1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #if defined(_MSC_VER) && _MSC_VER <= 1500
13 // Need to include math.h before calling tmmintrin.h/intrin.h
14 // in certain versions of MSVS.
15 #include <math.h>
16 #endif
17 #include <tmmintrin.h> // SSSE3
18
19 #include "./vp9_rtcd.h"
20 #include "vpx_dsp/x86/inv_txfm_sse2.h"
21 #include "vpx_dsp/x86/txfm_common_sse2.h"
22
vp9_fdct8x8_quant_ssse3(const int16_t * input,int stride,int16_t * coeff_ptr,intptr_t n_coeffs,int skip_block,const int16_t * zbin_ptr,const int16_t * round_ptr,const int16_t * quant_ptr,const int16_t * quant_shift_ptr,int16_t * qcoeff_ptr,int16_t * dqcoeff_ptr,const int16_t * dequant_ptr,uint16_t * eob_ptr,const int16_t * scan_ptr,const int16_t * iscan_ptr)23 void vp9_fdct8x8_quant_ssse3(const int16_t *input, int stride,
24 int16_t* coeff_ptr, intptr_t n_coeffs,
25 int skip_block, const int16_t* zbin_ptr,
26 const int16_t* round_ptr, const int16_t* quant_ptr,
27 const int16_t* quant_shift_ptr,
28 int16_t* qcoeff_ptr,
29 int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
30 uint16_t* eob_ptr,
31 const int16_t* scan_ptr,
32 const int16_t* iscan_ptr) {
33 __m128i zero;
34 int pass;
35 // Constants
36 // When we use them, in one case, they are all the same. In all others
37 // it's a pair of them that we need to repeat four times. This is done
38 // by constructing the 32 bit constant corresponding to that pair.
39 const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170);
40 const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
41 const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
42 const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
43 const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
44 const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
45 const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
46 const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
47 const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
48 const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
49 // Load input
50 __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
51 __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
52 __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
53 __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
54 __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
55 __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
56 __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
57 __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
58 __m128i *in[8];
59 int index = 0;
60
61 (void)scan_ptr;
62 (void)zbin_ptr;
63 (void)quant_shift_ptr;
64 (void)coeff_ptr;
65
66 // Pre-condition input (shift by two)
67 in0 = _mm_slli_epi16(in0, 2);
68 in1 = _mm_slli_epi16(in1, 2);
69 in2 = _mm_slli_epi16(in2, 2);
70 in3 = _mm_slli_epi16(in3, 2);
71 in4 = _mm_slli_epi16(in4, 2);
72 in5 = _mm_slli_epi16(in5, 2);
73 in6 = _mm_slli_epi16(in6, 2);
74 in7 = _mm_slli_epi16(in7, 2);
75
76 in[0] = &in0;
77 in[1] = &in1;
78 in[2] = &in2;
79 in[3] = &in3;
80 in[4] = &in4;
81 in[5] = &in5;
82 in[6] = &in6;
83 in[7] = &in7;
84
85 // We do two passes, first the columns, then the rows. The results of the
86 // first pass are transposed so that the same column code can be reused. The
87 // results of the second pass are also transposed so that the rows (processed
88 // as columns) are put back in row positions.
89 for (pass = 0; pass < 2; pass++) {
90 // To store results of each pass before the transpose.
91 __m128i res0, res1, res2, res3, res4, res5, res6, res7;
92 // Add/subtract
93 const __m128i q0 = _mm_add_epi16(in0, in7);
94 const __m128i q1 = _mm_add_epi16(in1, in6);
95 const __m128i q2 = _mm_add_epi16(in2, in5);
96 const __m128i q3 = _mm_add_epi16(in3, in4);
97 const __m128i q4 = _mm_sub_epi16(in3, in4);
98 const __m128i q5 = _mm_sub_epi16(in2, in5);
99 const __m128i q6 = _mm_sub_epi16(in1, in6);
100 const __m128i q7 = _mm_sub_epi16(in0, in7);
101 // Work on first four results
102 {
103 // Add/subtract
104 const __m128i r0 = _mm_add_epi16(q0, q3);
105 const __m128i r1 = _mm_add_epi16(q1, q2);
106 const __m128i r2 = _mm_sub_epi16(q1, q2);
107 const __m128i r3 = _mm_sub_epi16(q0, q3);
108 // Interleave to do the multiply by constants which gets us into 32bits
109 const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
110 const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
111 const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
112 const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
113
114 const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
115 const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
116 const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
117 const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
118
119 const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
120 const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
121 const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
122 const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
123 // dct_const_round_shift
124
125 const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
126 const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
127 const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
128 const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
129
130 const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
131 const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
132 const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
133 const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
134
135 const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
136 const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
137 const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
138 const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
139
140 const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
141 const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
142 const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
143 const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
144 // Combine
145
146 res0 = _mm_packs_epi32(w0, w1);
147 res4 = _mm_packs_epi32(w2, w3);
148 res2 = _mm_packs_epi32(w4, w5);
149 res6 = _mm_packs_epi32(w6, w7);
150 }
151 // Work on next four results
152 {
153 // Interleave to do the multiply by constants which gets us into 32bits
