1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // This header is logically internal, but is made public because it is used
36 // from protocol-compiler-generated code, which may reside in other components.
37
38 #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
39 #define GOOGLE_PROTOBUF_EXTENSION_SET_H__
40
41 #include <vector>
42 #include <map>
43 #include <utility>
44 #include <string>
45
46
47 #include <google/protobuf/stubs/common.h>
48
49 #include <google/protobuf/repeated_field.h>
50
51 namespace google {
52
53 namespace protobuf {
54 class Descriptor; // descriptor.h
55 class FieldDescriptor; // descriptor.h
56 class DescriptorPool; // descriptor.h
57 class MessageLite; // message_lite.h
58 class Message; // message.h
59 class MessageFactory; // message.h
60 class UnknownFieldSet; // unknown_field_set.h
61 namespace io {
62 class CodedInputStream; // coded_stream.h
63 class CodedOutputStream; // coded_stream.h
64 }
65 namespace internal {
66 class FieldSkipper; // wire_format_lite.h
67 }
68 }
69
70 namespace protobuf {
71 namespace internal {
72
73 // Used to store values of type WireFormatLite::FieldType without having to
74 // #include wire_format_lite.h. Also, ensures that we use only one byte to
75 // store these values, which is important to keep the layout of
76 // ExtensionSet::Extension small.
77 typedef uint8 FieldType;
78
79 // A function which, given an integer value, returns true if the number
80 // matches one of the defined values for the corresponding enum type. This
81 // is used with RegisterEnumExtension, below.
82 typedef bool EnumValidityFunc(int number);
83
84 // Version of the above which takes an argument. This is needed to deal with
85 // extensions that are not compiled in.
86 typedef bool EnumValidityFuncWithArg(const void* arg, int number);
87
88 // Information about a registered extension.
89 struct ExtensionInfo {
ExtensionInfoExtensionInfo90 inline ExtensionInfo() {}
ExtensionInfoExtensionInfo91 inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked)
92 : type(type_param), is_repeated(isrepeated), is_packed(ispacked),
93 descriptor(NULL) {}
94
95 FieldType type;
96 bool is_repeated;
97 bool is_packed;
98
99 struct EnumValidityCheck {
100 EnumValidityFuncWithArg* func;
101 const void* arg;
102 };
103
104 union {
105 EnumValidityCheck enum_validity_check;
106 const MessageLite* message_prototype;
107 };
108
109 // The descriptor for this extension, if one exists and is known. May be
110 // NULL. Must not be NULL if the descriptor for the extension does not
111 // live in the same pool as the descriptor for the containing type.
112 const FieldDescriptor* descriptor;
113 };
114
115 // Abstract interface for an object which looks up extension definitions. Used
116 // when parsing.
117 class LIBPROTOBUF_EXPORT ExtensionFinder {
118 public:
119 virtual ~ExtensionFinder();
120
121 // Find the extension with the given containing type and number.
122 virtual bool Find(int number, ExtensionInfo* output) = 0;
123 };
124
125 // Implementation of ExtensionFinder which finds extensions defined in .proto
126 // files which have been compiled into the binary.
127 class LIBPROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
128 public:
GeneratedExtensionFinder(const MessageLite * containing_type)129 GeneratedExtensionFinder(const MessageLite* containing_type)
130 : containing_type_(containing_type) {}
~GeneratedExtensionFinder()131 virtual ~GeneratedExtensionFinder() {}
132
133 // Returns true and fills in *output if found, otherwise returns false.
134 virtual bool Find(int number, ExtensionInfo* output);
135
136 private:
137 const MessageLite* containing_type_;
138 };
139
140 // A FieldSkipper used for parsing MessageSet.
141 class MessageSetFieldSkipper;
142
143 // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
144 // finding extensions from a DescriptorPool.
145
146 // This is an internal helper class intended for use within the protocol buffer
147 // library and generated classes. Clients should not use it directly. Instead,
148 // use the generated accessors such as GetExtension() of the class being
149 // extended.
150 //
151 // This class manages extensions for a protocol message object. The
152 // message's HasExtension(), GetExtension(), MutableExtension(), and
153 // ClearExtension() methods are just thin wrappers around the embedded
154 // ExtensionSet. When parsing, if a tag number is encountered which is
155 // inside one of the message type's extension ranges, the tag is passed
156 // off to the ExtensionSet for parsing. Etc.
157 class LIBPROTOBUF_EXPORT ExtensionSet {
158 public:
159 ExtensionSet();
160 ~ExtensionSet();
161
162 // These are called at startup by protocol-compiler-generated code to
163 // register known extensions. The registrations are used by ParseField()
164 // to look up extensions for parsed field numbers. Note that dynamic parsing
165 // does not use ParseField(); only protocol-compiler-generated parsing
166 // methods do.
167 static void RegisterExtension(const MessageLite* containing_type,
168 int number, FieldType type,
169 bool is_repeated, bool is_packed);
170 static void RegisterEnumExtension(const MessageLite* containing_type,
171 int number, FieldType type,
172 bool is_repeated, bool is_packed,
173 EnumValidityFunc* is_valid);
174 static void RegisterMessageExtension(const MessageLite* containing_type,
175 int number, FieldType type,
176 bool is_repeated, bool is_packed,
177 const MessageLite* prototype);
178
179 // =================================================================
180
181 // Add all fields which are currently present to the given vector. This
182 // is useful to implement Reflection::ListFields().
183 void AppendToList(const Descriptor* containing_type,
184 const DescriptorPool* pool,
185 std::vector<const FieldDescriptor*>* output) const;
186
187 // =================================================================
188 // Accessors
189 //
190 // Generated message classes include type-safe templated wrappers around
191 // these methods. Generally you should use those rather than call these
192 // directly, unless you are doing low-level memory management.
193 //
194 // When calling any of these accessors, the extension number requested
195 // MUST exist in the DescriptorPool provided to the constructor. Otheriwse,
196 // the method will fail an assert. Normally, though, you would not call
197 // these directly; you would either call the generated accessors of your
198 // message class (e.g. GetExtension()) or you would call the accessors
199 // of the reflection interface. In both cases, it is impossible to
200 // trigger this assert failure: the generated accessors only accept
201 // linked-in extension types as parameters, while the Reflection interface
202 // requires you to provide the FieldDescriptor describing the extension.
