sec;
2551 if (! s || ! s->size)
2552 s = hppa_info->dlt_rel_sec;
2553 if (! s || ! s->size)
2554 s = hppa_info->opd_rel_sec;
2555 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2556 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2557 break;
2558
2559 case DT_RELASZ:
2560 s = hppa_info->other_rel_sec;
2561 dyn.d_un.d_val = s->size;
2562 s = hppa_info->dlt_rel_sec;
2563 dyn.d_un.d_val += s->size;
2564 s = hppa_info->opd_rel_sec;
2565 dyn.d_un.d_val += s->size;
2566 /* There is some question about whether or not the size of
2567 the PLT relocs should be included here. HP's tools do
2568 it, so we'll emulate them. */
2569 s = hppa_info->plt_rel_sec;
2570 dyn.d_un.d_val += s->size;
2571 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2572 break;
2573
2574 }
2575 }
2576 }
2577
2578 return TRUE;
2579 }
2580
2581 /* Support for core dump NOTE sections. */
2582
2583 static bfd_boolean
elf64_hppa_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)2584 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2585 {
2586 int offset;
2587 size_t size;
2588
2589 switch (note->descsz)
2590 {
2591 default:
2592 return FALSE;
2593
2594 case 760: /* Linux/hppa */
2595 /* pr_cursig */
2596 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2597
2598 /* pr_pid */
2599 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2600
2601 /* pr_reg */
2602 offset = 112;
2603 size = 640;
2604
2605 break;
2606 }
2607
2608 /* Make a ".reg/999" section. */
2609 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2610 size, note->descpos + offset);
2611 }
2612
2613 static bfd_boolean
elf64_hppa_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)2614 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2615 {
2616 char * command;
2617 int n;
2618
2619 switch (note->descsz)
2620 {
2621 default:
2622 return FALSE;
2623
2624 case 136: /* Linux/hppa elf_prpsinfo. */
2625 elf_tdata (abfd)->core->program
2626 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2627 elf_tdata (abfd)->core->command
2628 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2629 }
2630
2631 /* Note that for some reason, a spurious space is tacked
2632 onto the end of the args in some (at least one anyway)
2633 implementations, so strip it off if it exists. */
2634 command = elf_tdata (abfd)->core->command;
2635 n = strlen (command);
2636
2637 if (0 < n && command[n - 1] == ' ')
2638 command[n - 1] = '\0';
2639
2640 return TRUE;
2641 }
2642
2643 /* Return the number of additional phdrs we will need.
2644
2645 The generic ELF code only creates PT_PHDRs for executables. The HP
2646 dynamic linker requires PT_PHDRs for dynamic libraries too.
2647
2648 This routine indicates that the backend needs one additional program
2649 header for that case.
2650
2651 Note we do not have access to the link info structure here, so we have
2652 to guess whether or not we are building a shared library based on the
2653 existence of a .interp section. */
2654
2655 static int
elf64_hppa_additional_program_headers(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)2656 elf64_hppa_additional_program_headers (bfd *abfd,
2657 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2658 {
2659 asection *s;
2660
2661 /* If we are creating a shared library, then we have to create a
2662 PT_PHDR segment. HP's dynamic linker chokes without it. */
2663 s = bfd_get_section_by_name (abfd, ".interp");
2664 if (! s)
2665 return 1;
2666 return 0;
2667 }
2668
2669 /* Allocate and initialize any program headers required by this
2670 specific backend.
2671
2672 The generic ELF code only creates PT_PHDRs for executables. The HP
2673 dynamic linker requires PT_PHDRs for dynamic libraries too.
2674
2675 This allocates the PT_PHDR and initializes it in a manner suitable
2676 for the HP linker.
2677
2678 Note we do not have access to the link info structure here, so we have
2679 to guess whether or not we are building a shared library based on the
2680 existence of a .interp section. */
2681
2682 static bfd_boolean
elf64_hppa_modify_segment_map(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)2683 elf64_hppa_modify_segment_map (bfd *abfd,
2684 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2685 {
2686 struct elf_segment_map *m;
2687 asection *s;
2688
2689 s = bfd_get_section_by_name (abfd, ".interp");
2690 if (! s)
2691 {
2692 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2693 if (m->p_type == PT_PHDR)
2694 break;
2695 if (m == NULL)
2696 {
2697 m = ((struct elf_segment_map *)
2698 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2699 if (m == NULL)
2700 return FALSE;
2701
2702 m->p_type = PT_PHDR;
2703 m->p_flags = PF_R | PF_X;
2704 m->p_flags_valid = 1;
2705 m->p_paddr_valid = 1;
2706 m->includes_phdrs = 1;
2707
2708 m->next = elf_seg_map (abfd);
2709 elf_seg_map (abfd) = m;
2710 }
2711 }
2712
2713 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2714 if (m->p_type == PT_LOAD)
2715 {
2716 unsigned int i;
2717
2718 for (i = 0; i < m->count; i++)
2719 {
2720 /* The code "hint" is not really a hint. It is a requirement
2721 for certain versions of the HP dynamic linker. Worse yet,
2722 it must be set even if the shared library does not have
2723 any code in its "text" segment (thus the check for .hash
2724 to catch this situation). */
2725 if (m->sections[i]->flags & SEC_CODE
2726 || (strcmp (m->sections[i]->name, ".hash") == 0))
2727 m->p_flags |= (PF_X | PF_HP_CODE);
2728 }
2729 }
2730
2731 return TRUE;
2732 }
2733
2734 /* Called when writing out an object file to decide the type of a
2735 symbol. */
2736 static int
elf64_hppa_elf_get_symbol_type(Elf_Internal_Sym * elf_sym,int type)2737 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2738 int type)
2739 {
2740 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2741 return STT_PARISC_MILLI;
2742 else
2743 return type;
2744 }
2745
2746 /* Support HP specific sections for core files. */
2747
2748 static bfd_boolean
elf64_hppa_section_from_phdr(bfd * abfd,Elf_Internal_Phdr * hdr,int sec_index,const char * typename)2749 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2750 const char *typename)
2751 {
2752 if (hdr->p_type == PT_HP_CORE_KERNEL)
2753 {
2754 asection *sect;
2755
2756 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2757 return FALSE;
2758
2759 sect = bfd_make_section_anyway (abfd, ".kernel");
2760 if (sect == NULL)
2761 return FALSE;
2762 sect->size = hdr->p_filesz;
2763 sect->filepos = hdr->p_offset;
2764 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2765 return TRUE;
2766 }
2767
2768 if (hdr->p_type == PT_HP_CORE_PROC)
2769 {
2770 int sig;
2771
2772 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2773 return FALSE;
2774 if (bfd_bread (&sig, 4, abfd) != 4)
2775 return FALSE;
2776
2777 elf_tdata (abfd)->core->signal = sig;
2778
2779 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2780 return FALSE;
2781
2782 /* GDB uses the ".reg" section to read register contents. */
2783 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2784 hdr->p_offset);
2785 }
2786
2787 if (hdr->p_type == PT_HP_CORE_LOADABLE
2788 || hdr->p_type == PT_HP_CORE_STACK
2789 || hdr->p_type == PT_HP_CORE_MMF)
2790 hdr->p_type = PT_LOAD;
2791
2792 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2793 }
2794
2795 /* Hook called by the linker routine which adds symbols from an object
2796 file. HP's libraries define symbols with HP specific section
2797 indices, which we have to handle. */
2798
2799 static bfd_boolean
elf_hppa_add_symbol_hook(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym,const char ** namep ATTRIBUTE_UNUSED,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp,bfd_vma * valp)2800 elf_hppa_add_symbol_hook (bfd *abfd,
2801 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2802 Elf_Internal_Sym *sym,
2803 const char **namep ATTRIBUTE_UNUSED,
2804 flagword *flagsp ATTRIBUTE_UNUSED,
2805 asection **secp,
2806 bfd_vma *valp)
2807 {
2808 unsigned int sec_index = sym->st_shndx;
2809
2810 switch (sec_index)
2811 {
2812 case SHN_PARISC_ANSI_COMMON:
2813 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2814 (*secp)->flags |= SEC_IS_COMMON;
2815 *valp = sym->st_size;
2816 break;
2817
2818 case SHN_PARISC_HUGE_COMMON:
2819 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2820 (*secp)->flags |= SEC_IS_COMMON;
2821 *valp = sym->st_size;
2822 break;
2823 }
2824
2825 return TRUE;
2826 }
2827
2828 static bfd_boolean
elf_hppa_unmark_useless_dynamic_symbols(struct elf_link_hash_entry * h,void * data)2829 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2830 void *data)
2831 {
2832 struct bfd_link_info *info = data;
2833
2834 /* If we are not creating a shared library, and this symbol is
2835 referenced by a shared library but is not defined anywhere, then
2836 the generic code will warn that it is undefined.
