1 /*
2  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 
16 #include "./vp9_rtcd.h"
17 #include "./vpx_dsp_rtcd.h"
18 
19 #include "vpx_dsp/vpx_dsp_common.h"
20 #include "vpx_mem/vpx_mem.h"
21 #include "vpx_ports/mem.h"
22 
23 #include "vp9/common/vp9_blockd.h"
24 #include "vp9/common/vp9_common.h"
25 #include "vp9/common/vp9_mvref_common.h"
26 #include "vp9/common/vp9_pred_common.h"
27 #include "vp9/common/vp9_reconinter.h"
28 #include "vp9/common/vp9_reconintra.h"
29 #include "vp9/common/vp9_scan.h"
30 
31 #include "vp9/encoder/vp9_cost.h"
32 #include "vp9/encoder/vp9_encoder.h"
33 #include "vp9/encoder/vp9_pickmode.h"
34 #include "vp9/encoder/vp9_ratectrl.h"
35 #include "vp9/encoder/vp9_rd.h"
36 
37 typedef struct {
38   uint8_t *data;
39   int stride;
40   int in_use;
41 } PRED_BUFFER;
42 
mv_refs_rt(const VP9_COMMON * cm,const MACROBLOCK * x,const MACROBLOCKD * xd,const TileInfo * const tile,MODE_INFO * mi,MV_REFERENCE_FRAME ref_frame,int_mv * mv_ref_list,int mi_row,int mi_col)43 static int mv_refs_rt(const VP9_COMMON *cm, const MACROBLOCK *x,
44                       const MACROBLOCKD *xd,
45                       const TileInfo *const tile,
46                       MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
47                       int_mv *mv_ref_list,
48                       int mi_row, int mi_col) {
49   const int *ref_sign_bias = cm->ref_frame_sign_bias;
50   int i, refmv_count = 0;
51 
52   const POSITION *const mv_ref_search = mv_ref_blocks[mi->mbmi.sb_type];
53 
54   int different_ref_found = 0;
55   int context_counter = 0;
56   int const_motion = 0;
57 
58   // Blank the reference vector list
59   memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);
60 
61   // The nearest 2 blocks are treated differently
62   // if the size < 8x8 we get the mv from the bmi substructure,
63   // and we also need to keep a mode count.
64   for (i = 0; i < 2; ++i) {
65     const POSITION *const mv_ref = &mv_ref_search[i];
66     if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
67       const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row *
68                                                    xd->mi_stride];
69       const MB_MODE_INFO *const candidate = &candidate_mi->mbmi;
70       // Keep counts for entropy encoding.
71       context_counter += mode_2_counter[candidate->mode];
72       different_ref_found = 1;
73 
74       if (candidate->ref_frame[0] == ref_frame)
75         ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1),
76                         refmv_count, mv_ref_list, Done);
77     }
78   }
79 
80   const_motion = 1;
81 
82   // Check the rest of the neighbors in much the same way
83   // as before except we don't need to keep track of sub blocks or
84   // mode counts.
85   for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) {
86     const POSITION *const mv_ref = &mv_ref_search[i];
87     if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
88       const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row *
89                                                     xd->mi_stride]->mbmi;
90       different_ref_found = 1;
91 
92       if (candidate->ref_frame[0] == ref_frame)
93         ADD_MV_REF_LIST(candidate->mv[0], refmv_count, mv_ref_list, Done);
94     }
95   }
96 
97   // Since we couldn't find 2 mvs from the same reference frame
98   // go back through the neighbors and find motion vectors from
99   // different reference frames.
100   if (different_ref_found && !refmv_count) {
101     for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
102       const POSITION *mv_ref = &mv_ref_search[i];
103       if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
104         const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row
105                                               * xd->mi_stride]->mbmi;
106 
107         // If the candidate is INTRA we don't want to consider its mv.
108         IF_DIFF_REF_FRAME_ADD_MV(candidate, ref_frame, ref_sign_bias,
109                                  refmv_count, mv_ref_list, Done);
110       }
111     }
112   }
113 
114  Done:
115 
116   x->mbmi_ext->mode_context[ref_frame] = counter_to_context[context_counter];
117 
118   // Clamp vectors
119   for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i)
120     clamp_mv_ref(&mv_ref_list[i].as_mv, xd);
121 
122   return const_motion;
123 }
124 
combined_motion_search(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col,int_mv * tmp_mv,int * rate_mv,int64_t best_rd_sofar)125 static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
126                                   BLOCK_SIZE bsize, int mi_row, int mi_col,
127                                   int_mv *tmp_mv, int *rate_mv,
128                                   int64_t best_rd_sofar) {
129   MACROBLOCKD *xd = &x->e_mbd;
130   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
131   struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
132   const int step_param = cpi->sf.mv.fullpel_search_step_param;
133   const int sadpb = x->sadperbit16;
134   MV mvp_full;
135   const int ref = mbmi->ref_frame[0];
136   const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
137   int dis;
138   int rate_mode;
139   const int tmp_col_min = x->mv_col_min;
140   const int tmp_col_max = x->mv_col_max;
141   const int tmp_row_min = x->mv_row_min;
142   const int tmp_row_max = x->mv_row_max;
143   int rv = 0;
144   int cost_list[5];
145   const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
146                                                                         ref);
147   if (scaled_ref_frame) {
148     int i;
149     // Swap out the reference frame for a version that's been scaled to
150     // match the resolution of the current frame, allowing the existing
151     // motion search code to be used without additional modifications.
152     for (i = 0; i < MAX_MB_PLANE; i++)
153       backup_yv12[i] = xd->plane[i].pre[0];
154     vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
155   }
156   vp9_set_mv_search_range(x, &ref_mv);
157 
158   assert(x->mv_best_ref_index[ref] <= 2);
159   if (x->mv_best_ref_index[ref] < 2)
160     mvp_full = x->mbmi_ext->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
161   else
162     mvp_full = x->pred_mv[ref];
163 
164   mvp_full.col >>= 3;
165   mvp_full.row >>= 3;
166 
167   vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
168                         cond_cost_list(cpi, cost_list),
169                         &ref_mv, &tmp_mv->as_mv, INT_MAX, 0);
170 
171   x->mv_col_min = tmp_col_min;
172   x->mv_col_max = tmp_col_max;
173   x->mv_row_min = tmp_row_min;
174   x->mv_row_max = tmp_row_max;
175 
176   // calculate the bit cost on motion vector
177   mvp_full.row = tmp_mv->as_mv.row * 8;
178   mvp_full.col = tmp_mv->as_mv.col * 8;
179 
180   *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv,
181                              x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
182 
183   rate_mode = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref]]
184                                   [INTER_OFFSET(NEWMV)];
185   rv = !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) >
186          best_rd_sofar);
187 
188   if (rv) {
189     cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv,
190                                  cpi->common.allow_high_precision_mv,
191                                  x->errorperbit,
192                                  &cpi->fn_ptr[bsize],
193                                  cpi->sf.mv.subpel_force_stop,
194                                  cpi->sf.mv.subpel_iters_per_step,
195                                  cond_cost_list(cpi, cost_list),
196                                  x->nmvjointcost, x->mvcost,
197                                  &dis, &x->pred_sse[ref], NULL, 0, 0);
198     *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv,
199                                x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
200   }
201 
202   if (scaled_ref_frame) {
203     int i;
204     for (i = 0; i < MAX_MB_PLANE; i++)
205       xd->plane[i].pre[0] = backup_yv12[i];
206   }
207   return rv;
208 }
209 
block_variance(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int w,int h,unsigned int * sse,int * sum,int block_size,unsigned int * sse8x8,int * sum8x8,unsigned int * var8x8)210 static void block_variance(const uint8_t *src, int src_stride,
211                            const uint8_t *ref, int ref_stride,
212                            int w, int h, unsigned int *sse, int *sum,
213                            int block_size, unsigned int *sse8x8,
214                            int *sum8x8, unsigned int *var8x8) {
215   int i, j, k = 0;
216 
217   *sse = 0;
218   *sum = 0;
219 
220   for (i = 0; i < h; i += block_size) {
221     for (j = 0; j < w; j += block_size) {
222       vpx_get8x8var(src + src_stride * i + j, src_stride,
223                     ref + ref_stride * i + j, ref_stride,
224                     &sse8x8[k], &sum8x8[k]);
225       *sse += sse8x8[k];
226       *sum += sum8x8[k];
227       var8x8[k] = sse8x8[k] - (((unsigned int)sum8x8[k] * sum8x8[k]) >> 6);
228       k++;
229     }
230   }
231 }
232 
calculate_variance(int bw,int bh,TX_SIZE tx_size,unsigned int * sse_i,int * sum_i,unsigned int * var_o,unsigned int * sse_o,int * sum_o)233 static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
234                                unsigned int *sse_i, int *sum_i,
235                                unsigned int *var_o, unsigned int *sse_o,
236                                int *sum_o) {
237   const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
238   const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
239   const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
240   int i, j, k = 0;
241 
242   for (i = 0; i < nh; i += 2) {
243     for (j = 0; j < nw; j += 2) {
244       sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
245           sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
246       sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
247           sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
248       var_o[k] = sse_o[k] - (((unsigned int)sum_o[k] * sum_o[k]) >>
249           (b_width_log2_lookup[unit_size] +
250               b_height_log2_lookup[unit_size] + 6));
251       k++;
252     }
253   }
254 }
255 
model_rd_for_sb_y_large(VP9_COMP * cpi,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd,int * out_rate_sum,int64_t * out_dist_sum,unsigned int * var_y,unsigned int * sse_y,int mi_row,int mi_col,int * early_term)256 static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize,
257                                     MACROBLOCK *x, MACROBLOCKD *xd,
258                                     int *out_rate_sum, int64_t *out_dist_sum,
259                                     unsigned int *var_y, unsigned int *sse_y,
260                                     int mi_row, int mi_col, int *early_term) {
261   // Note our transform coeffs are 8 times an orthogonal transform.