154 const __m128i d0 = _mm_sub_epi16(q6, q5);
155 const __m128i d1 = _mm_add_epi16(q6, q5);
156 const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16);
157 const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16);
158
159 // Add/subtract
160 const __m128i x0 = _mm_add_epi16(q4, r0);
161 const __m128i x1 = _mm_sub_epi16(q4, r0);
162 const __m128i x2 = _mm_sub_epi16(q7, r1);
163 const __m128i x3 = _mm_add_epi16(q7, r1);
164 // Interleave to do the multiply by constants which gets us into 32bits
165 const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
166 const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
167 const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
168 const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
169 const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
170 const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
171 const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
172 const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
173 const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
174 const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
175 const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
176 const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
177 // dct_const_round_shift
178 const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
179 const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
180 const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
181 const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
182 const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
183 const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
184 const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
185 const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
186 const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
187 const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
188 const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
189 const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
190 const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
191 const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
192 const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
193 const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
194 // Combine
195 res1 = _mm_packs_epi32(w0, w1);
196 res7 = _mm_packs_epi32(w2, w3);
197 res5 = _mm_packs_epi32(w4, w5);
198 res3 = _mm_packs_epi32(w6, w7);
199 }
200 // Transpose the 8x8.
201 {
202 // 00 01 02 03 04 05 06 07
203 // 10 11 12 13 14 15 16 17
204 // 20 21 22 23 24 25 26 27
205 // 30 31 32 33 34 35 36 37
206 // 40 41 42 43 44 45 46 47
207 // 50 51 52 53 54 55 56 57
208 // 60 61 62 63 64 65 66 67
209 // 70 71 72 73 74 75 76 77
210 const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
211 const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
212 const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
213 const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
214 const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
215 const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
216 const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
217 const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
218 // 00 10 01 11 02 12 03 13
219 // 20 30 21 31 22 32 23 33
220 // 04 14 05 15 06 16 07 17
221 // 24 34 25 35 26 36 27 37
222 // 40 50 41 51 42 52 43 53
223 // 60 70 61 71 62 72 63 73
224 // 54 54 55 55 56 56 57 57
225 // 64 74 65 75 66 76 67 77
226 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
227 const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
228 const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
229 const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
230 const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
231 const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
232 const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
233 const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
234 // 00 10 20 30 01 11 21 31
235 // 40 50 60 70 41 51 61 71
236 // 02 12 22 32 03 13 23 33
237 // 42 52 62 72 43 53 63 73
238 // 04 14 24 34 05 15 21 36
239 // 44 54 64 74 45 55 61 76
240 // 06 16 26 36 07 17 27 37
241 // 46 56 66 76 47 57 67 77
242 in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
243 in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
244 in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
245 in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
246 in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
247 in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
248 in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
249 in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
250 // 00 10 20 30 40 50 60 70
251 // 01 11 21 31 41 51 61 71
252 // 02 12 22 32 42 52 62 72
253 // 03 13 23 33 43 53 63 73
254 // 04 14 24 34 44 54 64 74
255 // 05 15 25 35 45 55 65 75
256 // 06 16 26 36 46 56 66 76
257 // 07 17 27 37 47 57 67 77
258 }
259 }
260 // Post-condition output and store it
261 {
262 // Post-condition (division by two)
263 // division of two 16 bits signed numbers using shifts
264 // n / 2 = (n - (n >> 15)) >> 1
265 const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
266 const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
267 const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
268 const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
269 const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
270 const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
271 const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
272 const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
273 in0 = _mm_sub_epi16(in0, sign_in0);
274 in1 = _mm_sub_epi16(in1, sign_in1);
275 in2 = _mm_sub_epi16(in2, sign_in2);
276 in3 = _mm_sub_epi16(in3, sign_in3);
277 in4 = _mm_sub_epi16(in4, sign_in4);
278 in5 = _mm_sub_epi16(in5, sign_in5);
279 in6 = _mm_sub_epi16(in6, sign_in6);
280 in7 = _mm_sub_epi16(in7, sign_in7);
281 in0 = _mm_srai_epi16(in0, 1);
282 in1 = _mm_srai_epi16(in1, 1);
283 in2 = _mm_srai_epi16(in2, 1);
284 in3 = _mm_srai_epi16(in3, 1);
285 in4 = _mm_srai_epi16(in4, 1);
286 in5 = _mm_srai_epi16(in5, 1);
287 in6 = _mm_srai_epi16(in6, 1);
288 in7 = _mm_srai_epi16(in7, 1);
289 }
290
291 iscan_ptr += n_coeffs;
292 qcoeff_ptr += n_coeffs;
293 dqcoeff_ptr += n_coeffs;
294 n_coeffs = -n_coeffs;