2837
2838 This behavior is undesirable on HPs since the standard shared
2839 libraries contain references to undefined symbols.
2840
2841 So we twiddle the flags associated with such symbols so that they
2842 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2843
2844 Ultimately we should have better controls over the generic ELF BFD
2845 linker code. */
2846 if (! info->relocatable
2847 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2848 && h->root.type == bfd_link_hash_undefined
2849 && h->ref_dynamic
2850 && !h->ref_regular)
2851 {
2852 h->ref_dynamic = 0;
2853 h->pointer_equality_needed = 1;
2854 }
2855
2856 return TRUE;
2857 }
2858
2859 static bfd_boolean
elf_hppa_remark_useless_dynamic_symbols(struct elf_link_hash_entry * h,void * data)2860 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2861 void *data)
2862 {
2863 struct bfd_link_info *info = data;
2864
2865 /* If we are not creating a shared library, and this symbol is
2866 referenced by a shared library but is not defined anywhere, then
2867 the generic code will warn that it is undefined.
2868
2869 This behavior is undesirable on HPs since the standard shared
2870 libraries contain references to undefined symbols.
2871
2872 So we twiddle the flags associated with such symbols so that they
2873 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2874
2875 Ultimately we should have better controls over the generic ELF BFD
2876 linker code. */
2877 if (! info->relocatable
2878 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2879 && h->root.type == bfd_link_hash_undefined
2880 && !h->ref_dynamic
2881 && !h->ref_regular
2882 && h->pointer_equality_needed)
2883 {
2884 h->ref_dynamic = 1;
2885 h->pointer_equality_needed = 0;
2886 }
2887
2888 return TRUE;
2889 }
2890
2891 static bfd_boolean
elf_hppa_is_dynamic_loader_symbol(const char * name)2892 elf_hppa_is_dynamic_loader_symbol (const char *name)
2893 {
2894 return (! strcmp (name, "__CPU_REVISION")
2895 || ! strcmp (name, "__CPU_KEYBITS_1")
2896 || ! strcmp (name, "__SYSTEM_ID_D")
2897 || ! strcmp (name, "__FPU_MODEL")
2898 || ! strcmp (name, "__FPU_REVISION")
2899 || ! strcmp (name, "__ARGC")
2900 || ! strcmp (name, "__ARGV")
2901 || ! strcmp (name, "__ENVP")
2902 || ! strcmp (name, "__TLS_SIZE_D")
2903 || ! strcmp (name, "__LOAD_INFO")
2904 || ! strcmp (name, "__systab"));
2905 }
2906
2907 /* Record the lowest address for the data and text segments. */
2908 static void
elf_hppa_record_segment_addrs(bfd * abfd,asection * section,void * data)2909 elf_hppa_record_segment_addrs (bfd *abfd,
2910 asection *section,
2911 void *data)
2912 {
2913 struct elf64_hppa_link_hash_table *hppa_info = data;
2914
2915 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2916 {
2917 bfd_vma value;
2918 Elf_Internal_Phdr *p;
2919
2920 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2921 BFD_ASSERT (p != NULL);
2922 value = p->p_vaddr;
2923
2924 if (section->flags & SEC_READONLY)
2925 {
2926 if (value < hppa_info->text_segment_base)
2927 hppa_info->text_segment_base = value;
2928 }
2929 else
2930 {
2931 if (value < hppa_info->data_segment_base)
2932 hppa_info->data_segment_base = value;
2933 }
2934 }
2935 }
2936
2937 /* Called after we have seen all the input files/sections, but before
2938 final symbol resolution and section placement has been determined.
2939
2940 We use this hook to (possibly) provide a value for __gp, then we
2941 fall back to the generic ELF final link routine. */
2942
2943 static bfd_boolean
elf_hppa_final_link(bfd * abfd,struct bfd_link_info * info)2944 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2945 {
2946 bfd_boolean retval;
2947 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2948
2949 if (hppa_info == NULL)
2950 return FALSE;
2951
2952 if (! info->relocatable)
2953 {
2954 struct elf_link_hash_entry *gp;
2955 bfd_vma gp_val;
2956
2957 /* The linker script defines a value for __gp iff it was referenced
2958 by one of the objects being linked. First try to find the symbol
2959 in the hash table. If that fails, just compute the value __gp
2960 should have had. */
2961 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2962 FALSE, FALSE);
2963
2964 if (gp)
2965 {
2966
2967 /* Adjust the value of __gp as we may want to slide it into the
2968 .plt section so that the stubs can access PLT entries without
2969 using an addil sequence. */
2970 gp->root.u.def.value += hppa_info->gp_offset;
2971
2972 gp_val = (gp->root.u.def.section->output_section->vma
2973 + gp->root.u.def.section->output_offset
2974 + gp->root.u.def.value);
2975 }
2976 else
2977 {
2978 asection *sec;
2979
2980 /* First look for a .plt section. If found, then __gp is the
2981 address of the .plt + gp_offset.