262   // Hence quantizer step is also 8 times. To get effective quantizer
263   // we need to divide by 8 before sending to modeling function.
264   unsigned int sse;
265   int rate;
266   int64_t dist;
267   struct macroblock_plane *const p = &x->plane[0];
268   struct macroblockd_plane *const pd = &xd->plane[0];
269   const uint32_t dc_quant = pd->dequant[0];
270   const uint32_t ac_quant = pd->dequant[1];
271   const int64_t dc_thr = dc_quant * dc_quant >> 6;
272   const int64_t ac_thr = ac_quant * ac_quant >> 6;
273   unsigned int var;
274   int sum;
275   int skip_dc = 0;
276 
277   const int bw = b_width_log2_lookup[bsize];
278   const int bh = b_height_log2_lookup[bsize];
279   const int num8x8 = 1 << (bw + bh - 2);
280   unsigned int sse8x8[64] = {0};
281   int sum8x8[64] = {0};
282   unsigned int var8x8[64] = {0};
283   TX_SIZE tx_size;
284   int i, k;
285 
286   // Calculate variance for whole partition, and also save 8x8 blocks' variance
287   // to be used in following transform skipping test.
288   block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
289                  4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
290   var = sse - (((int64_t)sum * sum) >> (bw + bh + 4));
291 
292   *var_y = var;
293   *sse_y = sse;
294 
295   if (cpi->common.tx_mode == TX_MODE_SELECT) {
296     if (sse > (var << 2))
297       tx_size = VPXMIN(max_txsize_lookup[bsize],
298                        tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
299     else
300       tx_size = TX_8X8;
301 
302     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
303         cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id))
304       tx_size = TX_8X8;
305     else if (tx_size > TX_16X16)
306       tx_size = TX_16X16;
307   } else {
308     tx_size = VPXMIN(max_txsize_lookup[bsize],
309                      tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
310   }
311 
312   assert(tx_size >= TX_8X8);
313   xd->mi[0]->mbmi.tx_size = tx_size;
314 
315   // Evaluate if the partition block is a skippable block in Y plane.
316   {
317     unsigned int sse16x16[16] = {0};
318     int sum16x16[16] = {0};
319     unsigned int var16x16[16] = {0};
320     const int num16x16 = num8x8 >> 2;
321 
322     unsigned int sse32x32[4] = {0};
323     int sum32x32[4] = {0};
324     unsigned int var32x32[4] = {0};
325     const int num32x32 = num8x8 >> 4;
326 
327     int ac_test = 1;
328     int dc_test = 1;
329     const int num = (tx_size == TX_8X8) ? num8x8 :
330         ((tx_size == TX_16X16) ? num16x16 : num32x32);
331     const unsigned int *sse_tx = (tx_size == TX_8X8) ? sse8x8 :
332         ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
333     const unsigned int *var_tx = (tx_size == TX_8X8) ? var8x8 :
334         ((tx_size == TX_16X16) ? var16x16 : var32x32);
335 
336     // Calculate variance if tx_size > TX_8X8
337     if (tx_size >= TX_16X16)
338       calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
339                          sum16x16);
340     if (tx_size == TX_32X32)
341       calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
342                          sse32x32, sum32x32);
343 
344     // Skipping test
345     x->skip_txfm[0] = SKIP_TXFM_NONE;
346     for (k = 0; k < num; k++)
347       // Check if all ac coefficients can be quantized to zero.
348       if (!(var_tx[k] < ac_thr || var == 0)) {
349         ac_test = 0;
350         break;
351       }
352 
353     for (k = 0; k < num; k++)
354       // Check if dc coefficient can be quantized to zero.
355       if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
356         dc_test = 0;
357         break;
358       }
359 
360     if (ac_test) {
361       x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;
362 
363       if (dc_test)
364         x->skip_txfm[0] = SKIP_TXFM_AC_DC;
365     } else if (dc_test) {
366       skip_dc = 1;
367     }
368   }
369 
370   if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
371     int skip_uv[2] = {0};
372     unsigned int var_uv[2];
373     unsigned int sse_uv[2];
374 
375     *out_rate_sum = 0;
376     *out_dist_sum = sse << 4;
377 
378     // Transform skipping test in UV planes.
379     for (i = 1; i <= 2; i++) {
380       struct macroblock_plane *const p = &x->plane[i];
381       struct macroblockd_plane *const pd = &xd->plane[i];
382       const TX_SIZE uv_tx_size = get_uv_tx_size(&xd->mi[0]->mbmi, pd);
383       const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size];
384       const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd);
385       const int uv_bw = b_width_log2_lookup[uv_bsize];
386       const int uv_bh = b_height_log2_lookup[uv_bsize];
387       const int sf = (uv_bw - b_width_log2_lookup[unit_size]) +
388           (uv_bh - b_height_log2_lookup[unit_size]);
389       const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf);
390       const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf);
391       int j = i - 1;
392 
393       vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i);
394       var_uv[j] = cpi->fn_ptr[uv_bsize].vf(p->src.buf, p->src.stride,
395           pd->dst.buf, pd->dst.stride, &sse_uv[j]);
396 
397       if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
398           (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
399         skip_uv[j] = 1;
400       else
401         break;
402     }
403 
404     // If the transform in YUV planes are skippable, the mode search checks
405     // fewer inter modes and doesn't check intra modes.
406     if (skip_uv[0] & skip_uv[1]) {
407       *early_term = 1;
408     }
409 
410     return;
411   }
412 
413   if (!skip_dc) {
414 #if CONFIG_VP9_HIGHBITDEPTH
415     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
416       vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
417                                    dc_quant >> (xd->bd - 5), &rate, &dist);
418     } else {
419       vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
420                                    dc_quant >> 3, &rate, &dist);
421     }
422 #else
423     vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
424                                  dc_quant >> 3, &rate, &dist);
425 #endif  // CONFIG_VP9_HIGHBITDEPTH
426   }
427 
428   if (!skip_dc) {
429     *out_rate_sum = rate >> 1;
430     *out_dist_sum = dist << 3;
431   } else {
432     *out_rate_sum = 0;
433     *out_dist_sum = (sse - var) << 4;
434   }
435 
436 #if CONFIG_VP9_HIGHBITDEPTH
437   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
438     vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
439                                  ac_quant >> (xd->bd - 5), &rate, &dist);
440   } else {
441     vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
442                                  ac_quant >> 3, &rate, &dist);
443   }
444 #else
445   vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
446                                ac_quant >> 3, &rate, &dist);
447 #endif  // CONFIG_VP9_HIGHBITDEPTH
448 
449   *out_rate_sum += rate;
450   *out_dist_sum += dist << 4;
451 }
452 
model_rd_for_sb_y(VP9_COMP * cpi,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd,int * out_rate_sum,int64_t * out_dist_sum,unsigned int * var_y,unsigned int * sse_y)453 static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
454                               MACROBLOCK *x, MACROBLOCKD *xd,
455                               int *out_rate_sum, int64_t *out_dist_sum,
456                               unsigned int *var_y, unsigned int *sse_y) {
457   // Note our transform coeffs are 8 times an orthogonal transform.
458   // Hence quantizer step is also 8 times. To get effective quantizer
459   // we need to divide by 8 before sending to modeling function.
460   unsigned int sse;
461   int rate;
462   int64_t dist;
463   struct macroblock_plane *const p = &x->plane[0];
464   struct macroblockd_plane *const pd = &xd->plane[0];
465   const int64_t dc_thr = p->quant_thred[0] >> 6;
466   const int64_t ac_thr = p->quant_thred[1] >> 6;
467   const uint32_t dc_quant = pd->dequant[0];
468   const uint32_t ac_quant = pd->dequant[1];
469   unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
470                                            pd->dst.buf, pd->dst.stride, &sse);
471   int skip_dc = 0;
472 
473   *var_y = var;
474   *sse_y = sse;
475 
476   if (cpi->common.tx_mode == TX_MODE_SELECT) {
477     if (sse > (var << 2))
478       xd->mi[0]->mbmi.tx_size =
479           VPXMIN(max_txsize_lookup[bsize],
480                  tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
481     else
482       xd->mi[0]->mbmi.tx_size = TX_8X8;
483 
484     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
485         cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id))
486       xd->mi[0]->mbmi.tx_size = TX_8X8;
487     else if (xd->mi[0]->mbmi.tx_size > TX_16X16)
488       xd->mi[0]->mbmi.tx_size = TX_16X16;
489   } else {
490     xd->mi[0]->mbmi.tx_size =
491         VPXMIN(max_txsize_lookup[bsize],
492                tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
493   }
494 
495   // Evaluate if the partition block is a skippable block in Y plane.
496   {
497     const BLOCK_SIZE unit_size =
498         txsize_to_bsize[xd->mi[0]->mbmi.tx_size];
499     const unsigned int num_blk_log2 =
500         (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) +
501         (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]);
502     const unsigned int sse_tx = sse >> num_blk_log2;
503     const unsigned int var_tx = var >> num_blk_log2;
504 
505     x->skip_txfm[0] = SKIP_TXFM_NONE;
506     // Check if all ac coefficients can be quantized to zero.