295 zero = _mm_setzero_si128();
296
297 if (!skip_block) {
298 __m128i eob;
299 __m128i round, quant, dequant, thr;
300 int16_t nzflag;
301 {
302 __m128i coeff0, coeff1;
303
304 // Setup global values
305 {
306 round = _mm_load_si128((const __m128i*)round_ptr);
307 quant = _mm_load_si128((const __m128i*)quant_ptr);
308 dequant = _mm_load_si128((const __m128i*)dequant_ptr);
309 }
310
311 {
312 __m128i coeff0_sign, coeff1_sign;
313 __m128i qcoeff0, qcoeff1;
314 __m128i qtmp0, qtmp1;
315 // Do DC and first 15 AC
316 coeff0 = *in[0];
317 coeff1 = *in[1];
318
319 // Poor man's sign extract
320 coeff0_sign = _mm_srai_epi16(coeff0, 15);
321 coeff1_sign = _mm_srai_epi16(coeff1, 15);
322 qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
323 qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
324 qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
325 qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
326
327 qcoeff0 = _mm_adds_epi16(qcoeff0, round);
328 round = _mm_unpackhi_epi64(round, round);
329 qcoeff1 = _mm_adds_epi16(qcoeff1, round);
330 qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
331 quant = _mm_unpackhi_epi64(quant, quant);
332 qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
333
334 // Reinsert signs
335 qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
336 qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
337 qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
338 qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
339
340 _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
341 _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
342
343 coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
344 dequant = _mm_unpackhi_epi64(dequant, dequant);
345 coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
346
347 _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
348 _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
349 }
350
351 {
352 // Scan for eob
353 __m128i zero_coeff0, zero_coeff1;
354 __m128i nzero_coeff0, nzero_coeff1;
355 __m128i iscan0, iscan1;
356 __m128i eob1;
357 zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
358 zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
359 nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
360 nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
361 iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
362 iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
363 // Add one to convert from indices to counts
364 iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
365 iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
366 eob = _mm_and_si128(iscan0, nzero_coeff0);
367 eob1 = _mm_and_si128(iscan1, nzero_coeff1);
368 eob = _mm_max_epi16(eob, eob1);
369 }
370 n_coeffs += 8 * 2;
371 }
372
373 // AC only loop
374 index = 2;
375 thr = _mm_srai_epi16(dequant, 1);
376 while (n_coeffs < 0) {
377 __m128i coeff0, coeff1;
378 {
379 __m128i coeff0_sign, coeff1_sign;
380 __m128i qcoeff0, qcoeff1;
381 __m128i qtmp0, qtmp1;
382
383 assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
384 coeff0 = *in[index];
385 coeff1 = *in[index + 1];
386
387 // Poor man's sign extract
388 coeff0_sign = _mm_srai_epi16(coeff0, 15);
389 coeff1_sign = _mm_srai_epi16(coeff1, 15);
390 qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
391 qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
392 qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
393 qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
394
395 nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
396 _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
397
398 if (nzflag) {
399 qcoeff0 = _mm_adds_epi16(qcoeff0, round);
400 qcoeff1 = _mm_adds_epi16(qcoeff1, round);
401 qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
402 qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
403
404 // Reinsert signs
405 qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
406 qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
407 qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
408 qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
409
410 _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
411 _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
412
413 coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
414 coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
415
416 _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
417 _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
418 } else {
419 _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
420 _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
421
422 _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
423 _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
424 }
425 }
426
427 if (nzflag) {
428 // Scan for eob
429 __m128i zero_coeff0, zero_coeff1;
430 __m128i nzero_coeff0, nzero_coeff1;
431 __m128i iscan0, iscan1;
432 __m128i eob0, eob1;
433 zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
434 zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
435 nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
436 nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
437 iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
438 iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
439 // Add one to convert from indices to counts
440 iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
441 iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
442 eob0 = _mm_and_si128(iscan0, nzero_coeff0);
443 eob1 = _mm_and_si128(iscan1, nzero_coeff1);
444 eob0 = _mm_max_epi16(eob0, eob1);
445 eob = _mm_max_epi16(eob, eob0);
446 }
447 n_coeffs += 8 * 2;
448 index += 2;
449 }
450
451 // Accumulate EOB
452 {
453 __m128i eob_shuffled;
454 eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
455 eob = _mm_max_epi16(eob, eob_shuffled);
456 eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
457 eob = _mm_max_epi16(eob, eob_shuffled);
458 eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
459 eob = _mm_max_epi16(eob, eob_shuffled);
460 *eob_ptr = _mm_extract_epi16(eob, 1);
461 }
462 } else {
463 do {
464 _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
465 _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
466 _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
467 _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
468 n_coeffs += 8 * 2;
469 } while (n_coeffs < 0);
470 *eob_ptr = 0;
471 }
472 }
473