2982
2983 If no .plt is found, then look for .dlt, .opd and .data (in
2984 that order) and set __gp to the base address of whichever
2985 section is found first. */
2986
2987 sec = hppa_info->plt_sec;
2988 if (sec && ! (sec->flags & SEC_EXCLUDE))
2989 gp_val = (sec->output_offset
2990 + sec->output_section->vma
2991 + hppa_info->gp_offset);
2992 else
2993 {
2994 sec = hppa_info->dlt_sec;
2995 if (!sec || (sec->flags & SEC_EXCLUDE))
2996 sec = hppa_info->opd_sec;
2997 if (!sec || (sec->flags & SEC_EXCLUDE))
2998 sec = bfd_get_section_by_name (abfd, ".data");
2999 if (!sec || (sec->flags & SEC_EXCLUDE))
3000 gp_val = 0;
3001 else
3002 gp_val = sec->output_offset + sec->output_section->vma;
3003 }
3004 }
3005
3006 /* Install whatever value we found/computed for __gp. */
3007 _bfd_set_gp_value (abfd, gp_val);
3008 }
3009
3010 /* We need to know the base of the text and data segments so that we
3011 can perform SEGREL relocations. We will record the base addresses
3012 when we encounter the first SEGREL relocation. */
3013 hppa_info->text_segment_base = (bfd_vma)-1;
3014 hppa_info->data_segment_base = (bfd_vma)-1;
3015
3016 /* HP's shared libraries have references to symbols that are not
3017 defined anywhere. The generic ELF BFD linker code will complain
3018 about such symbols.
3019
3020 So we detect the losing case and arrange for the flags on the symbol
3021 to indicate that it was never referenced. This keeps the generic
3022 ELF BFD link code happy and appears to not create any secondary
3023 problems. Ultimately we need a way to control the behavior of the
3024 generic ELF BFD link code better. */
3025 elf_link_hash_traverse (elf_hash_table (info),
3026 elf_hppa_unmark_useless_dynamic_symbols,
3027 info);
3028
3029 /* Invoke the regular ELF backend linker to do all the work. */
3030 retval = bfd_elf_final_link (abfd, info);
3031
3032 elf_link_hash_traverse (elf_hash_table (info),
3033 elf_hppa_remark_useless_dynamic_symbols,
3034 info);
3035
3036 /* If we're producing a final executable, sort the contents of the
3037 unwind section. */
3038 if (retval && !info->relocatable)
3039 retval = elf_hppa_sort_unwind (abfd);
3040
3041 return retval;
3042 }
3043
3044 /* Relocate the given INSN. VALUE should be the actual value we want
3045 to insert into the instruction, ie by this point we should not be
3046 concerned with computing an offset relative to the DLT, PC, etc.
3047 Instead this routine is meant to handle the bit manipulations needed
3048 to insert the relocation into the given instruction. */
3049
3050 static int
elf_hppa_relocate_insn(int insn,int sym_value,unsigned int r_type)3051 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3052 {
3053 switch (r_type)
3054 {
3055 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3056 the "B" instruction. */
3057 case R_PARISC_PCREL22F:
3058 case R_PARISC_PCREL22C:
3059 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3060
3061 /* This is any 12 bit branch. */
3062 case R_PARISC_PCREL12F:
3063 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3064
3065 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3066 to the "B" instruction as well as BE. */
3067 case R_PARISC_PCREL17F:
3068 case R_PARISC_DIR17F:
3069 case R_PARISC_DIR17R:
3070 case R_PARISC_PCREL17C:
3071 case R_PARISC_PCREL17R:
3072 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3073
3074 /* ADDIL or LDIL instructions. */
3075 case R_PARISC_DLTREL21L:
3076 case R_PARISC_DLTIND21L:
3077 case R_PARISC_LTOFF_FPTR21L:
3078 case R_PARISC_PCREL21L:
3079 case R_PARISC_LTOFF_TP21L:
3080 case R_PARISC_DPREL21L:
3081 case R_PARISC_PLTOFF21L:
3082 case R_PARISC_DIR21L:
3083 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3084
3085 /* LDO and integer loads/stores with 14 bit displacements. */
3086 case R_PARISC_DLTREL14R:
3087 case R_PARISC_DLTREL14F:
3088 case R_PARISC_DLTIND14R:
3089 case R_PARISC_DLTIND14F:
3090 case R_PARISC_LTOFF_FPTR14R:
3091 case R_PARISC_PCREL14R:
3092 case R_PARISC_PCREL14F:
3093 case R_PARISC_LTOFF_TP14R:
3094 case R_PARISC_LTOFF_TP14F:
3095 case R_PARISC_DPREL14R:
3096 case R_PARISC_DPREL14F:
3097 case R_PARISC_PLTOFF14R:
3098 case R_PARISC_PLTOFF14F:
3099 case R_PARISC_DIR14R:
3100 case R_PARISC_DIR14F:
3101 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3102
3103 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3104 case R_PARISC_LTOFF_FPTR16F:
3105 case R_PARISC_PCREL16F:
3106 case R_PARISC_LTOFF_TP16F:
3107 case R_PARISC_GPREL16F:
3108 case R_PARISC_PLTOFF16F:
3109 case R_PARISC_DIR16F:
3110 case R_PARISC_LTOFF16F:
3111 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3112
3113 /* Doubleword loads and stores with a 14 bit displacement. */
3114 case R_PARISC_DLTREL14DR:
3115 case R_PARISC_DLTIND14DR:
3116 case R_PARISC_LTOFF_FPTR14DR:
3117 case R_PARISC_LTOFF_FPTR16DF:
3118 case R_PARISC_PCREL14DR:
3119 case R_PARISC_PCREL16DF:
3120 case R_PARISC_LTOFF_TP14DR:
3121 case R_PARISC_LTOFF_TP16DF:
3122 case R_PARISC_DPREL14DR:
3123 case R_PARISC_GPREL16DF:
3124 case R_PARISC_PLTOFF14DR:
3125 case R_PARISC_PLTOFF16DF:
3126 case R_PARISC_DIR14DR:
3127 case R_PARISC_DIR16DF:
3128 case R_PARISC_LTOFF16DF:
3129 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3130 | ((sym_value & 0x1ff8) << 1));
3131
3132 /* Floating point single word load/store instructions. */
3133 case R_PARISC_DLTREL14WR:
3134 case R_PARISC_DLTIND14WR:
3135 case R_PARISC_LTOFF_FPTR14WR:
3136 case R_PARISC_LTOFF_FPTR16WF:
3137 case R_PARISC_PCREL14WR:
3138 case R_PARISC_PCREL16WF:
3139 case R_PARISC_LTOFF_TP14WR:
3140 case R_PARISC_LTOFF_TP16WF:
3141 case R_PARISC_DPREL14WR:
3142 case R_PARISC_GPREL16WF:
3143 case R_PARISC_PLTOFF14WR:
3144 case R_PARISC_PLTOFF16WF:
3145 case R_PARISC_DIR16WF:
3146 case R_PARISC_DIR14WR:
3147 case R_PARISC_LTOFF16WF:
3148 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3149 | ((sym_value & 0x1ffc) << 1));
3150
3151 default:
3152 return insn;
3153 }
3154 }
3155
3156 /* Compute the value for a relocation (REL) during a final link stage,
3157 then insert the value into the proper location in CONTENTS.
3158
3159 VALUE is a tentative value for the relocation and may be overridden
3160 and modified here based on the specific relocation to be performed.