203 //
204 // When calling any of these accessors, a protocol-compiler-generated
205 // implementation of the extension corresponding to the number MUST
206 // be linked in, and the FieldDescriptor used to refer to it MUST be
207 // the one generated by that linked-in code. Otherwise, the method will
208 // die on an assert failure. The message objects returned by the message
209 // accessors are guaranteed to be of the correct linked-in type.
210 //
211 // These methods pretty much match Reflection except that:
212 // - They're not virtual.
213 // - They identify fields by number rather than FieldDescriptors.
214 // - They identify enum values using integers rather than descriptors.
215 // - Strings provide Mutable() in addition to Set() accessors.
216
217 bool Has(int number) const;
218 int ExtensionSize(int number) const; // Size of a repeated extension.
219 int NumExtensions() const; // The number of extensions
220 FieldType ExtensionType(int number) const;
221 void ClearExtension(int number);
222
223 // singular fields -------------------------------------------------
224
225 int32 GetInt32 (int number, int32 default_value) const;
226 int64 GetInt64 (int number, int64 default_value) const;
227 uint32 GetUInt32(int number, uint32 default_value) const;
228 uint64 GetUInt64(int number, uint64 default_value) const;
229 float GetFloat (int number, float default_value) const;
230 double GetDouble(int number, double default_value) const;
231 bool GetBool (int number, bool default_value) const;
232 int GetEnum (int number, int default_value) const;
233 const string & GetString (int number, const string& default_value) const;
234 const MessageLite& GetMessage(int number,
235 const MessageLite& default_value) const;
236 const MessageLite& GetMessage(int number, const Descriptor* message_type,
237 MessageFactory* factory) const;
238
239 // |descriptor| may be NULL so long as it is known that the descriptor for
240 // the extension lives in the same pool as the descriptor for the containing
241 // type.
242 #define desc const FieldDescriptor* descriptor // avoid line wrapping
243 void SetInt32 (int number, FieldType type, int32 value, desc);
244 void SetInt64 (int number, FieldType type, int64 value, desc);
245 void SetUInt32(int number, FieldType type, uint32 value, desc);
246 void SetUInt64(int number, FieldType type, uint64 value, desc);
247 void SetFloat (int number, FieldType type, float value, desc);
248 void SetDouble(int number, FieldType type, double value, desc);
249 void SetBool (int number, FieldType type, bool value, desc);
250 void SetEnum (int number, FieldType type, int value, desc);
251 void SetString(int number, FieldType type, const string& value, desc);
252 string * MutableString (int number, FieldType type, desc);
253 MessageLite* MutableMessage(int number, FieldType type,
254 const MessageLite& prototype, desc);
255 MessageLite* MutableMessage(const FieldDescriptor* decsriptor,
256 MessageFactory* factory);
257 // Adds the given message to the ExtensionSet, taking ownership of the
258 // message object. Existing message with the same number will be deleted.
259 // If "message" is NULL, this is equivalent to "ClearExtension(number)".
260 void SetAllocatedMessage(int number, FieldType type,
261 const FieldDescriptor* descriptor,
262 MessageLite* message);
263 MessageLite* ReleaseMessage(int number, const MessageLite& prototype);
264 MessageLite* ReleaseMessage(const FieldDescriptor* descriptor,
265 MessageFactory* factory);
266 #undef desc
267
268 // repeated fields -------------------------------------------------
269
270 // Fetches a RepeatedField extension by number; returns |default_value|
271 // if no such extension exists. User should not touch this directly; it is
272 // used by the GetRepeatedExtension() method.
273 const void* GetRawRepeatedField(int number, const void* default_value) const;
274 // Fetches a mutable version of a RepeatedField extension by number,
275 // instantiating one if none exists. Similar to above, user should not use
276 // this directly; it underlies MutableRepeatedExtension().
277 void* MutableRawRepeatedField(int number, FieldType field_type,
278 bool packed, const FieldDescriptor* desc);
279
280 // This is an overload of MutableRawRepeatedField to maintain compatibility
281 // with old code using a previous API. This version of
282 // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension.
283 // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
284 void* MutableRawRepeatedField(int number);
285
286 int32 GetRepeatedInt32 (int number, int index) const;
287 int64 GetRepeatedInt64 (int number, int index) const;
288 uint32 GetRepeatedUInt32(int number, int index) const;
289 uint64 GetRepeatedUInt64(int number, int index) const;
290 float GetRepeatedFloat (int number, int index) const;
291 double GetRepeatedDouble(int number, int index) const;
292 bool GetRepeatedBool (int number, int index) const;
293 int GetRepeatedEnum (int number, int index) const;
294 const string & GetRepeatedString (int number, int index) const;
295 const MessageLite& GetRepeatedMessage(int number, int index) const;
296
297 void SetRepeatedInt32 (int number, int index, int32 value);
298 void SetRepeatedInt64 (int number, int index, int64 value);
299 void SetRepeatedUInt32(int number, int index, uint32 value);
300 void SetRepeatedUInt64(int number, int index, uint64 value);
301 void SetRepeatedFloat (int number, int index, float value);
302 void SetRepeatedDouble(int number, int index, double value);
303 void SetRepeatedBool (int number, int index, bool value);
304 void SetRepeatedEnum (int number, int index, int value);
305 void SetRepeatedString(int number, int index, const string& value);
306 string * MutableRepeatedString (int number, int index);
307 MessageLite* MutableRepeatedMessage(int number, int index);
308
309 #define desc const FieldDescriptor* descriptor // avoid line wrapping
310 void AddInt32 (int number, FieldType type, bool packed, int32 value, desc);
311 void AddInt64 (int number, FieldType type, bool packed, int64 value, desc);
312 void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc);
313 void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc);
314 void AddFloat (int number, FieldType type, bool packed, float value, desc);
315 void AddDouble(int number, FieldType type, bool packed, double value, desc);
316 void AddBool (int number, FieldType type, bool packed, bool value, desc);
317 void AddEnum (int number, FieldType type, bool packed, int value, desc);
318 void AddString(int number, FieldType type, const string& value, desc);
319 string * AddString (int number, FieldType type, desc);
320 MessageLite* AddMessage(int number, FieldType type,
321 const MessageLite& prototype, desc);
322 MessageLite* AddMessage(const FieldDescriptor* descriptor,
323 MessageFactory* factory);
324 #undef desc
325
326 void RemoveLast(int number);
327 MessageLite* ReleaseLast(int number);
328 void SwapElements(int number, int index1, int index2);
329
330 // -----------------------------------------------------------------
331 // TODO(kenton): Hardcore memory management accessors
332
333 // =================================================================
334 // convenience methods for implementing methods of Message
335 //
336 // These could all be implemented in terms of the other methods of this
337 // class, but providing them here helps keep the generated code size down.
