1TGSI
2====
3
4TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5for describing shaders. Since Gallium is inherently shaderful, shaders are
6an important part of the API. TGSI is the only intermediate representation
7used by all drivers.
8
9Basics
10------
11
12All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13floating-point four-component vectors. An opcode may have up to one
14destination register, known as *dst*, and between zero and three source
15registers, called *src0* through *src2*, or simply *src* if there is only
16one.
17
18Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19components as integers. Other instructions permit using registers as
20two-component vectors with double precision; see :ref:`Double Opcodes`.
21
22When an instruction has a scalar result, the result is usually copied into
23each of the components of *dst*. When this happens, the result is said to be
24*replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26Instruction Set
27---------------
28
29Core ISA
30^^^^^^^^^^^^^^^^^^^^^^^^^
31
32These opcodes are guaranteed to be available regardless of the driver being
33used.
34
35.. opcode:: ARL - Address Register Load
36
37.. math::
38
39  dst.x = \lfloor src.x\rfloor
40
41  dst.y = \lfloor src.y\rfloor
42
43  dst.z = \lfloor src.z\rfloor
44
45  dst.w = \lfloor src.w\rfloor
46
47
48.. opcode:: MOV - Move
49
50.. math::
51
52  dst.x = src.x
53
54  dst.y = src.y
55
56  dst.z = src.z
57
58  dst.w = src.w
59
60
61.. opcode:: LIT - Light Coefficients
62
63.. math::
64
65  dst.x = 1
66
67  dst.y = max(src.x, 0)
68
69  dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
70
71  dst.w = 1
72
73
74.. opcode:: RCP - Reciprocal
75
76This instruction replicates its result.
77
78.. math::
79
80  dst = \frac{1}{src.x}
81
82
83.. opcode:: RSQ - Reciprocal Square Root
84
85This instruction replicates its result.
86
87.. math::
88
89  dst = \frac{1}{\sqrt{|src.x|}}
90
91
92.. opcode:: EXP - Approximate Exponential Base 2
93
94.. math::
95
96  dst.x = 2^{\lfloor src.x\rfloor}
97
98  dst.y = src.x - \lfloor src.x\rfloor
99
100  dst.z = 2^{src.x}
101
102  dst.w = 1
103
104
105.. opcode:: LOG - Approximate Logarithm Base 2
106
107.. math::
108
109  dst.x = \lfloor\log_2{|src.x|}\rfloor
110
111  dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
112
113  dst.z = \log_2{|src.x|}
114
115  dst.w = 1
116
117
118.. opcode:: MUL - Multiply
119
120.. math::
121
122  dst.x = src0.x \times src1.x
123
124  dst.y = src0.y \times src1.y
125
126  dst.z = src0.z \times src1.z
127
128  dst.w = src0.w \times src1.w
129
130
131.. opcode:: ADD - Add
132
133.. math::
134
135  dst.x = src0.x + src1.x
136
137  dst.y = src0.y + src1.y
138
139  dst.z = src0.z + src1.z
140
141  dst.w = src0.w + src1.w
142
143
144.. opcode:: DP3 - 3-component Dot Product
145
146This instruction replicates its result.
147
148.. math::
149
150  dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
151
152
153.. opcode:: DP4 - 4-component Dot Product
154
155This instruction replicates its result.
156
157.. math::
158
159  dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
160
161
162.. opcode:: DST - Distance Vector
163
164.. math::
165
166  dst.x = 1
167
168  dst.y = src0.y \times src1.y
169
170  dst.z = src0.z
171
172  dst.w = src1.w
173
174
175.. opcode:: MIN - Minimum
176
177.. math::
178
179  dst.x = min(src0.x, src1.x)
180
181  dst.y = min(src0.y, src1.y)
182
183  dst.z = min(src0.z, src1.z)
184
185  dst.w = min(src0.w, src1.w)
186
187
188.. opcode:: MAX - Maximum
189
190.. math::
191
192  dst.x = max(src0.x, src1.x)
193
194  dst.y = max(src0.y, src1.y)
195
196  dst.z = max(src0.z, src1.z)
197
198  dst.w = max(src0.w, src1.w)
199
200
201.. opcode:: SLT - Set On Less Than
202
203.. math::
204
205  dst.x = (src0.x < src1.x) ? 1 : 0
206
207  dst.y = (src0.y < src1.y) ? 1 : 0
208
209  dst.z = (src0.z < src1.z) ? 1 : 0
210
211  dst.w = (src0.w < src1.w) ? 1 : 0
212
213
214.. opcode:: SGE - Set On Greater Equal Than
215
216.. math::
217
218  dst.x = (src0.x >= src1.x) ? 1 : 0
219
220  dst.y = (src0.y >= src1.y) ? 1 : 0
221
222  dst.z = (src0.z >= src1.z) ? 1 : 0
223
224  dst.w = (src0.w >= src1.w) ? 1 : 0
225
226
227.. opcode:: MAD - Multiply And Add
228
229.. math::
230
231  dst.x = src0.x \times src1.x + src2.x
232
233  dst.y = src0.y \times src1.y + src2.y
234
235  dst.z = src0.z \times src1.z + src2.z
236
237  dst.w = src0.w \times src1.w + src2.w
238
239
240.. opcode:: SUB - Subtract
241
242.. math::
243
244  dst.x = src0.x - src1.x
245
246  dst.y = src0.y - src1.y
247
248  dst.z = src0.z - src1.z
249
250  dst.w = src0.w - src1.w
251
252
253.. opcode:: LRP - Linear Interpolate
254
255.. math::
256
257  dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
258
259  dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
260
261  dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
262
263  dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
264
265
266.. opcode:: CND - Condition
267
268.. math::
269
270  dst.x = (src2.x > 0.5) ? src0.x : src1.x
271
272  dst.y = (src2.y > 0.5) ? src0.y : src1.y
273
274  dst.z = (src2.z > 0.5) ? src0.z : src1.z
275
276  dst.w = (src2.w > 0.5) ? src0.w : src1.w
277
278
279.. opcode:: DP2A - 2-component Dot Product And Add
280
281.. math::
282
283  dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285  dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287  dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
288
289  dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
290
291
292.. opcode:: FRC - Fraction
293
294.. math::
295
296  dst.x = src.x - \lfloor src.x\rfloor
297
298  dst.y = src.y - \lfloor src.y\rfloor
299
300  dst.z = src.z - \lfloor src.z\rfloor
301
302  dst.w = src.w - \lfloor src.w\rfloor
303
304
305.. opcode:: CLAMP - Clamp
306
307.. math::
308
309  dst.x = clamp(src0.x, src1.x, src2.x)
310
311  dst.y = clamp(src0.y, src1.y, src2.y)
312
313  dst.z = clamp(src0.z, src1.z, src2.z)
314
315  dst.w = clamp(src0.w, src1.w, src2.w)
316
317
318.. opcode:: FLR - Floor
319
320This is identical to :opcode:`ARL`.