3161
3162 For example we do conversions for PC-relative branches in this routine
3163 or redirection of calls to external routines to stubs.
3164
3165 The work of actually applying the relocation is left to a helper
3166 routine in an attempt to reduce the complexity and size of this
3167 function. */
3168
3169 static bfd_reloc_status_type
elf_hppa_final_link_relocate(Elf_Internal_Rela * rel,bfd * input_bfd,bfd * output_bfd,asection * input_section,bfd_byte * contents,bfd_vma value,struct bfd_link_info * info,asection * sym_sec,struct elf_link_hash_entry * eh)3170 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3171 bfd *input_bfd,
3172 bfd *output_bfd,
3173 asection *input_section,
3174 bfd_byte *contents,
3175 bfd_vma value,
3176 struct bfd_link_info *info,
3177 asection *sym_sec,
3178 struct elf_link_hash_entry *eh)
3179 {
3180 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3181 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3182 bfd_vma *local_offsets;
3183 Elf_Internal_Shdr *symtab_hdr;
3184 int insn;
3185 bfd_vma max_branch_offset = 0;
3186 bfd_vma offset = rel->r_offset;
3187 bfd_signed_vma addend = rel->r_addend;
3188 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3189 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3190 unsigned int r_type = howto->type;
3191 bfd_byte *hit_data = contents + offset;
3192
3193 if (hppa_info == NULL)
3194 return bfd_reloc_notsupported;
3195
3196 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3197 local_offsets = elf_local_got_offsets (input_bfd);
3198 insn = bfd_get_32 (input_bfd, hit_data);
3199
3200 switch (r_type)
3201 {
3202 case R_PARISC_NONE:
3203 break;
3204
3205 /* Basic function call support.
3206
3207 Note for a call to a function defined in another dynamic library
3208 we want to redirect the call to a stub. */
3209
3210 /* PC relative relocs without an implicit offset. */
3211 case R_PARISC_PCREL21L:
3212 case R_PARISC_PCREL14R:
3213 case R_PARISC_PCREL14F:
3214 case R_PARISC_PCREL14WR:
3215 case R_PARISC_PCREL14DR:
3216 case R_PARISC_PCREL16F:
3217 case R_PARISC_PCREL16WF:
3218 case R_PARISC_PCREL16DF:
3219 {
3220 /* If this is a call to a function defined in another dynamic
3221 library, then redirect the call to the local stub for this
3222 function. */
3223 if (sym_sec == NULL || sym_sec->output_section == NULL)
3224 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3225 + hppa_info->stub_sec->output_section->vma);
3226
3227 /* Turn VALUE into a proper PC relative address. */
3228 value -= (offset + input_section->output_offset
3229 + input_section->output_section->vma);
3230
3231 /* Adjust for any field selectors. */
3232 if (r_type == R_PARISC_PCREL21L)
3233 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3234 else if (r_type == R_PARISC_PCREL14F
3235 || r_type == R_PARISC_PCREL16F
3236 || r_type == R_PARISC_PCREL16WF
3237 || r_type == R_PARISC_PCREL16DF)
3238 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3239 else
3240 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3241
3242 /* Apply the relocation to the given instruction. */
3243 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3244 break;
3245 }
3246
3247 case R_PARISC_PCREL12F:
3248 case R_PARISC_PCREL22F:
3249 case R_PARISC_PCREL17F:
3250 case R_PARISC_PCREL22C:
3251 case R_PARISC_PCREL17C:
3252 case R_PARISC_PCREL17R:
3253 {
3254 /* If this is a call to a function defined in another dynamic
3255 library, then redirect the call to the local stub for this
3256 function. */
3257 if (sym_sec == NULL || sym_sec->output_section == NULL)
3258 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3259 + hppa_info->stub_sec->output_section->vma);
3260
3261 /* Turn VALUE into a proper PC relative address. */
3262 value -= (offset + input_section->output_offset
3263 + input_section->output_section->vma);
3264 addend -= 8;
3265
3266 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3267 max_branch_offset = (1 << (22-1)) << 2;
3268 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3269 max_branch_offset = (1 << (17-1)) << 2;
3270 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3271 max_branch_offset = (1 << (12-1)) << 2;
3272
3273 /* Make sure we can reach the branch target. */
3274 if (max_branch_offset != 0
3275 && value + addend + max_branch_offset >= 2*max_branch_offset)
3276 {
3277 (*_bfd_error_handler)
3278 (_("%B(%A+0x%" BFD_VMA_FMT "x): cannot reach %s"),
3279 input_bfd,
3280 input_section,
3281 offset,
3282 eh ? eh->root.root.string : "unknown");
3283 bfd_set_error (bfd_error_bad_value);
3284 return bfd_reloc_overflow;
3285 }
3286
3287 /* Adjust for any field selectors. */
3288 if (r_type == R_PARISC_PCREL17R)
3289 value = hppa_field_adjust (value, addend, e_rsel);
3290 else
3291 value = hppa_field_adjust (value, addend, e_fsel);
3292
3293 /* All branches are implicitly shifted by 2 places. */
3294 value >>= 2;
3295
3296 /* Apply the relocation to the given instruction. */
3297 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3298 break;
3299 }
3300
3301 /* Indirect references to data through the DLT. */
3302 case R_PARISC_DLTIND14R:
3303 case R_PARISC_DLTIND14F:
3304 case R_PARISC_DLTIND14DR:
3305 case R_PARISC_DLTIND14WR:
3306 case R_PARISC_DLTIND21L:
3307 case R_PARISC_LTOFF_FPTR14R:
3308 case R_PARISC_LTOFF_FPTR14DR:
3309 case R_PARISC_LTOFF_FPTR14WR:
3310 case R_PARISC_LTOFF_FPTR21L:
3311 case R_PARISC_LTOFF_FPTR16F:
3312 case R_PARISC_LTOFF_FPTR16WF:
3313 case R_PARISC_LTOFF_FPTR16DF:
3314 case R_PARISC_LTOFF_TP21L:
3315 case R_PARISC_LTOFF_TP14R:
3316 case R_PARISC_LTOFF_TP14F:
3317 case R_PARISC_LTOFF_TP14WR:
3318 case R_PARISC_LTOFF_TP14DR:
3319 case R_PARISC_LTOFF_TP16F:
3320 case R_PARISC_LTOFF_TP16WF:
3321 case R_PARISC_LTOFF_TP16DF:
3322 case R_PARISC_LTOFF16F:
3323 case R_PARISC_LTOFF16WF:
3324 case R_PARISC_LTOFF16DF:
3325 {
3326 bfd_vma off;
3327
3328 /* If this relocation was against a local symbol, then we still
3329 have not set up the DLT entry (it's not convenient to do so
3330 in the "finalize_dlt" routine because it is difficult to get
3331 to the local symbol's value).
3332
3333 So, if this is a local symbol (h == NULL), then we need to
3334 fill in its DLT entry.