338
339 void Clear();
340 void MergeFrom(const ExtensionSet& other);
341 void Swap(ExtensionSet* other);
342 void SwapExtension(ExtensionSet* other, int number);
343 bool IsInitialized() const;
344
345 // Parses a single extension from the input. The input should start out
346 // positioned immediately after the tag.
347 bool ParseField(uint32 tag, io::CodedInputStream* input,
348 ExtensionFinder* extension_finder,
349 FieldSkipper* field_skipper);
350
351 // Specific versions for lite or full messages (constructs the appropriate
352 // FieldSkipper automatically). |containing_type| is the default
353 // instance for the containing message; it is used only to look up the
354 // extension by number. See RegisterExtension(), above. Unlike the other
355 // methods of ExtensionSet, this only works for generated message types --
356 // it looks up extensions registered using RegisterExtension().
357 bool ParseField(uint32 tag, io::CodedInputStream* input,
358 const MessageLite* containing_type);
359 bool ParseField(uint32 tag, io::CodedInputStream* input,
360 const Message* containing_type,
361 UnknownFieldSet* unknown_fields);
362 bool ParseField(uint32 tag, io::CodedInputStream* input,
363 const MessageLite* containing_type,
364 io::CodedOutputStream* unknown_fields);
365
366 // Parse an entire message in MessageSet format. Such messages have no
367 // fields, only extensions.
368 bool ParseMessageSet(io::CodedInputStream* input,
369 ExtensionFinder* extension_finder,
370 MessageSetFieldSkipper* field_skipper);
371
372 // Specific versions for lite or full messages (constructs the appropriate
373 // FieldSkipper automatically).
374 bool ParseMessageSet(io::CodedInputStream* input,
375 const MessageLite* containing_type);
376 bool ParseMessageSet(io::CodedInputStream* input,
377 const Message* containing_type,
378 UnknownFieldSet* unknown_fields);
379
380 // Write all extension fields with field numbers in the range
381 // [start_field_number, end_field_number)
382 // to the output stream, using the cached sizes computed when ByteSize() was
383 // last called. Note that the range bounds are inclusive-exclusive.
384 void SerializeWithCachedSizes(int start_field_number,
385 int end_field_number,
386 io::CodedOutputStream* output) const;
387
388 // Same as SerializeWithCachedSizes, but without any bounds checking.
389 // The caller must ensure that target has sufficient capacity for the
390 // serialized extensions.
391 //
392 // Returns a pointer past the last written byte.
393 uint8* SerializeWithCachedSizesToArray(int start_field_number,
394 int end_field_number,
395 uint8* target) const;
396
397 // Like above but serializes in MessageSet format.
398 void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const;
399 uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const;
400
401 // Returns the total serialized size of all the extensions.
402 int ByteSize() const;
403
404 // Like ByteSize() but uses MessageSet format.
405 int MessageSetByteSize() const;
406
407 // Returns (an estimate of) the total number of bytes used for storing the
408 // extensions in memory, excluding sizeof(*this). If the ExtensionSet is
409 // for a lite message (and thus possibly contains lite messages), the results
410 // are undefined (might work, might crash, might corrupt data, might not even
411 // be linked in). It's up to the protocol compiler to avoid calling this on
412 // such ExtensionSets (easy enough since lite messages don't implement
413 // SpaceUsed()).
414 int SpaceUsedExcludingSelf() const;
415
416 private:
417
418 // Interface of a lazily parsed singular message extension.
419 class LIBPROTOBUF_EXPORT LazyMessageExtension {
420 public:
LazyMessageExtension()421 LazyMessageExtension() {}
~LazyMessageExtension()422 virtual ~LazyMessageExtension() {}
423
424 virtual LazyMessageExtension* New() const = 0;
425 virtual const MessageLite& GetMessage(
426 const MessageLite& prototype) const = 0;
427 virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0;
428 virtual void SetAllocatedMessage(MessageLite *message) = 0;
429 virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0;
430
431 virtual bool IsInitialized() const = 0;
432 virtual int ByteSize() const = 0;
433 virtual int SpaceUsed() const = 0;
434
435 virtual void MergeFrom(const LazyMessageExtension& other) = 0;
436 virtual void Clear() = 0;
437
438 virtual bool ReadMessage(const MessageLite& prototype,
439 io::CodedInputStream* input) = 0;
440 virtual void WriteMessage(int number,
441 io::CodedOutputStream* output) const = 0;
442 virtual uint8* WriteMessageToArray(int number, uint8* target) const = 0;
443 private:
444 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension);
445 };
446 struct Extension {
447 // The order of these fields packs Extension into 24 bytes when using 8
448 // byte alignment. Consider this when adding or removing fields here.
449 union {
450 int32 int32_value;
451 int64 int64_value;
452 uint32 uint32_value;
453 uint64 uint64_value;
454 float float_value;
455 double double_value;
456 bool bool_value;
457 int enum_value;
458 string* string_value;
459 MessageLite* message_value;
460 LazyMessageExtension* lazymessage_value;
461
462 RepeatedField <int32 >* repeated_int32_value;
463 RepeatedField <int64 >* repeated_int64_value;
464 RepeatedField <uint32 >* repeated_uint32_value;
465 RepeatedField <uint64 >* repeated_uint64_value;
466 RepeatedField <float >* repeated_float_value;
467 RepeatedField <double >* repeated_double_value;
468 RepeatedField <bool >* repeated_bool_value;
469 RepeatedField <int >* repeated_enum_value;
470 RepeatedPtrField<string >* repeated_string_value;
471 RepeatedPtrField<MessageLite>* repeated_message_value;
472 };
473
474 FieldType type;
475 bool is_repeated;
476
477 // For singular types, indicates if the extension is "cleared". This
478 // happens when an extension is set and then later cleared by the caller.