321
322.. math::
323
324  dst.x = \lfloor src.x\rfloor
325
326  dst.y = \lfloor src.y\rfloor
327
328  dst.z = \lfloor src.z\rfloor
329
330  dst.w = \lfloor src.w\rfloor
331
332
333.. opcode:: ROUND - Round
334
335.. math::
336
337  dst.x = round(src.x)
338
339  dst.y = round(src.y)
340
341  dst.z = round(src.z)
342
343  dst.w = round(src.w)
344
345
346.. opcode:: EX2 - Exponential Base 2
347
348This instruction replicates its result.
349
350.. math::
351
352  dst = 2^{src.x}
353
354
355.. opcode:: LG2 - Logarithm Base 2
356
357This instruction replicates its result.
358
359.. math::
360
361  dst = \log_2{src.x}
362
363
364.. opcode:: POW - Power
365
366This instruction replicates its result.
367
368.. math::
369
370  dst = src0.x^{src1.x}
371
372.. opcode:: XPD - Cross Product
373
374.. math::
375
376  dst.x = src0.y \times src1.z - src1.y \times src0.z
377
378  dst.y = src0.z \times src1.x - src1.z \times src0.x
379
380  dst.z = src0.x \times src1.y - src1.x \times src0.y
381
382  dst.w = 1
383
384
385.. opcode:: ABS - Absolute
386
387.. math::
388
389  dst.x = |src.x|
390
391  dst.y = |src.y|
392
393  dst.z = |src.z|
394
395  dst.w = |src.w|
396
397
398.. opcode:: RCC - Reciprocal Clamped
399
400This instruction replicates its result.
401
402XXX cleanup on aisle three
403
404.. math::
405
406  dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
407
408
409.. opcode:: DPH - Homogeneous Dot Product
410
411This instruction replicates its result.
412
413.. math::
414
415  dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
416
417
418.. opcode:: COS - Cosine
419
420This instruction replicates its result.
421
422.. math::
423
424  dst = \cos{src.x}
425
426
427.. opcode:: DDX - Derivative Relative To X
428
429.. math::
430
431  dst.x = partialx(src.x)
432
433  dst.y = partialx(src.y)
434
435  dst.z = partialx(src.z)
436
437  dst.w = partialx(src.w)
438
439
440.. opcode:: DDY - Derivative Relative To Y
441
442.. math::
443
444  dst.x = partialy(src.x)
445
446  dst.y = partialy(src.y)
447
448  dst.z = partialy(src.z)
449
450  dst.w = partialy(src.w)
451
452
453.. opcode:: KILP - Predicated Discard
454
455  discard
456
457
458.. opcode:: PK2H - Pack Two 16-bit Floats
459
460  TBD
461
462
463.. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
464
465  TBD
466
467
468.. opcode:: PK4B - Pack Four Signed 8-bit Scalars
469
470  TBD
471
472
473.. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
474
475  TBD
476
477
478.. opcode:: RFL - Reflection Vector
479
480.. math::
481
482  dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
483
484  dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
485
486  dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
487
488  dst.w = 1
489
490.. note::
491
492   Considered for removal.
493
494
495.. opcode:: SEQ - Set On Equal
496
497.. math::
498
499  dst.x = (src0.x == src1.x) ? 1 : 0
500
501  dst.y = (src0.y == src1.y) ? 1 : 0
502
503  dst.z = (src0.z == src1.z) ? 1 : 0
504
505  dst.w = (src0.w == src1.w) ? 1 : 0
506
507
508.. opcode:: SFL - Set On False
509
510This instruction replicates its result.
511
512.. math::
513
514  dst = 0
515
516.. note::
517
518   Considered for removal.
519
520
521.. opcode:: SGT - Set On Greater Than
522
523.. math::
524
525  dst.x = (src0.x > src1.x) ? 1 : 0
526
527  dst.y = (src0.y > src1.y) ? 1 : 0
528
529  dst.z = (src0.z > src1.z) ? 1 : 0
530
531  dst.w = (src0.w > src1.w) ? 1 : 0
532
533
534.. opcode:: SIN - Sine
535
536This instruction replicates its result.
537
538.. math::
539
540  dst = \sin{src.x}
541
542
543.. opcode:: SLE - Set On Less Equal Than
544
545.. math::
546
547  dst.x = (src0.x <= src1.x) ? 1 : 0
548
549  dst.y = (src0.y <= src1.y) ? 1 : 0
550
551  dst.z = (src0.z <= src1.z) ? 1 : 0
552
553  dst.w = (src0.w <= src1.w) ? 1 : 0
554
555
556.. opcode:: SNE - Set On Not Equal
557
558.. math::
559
560  dst.x = (src0.x != src1.x) ? 1 : 0
561
562  dst.y = (src0.y != src1.y) ? 1 : 0
563
564  dst.z = (src0.z != src1.z) ? 1 : 0
565
566  dst.w = (src0.w != src1.w) ? 1 : 0
567
568
569.. opcode:: STR - Set On True
570
571This instruction replicates its result.
572
573.. math::
574
575  dst = 1
576
577
578.. opcode:: TEX - Texture Lookup
579
580.. math::
581
582  coord = src0
583
584  bias = 0.0
585
586  dst = texture_sample(unit, coord, bias)
587
588  for array textures src0.y contains the slice for 1D,
589  and src0.z contain the slice for 2D.
590  for shadow textures with no arrays, src0.z contains
591  the reference value.
592  for shadow textures with arrays, src0.z contains
593  the reference value for 1D arrays, and src0.w contains
594  the reference value for 2D arrays.
595  There is no way to pass a bias in the .w value for
596  shadow arrays, and GLSL doesn't allow this.
597  GLSL does allow cube shadows maps to take a bias value,
598  and we have to determine how this will look in TGSI.