3335
3336 Similarly we may still need to set up an entry in .opd for
3337 a local function which had its address taken. */
3338 if (hh == NULL)
3339 {
3340 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3341
3342 if (local_offsets == NULL)
3343 abort ();
3344
3345 /* Now do .opd creation if needed. */
3346 if (r_type == R_PARISC_LTOFF_FPTR14R
3347 || r_type == R_PARISC_LTOFF_FPTR14DR
3348 || r_type == R_PARISC_LTOFF_FPTR14WR
3349 || r_type == R_PARISC_LTOFF_FPTR21L
3350 || r_type == R_PARISC_LTOFF_FPTR16F
3351 || r_type == R_PARISC_LTOFF_FPTR16WF
3352 || r_type == R_PARISC_LTOFF_FPTR16DF)
3353 {
3354 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3355 off = local_opd_offsets[r_symndx];
3356
3357 /* The last bit records whether we've already initialised
3358 this local .opd entry. */
3359 if ((off & 1) != 0)
3360 {
3361 BFD_ASSERT (off != (bfd_vma) -1);
3362 off &= ~1;
3363 }
3364 else
3365 {
3366 local_opd_offsets[r_symndx] |= 1;
3367
3368 /* The first two words of an .opd entry are zero. */
3369 memset (hppa_info->opd_sec->contents + off, 0, 16);
3370
3371 /* The next word is the address of the function. */
3372 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3373 (hppa_info->opd_sec->contents + off + 16));
3374
3375 /* The last word is our local __gp value. */
3376 value = _bfd_get_gp_value
3377 (hppa_info->opd_sec->output_section->owner);
3378 bfd_put_64 (hppa_info->opd_sec->owner, value,
3379 (hppa_info->opd_sec->contents + off + 24));
3380 }
3381
3382 /* The DLT value is the address of the .opd entry. */
3383 value = (off
3384 + hppa_info->opd_sec->output_offset
3385 + hppa_info->opd_sec->output_section->vma);
3386 addend = 0;
3387 }
3388
3389 local_dlt_offsets = local_offsets;
3390 off = local_dlt_offsets[r_symndx];
3391
3392 if ((off & 1) != 0)
3393 {
3394 BFD_ASSERT (off != (bfd_vma) -1);
3395 off &= ~1;
3396 }
3397 else
3398 {
3399 local_dlt_offsets[r_symndx] |= 1;
3400 bfd_put_64 (hppa_info->dlt_sec->owner,
3401 value + addend,
3402 hppa_info->dlt_sec->contents + off);
3403 }
3404 }
3405 else
3406 off = hh->dlt_offset;
3407
3408 /* We want the value of the DLT offset for this symbol, not
3409 the symbol's actual address. Note that __gp may not point
3410 to the start of the DLT, so we have to compute the absolute
3411 address, then subtract out the value of __gp. */
3412 value = (off
3413 + hppa_info->dlt_sec->output_offset
3414 + hppa_info->dlt_sec->output_section->vma);
3415 value -= _bfd_get_gp_value (output_bfd);
3416
3417 /* All DLTIND relocations are basically the same at this point,
3418 except that we need different field selectors for the 21bit
3419 version vs the 14bit versions. */
3420 if (r_type == R_PARISC_DLTIND21L
3421 || r_type == R_PARISC_LTOFF_FPTR21L
3422 || r_type == R_PARISC_LTOFF_TP21L)
3423 value = hppa_field_adjust (value, 0, e_lsel);
3424 else if (r_type == R_PARISC_DLTIND14F
3425 || r_type == R_PARISC_LTOFF_FPTR16F
3426 || r_type == R_PARISC_LTOFF_FPTR16WF
3427 || r_type == R_PARISC_LTOFF_FPTR16DF
3428 || r_type == R_PARISC_LTOFF16F
3429 || r_type == R_PARISC_LTOFF16DF
3430 || r_type == R_PARISC_LTOFF16WF
3431 || r_type == R_PARISC_LTOFF_TP16F
3432 || r_type == R_PARISC_LTOFF_TP16WF
3433 || r_type == R_PARISC_LTOFF_TP16DF)
3434 value = hppa_field_adjust (value, 0, e_fsel);
3435 else
3436 value = hppa_field_adjust (value, 0, e_rsel);
3437
3438 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3439 break;
3440 }
3441
3442 case R_PARISC_DLTREL14R:
3443 case R_PARISC_DLTREL14F:
3444 case R_PARISC_DLTREL14DR:
3445 case R_PARISC_DLTREL14WR:
3446 case R_PARISC_DLTREL21L:
3447 case R_PARISC_DPREL21L:
3448 case R_PARISC_DPREL14WR:
3449 case R_PARISC_DPREL14DR:
3450 case R_PARISC_DPREL14R:
3451 case R_PARISC_DPREL14F:
3452 case R_PARISC_GPREL16F:
3453 case R_PARISC_GPREL16WF:
3454 case R_PARISC_GPREL16DF:
3455 {
3456 /* Subtract out the global pointer value to make value a DLT
3457 relative address. */
3458 value -= _bfd_get_gp_value (output_bfd);
3459
3460 /* All DLTREL relocations are basically the same at this point,
3461 except that we need different field selectors for the 21bit
3462 version vs the 14bit versions. */
3463 if (r_type == R_PARISC_DLTREL21L
3464 || r_type == R_PARISC_DPREL21L)
3465 value = hppa_field_adjust (value, addend, e_lrsel);
3466 else if (r_type == R_PARISC_DLTREL14F
3467 || r_type == R_PARISC_DPREL14F
3468 || r_type == R_PARISC_GPREL16F
3469 || r_type == R_PARISC_GPREL16WF
3470 || r_type == R_PARISC_GPREL16DF)
3471 value = hppa_field_adjust (value, addend, e_fsel);
3472 else
3473 value = hppa_field_adjust (value, addend, e_rrsel);
3474
3475 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3476 break;
3477 }
3478
3479 case R_PARISC_DIR21L:
3480 case R_PARISC_DIR17R:
3481 case R_PARISC_DIR17F:
3482 case R_PARISC_DIR14R:
3483 case R_PARISC_DIR14F:
3484 case R_PARISC_DIR14WR:
3485 case R_PARISC_DIR14DR:
3486 case R_PARISC_DIR16F:
3487 case R_PARISC_DIR16WF:
3488 case R_PARISC_DIR16DF:
3489 {
3490 /* All DIR relocations are basically the same at this point,
3491 except that branch offsets need to be divided by four, and
3492 we need different field selectors. Note that we don't
3493 redirect absolute calls to local stubs. */
3494
3495 if (r_type == R_PARISC_DIR21L)
3496 value = hppa_field_adjust (value, addend, e_lrsel);
3497 else if (r_type == R_PARISC_DIR17F
3498 || r_type == R_PARISC_DIR16F
3499 || r_type == R_PARISC_DIR16WF
3500 || r_type == R_PARISC_DIR16DF
3501 || r_type == R_PARISC_DIR14F)
3502 value = hppa_field_adjust (value, addend, e_fsel);
3503 else
3504 value = hppa_field_adjust (value, addend, e_rrsel);
3505
3506 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3507 /* All branches are implicitly shifted by 2 places. */
3508 value >>= 2;
3509
3510 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3511 break;
3512 }
3513
3514 case R_PARISC_PLTOFF21L:
3515 case R_PARISC_PLTOFF14R:
3516 case R_PARISC_PLTOFF14F:
3517 case R_PARISC_PLTOFF14WR:
3518 case R_PARISC_PLTOFF14DR:
3519 case R_PARISC_PLTOFF16F:
3520 case R_PARISC_PLTOFF16WF:
3521 case R_PARISC_PLTOFF16DF:
3522 {
3523 /* We want the value of the PLT offset for this symbol, not
3524 the symbol's actual address. Note that __gp may not point
3525 to the start of the DLT, so we have to compute the absolute
3526 address, then subtract out the value of __gp. */