507     if (var_tx < ac_thr || var == 0) {
508       x->skip_txfm[0] = SKIP_TXFM_AC_ONLY;
509       // Check if dc coefficient can be quantized to zero.
510       if (sse_tx - var_tx < dc_thr || sse == var)
511         x->skip_txfm[0] = SKIP_TXFM_AC_DC;
512     } else {
513       if (sse_tx - var_tx < dc_thr || sse == var)
514         skip_dc = 1;
515     }
516   }
517 
518   if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) {
519     *out_rate_sum = 0;
520     *out_dist_sum = sse << 4;
521     return;
522   }
523 
524   if (!skip_dc) {
525 #if CONFIG_VP9_HIGHBITDEPTH
526     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
527       vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
528                                    dc_quant >> (xd->bd - 5), &rate, &dist);
529     } else {
530       vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
531                                    dc_quant >> 3, &rate, &dist);
532     }
533 #else
534     vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
535                                  dc_quant >> 3, &rate, &dist);
536 #endif  // CONFIG_VP9_HIGHBITDEPTH
537   }
538 
539   if (!skip_dc) {
540     *out_rate_sum = rate >> 1;
541     *out_dist_sum = dist << 3;
542   } else {
543     *out_rate_sum = 0;
544     *out_dist_sum = (sse - var) << 4;
545   }
546 
547 #if CONFIG_VP9_HIGHBITDEPTH
548   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
549     vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
550                                  ac_quant >> (xd->bd - 5), &rate, &dist);
551   } else {
552     vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
553                                  ac_quant >> 3, &rate, &dist);
554   }
555 #else
556   vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
557                                ac_quant >> 3, &rate, &dist);
558 #endif  // CONFIG_VP9_HIGHBITDEPTH
559 
560   *out_rate_sum += rate;
561   *out_dist_sum += dist << 4;
562 }
563 
564 #if CONFIG_VP9_HIGHBITDEPTH
block_yrd(VP9_COMP * cpi,MACROBLOCK * x,int * rate,int64_t * dist,int * skippable,int64_t * sse,int plane,BLOCK_SIZE bsize,TX_SIZE tx_size)565 static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist,
566                       int *skippable, int64_t *sse, int plane,
567                       BLOCK_SIZE bsize, TX_SIZE tx_size) {
568   MACROBLOCKD *xd = &x->e_mbd;
569   unsigned int var_y, sse_y;
570   (void)plane;
571   (void)tx_size;
572   model_rd_for_sb_y(cpi, bsize, x, xd, rate, dist, &var_y, &sse_y);
573   *sse = INT_MAX;
574   *skippable = 0;
575   return;
576 }
577 #else
block_yrd(VP9_COMP * cpi,MACROBLOCK * x,int * rate,int64_t * dist,int * skippable,int64_t * sse,int plane,BLOCK_SIZE bsize,TX_SIZE tx_size)578 static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *dist,
579                       int *skippable, int64_t *sse, int plane,
580                       BLOCK_SIZE bsize, TX_SIZE tx_size) {
581   MACROBLOCKD *xd = &x->e_mbd;
582   const struct macroblockd_plane *pd = &xd->plane[plane];
583   const struct macroblock_plane *const p = &x->plane[plane];
584   const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
585   const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
586   const int step = 1 << (tx_size << 1);
587   const int block_step = (1 << tx_size);
588   int block = 0, r, c;
589   int shift = tx_size == TX_32X32 ? 0 : 2;
590   const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 :
591       xd->mb_to_right_edge >> (5 + pd->subsampling_x));
592   const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 :
593       xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
594   int eob_cost = 0;
595 
596   (void)cpi;
597   vp9_subtract_plane(x, bsize, plane);
598   *skippable = 1;
599   // Keep track of the row and column of the blocks we use so that we know
600   // if we are in the unrestricted motion border.
601   for (r = 0; r < max_blocks_high; r += block_step) {
602     for (c = 0; c < num_4x4_w; c += block_step) {
603       if (c < max_blocks_wide) {
604         const scan_order *const scan_order = &vp9_default_scan_orders[tx_size];
605         tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
606         tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
607         tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
608         uint16_t *const eob = &p->eobs[block];
609         const int diff_stride = 4 * num_4x4_blocks_wide_lookup[bsize];
610         const int16_t *src_diff;
611         src_diff = &p->src_diff[(r * diff_stride + c) << 2];
612 
613         switch (tx_size) {
614           case TX_32X32:
615             vpx_fdct32x32_rd(src_diff, coeff, diff_stride);
616             vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin,
617                                   p->round_fp, p->quant_fp, p->quant_shift,
618                                   qcoeff, dqcoeff, pd->dequant, eob,
619                                   scan_order->scan, scan_order->iscan);
620             break;
621           case TX_16X16:
622             vp9_hadamard_16x16(src_diff, diff_stride, (int16_t *)coeff);
623             vp9_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
624                             p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
625                             pd->dequant, eob,
626                             scan_order->scan, scan_order->iscan);
627             break;
628           case TX_8X8:
629             vp9_hadamard_8x8(src_diff, diff_stride, (int16_t *)coeff);
630             vp9_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
631                             p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
632                             pd->dequant, eob,
633                             scan_order->scan, scan_order->iscan);
634             break;
635           case TX_4X4:
636             x->fwd_txm4x4(src_diff, coeff, diff_stride);
637             vp9_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
638                             p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
639                             pd->dequant, eob,
640                             scan_order->scan, scan_order->iscan);
641             break;
642           default:
643             assert(0);
644             break;
645         }
646         *skippable &= (*eob == 0);
647         eob_cost += 1;
648       }
649       block += step;
650     }
651   }
652 
653   if (*skippable && *sse < INT64_MAX) {
654     *rate = 0;
655     *dist = (*sse << 6) >> shift;
656     *sse = *dist;
657     return;
658   }
659 
660   block = 0;
661   *rate = 0;
662   *dist = 0;
663   if (*sse < INT64_MAX)
664     *sse = (*sse << 6) >> shift;
665   for (r = 0; r < max_blocks_high; r += block_step) {
666     for (c = 0; c < num_4x4_w; c += block_step) {
667       if (c < max_blocks_wide) {
668         tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
669         tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
670         tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
671         uint16_t *const eob = &p->eobs[block];
672 
673         if (*eob == 1)
674           *rate += (int)abs(qcoeff[0]);
675         else if (*eob > 1)
676           *rate += (int)vp9_satd((const int16_t *)qcoeff, step << 4);
677 
678         *dist += vp9_block_error_fp(coeff, dqcoeff, step << 4) >> shift;
679       }
680       block += step;
681     }
682   }
683 
684   if (*skippable == 0) {
685     *rate <<= 10;
686     *rate += (eob_cost << 8);
687   }
688 }
689 #endif
690 
model_rd_for_sb_uv(VP9_COMP * cpi,BLOCK_SIZE plane_bsize,MACROBLOCK * x,MACROBLOCKD * xd,int * out_rate_sum,int64_t * out_dist_sum,unsigned int * var_y,unsigned int * sse_y,int start_plane,int stop_plane)691 static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE plane_bsize,
692                                MACROBLOCK *x, MACROBLOCKD *xd,
693                                int *out_rate_sum, int64_t *out_dist_sum,
694                                unsigned int *var_y, unsigned int *sse_y,
695                                int start_plane, int stop_plane) {
696   // Note our transform coeffs are 8 times an orthogonal transform.
697   // Hence quantizer step is also 8 times. To get effective quantizer
698   // we need to divide by 8 before sending to modeling function.
699   unsigned int sse;
700   int rate;
701   int64_t dist;
702   int i;
703 
704   *out_rate_sum = 0;
705   *out_dist_sum = 0;
706 
707   for (i = start_plane; i <= stop_plane; ++i) {
708     struct macroblock_plane *const p = &x->plane[i];
709     struct macroblockd_plane *const pd = &xd->plane[i];
710     const uint32_t dc_quant = pd->dequant[0];
711     const uint32_t ac_quant = pd->dequant[1];
712     const BLOCK_SIZE bs = plane_bsize;
713     unsigned int var;
714 
715     if (!x->color_sensitivity[i - 1])
716       continue;
717 
718     var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
719                              pd->dst.buf, pd->dst.stride, &sse);
720     *var_y += var;
721     *sse_y += sse;
722 
723   #if CONFIG_VP9_HIGHBITDEPTH
724     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
725       vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
726                                    dc_quant >> (xd->bd - 5), &rate, &dist);
727     } else {
728       vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
729                                    dc_quant >> 3, &rate, &dist);
730     }
731   #else
732     vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
733                                  dc_quant >> 3, &rate, &dist);
734   #endif  // CONFIG_VP9_HIGHBITDEPTH
735 
736     *out_rate_sum += rate >> 1;
737     *out_dist_sum += dist << 3;
738 
739   #if CONFIG_VP9_HIGHBITDEPTH
740     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
741       vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
742                                    ac_quant >> (xd->bd - 5), &rate, &dist);
743     } else {
744       vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
745                                    ac_quant >> 3, &rate, &dist);
746     }
747   #else
748     vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs],
749                                  ac_quant >> 3, &rate, &dist);
750   #endif  // CONFIG_VP9_HIGHBITDEPTH
751 
752     *out_rate_sum += rate;
753     *out_dist_sum += dist << 4;
754   }
755 }
756 
get_pred_buffer(PRED_BUFFER * p,int len)757 static int get_pred_buffer(PRED_BUFFER *p, int len) {
758   int i;
759 
760   for (i = 0; i < len; i++) {
761     if (!p[i].in_use) {
762       p[i].in_use = 1;
763       return i;
764     }
765   }
766   return -1;
767 }
768 
free_pred_buffer(PRED_BUFFER * p)769 static void free_pred_buffer(PRED_BUFFER *p) {
770   if (p != NULL)
771     p->in_use = 0;
772 }
773 
encode_breakout_test(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col,MV_REFERENCE_FRAME ref_frame,PREDICTION_MODE this_mode,unsigned int var_y,unsigned int sse_y,struct buf_2d yv12_mb[][MAX_MB_PLANE],int * rate,int64_t * dist)774 static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x,
775                                  BLOCK_SIZE bsize, int mi_row, int mi_col,
776                                  MV_REFERENCE_FRAME ref_frame,
777                                  PREDICTION_MODE this_mode,
778                                  unsigned int var_y, unsigned int sse_y,
779                                  struct buf_2d yv12_mb[][MAX_MB_PLANE],
780                                  int *rate, int64_t *dist) {
781   MACROBLOCKD *xd = &x->e_mbd;
782 
783   const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
784   unsigned int var = var_y, sse = sse_y;
785   // Skipping threshold for ac.