599
600.. opcode:: TXD - Texture Lookup with Derivatives
601
602.. math::
603
604  coord = src0
605
606  ddx = src1
607
608  ddy = src2
609
610  bias = 0.0
611
612  dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
613
614
615.. opcode:: TXP - Projective Texture Lookup
616
617.. math::
618
619  coord.x = src0.x / src.w
620
621  coord.y = src0.y / src.w
622
623  coord.z = src0.z / src.w
624
625  coord.w = src0.w
626
627  bias = 0.0
628
629  dst = texture_sample(unit, coord, bias)
630
631
632.. opcode:: UP2H - Unpack Two 16-Bit Floats
633
634  TBD
635
636.. note::
637
638   Considered for removal.
639
640.. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
641
642  TBD
643
644.. note::
645
646   Considered for removal.
647
648.. opcode:: UP4B - Unpack Four Signed 8-Bit Values
649
650  TBD
651
652.. note::
653
654   Considered for removal.
655
656.. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
657
658  TBD
659
660.. note::
661
662   Considered for removal.
663
664.. opcode:: X2D - 2D Coordinate Transformation
665
666.. math::
667
668  dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
669
670  dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
671
672  dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
673
674  dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
675
676.. note::
677
678   Considered for removal.
679
680
681.. opcode:: ARA - Address Register Add
682
683  TBD
684
685.. note::
686
687   Considered for removal.
688
689.. opcode:: ARR - Address Register Load With Round
690
691.. math::
692
693  dst.x = round(src.x)
694
695  dst.y = round(src.y)
696
697  dst.z = round(src.z)
698
699  dst.w = round(src.w)
700
701
702.. opcode:: BRA - Branch
703
704  pc = target
705
706.. note::
707
708   Considered for removal.
709
710.. opcode:: CAL - Subroutine Call
711
712  push(pc)
713  pc = target
714
715
716.. opcode:: RET - Subroutine Call Return
717
718  pc = pop()
719
720
721.. opcode:: SSG - Set Sign
722
723.. math::
724
725  dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
726
727  dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
728
729  dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
730
731  dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
732
733
734.. opcode:: CMP - Compare
735
736.. math::
737
738  dst.x = (src0.x < 0) ? src1.x : src2.x
739
740  dst.y = (src0.y < 0) ? src1.y : src2.y
741
742  dst.z = (src0.z < 0) ? src1.z : src2.z
743
744  dst.w = (src0.w < 0) ? src1.w : src2.w
745
746
747.. opcode:: KIL - Conditional Discard
748
749.. math::
750
751  if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
752    discard
753  endif
754
755
756.. opcode:: SCS - Sine Cosine
757
758.. math::
759
760  dst.x = \cos{src.x}
761
762  dst.y = \sin{src.x}
763
764  dst.z = 0
765
766  dst.w = 1
767
768
769.. opcode:: TXB - Texture Lookup With Bias
770
771.. math::
772
773  coord.x = src.x
774
775  coord.y = src.y
776
777  coord.z = src.z
778
779  coord.w = 1.0
780
781  bias = src.z
782
783  dst = texture_sample(unit, coord, bias)
784
785
786.. opcode:: NRM - 3-component Vector Normalise
787
788.. math::
789
790  dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
791
792  dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
793
794  dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
795
796  dst.w = 1
797
798
799.. opcode:: DIV - Divide
800
801.. math::
802
803  dst.x = \frac{src0.x}{src1.x}
804
805  dst.y = \frac{src0.y}{src1.y}
806
807  dst.z = \frac{src0.z}{src1.z}
808
809  dst.w = \frac{src0.w}{src1.w}
810
811
812.. opcode:: DP2 - 2-component Dot Product
813
814This instruction replicates its result.
815
816.. math::
817
818  dst = src0.x \times src1.x + src0.y \times src1.y
819
820
821.. opcode:: TXL - Texture Lookup With explicit LOD
822
823.. math::
824
825  coord.x = src0.x
826
827  coord.y = src0.y
828
829  coord.z = src0.z
830
831  coord.w = 1.0
832
833  lod = src0.w
834
835  dst = texture_sample(unit, coord, lod)
836
837
838.. opcode:: BRK - Break
839
840  TBD
841
842
843.. opcode:: IF - If
844
845  TBD
846
847
848.. opcode:: ELSE - Else
849
850  TBD
851
852
853.. opcode:: ENDIF - End If
854
855  TBD
856
857
858.. opcode:: PUSHA - Push Address Register On Stack
859
860  push(src.x)
861  push(src.y)
862  push(src.z)
863  push(src.w)
864
865.. note::
866
867   Considered for cleanup.
868
869.. note::
870
871   Considered for removal.
872
873.. opcode:: POPA - Pop Address Register From Stack
874
875  dst.w = pop()
876  dst.z = pop()
877  dst.y = pop()
878  dst.x = pop()
879
880.. note::
881
882   Considered for cleanup.
883
884.. note::
885
886   Considered for removal.
887
888
889Compute ISA
890^^^^^^^^^^^^^^^^^^^^^^^^
891
892These opcodes are primarily provided for special-use computational shaders.
893Support for these opcodes indicated by a special pipe capability bit (TBD).
894
895XXX so let's discuss it, yeah?
896
897.. opcode:: CEIL - Ceiling
898
899.. math::
900
901  dst.x = \lceil src.x\rceil
902
903  dst.y = \lceil src.y\rceil
904
905  dst.z = \lceil src.z\rceil
906
907  dst.w = \lceil src.w\rceil
908
909
910.. opcode:: I2F - Integer To Float
911
912.. math::
913
914  dst.x = (float) src.x
915
916  dst.y = (float) src.y
917
918  dst.z = (float) src.z
919
920  dst.w = (float) src.w
921
922
923.. opcode:: NOT - Bitwise Not
924
925.. math::
926
927  dst.x = ~src.x
928
929  dst.y = ~src.y
930
931  dst.z = ~src.z
932
933  dst.w = ~src.w
934
935
936.. opcode:: TRUNC - Truncate
937
938.. math::
939
940  dst.x = trunc(src.x)
941
942  dst.y = trunc(src.y)
943
944  dst.z = trunc(src.z)
945
946  dst.w = trunc(src.w)
947
948
949.. opcode:: SHL - Shift Left
950
951.. math::
952
953  dst.x = src0.x << src1.x
954
955  dst.y = src0.y << src1.x
956
957  dst.z = src0.z << src1.x
958
959  dst.w = src0.w << src1.x
960
961
962.. opcode:: SHR - Shift Right
963
964.. math::
965
966  dst.x = src0.x >> src1.x
967
968  dst.y = src0.y >> src1.x
969
970  dst.z = src0.z >> src1.x
971
972  dst.w = src0.w >> src1.x
973
974
975.. opcode:: AND - Bitwise And
976
977.. math::
978
979  dst.x = src0.x & src1.x
980
981  dst.y = src0.y & src1.y
982
983  dst.z = src0.z & src1.z
984
985  dst.w = src0.w & src1.w
986
987
988.. opcode:: OR - Bitwise Or
989
990.. math::
991
992  dst.x = src0.x | src1.x
993
994  dst.y = src0.y | src1.y
995
996  dst.z = src0.z | src1.z
997
998  dst.w = src0.w | src1.w
999
1000
1001.. opcode:: MOD - Modulus
1002
1003.. math::
1004
1005  dst.x = src0.x \bmod src1.x
1006
1007  dst.y = src0.y \bmod src1.y
1008
1009  dst.z = src0.z \bmod src1.z
1010
1011  dst.w = src0.w \bmod src1.w
1012
1013
1014.. opcode:: XOR - Bitwise Xor
1015
1016.. math::
1017
1018  dst.x = src0.x \oplus src1.x
1019
1020  dst.y = src0.y \oplus src1.y
1021
1022  dst.z = src0.z \oplus src1.z
1023
1024  dst.w = src0.w \oplus src1.w
1025
1026
1027.. opcode:: UCMP - Integer Conditional Move
1028
1029.. math::
1030
1031  dst.x = src0.x ? src1.x : src2.x
1032
1033  dst.y = src0.y ? src1.y : src2.y
1034
1035  dst.z = src0.z ? src1.z : src2.z
1036
1037  dst.w = src0.w ? src1.w : src2.w
1038
1039
1040.. opcode:: UARL - Integer Address Register Load
1041
1042  Moves the contents of the source register, assumed to be an integer, into the
1043  destination register, which is assumed to be an address (ADDR) register.