479 // We want to keep the Extension object around for reuse, so instead of
480 // removing it from the map, we just set is_cleared = true. This has no
481 // meaning for repeated types; for those, the size of the RepeatedField
482 // simply becomes zero when cleared.
483 bool is_cleared : 4;
484
485 // For singular message types, indicates whether lazy parsing is enabled
486 // for this extension. This field is only valid when type == TYPE_MESSAGE
487 // and !is_repeated because we only support lazy parsing for singular
488 // message types currently. If is_lazy = true, the extension is stored in
489 // lazymessage_value. Otherwise, the extension will be message_value.
490 bool is_lazy : 4;
491
492 // For repeated types, this indicates if the [packed=true] option is set.
493 bool is_packed;
494
495 // For packed fields, the size of the packed data is recorded here when
496 // ByteSize() is called then used during serialization.
497 // TODO(kenton): Use atomic<int> when C++ supports it.
498 mutable int cached_size;
499
500 // The descriptor for this extension, if one exists and is known. May be
501 // NULL. Must not be NULL if the descriptor for the extension does not
502 // live in the same pool as the descriptor for the containing type.
503 const FieldDescriptor* descriptor;
504
505 // Some helper methods for operations on a single Extension.
506 void SerializeFieldWithCachedSizes(
507 int number,
508 io::CodedOutputStream* output) const;
509 uint8* SerializeFieldWithCachedSizesToArray(
510 int number,
511 uint8* target) const;
512 void SerializeMessageSetItemWithCachedSizes(
513 int number,
514 io::CodedOutputStream* output) const;
515 uint8* SerializeMessageSetItemWithCachedSizesToArray(
516 int number,
517 uint8* target) const;
518 int ByteSize(int number) const;
519 int MessageSetItemByteSize(int number) const;
520 void Clear();
521 int GetSize() const;
522 void Free();
523 int SpaceUsedExcludingSelf() const;
524 };
525
526
527 // Returns true and fills field_number and extension if extension is found.
528 // Note to support packed repeated field compatibility, it also fills whether
529 // the tag on wire is packed, which can be different from
530 // extension->is_packed (whether packed=true is specified).
531 bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder,
532 int* field_number, ExtensionInfo* extension,
533 bool* was_packed_on_wire);
534
535 // Returns true and fills extension if extension is found.
536 // Note to support packed repeated field compatibility, it also fills whether
537 // the tag on wire is packed, which can be different from
538 // extension->is_packed (whether packed=true is specified).
539 bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
540 ExtensionFinder* extension_finder,
541 ExtensionInfo* extension,
542 bool* was_packed_on_wire);
543
544 // Parses a single extension from the input. The input should start out
545 // positioned immediately after the wire tag. This method is called in
546 // ParseField() after field number and was_packed_on_wire is extracted from
547 // the wire tag and ExtensionInfo is found by the field number.
548 bool ParseFieldWithExtensionInfo(int field_number,
549 bool was_packed_on_wire,
550 const ExtensionInfo& extension,
551 io::CodedInputStream* input,
552 FieldSkipper* field_skipper);
553
554 // Like ParseField(), but this method may parse singular message extensions
555 // lazily depending on the value of FLAGS_eagerly_parse_message_sets.
556 bool ParseFieldMaybeLazily(int wire_type, int field_number,
557 io::CodedInputStream* input,
558 ExtensionFinder* extension_finder,
559 MessageSetFieldSkipper* field_skipper);
560
561 // Gets the extension with the given number, creating it if it does not
562 // already exist. Returns true if the extension did not already exist.
563 bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
564 Extension** result);
565
566 // Parse a single MessageSet item -- called just after the item group start
567 // tag has been read.
568 bool ParseMessageSetItem(io::CodedInputStream* input,
569 ExtensionFinder* extension_finder,
570 MessageSetFieldSkipper* field_skipper);
571
572
573 // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
574 // friendship should automatically extend to ExtensionSet::Extension, but
575 // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
576 // correctly. So, we must provide helpers for calling methods of that
577 // class.
578
579 // Defined in extension_set_heavy.cc.
580 static inline int RepeatedMessage_SpaceUsedExcludingSelf(
581 RepeatedPtrFieldBase* field);
582
583 // The Extension struct is small enough to be passed by value, so we use it
584 // directly as the value type in the map rather than use pointers. We use
585 // a map rather than hash_map here because we expect most ExtensionSets will
586 // only contain a small number of extensions whereas hash_map is optimized
587 // for 100 elements or more. Also, we want AppendToList() to order fields
588 // by field number.
589 std::map<int, Extension> extensions_;
590
591 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
592 };
593
594 // These are just for convenience...
SetString(int number,FieldType type,const string & value,const FieldDescriptor * descriptor)595 inline void ExtensionSet::SetString(int number, FieldType type,
596 const string& value,
597 const FieldDescriptor* descriptor) {
598 MutableString(number, type, descriptor)->assign(value);
599 }
SetRepeatedString(int number,int index,const string & value)600 inline void ExtensionSet::SetRepeatedString(int number, int index,
601 const string& value) {
602 MutableRepeatedString(number, index)->assign(value);
603 }
AddString(int number,FieldType type,const string & value,const FieldDescriptor * descriptor)604 inline void ExtensionSet::AddString(int number, FieldType type,
605 const string& value,
606 const FieldDescriptor* descriptor) {
607 AddString(number, type, descriptor)->assign(value);
608 }
609
610 // ===================================================================
611 // Glue for generated extension accessors
612
613 // -------------------------------------------------------------------
614 // Template magic
615
616 // First we have a set of classes representing "type traits" for different
617 // field types. A type traits class knows how to implement basic accessors
618 // for extensions of a particular type given an ExtensionSet. The signature
619 // for a type traits class looks like this:
620 //
621 // class TypeTraits {
622 // public:
623 // typedef ? ConstType;
624 // typedef ? MutableType;
625 // // TypeTraits for singular fields and repeated fields will define the
626 // // symbol "Singular" or "Repeated" respectively. These two symbols will
627 // // be used in extension accessors to distinguish between singular
628 // // extensions and repeated extensions. If the TypeTraits for the passed
629 // // in extension doesn't have the expected symbol defined, it means the
630 // // user is passing a repeated extension to a singular accessor, or the
631 // // opposite. In that case the C++ compiler will generate an error
632 // // message "no matching member function" to inform the user.