786   unsigned int thresh_ac;
787   // Skipping threshold for dc.
788   unsigned int thresh_dc;
789   if (x->encode_breakout > 0) {
790     // Set a maximum for threshold to avoid big PSNR loss in low bit rate
791     // case. Use extreme low threshold for static frames to limit
792     // skipping.
793     const unsigned int max_thresh = 36000;
794     // The encode_breakout input
795     const unsigned int min_thresh =
796         VPXMIN(((unsigned int)x->encode_breakout << 4), max_thresh);
797 #if CONFIG_VP9_HIGHBITDEPTH
798     const int shift = (xd->bd << 1) - 16;
799 #endif
800 
801     // Calculate threshold according to dequant value.
802     thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3;
803 #if CONFIG_VP9_HIGHBITDEPTH
804     if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
805       thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift);
806     }
807 #endif  // CONFIG_VP9_HIGHBITDEPTH
808     thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
809 
810     // Adjust ac threshold according to partition size.
811     thresh_ac >>=
812         8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
813 
814     thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
815 #if CONFIG_VP9_HIGHBITDEPTH
816     if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
817       thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift);
818     }
819 #endif  // CONFIG_VP9_HIGHBITDEPTH
820   } else {
821     thresh_ac = 0;
822     thresh_dc = 0;
823   }
824 
825   // Y skipping condition checking for ac and dc.
826   if (var <= thresh_ac && (sse - var) <= thresh_dc) {
827     unsigned int sse_u, sse_v;
828     unsigned int var_u, var_v;
829 
830     // Skip UV prediction unless breakout is zero (lossless) to save
831     // computation with low impact on the result
832     if (x->encode_breakout == 0) {
833       xd->plane[1].pre[0] = yv12_mb[ref_frame][1];
834       xd->plane[2].pre[0] = yv12_mb[ref_frame][2];
835       vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
836     }
837 
838     var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf,
839                                     x->plane[1].src.stride,
840                                     xd->plane[1].dst.buf,
841                                     xd->plane[1].dst.stride, &sse_u);
842 
843     // U skipping condition checking
844     if (((var_u << 2) <= thresh_ac) && (sse_u - var_u <= thresh_dc)) {
845       var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf,
846                                       x->plane[2].src.stride,
847                                       xd->plane[2].dst.buf,
848                                       xd->plane[2].dst.stride, &sse_v);
849 
850       // V skipping condition checking
851       if (((var_v << 2) <= thresh_ac) && (sse_v - var_v <= thresh_dc)) {
852         x->skip = 1;
853 
854         // The cost of skip bit needs to be added.
855         *rate = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
856                                     [INTER_OFFSET(this_mode)];
857 
858         // More on this part of rate
859         // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
860 
861         // Scaling factor for SSE from spatial domain to frequency
862         // domain is 16. Adjust distortion accordingly.
863         // TODO(yunqingwang): In this function, only y-plane dist is
864         // calculated.
865         *dist = (sse << 4);  // + ((sse_u + sse_v) << 4);
866 
867         // *disable_skip = 1;
868       }
869     }
870   }
871 }
872 
873 struct estimate_block_intra_args {
874   VP9_COMP *cpi;
875   MACROBLOCK *x;
876   PREDICTION_MODE mode;
877   int rate;
878   int64_t dist;
879 };
880 
estimate_block_intra(int plane,int block,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)881 static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
882                                  TX_SIZE tx_size, void *arg) {
883   struct estimate_block_intra_args* const args = arg;
884   VP9_COMP *const cpi = args->cpi;
885   MACROBLOCK *const x = args->x;
886   MACROBLOCKD *const xd = &x->e_mbd;
887   struct macroblock_plane *const p = &x->plane[0];
888   struct macroblockd_plane *const pd = &xd->plane[0];
889   const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
890   uint8_t *const src_buf_base = p->src.buf;
891   uint8_t *const dst_buf_base = pd->dst.buf;
892   const int src_stride = p->src.stride;
893   const int dst_stride = pd->dst.stride;
894   int i, j;
895   int rate;
896   int64_t dist;
897 
898   txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
899 
900   p->src.buf = &src_buf_base[4 * (j * src_stride + i)];
901   pd->dst.buf = &dst_buf_base[4 * (j * dst_stride + i)];
902   // Use source buffer as an approximation for the fully reconstructed buffer.
903   vp9_predict_intra_block(xd, b_width_log2_lookup[plane_bsize],
904                           tx_size, args->mode,
905                           x->skip_encode ? p->src.buf : pd->dst.buf,
906                           x->skip_encode ? src_stride : dst_stride,
907                           pd->dst.buf, dst_stride,
908                           i, j, plane);
909 
910   if (plane == 0) {
911     int64_t this_sse = INT64_MAX;
912     int is_skippable;
913     // TODO(jingning): This needs further refactoring.
914     block_yrd(cpi, x, &rate, &dist, &is_skippable, &this_sse, 0,
915               bsize_tx, VPXMIN(tx_size, TX_16X16));
916     x->skip_txfm[0] = is_skippable;
917     // TODO(jingning): Skip is signalled per prediciton block not per tx block.
918     rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), is_skippable);
919   } else {
920     unsigned int var, sse;
921     model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &rate, &dist, &var, &sse,
922                        plane, plane);
923   }
924 
925   p->src.buf = src_buf_base;
926   pd->dst.buf = dst_buf_base;
927   args->rate += rate;
928   args->dist += dist;
929 }
930 
931 static const THR_MODES mode_idx[MAX_REF_FRAMES - 1][4] = {
932   {THR_DC, THR_V_PRED, THR_H_PRED, THR_TM},
933   {THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV},
934   {THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG},
935 };
936 
937 static const PREDICTION_MODE intra_mode_list[] = {
938   DC_PRED, V_PRED, H_PRED, TM_PRED
939 };
940 
mode_offset(const PREDICTION_MODE mode)941 static int mode_offset(const PREDICTION_MODE mode) {
942   if (mode >= NEARESTMV) {
943     return INTER_OFFSET(mode);
944   } else {
945     switch (mode) {
946       case DC_PRED:
947         return 0;
948       case V_PRED:
949         return 1;
950       case H_PRED:
951         return 2;
952       case TM_PRED:
953         return 3;
954       default:
955         return -1;
956     }
957   }
958 }
959 
update_thresh_freq_fact(VP9_COMP * cpi,TileDataEnc * tile_data,BLOCK_SIZE bsize,MV_REFERENCE_FRAME ref_frame,THR_MODES best_mode_idx,PREDICTION_MODE mode)960 static INLINE void update_thresh_freq_fact(VP9_COMP *cpi,
961                                            TileDataEnc *tile_data,
962                                            BLOCK_SIZE bsize,
963                                            MV_REFERENCE_FRAME ref_frame,
964                                            THR_MODES best_mode_idx,
965                                            PREDICTION_MODE mode) {
966   THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
967   int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx];
968   if (thr_mode_idx == best_mode_idx)
969     *freq_fact -= (*freq_fact >> 4);
970   else
971     *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC,
972                         cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
973 }
974 
vp9_pick_intra_mode(VP9_COMP * cpi,MACROBLOCK * x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)975 void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
976                          BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
977   MACROBLOCKD *const xd = &x->e_mbd;
978   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
979   RD_COST this_rdc, best_rdc;
980   PREDICTION_MODE this_mode;
981   struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
982   const TX_SIZE intra_tx_size =
983       VPXMIN(max_txsize_lookup[bsize],
984              tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
985   MODE_INFO *const mic = xd->mi[0];
986   int *bmode_costs;
987   const MODE_INFO *above_mi = xd->mi[-xd->mi_stride];
988   const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1] : NULL;
989   const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
990   const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
991   bmode_costs = cpi->y_mode_costs[A][L];
992 
993   (void) ctx;
994   vp9_rd_cost_reset(&best_rdc);
995   vp9_rd_cost_reset(&this_rdc);
996 
997   mbmi->ref_frame[0] = INTRA_FRAME;
998   mbmi->mv[0].as_int = INVALID_MV;
999   mbmi->uv_mode = DC_PRED;
1000   memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
1001 
1002   // Change the limit of this loop to add other intra prediction
1003   // mode tests.