1044
1045
1046.. opcode:: IABS - Integer Absolute Value
1047
1048.. math::
1049
1050  dst.x = |src.x|
1051
1052  dst.y = |src.y|
1053
1054  dst.z = |src.z|
1055
1056  dst.w = |src.w|
1057
1058
1059.. opcode:: SAD - Sum Of Absolute Differences
1060
1061.. math::
1062
1063  dst.x = |src0.x - src1.x| + src2.x
1064
1065  dst.y = |src0.y - src1.y| + src2.y
1066
1067  dst.z = |src0.z - src1.z| + src2.z
1068
1069  dst.w = |src0.w - src1.w| + src2.w
1070
1071
1072.. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
1073                  from a specified texture image. The source sampler may
1074		  not be a CUBE or SHADOW.
1075                  src 0 is a four-component signed integer vector used to
1076		  identify the single texel accessed. 3 components + level.
1077		  src 1 is a 3 component constant signed integer vector,
1078		  with each component only have a range of
1079		  -8..+8 (hw only seems to deal with this range, interface
1080		  allows for up to unsigned int).
1081		  TXF(uint_vec coord, int_vec offset).
1082
1083
1084.. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
1085                  retrieve the dimensions of the texture
1086                  depending on the target. For 1D (width), 2D/RECT/CUBE
1087		  (width, height), 3D (width, height, depth),
1088		  1D array (width, layers), 2D array (width, height, layers)
1089
1090.. math::
1091
1092  lod = src0
1093
1094  dst.x = texture_width(unit, lod)
1095
1096  dst.y = texture_height(unit, lod)
1097
1098  dst.z = texture_depth(unit, lod)
1099
1100
1101.. opcode:: CONT - Continue
1102
1103  TBD
1104
1105.. note::
1106
1107   Support for CONT is determined by a special capability bit,
1108   ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1109
1110
1111Geometry ISA
1112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1113
1114These opcodes are only supported in geometry shaders; they have no meaning
1115in any other type of shader.
1116
1117.. opcode:: EMIT - Emit
1118
1119  TBD
1120
1121
1122.. opcode:: ENDPRIM - End Primitive
1123
1124  TBD
1125
1126
1127GLSL ISA
1128^^^^^^^^^^
1129
1130These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1131opcodes is determined by a special capability bit, ``GLSL``.
1132
1133.. opcode:: BGNLOOP - Begin a Loop
1134
1135  TBD
1136
1137
1138.. opcode:: BGNSUB - Begin Subroutine
1139
1140  TBD
1141
1142
1143.. opcode:: ENDLOOP - End a Loop
1144
1145  TBD
1146
1147
1148.. opcode:: ENDSUB - End Subroutine
1149
1150  TBD
1151
1152
1153.. opcode:: NOP - No Operation
1154
1155  Do nothing.
1156
1157
1158.. opcode:: NRM4 - 4-component Vector Normalise
1159
1160This instruction replicates its result.
1161
1162.. math::
1163
1164  dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1165
1166
1167ps_2_x
1168^^^^^^^^^^^^
1169
1170XXX wait what
1171
1172.. opcode:: CALLNZ - Subroutine Call If Not Zero
1173
1174  TBD
1175
1176
1177.. opcode:: IFC - If
1178
1179  TBD
1180
1181
1182.. opcode:: BREAKC - Break Conditional
1183
1184  TBD
1185
1186.. _doubleopcodes:
1187
1188Double ISA
1189^^^^^^^^^^^^^^^
1190
1191The double-precision opcodes reinterpret four-component vectors into
1192two-component vectors with doubled precision in each component.
1193
1194Support for these opcodes is XXX undecided. :T
1195
1196.. opcode:: DADD - Add
1197
1198.. math::
1199
1200  dst.xy = src0.xy + src1.xy
1201
1202  dst.zw = src0.zw + src1.zw
1203
1204
1205.. opcode:: DDIV - Divide
1206
1207.. math::
1208
1209  dst.xy = src0.xy / src1.xy
1210
1211  dst.zw = src0.zw / src1.zw
1212
1213.. opcode:: DSEQ - Set on Equal
1214
1215.. math::
1216
1217  dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1218
1219  dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1220
1221.. opcode:: DSLT - Set on Less than
1222
1223.. math::
1224
1225  dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1226
1227  dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1228
1229.. opcode:: DFRAC - Fraction
1230
1231.. math::
1232
1233  dst.xy = src.xy - \lfloor src.xy\rfloor
1234
1235  dst.zw = src.zw - \lfloor src.zw\rfloor
1236
1237
1238.. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1239
1240Like the ``frexp()`` routine in many math libraries, this opcode stores the
1241exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1242:math:`dst1 \times 2^{dst0} = src` .
1243
1244.. math::
1245
1246  dst0.xy = exp(src.xy)
1247
1248  dst1.xy = frac(src.xy)
1249
1250  dst0.zw = exp(src.zw)
1251
1252  dst1.zw = frac(src.zw)
1253
1254.. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1255
1256This opcode is the inverse of :opcode:`DFRACEXP`.
1257
1258.. math::
1259
1260  dst.xy = src0.xy \times 2^{src1.xy}
1261
1262  dst.zw = src0.zw \times 2^{src1.zw}
1263
1264.. opcode:: DMIN - Minimum
1265
1266.. math::
1267
1268  dst.xy = min(src0.xy, src1.xy)
1269
1270  dst.zw = min(src0.zw, src1.zw)
1271
1272.. opcode:: DMAX - Maximum
1273
1274.. math::
1275
1276  dst.xy = max(src0.xy, src1.xy)
1277
1278  dst.zw = max(src0.zw, src1.zw)
1279
1280.. opcode:: DMUL - Multiply
1281
1282.. math::
1283
1284  dst.xy = src0.xy \times src1.xy
1285
1286  dst.zw = src0.zw \times src1.zw
1287
1288
1289.. opcode:: DMAD - Multiply And Add
1290
1291.. math::
1292
1293  dst.xy = src0.xy \times src1.xy + src2.xy
1294
1295  dst.zw = src0.zw \times src1.zw + src2.zw
1296
1297
1298.. opcode:: DRCP - Reciprocal
1299
1300.. math::
1301
1302   dst.xy = \frac{1}{src.xy}
1303
1304   dst.zw = \frac{1}{src.zw}
1305
1306.. opcode:: DSQRT - Square Root
1307
1308.. math::
1309
1310   dst.xy = \sqrt{src.xy}
1311
1312   dst.zw = \sqrt{src.zw}
1313
1314
1315.. _samplingopcodes:
1316
1317Resource Sampling Opcodes
1318^^^^^^^^^^^^^^^^^^^^^^^^^
1319
1320Those opcodes follow very closely semantics of the respective Direct3D
1321instructions. If in doubt double check Direct3D documentation.