633 // typedef ? Singular
634 // typedef ? Repeated
635 //
636 // static inline ConstType Get(int number, const ExtensionSet& set);
637 // static inline void Set(int number, ConstType value, ExtensionSet* set);
638 // static inline MutableType Mutable(int number, ExtensionSet* set);
639 //
640 // // Variants for repeated fields.
641 // static inline ConstType Get(int number, const ExtensionSet& set,
642 // int index);
643 // static inline void Set(int number, int index,
644 // ConstType value, ExtensionSet* set);
645 // static inline MutableType Mutable(int number, int index,
646 // ExtensionSet* set);
647 // static inline void Add(int number, ConstType value, ExtensionSet* set);
648 // static inline MutableType Add(int number, ExtensionSet* set);
649 // };
650 //
651 // Not all of these methods make sense for all field types. For example, the
652 // "Mutable" methods only make sense for strings and messages, and the
653 // repeated methods only make sense for repeated types. So, each type
654 // traits class implements only the set of methods from this signature that it
655 // actually supports. This will cause a compiler error if the user tries to
656 // access an extension using a method that doesn't make sense for its type.
657 // For example, if "foo" is an extension of type "optional int32", then if you
658 // try to write code like:
659 // my_message.MutableExtension(foo)
660 // you will get a compile error because PrimitiveTypeTraits<int32> does not
661 // have a "Mutable()" method.
662
663 // -------------------------------------------------------------------
664 // PrimitiveTypeTraits
665
666 // Since the ExtensionSet has different methods for each primitive type,
667 // we must explicitly define the methods of the type traits class for each
668 // known type.
669 template <typename Type>
670 class PrimitiveTypeTraits {
671 public:
672 typedef Type ConstType;
673 typedef Type MutableType;
674 typedef PrimitiveTypeTraits<Type> Singular;
675
676 static inline ConstType Get(int number, const ExtensionSet& set,
677 ConstType default_value);
678 static inline void Set(int number, FieldType field_type,
679 ConstType value, ExtensionSet* set);
680 };
681
682 template <typename Type>
683 class RepeatedPrimitiveTypeTraits {
684 public:
685 typedef Type ConstType;
686 typedef Type MutableType;
687 typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
688
689 typedef RepeatedField<Type> RepeatedFieldType;
690
691 static inline Type Get(int number, const ExtensionSet& set, int index);
692 static inline void Set(int number, int index, Type value, ExtensionSet* set);
693 static inline void Add(int number, FieldType field_type,
694 bool is_packed, Type value, ExtensionSet* set);
695
696 static inline const RepeatedField<ConstType>&
697 GetRepeated(int number, const ExtensionSet& set);
698 static inline RepeatedField<Type>*
699 MutableRepeated(int number, FieldType field_type,
700 bool is_packed, ExtensionSet* set);
701
702 static const RepeatedFieldType* GetDefaultRepeatedField();
703 };
704
705 // Declared here so that this can be friended below.
706 void InitializeDefaultRepeatedFields();
707 void DestroyDefaultRepeatedFields();
708
709 class LIBPROTOBUF_EXPORT RepeatedPrimitiveGenericTypeTraits {
710 private:
711 template<typename Type> friend class RepeatedPrimitiveTypeTraits;
712 friend void InitializeDefaultRepeatedFields();
713 friend void DestroyDefaultRepeatedFields();
714 static const RepeatedField<int32>* default_repeated_field_int32_;
715 static const RepeatedField<int64>* default_repeated_field_int64_;
716 static const RepeatedField<uint32>* default_repeated_field_uint32_;
717 static const RepeatedField<uint64>* default_repeated_field_uint64_;
718 static const RepeatedField<double>* default_repeated_field_double_;
719 static const RepeatedField<float>* default_repeated_field_float_;
720 static const RepeatedField<bool>* default_repeated_field_bool_;
721 };
722
723 #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
724 template<> inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
725 int number, const ExtensionSet& set, TYPE default_value) { \
726 return set.Get##METHOD(number, default_value); \
727 } \
728 template<> inline void PrimitiveTypeTraits<TYPE>::Set( \
729 int number, FieldType field_type, TYPE value, ExtensionSet* set) { \
730 set->Set##METHOD(number, field_type, value, NULL); \
731 } \
732 \
733 template<> inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
734 int number, const ExtensionSet& set, int index) { \
735 return set.GetRepeated##METHOD(number, index); \
736 } \
737 template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
738 int number, int index, TYPE value, ExtensionSet* set) { \
739 set->SetRepeated##METHOD(number, index, value); \
740 } \
741 template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
742 int number, FieldType field_type, bool is_packed, \
743 TYPE value, ExtensionSet* set) { \
744 set->Add##METHOD(number, field_type, is_packed, value, NULL); \
745 } \
746 template<> inline const RepeatedField<TYPE>* \
747 RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \
748 return RepeatedPrimitiveGenericTypeTraits:: \
749 default_repeated_field_##TYPE##_; \
750 } \
751 template<> inline const RepeatedField<TYPE>& \
752 RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \
753 const ExtensionSet& set) { \
754 return *reinterpret_cast<const RepeatedField<TYPE>*>( \
755 set.GetRawRepeatedField( \
756 number, GetDefaultRepeatedField())); \
757 } \
758 template<> inline RepeatedField<TYPE>* \
759 RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated(int number, \
760 FieldType field_type, \
761 bool is_packed, \
762 ExtensionSet* set) { \
763 return reinterpret_cast<RepeatedField<TYPE>*>( \
764 set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \
765 }
766
PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32,Int32)767 PROTOBUF_DEFINE_PRIMITIVE_TYPE( int32, Int32)
768 PROTOBUF_DEFINE_PRIMITIVE_TYPE( int64, Int64)
769 PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
770 PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
771 PROTOBUF_DEFINE_PRIMITIVE_TYPE( float, Float)
772 PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
773 PROTOBUF_DEFINE_PRIMITIVE_TYPE( bool, Bool)
774
775 #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
776
777 // -------------------------------------------------------------------
778 // StringTypeTraits
779
780 // Strings support both Set() and Mutable().