1004   for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) {
1005     args.mode = this_mode;
1006     args.rate = 0;
1007     args.dist = 0;
1008     mbmi->tx_size = intra_tx_size;
1009     vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
1010                                            estimate_block_intra, &args);
1011     this_rdc.rate = args.rate;
1012     this_rdc.dist = args.dist;
1013     this_rdc.rate += bmode_costs[this_mode];
1014     this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
1015                              this_rdc.rate, this_rdc.dist);
1016 
1017     if (this_rdc.rdcost < best_rdc.rdcost) {
1018       best_rdc = this_rdc;
1019       mbmi->mode = this_mode;
1020     }
1021   }
1022 
1023   *rd_cost = best_rdc;
1024 }
1025 
init_ref_frame_cost(VP9_COMMON * const cm,MACROBLOCKD * const xd,int ref_frame_cost[MAX_REF_FRAMES])1026 static void init_ref_frame_cost(VP9_COMMON *const cm,
1027                                 MACROBLOCKD *const xd,
1028                                 int ref_frame_cost[MAX_REF_FRAMES]) {
1029   vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
1030   vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
1031   vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
1032 
1033   ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
1034   ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] =
1035     ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1);
1036 
1037   ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
1038   ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
1039   ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
1040   ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
1041   ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
1042 }
1043 
1044 typedef struct {
1045   MV_REFERENCE_FRAME ref_frame;
1046   PREDICTION_MODE pred_mode;
1047 } REF_MODE;
1048 
1049 #define RT_INTER_MODES 8
1050 static const REF_MODE ref_mode_set[RT_INTER_MODES] = {
1051     {LAST_FRAME, ZEROMV},
1052     {LAST_FRAME, NEARESTMV},
1053     {GOLDEN_FRAME, ZEROMV},
1054     {LAST_FRAME, NEARMV},
1055     {LAST_FRAME, NEWMV},
1056     {GOLDEN_FRAME, NEARESTMV},
1057     {GOLDEN_FRAME, NEARMV},
1058     {GOLDEN_FRAME, NEWMV}
1059 };
1060 static const REF_MODE ref_mode_set_svc[RT_INTER_MODES] = {
1061     {LAST_FRAME, ZEROMV},
1062     {GOLDEN_FRAME, ZEROMV},
1063     {LAST_FRAME, NEARESTMV},
1064     {LAST_FRAME, NEARMV},
1065     {GOLDEN_FRAME, NEARESTMV},
1066     {GOLDEN_FRAME, NEARMV},
1067     {LAST_FRAME, NEWMV},
1068     {GOLDEN_FRAME, NEWMV}
1069 };
1070 
1071 // TODO(jingning) placeholder for inter-frame non-RD mode decision.
1072 // this needs various further optimizations. to be continued..
vp9_pick_inter_mode(VP9_COMP * cpi,MACROBLOCK * x,TileDataEnc * tile_data,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)1073 void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
1074                          TileDataEnc *tile_data,
1075                          int mi_row, int mi_col, RD_COST *rd_cost,
1076                          BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
1077   VP9_COMMON *const cm = &cpi->common;
1078   SPEED_FEATURES *const sf = &cpi->sf;
1079   TileInfo *const tile_info = &tile_data->tile_info;
1080   MACROBLOCKD *const xd = &x->e_mbd;
1081   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
1082   struct macroblockd_plane *const pd = &xd->plane[0];
1083   PREDICTION_MODE best_mode = ZEROMV;
1084   MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
1085   MV_REFERENCE_FRAME usable_ref_frame;
1086   TX_SIZE best_tx_size = TX_SIZES;
1087   INTERP_FILTER best_pred_filter = EIGHTTAP;
1088   int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
1089   struct buf_2d yv12_mb[4][MAX_MB_PLANE];
1090   static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
1091                                     VP9_ALT_FLAG };
1092   RD_COST this_rdc, best_rdc;
1093   uint8_t skip_txfm = SKIP_TXFM_NONE, best_mode_skip_txfm = SKIP_TXFM_NONE;
1094   // var_y and sse_y are saved to be used in skipping checking
1095   unsigned int var_y = UINT_MAX;
1096   unsigned int sse_y = UINT_MAX;
1097   // Reduce the intra cost penalty for small blocks (<=16x16).
1098   const int reduction_fac = (bsize <= BLOCK_16X16) ?
1099       ((bsize <= BLOCK_8X8) ? 4 : 2) : 0;
1100   const int intra_cost_penalty = vp9_get_intra_cost_penalty(
1101       cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth) >> reduction_fac;
1102   const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv,
1103                                            intra_cost_penalty, 0);
1104   const int *const rd_threshes = cpi->rd.threshes[mbmi->segment_id][bsize];
1105   const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
1106   INTERP_FILTER filter_ref;
1107   const int bsl = mi_width_log2_lookup[bsize];
1108   const int pred_filter_search = cm->interp_filter == SWITCHABLE ?
1109       (((mi_row + mi_col) >> bsl) +
1110        get_chessboard_index(cm->current_video_frame)) & 0x1 : 0;
1111   int const_motion[MAX_REF_FRAMES] = { 0 };
1112   const int bh = num_4x4_blocks_high_lookup[bsize] << 2;
1113   const int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
1114   // For speed 6, the result of interp filter is reused later in actual encoding
1115   // process.
1116   // tmp[3] points to dst buffer, and the other 3 point to allocated buffers.
1117   PRED_BUFFER tmp[4];
1118   DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]);
1119 #if CONFIG_VP9_HIGHBITDEPTH
1120   DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64]);
1121 #endif
1122   struct buf_2d orig_dst = pd->dst;
1123   PRED_BUFFER *best_pred = NULL;
1124   PRED_BUFFER *this_mode_pred = NULL;
1125   const int pixels_in_block = bh * bw;
1126   int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready;
1127   int ref_frame_skip_mask = 0;
1128   int idx;
1129   int best_pred_sad = INT_MAX;
1130   int best_early_term = 0;
1131   int ref_frame_cost[MAX_REF_FRAMES];
1132 
1133   init_ref_frame_cost(cm, xd, ref_frame_cost);
1134 
1135   if (reuse_inter_pred) {
1136     int i;
1137     for (i = 0; i < 3; i++) {
1138 #if CONFIG_VP9_HIGHBITDEPTH
1139       if (cm->use_highbitdepth)
1140         tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]);
1141       else
1142         tmp[i].data = &pred_buf[pixels_in_block * i];
1143 #else
1144       tmp[i].data = &pred_buf[pixels_in_block * i];
1145 #endif  // CONFIG_VP9_HIGHBITDEPTH
1146       tmp[i].stride = bw;
1147       tmp[i].in_use = 0;
1148     }
1149     tmp[3].data = pd->dst.buf;
1150     tmp[3].stride = pd->dst.stride;
1151     tmp[3].in_use = 0;
1152   }
1153 
1154   x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
1155   x->skip = 0;
1156 
1157   if (xd->up_available)
1158     filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
1159   else if (xd->left_available)
1160     filter_ref = xd->mi[-1]->mbmi.interp_filter;
1161   else
1162     filter_ref = cm->interp_filter;
1163 
1164   // initialize mode decisions
1165   vp9_rd_cost_reset(&best_rdc);
1166   vp9_rd_cost_reset(rd_cost);
1167   mbmi->sb_type = bsize;
1168   mbmi->ref_frame[0] = NONE;
1169   mbmi->ref_frame[1] = NONE;
1170   mbmi->tx_size = VPXMIN(max_txsize_lookup[bsize],
1171                          tx_mode_to_biggest_tx_size[cm->tx_mode]);
1172 
1173 #if CONFIG_VP9_TEMPORAL_DENOISING
1174   vp9_denoiser_reset_frame_stats(ctx);
1175 #endif
1176 
1177   if (cpi->rc.frames_since_golden == 0 && !cpi->use_svc) {
1178     usable_ref_frame = LAST_FRAME;
1179   } else {
1180     usable_ref_frame = GOLDEN_FRAME;
1181   }
1182   for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) {
1183     const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
1184 
1185     x->pred_mv_sad[ref_frame] = INT_MAX;
1186     frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
1187     frame_mv[ZEROMV][ref_frame].as_int = 0;
1188 
1189     if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
1190       int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
1191       const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
1192 
1193       vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
1194                            sf, sf);
1195 
1196       if (cm->use_prev_frame_mvs)
1197         vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame,
1198                          candidates, mi_row, mi_col, NULL, NULL,
1199                          x->mbmi_ext->mode_context);
1200       else
1201         const_motion[ref_frame] = mv_refs_rt(cm, x, xd, tile_info,
1202                                              xd->mi[0],
1203                                              ref_frame, candidates,
1204                                              mi_row, mi_col);
1205 
1206       vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
1207                             &frame_mv[NEARESTMV][ref_frame],
1208                             &frame_mv[NEARMV][ref_frame]);
1209 
1210       if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8)
1211         vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
1212                     ref_frame, bsize);
1213     } else {
1214       ref_frame_skip_mask |= (1 << ref_frame);
1215     }
1216   }
1217 
1218   for (idx = 0; idx < RT_INTER_MODES; ++idx) {
1219     int rate_mv = 0;
1220     int mode_rd_thresh;
1221     int mode_index;
1222     int i;
1223     int64_t this_sse;
1224     int is_skippable;
1225     int this_early_term = 0;
1226     PREDICTION_MODE this_mode = ref_mode_set[idx].pred_mode;
1227     if (cpi->use_svc)
1228       this_mode = ref_mode_set_svc[idx].pred_mode;
1229 
1230     if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode)))
1231       continue;
1232 
1233     ref_frame = ref_mode_set[idx].ref_frame;
1234     if (cpi->use_svc)
1235       ref_frame = ref_mode_set_svc[idx].ref_frame;
1236     if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
1237       continue;
1238     if (const_motion[ref_frame] && this_mode == NEARMV)
1239       continue;
1240 
1241     if (!(this_mode == ZEROMV && ref_frame == LAST_FRAME)) {
1242       i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME;
1243       if ((cpi->ref_frame_flags & flag_list[i]) && sf->reference_masking)
1244         if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1))
1245           ref_frame_skip_mask |= (1 << ref_frame);
1246     }
1247     if (ref_frame_skip_mask & (1 << ref_frame))
1248       continue;
1249 
1250     // Select prediction reference frames.