1322
1323.. opcode:: SAMPLE - Using provided address, sample data from the
1324               specified texture using the filtering mode identified
1325               by the gven sampler. The source data may come from
1326               any resource type other than buffers.
1327               SAMPLE dst, address, sampler_view, sampler
1328               e.g.
1329               SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1330
1331.. opcode:: SAMPLE_I - Simplified alternative to the SAMPLE instruction.
1332               Using the provided integer address, SAMPLE_I fetches data
1333               from the specified sampler view without any filtering.
1334               The source data may come from any resource type other
1335               than CUBE.
1336               SAMPLE_I dst, address, sampler_view
1337               e.g.
1338               SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]
1339               The 'address' is specified as unsigned integers. If the
1340               'address' is out of range [0...(# texels - 1)] the
1341               result of the fetch is always 0 in all components.
1342               As such the instruction doesn't honor address wrap
1343               modes, in cases where that behavior is desirable
1344               'SAMPLE' instruction should be used.
1345               address.w always provides an unsigned integer mipmap
1346               level. If the value is out of the range then the
1347               instruction always returns 0 in all components.
1348               address.yz are ignored for buffers and 1d textures.
1349               address.z is ignored for 1d texture arrays and 2d
1350               textures.
1351               For 1D texture arrays address.y provides the array
1352               index (also as unsigned integer). If the value is
1353               out of the range of available array indices
1354               [0... (array size - 1)] then the opcode always returns
1355               0 in all components.
1356               For 2D texture arrays address.z provides the array
1357               index, otherwise it exhibits the same behavior as in
1358               the case for 1D texture arrays.
1359               The exact semantics of the source address are presented
1360               in the table below:
1361               resource type         X     Y     Z       W
1362               -------------         ------------------------
1363               PIPE_BUFFER           x                ignored
1364               PIPE_TEXTURE_1D       x                  mpl
1365               PIPE_TEXTURE_2D       x     y            mpl
1366               PIPE_TEXTURE_3D       x     y     z      mpl
1367               PIPE_TEXTURE_RECT     x     y            mpl
1368               PIPE_TEXTURE_CUBE     not allowed as source
1369               PIPE_TEXTURE_1D_ARRAY x    idx           mpl
1370               PIPE_TEXTURE_2D_ARRAY x     y    idx     mpl
1371
1372               Where 'mpl' is a mipmap level and 'idx' is the
1373               array index.
1374
1375.. opcode:: SAMPLE_I_MS - Just like SAMPLE_I but allows fetch data from
1376               multi-sampled surfaces.
1377
1378.. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
1379               exception that an additiona bias is applied to the
1380               level of detail computed as part of the instruction
1381               execution.
1382               SAMPLE_B dst, address, sampler_view, sampler, lod_bias
1383               e.g.
1384               SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1385
1386.. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
1387               performs a comparison filter. The operands to SAMPLE_C
1388               are identical to SAMPLE, except that tere is an additional
1389               float32 operand, reference value, which must be a register
1390               with single-component, or a scalar literal.
1391               SAMPLE_C makes the hardware use the current samplers
1392               compare_func (in pipe_sampler_state) to compare
1393               reference value against the red component value for the
1394               surce resource at each texel that the currently configured
1395               texture filter covers based on the provided coordinates.
1396               SAMPLE_C dst, address, sampler_view.r, sampler, ref_value
1397               e.g.
1398               SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1399
1400.. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
1401               are ignored. The LZ stands for level-zero.
1402               SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value
1403               e.g.
1404               SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1405
1406
1407.. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
1408               that the derivatives for the source address in the x
1409               direction and the y direction are provided by extra
1410               parameters.
1411               SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y
1412               e.g.
1413               SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]
1414
1415.. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
1416               that the LOD is provided directly as a scalar value,
1417               representing no anisotropy. Source addresses A channel
1418               is used as the LOD.
1419               SAMPLE_L dst, address, sampler_view, sampler
1420               e.g.
1421               SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1422
1423.. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
1424               filtering operation and packs them into a single register.
1425               Only works with 2D, 2D array, cubemaps, and cubemaps arrays.
1426               For 2D textures, only the addressing modes of the sampler and
1427               the top level of any mip pyramid are used. Set W to zero.
1428               It behaves like the SAMPLE instruction, but a filtered
1429               sample is not generated. The four samples that contribute
1430               to filtering are placed into xyzw in counter-clockwise order,
1431               starting with the (u,v) texture coordinate delta at the
1432               following locations (-, +), (+, +), (+, -), (-, -), where
1433               the magnitude of the deltas are half a texel.
1434
1435
1436.. opcode:: SVIEWINFO - query the dimensions of a given sampler view.
1437               dst receives width, height, depth or array size and
1438               number of mipmap levels. The dst can have a writemask
1439               which will specify what info is the caller interested
1440               in.
1441               SVIEWINFO dst, src_mip_level, sampler_view
1442               e.g.
1443               SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]
1444               src_mip_level is an unsigned integer scalar. If it's
1445               out of range then returns 0 for width, height and
1446               depth/array size but the total number of mipmap is
1447               still returned correctly for the given sampler view.
1448               The returned width, height and depth values are for
1449               the mipmap level selected by the src_mip_level and
1450               are in the number of texels.
1451               For 1d texture array width is in dst.x, array size
1452               is in dst.y and dst.zw are always 0.
1453
1454.. opcode:: SAMPLE_POS - query the position of a given sample.
1455               dst receives float4 (x, y, 0, 0) indicated where the
1456               sample is located. If the resource is not a multi-sample
1457               resource and not a render target, the result is 0.
1458
1459.. opcode:: SAMPLE_INFO - dst receives number of samples in x.
1460               If the resource is not a multi-sample resource and
1461               not a render target, the result is 0.
1462
1463
1464.. _resourceopcodes:
1465
1466Resource Access Opcodes
1467^^^^^^^^^^^^^^^^^^^^^^^
1468
1469.. opcode:: LOAD - Fetch data from a shader resource
1470
1471               Syntax: ``LOAD dst, resource, address``
1472
1473               Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
1474
1475               Using the provided integer address, LOAD fetches data
1476               from the specified buffer or texture without any
1477               filtering.
1478
1479               The 'address' is specified as a vector of unsigned
1480               integers.  If the 'address' is out of range the result
1481               is unspecified.