3527 value = (hh->plt_offset
3528 + hppa_info->plt_sec->output_offset
3529 + hppa_info->plt_sec->output_section->vma);
3530 value -= _bfd_get_gp_value (output_bfd);
3531
3532 /* All PLTOFF relocations are basically the same at this point,
3533 except that we need different field selectors for the 21bit
3534 version vs the 14bit versions. */
3535 if (r_type == R_PARISC_PLTOFF21L)
3536 value = hppa_field_adjust (value, addend, e_lrsel);
3537 else if (r_type == R_PARISC_PLTOFF14F
3538 || r_type == R_PARISC_PLTOFF16F
3539 || r_type == R_PARISC_PLTOFF16WF
3540 || r_type == R_PARISC_PLTOFF16DF)
3541 value = hppa_field_adjust (value, addend, e_fsel);
3542 else
3543 value = hppa_field_adjust (value, addend, e_rrsel);
3544
3545 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3546 break;
3547 }
3548
3549 case R_PARISC_LTOFF_FPTR32:
3550 {
3551 /* We may still need to create the FPTR itself if it was for
3552 a local symbol. */
3553 if (hh == NULL)
3554 {
3555 /* The first two words of an .opd entry are zero. */
3556 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3557
3558 /* The next word is the address of the function. */
3559 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3560 (hppa_info->opd_sec->contents
3561 + hh->opd_offset + 16));
3562
3563 /* The last word is our local __gp value. */
3564 value = _bfd_get_gp_value
3565 (hppa_info->opd_sec->output_section->owner);
3566 bfd_put_64 (hppa_info->opd_sec->owner, value,
3567 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3568
3569 /* The DLT value is the address of the .opd entry. */
3570 value = (hh->opd_offset
3571 + hppa_info->opd_sec->output_offset
3572 + hppa_info->opd_sec->output_section->vma);
3573
3574 bfd_put_64 (hppa_info->dlt_sec->owner,
3575 value,
3576 hppa_info->dlt_sec->contents + hh->dlt_offset);
3577 }
3578
3579 /* We want the value of the DLT offset for this symbol, not
3580 the symbol's actual address. Note that __gp may not point
3581 to the start of the DLT, so we have to compute the absolute
3582 address, then subtract out the value of __gp. */
3583 value = (hh->dlt_offset
3584 + hppa_info->dlt_sec->output_offset
3585 + hppa_info->dlt_sec->output_section->vma);
3586 value -= _bfd_get_gp_value (output_bfd);
3587 bfd_put_32 (input_bfd, value, hit_data);
3588 return bfd_reloc_ok;
3589 }
3590
3591 case R_PARISC_LTOFF_FPTR64:
3592 case R_PARISC_LTOFF_TP64:
3593 {
3594 /* We may still need to create the FPTR itself if it was for
3595 a local symbol. */
3596 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3597 {
3598 /* The first two words of an .opd entry are zero. */
3599 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3600
3601 /* The next word is the address of the function. */
3602 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3603 (hppa_info->opd_sec->contents
3604 + hh->opd_offset + 16));
3605
3606 /* The last word is our local __gp value. */
3607 value = _bfd_get_gp_value
3608 (hppa_info->opd_sec->output_section->owner);
3609 bfd_put_64 (hppa_info->opd_sec->owner, value,
3610 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3611
3612 /* The DLT value is the address of the .opd entry. */
3613 value = (hh->opd_offset
3614 + hppa_info->opd_sec->output_offset
3615 + hppa_info->opd_sec->output_section->vma);
3616
3617 bfd_put_64 (hppa_info->dlt_sec->owner,
3618 value,
3619 hppa_info->dlt_sec->contents + hh->dlt_offset);
3620 }
3621
3622 /* We want the value of the DLT offset for this symbol, not
3623 the symbol's actual address. Note that __gp may not point
3624 to the start of the DLT, so we have to compute the absolute
3625 address, then subtract out the value of __gp. */
3626 value = (hh->dlt_offset
3627 + hppa_info->dlt_sec->output_offset
3628 + hppa_info->dlt_sec->output_section->vma);
3629 value -= _bfd_get_gp_value (output_bfd);
3630 bfd_put_64 (input_bfd, value, hit_data);
3631 return bfd_reloc_ok;
3632 }
3633
3634 case R_PARISC_DIR32:
3635 bfd_put_32 (input_bfd, value + addend, hit_data);
3636 return bfd_reloc_ok;
3637
3638 case R_PARISC_DIR64:
3639 bfd_put_64 (input_bfd, value + addend, hit_data);
3640 return bfd_reloc_ok;
3641
3642 case R_PARISC_GPREL64:
3643 /* Subtract out the global pointer value to make value a DLT
3644 relative address. */
3645 value -= _bfd_get_gp_value (output_bfd);
3646
3647 bfd_put_64 (input_bfd, value + addend, hit_data);
3648 return bfd_reloc_ok;
3649
3650 case R_PARISC_LTOFF64:
3651 /* We want the value of the DLT offset for this symbol, not
3652 the symbol's actual address. Note that __gp may not point
3653 to the start of the DLT, so we have to compute the absolute
3654 address, then subtract out the value of __gp. */
3655 value = (hh->dlt_offset
3656 + hppa_info->dlt_sec->output_offset
3657 + hppa_info->dlt_sec->output_section->vma);
3658 value -= _bfd_get_gp_value (output_bfd);
3659
3660 bfd_put_64 (input_bfd, value + addend, hit_data);
3661 return bfd_reloc_ok;
3662
3663 case R_PARISC_PCREL32:
3664 {
3665 /* If this is a call to a function defined in another dynamic
3666 library, then redirect the call to the local stub for this
3667 function. */
3668 if (sym_sec == NULL || sym_sec->output_section == NULL)
3669 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3670 + hppa_info->stub_sec->output_section->vma);
3671
3672 /* Turn VALUE into a proper PC relative address. */
3673 value -= (offset + input_section->output_offset
3674 + input_section->output_section->vma);
3675
3676 value += addend;
3677 value -= 8;
3678 bfd_put_32 (input_bfd, value, hit_data);
3679 return bfd_reloc_ok;
3680 }
3681
3682 case R_PARISC_PCREL64:
3683 {
3684 /* If this is a call to a function defined in another dynamic
3685 library, then redirect the call to the local stub for this
3686 function. */
3687 if (sym_sec == NULL || sym_sec->output_section == NULL)
3688 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3689 + hppa_info->stub_sec->output_section->vma);
3690
3691 /* Turn VALUE into a proper PC relative address. */
3692 value -= (offset + input_section->output_offset
3693 + input_section->output_section->vma);
3694
3695 value += addend;
3696 value -= 8;
3697 bfd_put_64 (input_bfd, value, hit_data);
3698 return bfd_reloc_ok;
3699 }
3700
3701 case R_PARISC_FPTR64:
3702 {
3703 bfd_vma off;
3704
3705 /* We may still need to create the FPTR itself if it was for
3706 a local symbol. */