1251     for (i = 0; i < MAX_MB_PLANE; i++)
1252       xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
1253 
1254     mbmi->ref_frame[0] = ref_frame;
1255     set_ref_ptrs(cm, xd, ref_frame, NONE);
1256 
1257     mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
1258     mode_rd_thresh = best_mode_skip_txfm ?
1259             rd_threshes[mode_index] << 1 : rd_threshes[mode_index];
1260     if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
1261                             rd_thresh_freq_fact[mode_index]))
1262       continue;
1263 
1264     if (this_mode == NEWMV) {
1265       if (ref_frame > LAST_FRAME && !cpi->use_svc) {
1266         int tmp_sad;
1267         int dis, cost_list[5];
1268 
1269         if (bsize < BLOCK_16X16)
1270           continue;
1271 
1272         tmp_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
1273 
1274         if (tmp_sad > x->pred_mv_sad[LAST_FRAME])
1275           continue;
1276         if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad)
1277           continue;
1278 
1279         frame_mv[NEWMV][ref_frame].as_int = mbmi->mv[0].as_int;
1280         rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv,
1281           &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
1282           x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
1283         frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
1284         frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
1285 
1286         cpi->find_fractional_mv_step(x, &frame_mv[NEWMV][ref_frame].as_mv,
1287           &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv,
1288           cpi->common.allow_high_precision_mv,
1289           x->errorperbit,
1290           &cpi->fn_ptr[bsize],
1291           cpi->sf.mv.subpel_force_stop,
1292           cpi->sf.mv.subpel_iters_per_step,
1293           cond_cost_list(cpi, cost_list),
1294           x->nmvjointcost, x->mvcost, &dis,
1295           &x->pred_sse[ref_frame], NULL, 0, 0);
1296       } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
1297         &frame_mv[NEWMV][ref_frame], &rate_mv, best_rdc.rdcost)) {
1298         continue;
1299       }
1300     }
1301 
1302     if (this_mode == NEWMV && ref_frame == LAST_FRAME &&
1303         frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) {
1304       const int pre_stride = xd->plane[0].pre[0].stride;
1305       const uint8_t * const pre_buf = xd->plane[0].pre[0].buf +
1306           (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride +
1307           (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3);
1308       best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
1309                                    x->plane[0].src.stride,
1310                                    pre_buf, pre_stride);
1311       x->pred_mv_sad[LAST_FRAME] = best_pred_sad;
1312     }
1313 
1314     if (cpi->use_svc) {
1315       if (this_mode == NEWMV && ref_frame == GOLDEN_FRAME &&
1316           frame_mv[NEWMV][GOLDEN_FRAME].as_int != INVALID_MV) {
1317         const int pre_stride = xd->plane[0].pre[0].stride;
1318         const uint8_t * const pre_buf = xd->plane[0].pre[0].buf +
1319             (frame_mv[NEWMV][GOLDEN_FRAME].as_mv.row >> 3) * pre_stride +
1320             (frame_mv[NEWMV][GOLDEN_FRAME].as_mv.col >> 3);
1321         best_pred_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf,
1322                                                x->plane[0].src.stride,
1323                                                pre_buf, pre_stride);
1324         x->pred_mv_sad[GOLDEN_FRAME] = best_pred_sad;
1325       }
1326     }
1327 
1328 
1329     if (this_mode != NEARESTMV &&
1330         frame_mv[this_mode][ref_frame].as_int ==
1331             frame_mv[NEARESTMV][ref_frame].as_int)
1332       continue;
1333 
1334     mbmi->mode = this_mode;
1335     mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
1336 
1337     // Search for the best prediction filter type, when the resulting
1338     // motion vector is at sub-pixel accuracy level for luma component, i.e.,
1339     // the last three bits are all zeros.
1340     if (reuse_inter_pred) {
1341       if (!this_mode_pred) {
1342         this_mode_pred = &tmp[3];
1343       } else {
1344         this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
1345         pd->dst.buf = this_mode_pred->data;
1346         pd->dst.stride = bw;
1347       }
1348     }
1349 
1350     if ((this_mode == NEWMV || filter_ref == SWITCHABLE) && pred_filter_search
1351         && (ref_frame == LAST_FRAME ||
1352             (ref_frame == GOLDEN_FRAME && cpi->use_svc))
1353         && (((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07) != 0)) {
1354       int pf_rate[3];
1355       int64_t pf_dist[3];
1356       unsigned int pf_var[3];
1357       unsigned int pf_sse[3];
1358       TX_SIZE pf_tx_size[3];
1359       int64_t best_cost = INT64_MAX;
1360       INTERP_FILTER best_filter = SWITCHABLE, filter;
1361       PRED_BUFFER *current_pred = this_mode_pred;
1362 
1363       for (filter = EIGHTTAP; filter <= EIGHTTAP_SMOOTH; ++filter) {
1364         int64_t cost;
1365         mbmi->interp_filter = filter;
1366         vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1367         model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter],
1368                           &pf_var[filter], &pf_sse[filter]);
1369         pf_rate[filter] += vp9_get_switchable_rate(cpi, xd);
1370         cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]);
1371         pf_tx_size[filter] = mbmi->tx_size;
1372         if (cost < best_cost) {
1373           best_filter = filter;
1374           best_cost = cost;
1375           skip_txfm = x->skip_txfm[0];
1376 
1377           if (reuse_inter_pred) {
1378             if (this_mode_pred != current_pred) {
1379               free_pred_buffer(this_mode_pred);
1380               this_mode_pred = current_pred;
1381             }
1382 
1383             if (filter < EIGHTTAP_SHARP) {
1384               current_pred = &tmp[get_pred_buffer(tmp, 3)];
1385               pd->dst.buf = current_pred->data;
1386               pd->dst.stride = bw;
1387             }
1388           }
1389         }
1390       }
1391 
1392       if (reuse_inter_pred && this_mode_pred != current_pred)
1393         free_pred_buffer(current_pred);
1394 
1395       mbmi->interp_filter = best_filter;
1396       mbmi->tx_size = pf_tx_size[best_filter];
1397       this_rdc.rate = pf_rate[best_filter];
1398       this_rdc.dist = pf_dist[best_filter];
1399       var_y = pf_var[best_filter];
1400       sse_y = pf_sse[best_filter];
1401       x->skip_txfm[0] = skip_txfm;
1402       if (reuse_inter_pred) {
1403         pd->dst.buf = this_mode_pred->data;
1404         pd->dst.stride = this_mode_pred->stride;
1405       }
1406     } else {
1407       mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref;
1408       vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
1409 
1410       // For large partition blocks, extra testing is done.
1411       if (bsize > BLOCK_32X32 &&
1412         !cyclic_refresh_segment_id_boosted(xd->mi[0]->mbmi.segment_id) &&
1413         cm->base_qindex) {
1414         model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate,
1415                                 &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col,
1416                                 &this_early_term);
1417       } else {
1418         model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
1419                           &var_y, &sse_y);
1420       }
1421     }
1422 
1423     if (!this_early_term) {
1424       this_sse = (int64_t)sse_y;
1425       block_yrd(cpi, x, &this_rdc.rate, &this_rdc.dist, &is_skippable,
1426                 &this_sse, 0, bsize, VPXMIN(mbmi->tx_size, TX_16X16));
1427       x->skip_txfm[0] = is_skippable;
1428       if (is_skippable) {
1429         this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
1430       } else {
1431         if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) <
1432             RDCOST(x->rdmult, x->rddiv, 0, this_sse)) {
1433           this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
1434         } else {
1435           this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
1436           this_rdc.dist = this_sse;
1437           x->skip_txfm[0] = SKIP_TXFM_AC_DC;
1438         }
1439       }
1440 
1441       if (cm->interp_filter == SWITCHABLE) {
1442         if ((mbmi->mv[0].as_mv.row | mbmi->mv[0].as_mv.col) & 0x07)
1443           this_rdc.rate += vp9_get_switchable_rate(cpi, xd);
1444       }
1445     } else {
1446       this_rdc.rate += cm->interp_filter == SWITCHABLE ?
1447           vp9_get_switchable_rate(cpi, xd) : 0;
1448       this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
1449     }
1450 
1451     if (x->color_sensitivity[0] || x->color_sensitivity[1]) {
1452       int uv_rate = 0;
1453       int64_t uv_dist = 0;
1454       const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, &xd->plane[1]);
1455       if (x->color_sensitivity[0])
1456         vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1);
1457       if (x->color_sensitivity[1])
1458         vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2);
1459       model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &uv_rate, &uv_dist,
1460                          &var_y, &sse_y, 1, 2);
1461       this_rdc.rate += uv_rate;
1462       this_rdc.dist += uv_dist;
1463     }
1464 
1465     this_rdc.rate += rate_mv;
1466     this_rdc.rate +=
1467         cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]][INTER_OFFSET(
1468             this_mode)];
1469     this_rdc.rate += ref_frame_cost[ref_frame];
1470     this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
1471 
1472     // Skipping checking: test to see if this block can be reconstructed by
1473     // prediction only.