1482
1483               Only the first mipmap level of a resource can be read
1484               from using this instruction.
1485
1486               For 1D or 2D texture arrays, the array index is
1487               provided as an unsigned integer in address.y or
1488               address.z, respectively.  address.yz are ignored for
1489               buffers and 1D textures.  address.z is ignored for 1D
1490               texture arrays and 2D textures.  address.w is always
1491               ignored.
1492
1493.. opcode:: STORE - Write data to a shader resource
1494
1495               Syntax: ``STORE resource, address, src``
1496
1497               Example: ``STORE RES[0], TEMP[0], TEMP[1]``
1498
1499               Using the provided integer address, STORE writes data
1500               to the specified buffer or texture.
1501
1502               The 'address' is specified as a vector of unsigned
1503               integers.  If the 'address' is out of range the result
1504               is unspecified.
1505
1506               Only the first mipmap level of a resource can be
1507               written to using this instruction.
1508
1509               For 1D or 2D texture arrays, the array index is
1510               provided as an unsigned integer in address.y or
1511               address.z, respectively.  address.yz are ignored for
1512               buffers and 1D textures.  address.z is ignored for 1D
1513               texture arrays and 2D textures.  address.w is always
1514               ignored.
1515
1516
1517.. _threadsyncopcodes:
1518
1519Inter-thread synchronization opcodes
1520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1521
1522These opcodes are intended for communication between threads running
1523within the same compute grid.  For now they're only valid in compute
1524programs.
1525
1526.. opcode:: MFENCE - Memory fence
1527
1528  Syntax: ``MFENCE resource``
1529
1530  Example: ``MFENCE RES[0]``
1531
1532  This opcode forces strong ordering between any memory access
1533  operations that affect the specified resource.  This means that
1534  previous loads and stores (and only those) will be performed and
1535  visible to other threads before the program execution continues.
1536
1537
1538.. opcode:: LFENCE - Load memory fence
1539
1540  Syntax: ``LFENCE resource``
1541
1542  Example: ``LFENCE RES[0]``
1543
1544  Similar to MFENCE, but it only affects the ordering of memory loads.
1545
1546
1547.. opcode:: SFENCE - Store memory fence
1548
1549  Syntax: ``SFENCE resource``
1550
1551  Example: ``SFENCE RES[0]``
1552
1553  Similar to MFENCE, but it only affects the ordering of memory stores.
1554
1555
1556.. opcode:: BARRIER - Thread group barrier
1557
1558  ``BARRIER``
1559
1560  This opcode suspends the execution of the current thread until all
1561  the remaining threads in the working group reach the same point of
1562  the program.  Results are unspecified if any of the remaining
1563  threads terminates or never reaches an executed BARRIER instruction.
1564
1565
1566.. _atomopcodes:
1567
1568Atomic opcodes
1569^^^^^^^^^^^^^^
1570
1571These opcodes provide atomic variants of some common arithmetic and
1572logical operations.  In this context atomicity means that another
1573concurrent memory access operation that affects the same memory
1574location is guaranteed to be performed strictly before or after the
1575entire execution of the atomic operation.
1576
1577For the moment they're only valid in compute programs.
1578
1579.. opcode:: ATOMUADD - Atomic integer addition
1580
1581  Syntax: ``ATOMUADD dst, resource, offset, src``
1582
1583  Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
1584
1585  The following operation is performed atomically on each component:
1586
1587.. math::
1588
1589  dst_i = resource[offset]_i
1590
1591  resource[offset]_i = dst_i + src_i
1592
1593
1594.. opcode:: ATOMXCHG - Atomic exchange
1595
1596  Syntax: ``ATOMXCHG dst, resource, offset, src``
1597
1598  Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
1599
1600  The following operation is performed atomically on each component:
1601
1602.. math::
1603
1604  dst_i = resource[offset]_i
1605
1606  resource[offset]_i = src_i
1607
1608
1609.. opcode:: ATOMCAS - Atomic compare-and-exchange
1610
1611  Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
1612
1613  Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
1614
1615  The following operation is performed atomically on each component:
1616
1617.. math::
1618
1619  dst_i = resource[offset]_i
1620
1621  resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
1622
1623
1624.. opcode:: ATOMAND - Atomic bitwise And
1625
1626  Syntax: ``ATOMAND dst, resource, offset, src``
1627
1628  Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
1629
1630  The following operation is performed atomically on each component:
1631
1632.. math::
1633
1634  dst_i = resource[offset]_i
1635
1636  resource[offset]_i = dst_i \& src_i
1637
1638
1639.. opcode:: ATOMOR - Atomic bitwise Or
1640
1641  Syntax: ``ATOMOR dst, resource, offset, src``
1642
1643  Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
1644
1645  The following operation is performed atomically on each component:
1646
1647.. math::
1648
1649  dst_i = resource[offset]_i
1650
1651  resource[offset]_i = dst_i | src_i
1652
1653
1654.. opcode:: ATOMXOR - Atomic bitwise Xor
1655
1656  Syntax: ``ATOMXOR dst, resource, offset, src``
1657
1658  Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
1659
1660  The following operation is performed atomically on each component:
1661
1662.. math::
1663
1664  dst_i = resource[offset]_i
1665
1666  resource[offset]_i = dst_i \oplus src_i
1667
1668
1669.. opcode:: ATOMUMIN - Atomic unsigned minimum
1670
1671  Syntax: ``ATOMUMIN dst, resource, offset, src``
1672
1673  Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
1674
1675  The following operation is performed atomically on each component:
1676
1677.. math::
1678
1679  dst_i = resource[offset]_i
1680
1681  resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
1682
1683
1684.. opcode:: ATOMUMAX - Atomic unsigned maximum
1685
1686  Syntax: ``ATOMUMAX dst, resource, offset, src``
1687
1688  Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
1689
1690  The following operation is performed atomically on each component:
1691
1692.. math::
1693
1694  dst_i = resource[offset]_i
1695
1696  resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
1697
1698
1699.. opcode:: ATOMIMIN - Atomic signed minimum
1700
1701  Syntax: ``ATOMIMIN dst, resource, offset, src``
1702
1703  Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
1704
1705  The following operation is performed atomically on each component:
1706
1707.. math::
1708
1709  dst_i = resource[offset]_i
1710
1711  resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
1712
1713
1714.. opcode:: ATOMIMAX - Atomic signed maximum
1715
1716  Syntax: ``ATOMIMAX dst, resource, offset, src``
1717
1718  Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
1719
1720  The following operation is performed atomically on each component:
1721
1722.. math::
1723
1724  dst_i = resource[offset]_i
1725
1726  resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
1727
1728
1729
1730Explanation of symbols used
1731------------------------------
1732
1733
1734Functions
1735^^^^^^^^^^^^^^
1736
1737
1738  :math:`|x|`       Absolute value of `x`.