781 class LIBPROTOBUF_EXPORT StringTypeTraits {
782 public:
783 typedef const string& ConstType;
784 typedef string* MutableType;
785 typedef StringTypeTraits Singular;
786
787 static inline const string& Get(int number, const ExtensionSet& set,
788 ConstType default_value) {
789 return set.GetString(number, default_value);
790 }
791 static inline void Set(int number, FieldType field_type,
792 const string& value, ExtensionSet* set) {
793 set->SetString(number, field_type, value, NULL);
794 }
795 static inline string* Mutable(int number, FieldType field_type,
796 ExtensionSet* set) {
797 return set->MutableString(number, field_type, NULL);
798 }
799 };
800
801 class LIBPROTOBUF_EXPORT RepeatedStringTypeTraits {
802 public:
803 typedef const string& ConstType;
804 typedef string* MutableType;
805 typedef RepeatedStringTypeTraits Repeated;
806
807 typedef RepeatedPtrField<string> RepeatedFieldType;
808
Get(int number,const ExtensionSet & set,int index)809 static inline const string& Get(int number, const ExtensionSet& set,
810 int index) {
811 return set.GetRepeatedString(number, index);
812 }
Set(int number,int index,const string & value,ExtensionSet * set)813 static inline void Set(int number, int index,
814 const string& value, ExtensionSet* set) {
815 set->SetRepeatedString(number, index, value);
816 }
Mutable(int number,int index,ExtensionSet * set)817 static inline string* Mutable(int number, int index, ExtensionSet* set) {
818 return set->MutableRepeatedString(number, index);
819 }
Add(int number,FieldType field_type,bool,const string & value,ExtensionSet * set)820 static inline void Add(int number, FieldType field_type,
821 bool /*is_packed*/, const string& value,
822 ExtensionSet* set) {
823 set->AddString(number, field_type, value, NULL);
824 }
Add(int number,FieldType field_type,ExtensionSet * set)825 static inline string* Add(int number, FieldType field_type,
826 ExtensionSet* set) {
827 return set->AddString(number, field_type, NULL);
828 }
829 static inline const RepeatedPtrField<string>&
GetRepeated(int number,const ExtensionSet & set)830 GetRepeated(int number, const ExtensionSet& set) {
831 return *reinterpret_cast<const RepeatedPtrField<string>*>(
832 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
833 }
834
835 static inline RepeatedPtrField<string>*
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)836 MutableRepeated(int number, FieldType field_type,
837 bool is_packed, ExtensionSet* set) {
838 return reinterpret_cast<RepeatedPtrField<string>*>(
839 set->MutableRawRepeatedField(number, field_type,
840 is_packed, NULL));
841 }
842
GetDefaultRepeatedField()843 static const RepeatedFieldType* GetDefaultRepeatedField() {
844 return default_repeated_field_;
845 }
846
847 private:
848 friend void InitializeDefaultRepeatedFields();
849 friend void DestroyDefaultRepeatedFields();
850 static const RepeatedFieldType *default_repeated_field_;
851 };
852
853 // -------------------------------------------------------------------
854 // EnumTypeTraits
855
856 // ExtensionSet represents enums using integers internally, so we have to
857 // static_cast around.
858 template <typename Type, bool IsValid(int)>
859 class EnumTypeTraits {
860 public:
861 typedef Type ConstType;
862 typedef Type MutableType;
863 typedef EnumTypeTraits<Type, IsValid> Singular;
864
Get(int number,const ExtensionSet & set,ConstType default_value)865 static inline ConstType Get(int number, const ExtensionSet& set,
866 ConstType default_value) {
867 return static_cast<Type>(set.GetEnum(number, default_value));
868 }
Set(int number,FieldType field_type,ConstType value,ExtensionSet * set)869 static inline void Set(int number, FieldType field_type,
870 ConstType value, ExtensionSet* set) {
871 GOOGLE_DCHECK(IsValid(value));
872 set->SetEnum(number, field_type, value, NULL);
873 }
874 };
875
876 template <typename Type, bool IsValid(int)>
877 class RepeatedEnumTypeTraits {
878 public:
879 typedef Type ConstType;
880 typedef Type MutableType;
881 typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated;
882
883 typedef RepeatedField<Type> RepeatedFieldType;
884
Get(int number,const ExtensionSet & set,int index)885 static inline ConstType Get(int number, const ExtensionSet& set, int index) {
886 return static_cast<Type>(set.GetRepeatedEnum(number, index));
887 }
Set(int number,int index,ConstType value,ExtensionSet * set)888 static inline void Set(int number, int index,
889 ConstType value, ExtensionSet* set) {
890 GOOGLE_DCHECK(IsValid(value));
891 set->SetRepeatedEnum(number, index, value);
892 }
Add(int number,FieldType field_type,bool is_packed,ConstType value,ExtensionSet * set)893 static inline void Add(int number, FieldType field_type,
894 bool is_packed, ConstType value, ExtensionSet* set) {
895 GOOGLE_DCHECK(IsValid(value));
896 set->AddEnum(number, field_type, is_packed, value, NULL);
897 }
GetRepeated(int number,const ExtensionSet & set)898 static inline const RepeatedField<Type>& GetRepeated(int number,
899 const ExtensionSet&
900 set) {
901 // Hack: the `Extension` struct stores a RepeatedField<int> for enums.
902 // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
903 // so we need to do some casting magic. See message.h for similar
904 // contortions for non-extension fields.
905 return *reinterpret_cast<const RepeatedField<Type>*>(
906 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
907 }
908
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)909 static inline RepeatedField<Type>* MutableRepeated(int number,
910 FieldType field_type,
911 bool is_packed,
912 ExtensionSet* set) {
913 return reinterpret_cast<RepeatedField<Type>*>(
914 set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
915 }
916
GetDefaultRepeatedField()917 static const RepeatedFieldType* GetDefaultRepeatedField() {
918 // Hack: as noted above, repeated enum fields are internally stored as a
919 // RepeatedField<int>. We need to be able to instantiate global static
920 // objects to return as default (empty) repeated fields on non-existent
921 // extensions. We would not be able to know a-priori all of the enum types
922 // (values of |Type|) to instantiate all of these, so we just re-use int32's
923 // default repeated field object.