1474     if (cpi->allow_encode_breakout) {
1475       encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode,
1476                            var_y, sse_y, yv12_mb, &this_rdc.rate,
1477                            &this_rdc.dist);
1478       if (x->skip) {
1479         this_rdc.rate += rate_mv;
1480         this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate,
1481                                  this_rdc.dist);
1482       }
1483     }
1484 
1485 #if CONFIG_VP9_TEMPORAL_DENOISING
1486     if (cpi->oxcf.noise_sensitivity > 0)
1487       vp9_denoiser_update_frame_stats(mbmi, sse_y, this_mode, ctx);
1488 #else
1489     (void)ctx;
1490 #endif
1491 
1492     if (this_rdc.rdcost < best_rdc.rdcost || x->skip) {
1493       best_rdc = this_rdc;
1494       best_mode = this_mode;
1495       best_pred_filter = mbmi->interp_filter;
1496       best_tx_size = mbmi->tx_size;
1497       best_ref_frame = ref_frame;
1498       best_mode_skip_txfm = x->skip_txfm[0];
1499       best_early_term = this_early_term;
1500 
1501       if (reuse_inter_pred) {
1502         free_pred_buffer(best_pred);
1503         best_pred = this_mode_pred;
1504       }
1505     } else {
1506       if (reuse_inter_pred)
1507         free_pred_buffer(this_mode_pred);
1508     }
1509 
1510     if (x->skip)
1511       break;
1512 
1513     // If early termination flag is 1 and at least 2 modes are checked,
1514     // the mode search is terminated.
1515     if (best_early_term && idx > 0) {
1516       x->skip = 1;
1517       break;
1518     }
1519   }
1520 
1521   mbmi->mode          = best_mode;
1522   mbmi->interp_filter = best_pred_filter;
1523   mbmi->tx_size       = best_tx_size;
1524   mbmi->ref_frame[0]  = best_ref_frame;
1525   mbmi->mv[0].as_int  = frame_mv[best_mode][best_ref_frame].as_int;
1526   xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
1527   x->skip_txfm[0] = best_mode_skip_txfm;
1528 
1529   // Perform intra prediction search, if the best SAD is above a certain
1530   // threshold.
1531   if (best_rdc.rdcost == INT64_MAX ||
1532       (!x->skip && best_rdc.rdcost > inter_mode_thresh &&
1533        bsize <= cpi->sf.max_intra_bsize)) {
1534     struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
1535     int i;
1536     TX_SIZE best_intra_tx_size = TX_SIZES;
1537     TX_SIZE intra_tx_size =
1538         VPXMIN(max_txsize_lookup[bsize],
1539                tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
1540     if (cpi->oxcf.content != VP9E_CONTENT_SCREEN && intra_tx_size > TX_16X16)
1541       intra_tx_size = TX_16X16;
1542 
1543     if (reuse_inter_pred && best_pred != NULL) {
1544       if (best_pred->data == orig_dst.buf) {
1545         this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
1546 #if CONFIG_VP9_HIGHBITDEPTH
1547         if (cm->use_highbitdepth)
1548           vpx_highbd_convolve_copy(best_pred->data, best_pred->stride,
1549                                    this_mode_pred->data, this_mode_pred->stride,
1550                                    NULL, 0, NULL, 0, bw, bh, xd->bd);
1551         else
1552           vpx_convolve_copy(best_pred->data, best_pred->stride,
1553                           this_mode_pred->data, this_mode_pred->stride,
1554                           NULL, 0, NULL, 0, bw, bh);
1555 #else
1556         vpx_convolve_copy(best_pred->data, best_pred->stride,
1557                           this_mode_pred->data, this_mode_pred->stride,
1558                           NULL, 0, NULL, 0, bw, bh);
1559 #endif  // CONFIG_VP9_HIGHBITDEPTH
1560         best_pred = this_mode_pred;
1561       }
1562     }
1563     pd->dst = orig_dst;
1564 
1565     for (i = 0; i < 4; ++i) {
1566       const PREDICTION_MODE this_mode = intra_mode_list[i];
1567       THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
1568       int mode_rd_thresh = rd_threshes[mode_index];
1569 
1570       if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize]))
1571         continue;
1572 
1573       if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
1574                               rd_thresh_freq_fact[mode_index]))
1575         continue;
1576 
1577       mbmi->mode = this_mode;
1578       mbmi->ref_frame[0] = INTRA_FRAME;
1579       args.mode = this_mode;
1580       args.rate = 0;
1581       args.dist = 0;
1582       mbmi->tx_size = intra_tx_size;
1583       vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
1584                                              estimate_block_intra, &args);
1585       // Inter and intra RD will mismatch in scale for non-screen content.
1586       if (cpi->oxcf.content == VP9E_CONTENT_SCREEN) {
1587         if (x->color_sensitivity[0])
1588           vp9_foreach_transformed_block_in_plane(xd, bsize, 1,
1589                                                  estimate_block_intra, &args);
1590         if (x->color_sensitivity[1])
1591           vp9_foreach_transformed_block_in_plane(xd, bsize, 2,
1592                                                  estimate_block_intra, &args);
1593       }
1594       this_rdc.rate = args.rate;
1595       this_rdc.dist = args.dist;
1596       this_rdc.rate += cpi->mbmode_cost[this_mode];
1597       this_rdc.rate += ref_frame_cost[INTRA_FRAME];
1598       this_rdc.rate += intra_cost_penalty;
1599       this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
1600                                this_rdc.rate, this_rdc.dist);
1601 
1602       if (this_rdc.rdcost < best_rdc.rdcost) {
1603         best_rdc = this_rdc;
1604         best_mode = this_mode;
1605         best_intra_tx_size = mbmi->tx_size;
1606         best_ref_frame = INTRA_FRAME;
1607         mbmi->uv_mode = this_mode;
1608         mbmi->mv[0].as_int = INVALID_MV;
1609         best_mode_skip_txfm = x->skip_txfm[0];
1610       }
1611     }
1612 
1613     // Reset mb_mode_info to the best inter mode.
1614     if (best_ref_frame != INTRA_FRAME) {
1615       mbmi->tx_size = best_tx_size;
1616     } else {
1617       mbmi->tx_size = best_intra_tx_size;
1618     }
1619   }
1620 
1621   pd->dst = orig_dst;
1622   mbmi->mode = best_mode;
1623   mbmi->ref_frame[0] = best_ref_frame;
1624   x->skip_txfm[0] = best_mode_skip_txfm;
1625 
1626   if (reuse_inter_pred && best_pred != NULL) {
1627     if (best_pred->data != orig_dst.buf && is_inter_mode(mbmi->mode)) {
1628 #if CONFIG_VP9_HIGHBITDEPTH
1629       if (cm->use_highbitdepth)
1630         vpx_highbd_convolve_copy(best_pred->data, best_pred->stride,
1631                                  pd->dst.buf, pd->dst.stride, NULL, 0,
1632                                  NULL, 0, bw, bh, xd->bd);
1633       else
1634         vpx_convolve_copy(best_pred->data, best_pred->stride,
1635                           pd->dst.buf, pd->dst.stride, NULL, 0,
1636                           NULL, 0, bw, bh);
1637 #else
1638       vpx_convolve_copy(best_pred->data, best_pred->stride,
1639                         pd->dst.buf, pd->dst.stride, NULL, 0,
1640                         NULL, 0, bw, bh);
1641 #endif  // CONFIG_VP9_HIGHBITDEPTH
1642     }
1643   }
1644 
1645   if (cpi->sf.adaptive_rd_thresh) {
1646     THR_MODES best_mode_idx = mode_idx[best_ref_frame][mode_offset(mbmi->mode)];
1647 
1648     if (best_ref_frame == INTRA_FRAME) {
1649       // Only consider the modes that are included in the intra_mode_list.
1650       int intra_modes = sizeof(intra_mode_list)/sizeof(PREDICTION_MODE);
1651       int i;
1652 
1653       // TODO(yunqingwang): Check intra mode mask and only update freq_fact
1654       // for those valid modes.
1655       for (i = 0; i < intra_modes; i++) {
1656         update_thresh_freq_fact(cpi, tile_data, bsize, INTRA_FRAME,
1657                                 best_mode_idx, intra_mode_list[i]);
1658       }
1659     } else {
1660       for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
1661         PREDICTION_MODE this_mode;
1662         if (best_ref_frame != ref_frame) continue;
1663         for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
1664           update_thresh_freq_fact(cpi, tile_data, bsize, ref_frame,
1665                                   best_mode_idx, this_mode);
1666         }
1667       }
1668     }
1669   }
1670 
1671   *rd_cost = best_rdc;
1672 }
1673 
vp9_pick_inter_mode_sub8x8(VP9_COMP * cpi,MACROBLOCK * x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)1674 void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
1675                                 int mi_row, int mi_col, RD_COST *rd_cost,
1676                                 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
1677   VP9_COMMON *const cm = &cpi->common;
1678   SPEED_FEATURES *const sf = &cpi->sf;
1679   MACROBLOCKD *const xd = &x->e_mbd;
1680   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
1681   MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
1682   const struct segmentation *const seg = &cm->seg;
1683   MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE;
1684   MV_REFERENCE_FRAME best_ref_frame = NONE;
1685   unsigned char segment_id = mbmi->segment_id;
1686   struct buf_2d yv12_mb[4][MAX_MB_PLANE];
1687   static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
1688                                     VP9_ALT_FLAG };
1689   int64_t best_rd = INT64_MAX;
1690   b_mode_info bsi[MAX_REF_FRAMES][4];
1691   int ref_frame_skip_mask = 0;
1692   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
1693   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
1694   int idx, idy;
1695 
1696   x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
1697   ctx->pred_pixel_ready = 0;
1698 
1699   for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
1700     const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
1701     int_mv dummy_mv[2];
1702     x->pred_mv_sad[ref_frame] = INT_MAX;
1703 
1704     if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) {
1705       int_mv *const candidates = mbmi_ext->ref_mvs[ref_frame];
1706       const struct scale_factors *const sf =
1707                              &cm->frame_refs[ref_frame - 1].sf;
1708       vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
1709                            sf, sf);
1710       vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame,
1711                        candidates, mi_row, mi_col, NULL, NULL,
1712                        mbmi_ext->mode_context);
1713 
1714       vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
1715                             &dummy_mv[0], &dummy_mv[1]);
1716     } else {
1717       ref_frame_skip_mask |= (1 << ref_frame);
1718     }
1719   }
1720 
1721   mbmi->sb_type = bsize;
1722   mbmi->tx_size = TX_4X4;
1723   mbmi->uv_mode = DC_PRED;
1724   mbmi->ref_frame[0] = LAST_FRAME;
1725   mbmi->ref_frame[1] = NONE;
1726   mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
1727                                                         : cm->interp_filter;
1728 
1729   for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
1730     int64_t this_rd = 0;
1731     int plane;
1732 
1733     if (ref_frame_skip_mask & (1 << ref_frame))
1734       continue;
1735 
1736     // TODO(jingning, agrange): Scaling reference frame not supported for
1737     // sub8x8 blocks. Is this supported now?