1739
1740  :math:`\lceil x \rceil` Ceiling of `x`.
1741
1742  clamp(x,y,z)      Clamp x between y and z.
1743                    (x < y) ? y : (x > z) ? z : x
1744
1745  :math:`\lfloor x\rfloor` Floor of `x`.
1746
1747  :math:`\log_2{x}` Logarithm of `x`, base 2.
1748
1749  max(x,y)          Maximum of x and y.
1750                    (x > y) ? x : y
1751
1752  min(x,y)          Minimum of x and y.
1753                    (x < y) ? x : y
1754
1755  partialx(x)       Derivative of x relative to fragment's X.
1756
1757  partialy(x)       Derivative of x relative to fragment's Y.
1758
1759  pop()             Pop from stack.
1760
1761  :math:`x^y`       `x` to the power `y`.
1762
1763  push(x)           Push x on stack.
1764
1765  round(x)          Round x.
1766
1767  trunc(x)          Truncate x, i.e. drop the fraction bits.
1768
1769
1770Keywords
1771^^^^^^^^^^^^^
1772
1773
1774  discard           Discard fragment.
1775
1776  pc                Program counter.
1777
1778  target            Label of target instruction.
1779
1780
1781Other tokens
1782---------------
1783
1784
1785Declaration
1786^^^^^^^^^^^
1787
1788
1789Declares a register that is will be referenced as an operand in Instruction
1790tokens.
1791
1792File field contains register file that is being declared and is one
1793of TGSI_FILE.
1794
1795UsageMask field specifies which of the register components can be accessed
1796and is one of TGSI_WRITEMASK.
1797
1798The Local flag specifies that a given value isn't intended for
1799subroutine parameter passing and, as a result, the implementation
1800isn't required to give any guarantees of it being preserved across
1801subroutine boundaries.  As it's merely a compiler hint, the
1802implementation is free to ignore it.
1803
1804If Dimension flag is set to 1, a Declaration Dimension token follows.
1805
1806If Semantic flag is set to 1, a Declaration Semantic token follows.
1807
1808If Interpolate flag is set to 1, a Declaration Interpolate token follows.
1809
1810If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
1811
1812
1813Declaration Semantic
1814^^^^^^^^^^^^^^^^^^^^^^^^
1815
1816  Vertex and fragment shader input and output registers may be labeled
1817  with semantic information consisting of a name and index.
1818
1819  Follows Declaration token if Semantic bit is set.
1820
1821  Since its purpose is to link a shader with other stages of the pipeline,
1822  it is valid to follow only those Declaration tokens that declare a register
1823  either in INPUT or OUTPUT file.
1824
1825  SemanticName field contains the semantic name of the register being declared.
1826  There is no default value.
1827
1828  SemanticIndex is an optional subscript that can be used to distinguish
1829  different register declarations with the same semantic name. The default value
1830  is 0.
1831
1832  The meanings of the individual semantic names are explained in the following
1833  sections.
1834
1835TGSI_SEMANTIC_POSITION
1836""""""""""""""""""""""
1837
1838For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
1839output register which contains the homogeneous vertex position in the clip
1840space coordinate system.  After clipping, the X, Y and Z components of the
1841vertex will be divided by the W value to get normalized device coordinates.
1842
1843For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
1844fragment shader input contains the fragment's window position.  The X
1845component starts at zero and always increases from left to right.
1846The Y component starts at zero and always increases but Y=0 may either
1847indicate the top of the window or the bottom depending on the fragment
1848coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
1849The Z coordinate ranges from 0 to 1 to represent depth from the front
1850to the back of the Z buffer.  The W component contains the reciprocol
1851of the interpolated vertex position W component.
1852
1853Fragment shaders may also declare an output register with
1854TGSI_SEMANTIC_POSITION.  Only the Z component is writable.  This allows
1855the fragment shader to change the fragment's Z position.
1856
1857
1858
1859TGSI_SEMANTIC_COLOR
1860"""""""""""""""""""
1861
1862For vertex shader outputs or fragment shader inputs/outputs, this
1863label indicates that the resister contains an R,G,B,A color.
1864
1865Several shader inputs/outputs may contain colors so the semantic index
1866is used to distinguish them.  For example, color[0] may be the diffuse
1867color while color[1] may be the specular color.
1868
1869This label is needed so that the flat/smooth shading can be applied
1870to the right interpolants during rasterization.
1871
1872
1873
1874TGSI_SEMANTIC_BCOLOR
1875""""""""""""""""""""
1876
1877Back-facing colors are only used for back-facing polygons, and are only valid
1878in vertex shader outputs. After rasterization, all polygons are front-facing
1879and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
1880so all BCOLORs effectively become regular COLORs in the fragment shader.
1881
1882
1883TGSI_SEMANTIC_FOG
1884"""""""""""""""""
1885
1886Vertex shader inputs and outputs and fragment shader inputs may be
1887labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
1888a fog coordinate in the form (F, 0, 0, 1).  Typically, the fragment
1889shader will use the fog coordinate to compute a fog blend factor which
1890is used to blend the normal fragment color with a constant fog color.
1891
1892Only the first component matters when writing from the vertex shader;
1893the driver will ensure that the coordinate is in this format when used
1894as a fragment shader input.
1895
1896
1897TGSI_SEMANTIC_PSIZE
1898"""""""""""""""""""
1899
1900Vertex shader input and output registers may be labeled with
1901TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
1902in the form (S, 0, 0, 1).  The point size controls the width or diameter
1903of points for rasterization.  This label cannot be used in fragment
1904shaders.
1905
1906When using this semantic, be sure to set the appropriate state in the
1907:ref:`rasterizer` first.
1908
1909
1910TGSI_SEMANTIC_GENERIC
1911"""""""""""""""""""""
1912
1913All vertex/fragment shader inputs/outputs not labeled with any other
1914semantic label can be considered to be generic attributes.  Typical
1915uses of generic inputs/outputs are texcoords and user-defined values.
1916
1917
1918TGSI_SEMANTIC_NORMAL
1919""""""""""""""""""""
1920
1921Indicates that a vertex shader input is a normal vector.  This is
1922typically only used for legacy graphics APIs.
1923
1924
1925TGSI_SEMANTIC_FACE
1926""""""""""""""""""
1927
1928This label applies to fragment shader inputs only and indicates that
1929the register contains front/back-face information of the form (F, 0,
19300, 1).  The first component will be positive when the fragment belongs
1931to a front-facing polygon, and negative when the fragment belongs to a
1932back-facing polygon.
1933
1934
1935TGSI_SEMANTIC_EDGEFLAG
1936""""""""""""""""""""""
1937
1938For vertex shaders, this sematic label indicates that an input or
1939output is a boolean edge flag.  The register layout is [F, x, x, x]
1940where F is 0.0 or 1.0 and x = don't care.  Normally, the vertex shader
1941simply copies the edge flag input to the edgeflag output.