3707 if (hh == NULL)
3708 {
3709 bfd_vma *local_opd_offsets;
3710
3711 if (local_offsets == NULL)
3712 abort ();
3713
3714 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3715 off = local_opd_offsets[r_symndx];
3716
3717 /* The last bit records whether we've already initialised
3718 this local .opd entry. */
3719 if ((off & 1) != 0)
3720 {
3721 BFD_ASSERT (off != (bfd_vma) -1);
3722 off &= ~1;
3723 }
3724 else
3725 {
3726 /* The first two words of an .opd entry are zero. */
3727 memset (hppa_info->opd_sec->contents + off, 0, 16);
3728
3729 /* The next word is the address of the function. */
3730 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3731 (hppa_info->opd_sec->contents + off + 16));
3732
3733 /* The last word is our local __gp value. */
3734 value = _bfd_get_gp_value
3735 (hppa_info->opd_sec->output_section->owner);
3736 bfd_put_64 (hppa_info->opd_sec->owner, value,
3737 hppa_info->opd_sec->contents + off + 24);
3738 }
3739 }
3740 else
3741 off = hh->opd_offset;
3742
3743 if (hh == NULL || hh->want_opd)
3744 /* We want the value of the OPD offset for this symbol. */
3745 value = (off
3746 + hppa_info->opd_sec->output_offset
3747 + hppa_info->opd_sec->output_section->vma);
3748 else
3749 /* We want the address of the symbol. */
3750 value += addend;
3751
3752 bfd_put_64 (input_bfd, value, hit_data);
3753 return bfd_reloc_ok;
3754 }
3755
3756 case R_PARISC_SECREL32:
3757 if (sym_sec)
3758 value -= sym_sec->output_section->vma;
3759 bfd_put_32 (input_bfd, value + addend, hit_data);
3760 return bfd_reloc_ok;
3761
3762 case R_PARISC_SEGREL32:
3763 case R_PARISC_SEGREL64:
3764 {
3765 /* If this is the first SEGREL relocation, then initialize
3766 the segment base values. */
3767 if (hppa_info->text_segment_base == (bfd_vma) -1)
3768 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3769 hppa_info);
3770
3771 /* VALUE holds the absolute address. We want to include the
3772 addend, then turn it into a segment relative address.
3773
3774 The segment is derived from SYM_SEC. We assume that there are
3775 only two segments of note in the resulting executable/shlib.
3776 A readonly segment (.text) and a readwrite segment (.data). */
3777 value += addend;
3778
3779 if (sym_sec->flags & SEC_CODE)
3780 value -= hppa_info->text_segment_base;
3781 else
3782 value -= hppa_info->data_segment_base;
3783
3784 if (r_type == R_PARISC_SEGREL32)
3785 bfd_put_32 (input_bfd, value, hit_data);
3786 else
3787 bfd_put_64 (input_bfd, value, hit_data);
3788 return bfd_reloc_ok;
3789 }
3790
3791 /* Something we don't know how to handle. */
3792 default:
3793 return bfd_reloc_notsupported;
3794 }
3795
3796 /* Update the instruction word. */
3797 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3798 return bfd_reloc_ok;
3799 }
3800
3801 /* Relocate an HPPA ELF section. */
3802
3803 static bfd_boolean
elf64_hppa_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)3804 elf64_hppa_relocate_section (bfd *output_bfd,
3805 struct bfd_link_info *info,
3806 bfd *input_bfd,
3807 asection *input_section,
3808 bfd_byte *contents,
3809 Elf_Internal_Rela *relocs,
3810 Elf_Internal_Sym *local_syms,
3811 asection **local_sections)
3812 {
3813 Elf_Internal_Shdr *symtab_hdr;
3814 Elf_Internal_Rela *rel;
3815 Elf_Internal_Rela *relend;
3816 struct elf64_hppa_link_hash_table *hppa_info;
3817
3818 hppa_info = hppa_link_hash_table (info);
3819 if (hppa_info == NULL)
3820 return FALSE;
3821
3822 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3823
3824 rel = relocs;
3825 relend = relocs + input_section->reloc_count;
3826 for (; rel < relend; rel++)
3827 {
3828 int r_type;
3829 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3830 unsigned long r_symndx;
3831 struct elf_link_hash_entry *eh;
3832 Elf_Internal_Sym *sym;
3833 asection *sym_sec;
3834 bfd_vma relocation;
3835 bfd_reloc_status_type r;
3836
3837 r_type = ELF_R_TYPE (rel->r_info);
3838 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3839 {
3840 bfd_set_error (bfd_error_bad_value);
3841 return FALSE;
3842 }
3843 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3844 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3845 continue;
3846
3847 /* This is a final link. */
3848 r_symndx = ELF_R_SYM (rel->r_info);
3849 eh = NULL;
3850 sym = NULL;
3851 sym_sec = NULL;
3852 if (r_symndx < symtab_hdr->sh_info)
3853 {
3854 /* This is a local symbol, hh defaults to NULL. */
3855 sym = local_syms + r_symndx;
3856 sym_sec = local_sections[r_symndx];
3857 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3858 }
3859 else
3860 {
3861 /* This is not a local symbol. */
3862 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3863
3864 /* It seems this can happen with erroneous or unsupported
3865 input (mixing a.out and elf in an archive, for example.) */
3866 if (sym_hashes == NULL)
3867 return FALSE;
3868
3869 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3870
3871 if (info->wrap_hash != NULL
3872 && (input_section->flags & SEC_DEBUGGING) != 0)
3873 eh = ((struct elf_link_hash_entry *)
3874 unwrap_hash_lookup (info, input_bfd, &eh->root));
3875
3876 while (eh->root.type == bfd_link_hash_indirect
3877 || eh->root.type == bfd_link_hash_warning)
3878 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3879
3880 relocation = 0;
3881 if (eh->root.type == bfd_link_hash_defined
3882 || eh->root.type == bfd_link_hash_defweak)
3883 {
3884 sym_sec = eh->root.u.def.section;
3885 if (sym_sec != NULL
3886 && sym_sec->output_section != NULL)
3887 relocation = (eh->root.u.def.value
3888 + sym_sec->output_section->vma
3889 + sym_sec->output_offset);
3890 }
3891 else if (eh->root.type == bfd_link_hash_undefweak)
3892 ;
3893 else if (info->unresolved_syms_in_objects == RM_IGNORE
3894 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3895 ;
3896 else if (!info->relocatable
3897 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3898 continue;
3899 else if (!info->relocatable)
3900 {
3901 bfd_boolean err;
3902 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3903 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3904 if (!info->callbacks->undefined_symbol (info,
3905 eh->root.root.string,
3906 input_bfd,
3907 input_section,
3908 rel->r_offset, err))
3909 return FALSE;
3910 }
3911
3912 if (!info->relocatable
3913 && relocation == 0
3914 && eh->root.type != bfd_link_hash_defined