1738     if (ref_frame > INTRA_FRAME &&
1739         vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
1740       continue;
1741 
1742     // If the segment reference frame feature is enabled....
1743     // then do nothing if the current ref frame is not allowed..
1744     if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
1745         get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
1746       continue;
1747 
1748     mbmi->ref_frame[0] = ref_frame;
1749     x->skip = 0;
1750     set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
1751 
1752     // Select prediction reference frames.
1753     for (plane = 0; plane < MAX_MB_PLANE; plane++)
1754       xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane];
1755 
1756     for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
1757       for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
1758         int_mv b_mv[MB_MODE_COUNT];
1759         int64_t b_best_rd = INT64_MAX;
1760         const int i = idy * 2 + idx;
1761         PREDICTION_MODE this_mode;
1762         RD_COST this_rdc;
1763         unsigned int var_y, sse_y;
1764 
1765         struct macroblock_plane *p = &x->plane[0];
1766         struct macroblockd_plane *pd = &xd->plane[0];
1767 
1768         const struct buf_2d orig_src = p->src;
1769         const struct buf_2d orig_dst = pd->dst;
1770         struct buf_2d orig_pre[2];
1771         memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre));
1772 
1773         // set buffer pointers for sub8x8 motion search.
1774         p->src.buf =
1775             &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
1776         pd->dst.buf =
1777             &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
1778         pd->pre[0].buf =
1779             &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8,
1780                                                     i, pd->pre[0].stride)];
1781 
1782         b_mv[ZEROMV].as_int = 0;
1783         b_mv[NEWMV].as_int = INVALID_MV;
1784         vp9_append_sub8x8_mvs_for_idx(cm, xd, i, 0, mi_row, mi_col,
1785                                       &b_mv[NEARESTMV],
1786                                       &b_mv[NEARMV],
1787                                       mbmi_ext->mode_context);
1788 
1789         for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
1790           int b_rate = 0;
1791           xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int;
1792 
1793           if (this_mode == NEWMV) {
1794             const int step_param = cpi->sf.mv.fullpel_search_step_param;
1795             MV mvp_full;
1796             MV tmp_mv;
1797             int cost_list[5];
1798             const int tmp_col_min = x->mv_col_min;
1799             const int tmp_col_max = x->mv_col_max;
1800             const int tmp_row_min = x->mv_row_min;
1801             const int tmp_row_max = x->mv_row_max;
1802             int dummy_dist;
1803 
1804             if (i == 0) {
1805               mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3;
1806               mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3;
1807             } else {
1808               mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3;
1809               mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3;
1810             }
1811 
1812             vp9_set_mv_search_range(x, &mbmi_ext->ref_mvs[0]->as_mv);
1813 
1814             vp9_full_pixel_search(
1815                 cpi, x, bsize, &mvp_full, step_param, x->sadperbit4,
1816                 cond_cost_list(cpi, cost_list),
1817                 &mbmi_ext->ref_mvs[ref_frame][0].as_mv, &tmp_mv,
1818                 INT_MAX, 0);
1819 
1820             x->mv_col_min = tmp_col_min;
1821             x->mv_col_max = tmp_col_max;
1822             x->mv_row_min = tmp_row_min;
1823             x->mv_row_max = tmp_row_max;
1824 
1825             // calculate the bit cost on motion vector
1826             mvp_full.row = tmp_mv.row * 8;
1827             mvp_full.col = tmp_mv.col * 8;
1828 
1829             b_rate += vp9_mv_bit_cost(&mvp_full,
1830                                       &mbmi_ext->ref_mvs[ref_frame][0].as_mv,
1831                                       x->nmvjointcost, x->mvcost,
1832                                       MV_COST_WEIGHT);
1833 
1834             b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
1835                                           [INTER_OFFSET(NEWMV)];
1836             if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd)
1837               continue;
1838 
1839             cpi->find_fractional_mv_step(x, &tmp_mv,
1840                                          &mbmi_ext->ref_mvs[ref_frame][0].as_mv,
1841                                          cpi->common.allow_high_precision_mv,
1842                                          x->errorperbit,
1843                                          &cpi->fn_ptr[bsize],
1844                                          cpi->sf.mv.subpel_force_stop,
1845                                          cpi->sf.mv.subpel_iters_per_step,
1846                                          cond_cost_list(cpi, cost_list),
1847                                          x->nmvjointcost, x->mvcost,
1848                                          &dummy_dist,
1849                                          &x->pred_sse[ref_frame], NULL, 0, 0);
1850 
1851             xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv;
1852           } else {
1853             b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]]
1854                                           [INTER_OFFSET(this_mode)];
1855           }
1856 
1857 #if CONFIG_VP9_HIGHBITDEPTH
1858           if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1859             vp9_highbd_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride,
1860                                     pd->dst.buf, pd->dst.stride,
1861                                     &xd->mi[0]->bmi[i].as_mv[0].as_mv,
1862                                     &xd->block_refs[0]->sf,
1863                                     4 * num_4x4_blocks_wide,
1864                                     4 * num_4x4_blocks_high, 0,
1865                                     vp9_filter_kernels[mbmi->interp_filter],
1866                                     MV_PRECISION_Q3,
1867                                     mi_col * MI_SIZE + 4 * (i & 0x01),
1868                                     mi_row * MI_SIZE + 4 * (i >> 1), xd->bd);
1869           } else {
1870 #endif
1871             vp9_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride,
1872                                      pd->dst.buf, pd->dst.stride,
1873                                      &xd->mi[0]->bmi[i].as_mv[0].as_mv,
1874                                      &xd->block_refs[0]->sf,
1875                                      4 * num_4x4_blocks_wide,
1876                                      4 * num_4x4_blocks_high, 0,
1877                                      vp9_filter_kernels[mbmi->interp_filter],
1878                                      MV_PRECISION_Q3,
1879                                      mi_col * MI_SIZE + 4 * (i & 0x01),
1880                                      mi_row * MI_SIZE + 4 * (i >> 1));
1881 
1882 #if CONFIG_VP9_HIGHBITDEPTH
1883           }
1884 #endif
1885 
1886           model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
1887                             &var_y, &sse_y);
1888 
1889           this_rdc.rate += b_rate;
1890           this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
1891                                    this_rdc.rate, this_rdc.dist);
1892           if (this_rdc.rdcost < b_best_rd) {
1893             b_best_rd = this_rdc.rdcost;
1894             bsi[ref_frame][i].as_mode = this_mode;
1895             bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv;
1896           }
1897         }  // mode search
1898 
1899         // restore source and prediction buffer pointers.
1900         p->src = orig_src;
1901         pd->pre[0] = orig_pre[0];
1902         pd->dst = orig_dst;
1903         this_rd += b_best_rd;
1904 
1905         xd->mi[0]->bmi[i] = bsi[ref_frame][i];
1906         if (num_4x4_blocks_wide > 1)
1907           xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i];
1908         if (num_4x4_blocks_high > 1)
1909           xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i];
1910       }
1911     }  // loop through sub8x8 blocks
1912 
1913     if (this_rd < best_rd) {
1914       best_rd = this_rd;
1915       best_ref_frame = ref_frame;
1916     }
1917   }  // reference frames
1918 
1919   mbmi->tx_size = TX_4X4;
1920   mbmi->ref_frame[0] = best_ref_frame;
1921   for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
1922     for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
1923       const int block = idy * 2 + idx;
1924       xd->mi[0]->bmi[block] = bsi[best_ref_frame][block];
1925       if (num_4x4_blocks_wide > 1)
1926         xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block];
1927       if (num_4x4_blocks_high > 1)
1928         xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block];
1929     }
1930   }
1931   mbmi->mode = xd->mi[0]->bmi[3].as_mode;
1932   ctx->mic = *(xd->mi[0]);
1933   ctx->mbmi_ext = *x->mbmi_ext;
1934   ctx->skip_txfm[0] = SKIP_TXFM_NONE;
1935   ctx->skip = 0;
1936   // Dummy assignment for speed -5. No effect in speed -6.
1937   rd_cost->rdcost = best_rd;
1938 }
1939