924 return reinterpret_cast<const RepeatedField<Type>*>(
925 RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField());
926 }
927 };
928
929 // -------------------------------------------------------------------
930 // MessageTypeTraits
931
932 // ExtensionSet guarantees that when manipulating extensions with message
933 // types, the implementation used will be the compiled-in class representing
934 // that type. So, we can static_cast down to the exact type we expect.
935 template <typename Type>
936 class MessageTypeTraits {
937 public:
938 typedef const Type& ConstType;
939 typedef Type* MutableType;
940 typedef MessageTypeTraits<Type> Singular;
941
Get(int number,const ExtensionSet & set,ConstType default_value)942 static inline ConstType Get(int number, const ExtensionSet& set,
943 ConstType default_value) {
944 return static_cast<const Type&>(
945 set.GetMessage(number, default_value));
946 }
Mutable(int number,FieldType field_type,ExtensionSet * set)947 static inline MutableType Mutable(int number, FieldType field_type,
948 ExtensionSet* set) {
949 return static_cast<Type*>(
950 set->MutableMessage(number, field_type, Type::default_instance(), NULL));
951 }
SetAllocated(int number,FieldType field_type,MutableType message,ExtensionSet * set)952 static inline void SetAllocated(int number, FieldType field_type,
953 MutableType message, ExtensionSet* set) {
954 set->SetAllocatedMessage(number, field_type, NULL, message);
955 }
Release(int number,FieldType,ExtensionSet * set)956 static inline MutableType Release(int number, FieldType /* field_type */,
957 ExtensionSet* set) {
958 return static_cast<Type*>(set->ReleaseMessage(
959 number, Type::default_instance()));
960 }
961 };
962
963 // forward declaration
964 class RepeatedMessageGenericTypeTraits;
965
966 template <typename Type>
967 class RepeatedMessageTypeTraits {
968 public:
969 typedef const Type& ConstType;
970 typedef Type* MutableType;
971 typedef RepeatedMessageTypeTraits<Type> Repeated;
972
973 typedef RepeatedPtrField<Type> RepeatedFieldType;
974
Get(int number,const ExtensionSet & set,int index)975 static inline ConstType Get(int number, const ExtensionSet& set, int index) {
976 return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
977 }
Mutable(int number,int index,ExtensionSet * set)978 static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
979 return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
980 }
Add(int number,FieldType field_type,ExtensionSet * set)981 static inline MutableType Add(int number, FieldType field_type,
982 ExtensionSet* set) {
983 return static_cast<Type*>(
984 set->AddMessage(number, field_type, Type::default_instance(), NULL));
985 }
GetRepeated(int number,const ExtensionSet & set)986 static inline const RepeatedPtrField<Type>& GetRepeated(int number,
987 const ExtensionSet&
988 set) {
989 // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
990 // casting hack applies here, because a RepeatedPtrField<MessageLite>
991 // cannot naturally become a RepeatedPtrType<Type> even though Type is
992 // presumably a message. google::protobuf::Message goes through similar contortions
993 // with a reinterpret_cast<>.
994 return *reinterpret_cast<const RepeatedPtrField<Type>*>(
995 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
996 }
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)997 static inline RepeatedPtrField<Type>* MutableRepeated(int number,
998 FieldType field_type,
999 bool is_packed,
1000 ExtensionSet* set) {
1001 return reinterpret_cast<RepeatedPtrField<Type>*>(
1002 set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1003 }
1004
1005 static const RepeatedFieldType* GetDefaultRepeatedField();
1006 };
1007
1008 // This class exists only to hold a generic default empty repeated field for all
1009 // message-type repeated field extensions.
1010 class LIBPROTOBUF_EXPORT RepeatedMessageGenericTypeTraits {
1011 public:
1012 typedef RepeatedPtrField< ::google::protobuf::MessageLite*> RepeatedFieldType;
1013 private:
1014 template<typename Type> friend class RepeatedMessageTypeTraits;
1015 friend void InitializeDefaultRepeatedFields();
1016 friend void DestroyDefaultRepeatedFields();
1017 static const RepeatedFieldType* default_repeated_field_;
1018 };
1019
1020 template<typename Type> inline
1021 const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
GetDefaultRepeatedField()1022 RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
1023 return reinterpret_cast<const RepeatedFieldType*>(
1024 RepeatedMessageGenericTypeTraits::default_repeated_field_);
1025 }
1026
1027 // -------------------------------------------------------------------
1028 // ExtensionIdentifier
1029
1030 // This is the type of actual extension objects. E.g. if you have:
1031 // extends Foo with optional int32 bar = 1234;
1032 // then "bar" will be defined in C++ as:
1033 // ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 1, false> bar(1234);
1034 //
1035 // Note that we could, in theory, supply the field number as a template
1036 // parameter, and thus make an instance of ExtensionIdentifier have no
1037 // actual contents. However, if we did that, then using at extension
1038 // identifier would not necessarily cause the compiler to output any sort
1039 // of reference to any simple defined in the extension's .pb.o file. Some
1040 // linkers will actually drop object files that are not explicitly referenced,
1041 // but that would be bad because it would cause this extension to not be
1042 // registered at static initialization, and therefore using it would crash.
1043
1044 template <typename ExtendeeType, typename TypeTraitsType,
1045 FieldType field_type, bool is_packed>
1046 class ExtensionIdentifier {
1047 public:
1048 typedef TypeTraitsType TypeTraits;
1049 typedef ExtendeeType Extendee;
1050
ExtensionIdentifier(int number,typename TypeTraits::ConstType default_value)1051 ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
1052 : number_(number), default_value_(default_value) {}
number()1053 inline int number() const { return number_; }
default_value()1054 typename TypeTraits::ConstType default_value() const {
1055 return default_value_;
1056 }
1057
1058 private:
1059 const int number_;
1060 typename TypeTraits::ConstType default_value_;
1061 };
1062
1063 // -------------------------------------------------------------------
1064 // Generated accessors
1065
1066 // This macro should be expanded in the context of a generated type which
1067 // has extensions.
1068 //
1069 // We use "_proto_TypeTraits" as a type name below because "TypeTraits"
1070 // causes problems if the class has a nested message or enum type with that
1071 // name and "_TypeTraits" is technically reserved for the C++ library since
1072 // it starts with an underscore followed by a capital letter.