3915 && eh->root.type != bfd_link_hash_defweak
3916 && eh->root.type != bfd_link_hash_undefweak)
3917 {
3918 if (info->unresolved_syms_in_objects == RM_IGNORE
3919 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3920 && eh->type == STT_PARISC_MILLI)
3921 {
3922 if (! info->callbacks->undefined_symbol
3923 (info, eh_name (eh), input_bfd,
3924 input_section, rel->r_offset, FALSE))
3925 return FALSE;
3926 }
3927 }
3928 }
3929
3930 if (sym_sec != NULL && discarded_section (sym_sec))
3931 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3932 rel, 1, relend, howto, 0, contents);
3933
3934 if (info->relocatable)
3935 continue;
3936
3937 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3938 input_section, contents,
3939 relocation, info, sym_sec,
3940 eh);
3941
3942 if (r != bfd_reloc_ok)
3943 {
3944 switch (r)
3945 {
3946 default:
3947 abort ();
3948 case bfd_reloc_overflow:
3949 {
3950 const char *sym_name;
3951
3952 if (eh != NULL)
3953 sym_name = NULL;
3954 else
3955 {
3956 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3957 symtab_hdr->sh_link,
3958 sym->st_name);
3959 if (sym_name == NULL)
3960 return FALSE;
3961 if (*sym_name == '\0')
3962 sym_name = bfd_section_name (input_bfd, sym_sec);
3963 }
3964
3965 if (!((*info->callbacks->reloc_overflow)
3966 (info, (eh ? &eh->root : NULL), sym_name,
3967 howto->name, (bfd_vma) 0, input_bfd,
3968 input_section, rel->r_offset)))
3969 return FALSE;
3970 }
3971 break;
3972 }
3973 }
3974 }
3975 return TRUE;
3976 }
3977
3978 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3979 {
3980 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3981 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3982 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3983 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3984 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3985 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3986 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3987 { NULL, 0, 0, 0, 0 }
3988 };
3989
3990 /* The hash bucket size is the standard one, namely 4. */
3991
3992 const struct elf_size_info hppa64_elf_size_info =
3993 {
3994 sizeof (Elf64_External_Ehdr),
3995 sizeof (Elf64_External_Phdr),
3996 sizeof (Elf64_External_Shdr),
3997 sizeof (Elf64_External_Rel),
3998 sizeof (Elf64_External_Rela),
3999 sizeof (Elf64_External_Sym),
4000 sizeof (Elf64_External_Dyn),
4001 sizeof (Elf_External_Note),
4002 4,
4003 1,
4004 64, 3,
4005 ELFCLASS64, EV_CURRENT,
4006 bfd_elf64_write_out_phdrs,
4007 bfd_elf64_write_shdrs_and_ehdr,
4008 bfd_elf64_checksum_contents,
4009 bfd_elf64_write_relocs,
4010 bfd_elf64_swap_symbol_in,
4011 bfd_elf64_swap_symbol_out,
4012 bfd_elf64_slurp_reloc_table,
4013 bfd_elf64_slurp_symbol_table,
4014 bfd_elf64_swap_dyn_in,
4015 bfd_elf64_swap_dyn_out,
4016 bfd_elf64_swap_reloc_in,
4017 bfd_elf64_swap_reloc_out,
4018 bfd_elf64_swap_reloca_in,
4019 bfd_elf64_swap_reloca_out
4020 };
4021
4022 #define TARGET_BIG_SYM hppa_elf64_vec
4023 #define TARGET_BIG_NAME "elf64-hppa"
4024 #define ELF_ARCH bfd_arch_hppa
4025 #define ELF_TARGET_ID HPPA64_ELF_DATA
4026 #define ELF_MACHINE_CODE EM_PARISC
4027 /* This is not strictly correct. The maximum page size for PA2.0 is
4028 64M. But everything still uses 4k. */
4029 #define ELF_MAXPAGESIZE 0x1000
4030 #define ELF_OSABI ELFOSABI_HPUX
4031
4032 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4033 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4034 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4035 #define elf_info_to_howto elf_hppa_info_to_howto
4036 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4037
4038 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4039 #define elf_backend_object_p elf64_hppa_object_p
4040 #define elf_backend_final_write_processing \
4041 elf_hppa_final_write_processing
4042 #define elf_backend_fake_sections elf_hppa_fake_sections
4043 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4044
4045 #define elf_backend_relocate_section elf_hppa_relocate_section
4046
4047 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4048
4049 #define elf_backend_create_dynamic_sections \
4050 elf64_hppa_create_dynamic_sections
4051 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
4052
4053 #define elf_backend_omit_section_dynsym \
4054 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4055 #define elf_backend_adjust_dynamic_symbol \
4056 elf64_hppa_adjust_dynamic_symbol
4057
4058 #define elf_backend_size_dynamic_sections \
4059 elf64_hppa_size_dynamic_sections
4060
4061 #define elf_backend_finish_dynamic_symbol \
4062 elf64_hppa_finish_dynamic_symbol
4063 #define elf_backend_finish_dynamic_sections \
4064 elf64_hppa_finish_dynamic_sections
4065 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4066 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4067
4068 /* Stuff for the BFD linker: */
4069 #define bfd_elf64_bfd_link_hash_table_create \
4070 elf64_hppa_hash_table_create
4071
4072 #define elf_backend_check_relocs \
4073 elf64_hppa_check_relocs
4074
4075 #define elf_backend_size_info \
4076 hppa64_elf_size_info
4077
4078 #define elf_backend_additional_program_headers \
4079 elf64_hppa_additional_program_headers
4080
4081 #define elf_backend_modify_segment_map \
4082 elf64_hppa_modify_segment_map
4083
4084 #define elf_backend_link_output_symbol_hook \
4085 elf64_hppa_link_output_symbol_hook
4086
4087 #define elf_backend_want_got_plt 0
4088 #define elf_backend_plt_readonly 0
4089 #define elf_backend_want_plt_sym 0
4090 #define elf_backend_got_header_size 0
4091 #define elf_backend_type_change_ok TRUE
4092 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4093 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4094 #define elf_backend_rela_normal 1
4095 #define elf_backend_special_sections elf64_hppa_special_sections
4096 #define elf_backend_action_discarded elf_hppa_action_discarded
4097 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4098
4099 #define elf64_bed elf64_hppa_hpux_bed
4100
4101 #include "elf64-target.h"
4102
4103 #undef TARGET_BIG_SYM
4104 #define TARGET_BIG_SYM hppa_elf64_linux_vec
4105 #undef TARGET_BIG_NAME
4106 #define TARGET_BIG_NAME "elf64-hppa-linux"
4107 #undef ELF_OSABI
4108 #define ELF_OSABI ELFOSABI_GNU
4109 #undef elf64_bed
4110 #define elf64_bed elf64_hppa_linux_bed
4111
4112 #include "elf64-target.h"
4113