1942
1943Edge flags are used to control which lines or points are actually
1944drawn when the polygon mode converts triangles/quads/polygons into
1945points or lines.
1946
1947TGSI_SEMANTIC_STENCIL
1948""""""""""""""""""""""
1949
1950For fragment shaders, this semantic label indicates than an output
1951is a writable stencil reference value. Only the Y component is writable.
1952This allows the fragment shader to change the fragments stencilref value.
1953
1954
1955Declaration Interpolate
1956^^^^^^^^^^^^^^^^^^^^^^^
1957
1958This token is only valid for fragment shader INPUT declarations.
1959
1960The Interpolate field specifes the way input is being interpolated by
1961the rasteriser and is one of TGSI_INTERPOLATE_*.
1962
1963The CylindricalWrap bitfield specifies which register components
1964should be subject to cylindrical wrapping when interpolating by the
1965rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
1966should be interpolated according to cylindrical wrapping rules.
1967
1968
1969Declaration Sampler View
1970^^^^^^^^^^^^^^^^^^^^^^^^
1971
1972   Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
1973
1974   DCL SVIEW[#], resource, type(s)
1975
1976   Declares a shader input sampler view and assigns it to a SVIEW[#]
1977   register.
1978
1979   resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
1980
1981   type must be 1 or 4 entries (if specifying on a per-component
1982   level) out of UNORM, SNORM, SINT, UINT and FLOAT.
1983
1984
1985Declaration Resource
1986^^^^^^^^^^^^^^^^^^^^
1987
1988   Follows Declaration token if file is TGSI_FILE_RESOURCE.
1989
1990   DCL RES[#], resource [, WR] [, RAW]
1991
1992   Declares a shader input resource and assigns it to a RES[#]
1993   register.
1994
1995   resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
1996   2DArray.
1997
1998   If the RAW keyword is not specified, the texture data will be
1999   subject to conversion, swizzling and scaling as required to yield
2000   the specified data type from the physical data format of the bound
2001   resource.
2002
2003   If the RAW keyword is specified, no channel conversion will be
2004   performed: the values read for each of the channels (X,Y,Z,W) will
2005   correspond to consecutive words in the same order and format
2006   they're found in memory.  No element-to-address conversion will be
2007   performed either: the value of the provided X coordinate will be
2008   interpreted in byte units instead of texel units.  The result of
2009   accessing a misaligned address is undefined.
2010
2011   Usage of the STORE opcode is only allowed if the WR (writable) flag
2012   is set.
2013
2014
2015Properties
2016^^^^^^^^^^^^^^^^^^^^^^^^
2017
2018
2019  Properties are general directives that apply to the whole TGSI program.
2020
2021FS_COORD_ORIGIN
2022"""""""""""""""
2023
2024Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2025The default value is UPPER_LEFT.
2026
2027If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2028increase downward and rightward.
2029If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2030increase upward and rightward.
2031
2032OpenGL defaults to LOWER_LEFT, and is configurable with the
2033GL_ARB_fragment_coord_conventions extension.
2034
2035DirectX 9/10 use UPPER_LEFT.
2036
2037FS_COORD_PIXEL_CENTER
2038"""""""""""""""""""""
2039
2040Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2041The default value is HALF_INTEGER.
2042
2043If HALF_INTEGER, the fractionary part of the position will be 0.5
2044If INTEGER, the fractionary part of the position will be 0.0
2045
2046Note that this does not affect the set of fragments generated by
2047rasterization, which is instead controlled by gl_rasterization_rules in the
2048rasterizer.
2049
2050OpenGL defaults to HALF_INTEGER, and is configurable with the
2051GL_ARB_fragment_coord_conventions extension.
2052
2053DirectX 9 uses INTEGER.
2054DirectX 10 uses HALF_INTEGER.
2055
2056FS_COLOR0_WRITES_ALL_CBUFS
2057""""""""""""""""""""""""""
2058Specifies that writes to the fragment shader color 0 are replicated to all
2059bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2060fragData is directed to a single color buffer, but fragColor is broadcast.
2061
2062VS_PROHIBIT_UCPS
2063""""""""""""""""""""""""""
2064If this property is set on the program bound to the shader stage before the
2065fragment shader, user clip planes should have no effect (be disabled) even if
2066that shader does not write to any clip distance outputs and the rasterizer's
2067clip_plane_enable is non-zero.
2068This property is only supported by drivers that also support shader clip
2069distance outputs.
2070This is useful for APIs that don't have UCPs and where clip distances written
2071by a shader cannot be disabled.
2072
2073
2074Texture Sampling and Texture Formats
2075------------------------------------
2076
2077This table shows how texture image components are returned as (x,y,z,w) tuples
2078by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2079:opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2080well.
2081
2082+--------------------+--------------+--------------------+--------------+
2083| Texture Components | Gallium      | OpenGL             | Direct3D 9   |
2084+====================+==============+====================+==============+
2085| R                  | (r, 0, 0, 1) | (r, 0, 0, 1)       | (r, 1, 1, 1) |
2086+--------------------+--------------+--------------------+--------------+
2087| RG                 | (r, g, 0, 1) | (r, g, 0, 1)       | (r, g, 1, 1) |
2088+--------------------+--------------+--------------------+--------------+
2089| RGB                | (r, g, b, 1) | (r, g, b, 1)       | (r, g, b, 1) |
2090+--------------------+--------------+--------------------+--------------+
2091| RGBA               | (r, g, b, a) | (r, g, b, a)       | (r, g, b, a) |
2092+--------------------+--------------+--------------------+--------------+
2093| A                  | (0, 0, 0, a) | (0, 0, 0, a)       | (0, 0, 0, a) |
2094+--------------------+--------------+--------------------+--------------+
2095| L                  | (l, l, l, 1) | (l, l, l, 1)       | (l, l, l, 1) |
2096+--------------------+--------------+--------------------+--------------+
2097| LA                 | (l, l, l, a) | (l, l, l, a)       | (l, l, l, a) |
2098+--------------------+--------------+--------------------+--------------+
2099| I                  | (i, i, i, i) | (i, i, i, i)       | N/A          |
2100+--------------------+--------------+--------------------+--------------+
2101| UV                 | XXX TBD      | (0, 0, 0, 1)       | (u, v, 1, 1) |
2102|                    |              | [#envmap-bumpmap]_ |              |
2103+--------------------+--------------+--------------------+--------------+
2104| Z                  | XXX TBD      | (z, z, z, 1)       | (0, z, 0, 1) |
2105|                    |              | [#depth-tex-mode]_ |              |
2106+--------------------+--------------+--------------------+--------------+
2107| S                  | (s, s, s, s) | unknown            | unknown      |
2108+--------------------+--------------+--------------------+--------------+
2109
2110.. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2111.. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2112   or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.
2113