1073 //
1074 // For similar reason, we use "_field_type" and "_is_packed" as parameter names
1075 // below, so that "field_type" and "is_packed" can be used as field names.
1076 #define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \
1077 /* Has, Size, Clear */ \
1078 template <typename _proto_TypeTraits, \
1079 ::google::protobuf::internal::FieldType _field_type, \
1080 bool _is_packed> \
1081 inline bool HasExtension( \
1082 const ::google::protobuf::internal::ExtensionIdentifier< \
1083 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1084 return _extensions_.Has(id.number()); \
1085 } \
1086 \
1087 template <typename _proto_TypeTraits, \
1088 ::google::protobuf::internal::FieldType _field_type, \
1089 bool _is_packed> \
1090 inline void ClearExtension( \
1091 const ::google::protobuf::internal::ExtensionIdentifier< \
1092 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1093 _extensions_.ClearExtension(id.number()); \
1094 } \
1095 \
1096 template <typename _proto_TypeTraits, \
1097 ::google::protobuf::internal::FieldType _field_type, \
1098 bool _is_packed> \
1099 inline int ExtensionSize( \
1100 const ::google::protobuf::internal::ExtensionIdentifier< \
1101 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1102 return _extensions_.ExtensionSize(id.number()); \
1103 } \
1104 \
1105 /* Singular accessors */ \
1106 template <typename _proto_TypeTraits, \
1107 ::google::protobuf::internal::FieldType _field_type, \
1108 bool _is_packed> \
1109 inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \
1110 const ::google::protobuf::internal::ExtensionIdentifier< \
1111 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1112 return _proto_TypeTraits::Get(id.number(), _extensions_, \
1113 id.default_value()); \
1114 } \
1115 \
1116 template <typename _proto_TypeTraits, \
1117 ::google::protobuf::internal::FieldType _field_type, \
1118 bool _is_packed> \
1119 inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \
1120 const ::google::protobuf::internal::ExtensionIdentifier< \
1121 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1122 return _proto_TypeTraits::Mutable(id.number(), _field_type, \
1123 &_extensions_); \
1124 } \
1125 \
1126 template <typename _proto_TypeTraits, \
1127 ::google::protobuf::internal::FieldType _field_type, \
1128 bool _is_packed> \
1129 inline void SetExtension( \
1130 const ::google::protobuf::internal::ExtensionIdentifier< \
1131 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1132 typename _proto_TypeTraits::Singular::ConstType value) { \
1133 _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \
1134 } \
1135 \
1136 template <typename _proto_TypeTraits, \
1137 ::google::protobuf::internal::FieldType _field_type, \
1138 bool _is_packed> \
1139 inline void SetAllocatedExtension( \
1140 const ::google::protobuf::internal::ExtensionIdentifier< \
1141 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1142 typename _proto_TypeTraits::Singular::MutableType value) { \
1143 _proto_TypeTraits::SetAllocated(id.number(), _field_type, \
1144 value, &_extensions_); \
1145 } \
1146 template <typename _proto_TypeTraits, \
1147 ::google::protobuf::internal::FieldType _field_type, \
1148 bool _is_packed> \
1149 inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \
1150 const ::google::protobuf::internal::ExtensionIdentifier< \
1151 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1152 return _proto_TypeTraits::Release(id.number(), _field_type, \
1153 &_extensions_); \
1154 } \
1155 \
1156 /* Repeated accessors */ \
1157 template <typename _proto_TypeTraits, \
1158 ::google::protobuf::internal::FieldType _field_type, \
1159 bool _is_packed> \
1160 inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \
1161 const ::google::protobuf::internal::ExtensionIdentifier< \
1162 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1163 int index) const { \
1164 return _proto_TypeTraits::Get(id.number(), _extensions_, index); \
1165 } \
1166 \
1167 template <typename _proto_TypeTraits, \
1168 ::google::protobuf::internal::FieldType _field_type, \
1169 bool _is_packed> \
1170 inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \
1171 const ::google::protobuf::internal::ExtensionIdentifier< \
1172 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1173 int index) { \
1174 return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \
1175 } \
1176 \
1177 template <typename _proto_TypeTraits, \
1178 ::google::protobuf::internal::FieldType _field_type, \
1179 bool _is_packed> \
1180 inline void SetExtension( \
1181 const ::google::protobuf::internal::ExtensionIdentifier< \
1182 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1183 int index, typename _proto_TypeTraits::Repeated::ConstType value) { \
1184 _proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \
1185 } \
1186 \
1187 template <typename _proto_TypeTraits, \
1188 ::google::protobuf::internal::FieldType _field_type, \
1189 bool _is_packed> \
1190 inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \
1191 const ::google::protobuf::internal::ExtensionIdentifier< \
1192 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1193 return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \
1194 } \
1195 \
1196 template <typename _proto_TypeTraits, \
1197 ::google::protobuf::internal::FieldType _field_type, \
1198 bool _is_packed> \
1199 inline void AddExtension( \
1200 const ::google::protobuf::internal::ExtensionIdentifier< \
1201 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1202 typename _proto_TypeTraits::Repeated::ConstType value) { \
1203 _proto_TypeTraits::Add(id.number(), _field_type, _is_packed, \
1204 value, &_extensions_); \
1205 } \
1206 \
1207 template <typename _proto_TypeTraits, \
1208 ::google::protobuf::internal::FieldType _field_type, \
1209 bool _is_packed> \
1210 inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \
1211 GetRepeatedExtension( \
1212 const ::google::protobuf::internal::ExtensionIdentifier< \
1213 CLASSNAME, _proto_TypeTraits, _field_type, \
1214 _is_packed>& id) const { \
1215 return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \
1216 } \
1217 \
1218 template <typename _proto_TypeTraits, \
1219 ::google::protobuf::internal::FieldType _field_type, \
1220 bool _is_packed> \
1221 inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \
1222 MutableRepeatedExtension( \
1223 const ::google::protobuf::internal::ExtensionIdentifier< \
1224 CLASSNAME, _proto_TypeTraits, _field_type, \
1225 _is_packed>& id) { \
1226 return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \
1227 _is_packed, &_extensions_); \
1228 }
1229
1230 } // namespace internal
1231 } // namespace protobuf
1232
1233 } // namespace google
1234 #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__
1235