1 /* tc-i386.c -- Assemble code for the Intel 80386
2    Copyright (C) 1989-2014 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 /* Intel 80386 machine specific gas.
22    Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23    x86_64 support by Jan Hubicka (jh@suse.cz)
24    VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25    Bugs & suggestions are completely welcome.  This is free software.
26    Please help us make it better.  */
27 
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35 
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39 
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43 
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47 
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55 
56 /* Prefixes will be emitted in the order defined below.
57    WAIT_PREFIX must be the first prefix since FWAIT is really is an
58    instruction, and so must come before any prefixes.
59    The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60    REP_PREFIX/HLE_PREFIX, LOCK_PREFIX.  */
61 #define WAIT_PREFIX	0
62 #define SEG_PREFIX	1
63 #define ADDR_PREFIX	2
64 #define DATA_PREFIX	3
65 #define REP_PREFIX	4
66 #define HLE_PREFIX	REP_PREFIX
67 #define BND_PREFIX	REP_PREFIX
68 #define LOCK_PREFIX	5
69 #define REX_PREFIX	6       /* must come last.  */
70 #define MAX_PREFIXES	7	/* max prefixes per opcode */
71 
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76 
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78    memory operand size in Intel syntax.  */
79 #define WORD_MNEM_SUFFIX  'w'
80 #define BYTE_MNEM_SUFFIX  'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX  'l'
83 #define QWORD_MNEM_SUFFIX  'q'
84 #define XMMWORD_MNEM_SUFFIX  'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax.  Use a non-ascii letter since since it never appears
88    in instructions.  */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90 
91 #define END_OF_INSN '\0'
92 
93 /*
94   'templates' is for grouping together 'template' structures for opcodes
95   of the same name.  This is only used for storing the insns in the grand
96   ole hash table of insns.
97   The templates themselves start at START and range up to (but not including)
98   END.
99   */
100 typedef struct
101 {
102   const insn_template *start;
103   const insn_template *end;
104 }
105 templates;
106 
107 /* 386 operand encoding bytes:  see 386 book for details of this.  */
108 typedef struct
109 {
110   unsigned int regmem;	/* codes register or memory operand */
111   unsigned int reg;	/* codes register operand (or extended opcode) */
112   unsigned int mode;	/* how to interpret regmem & reg */
113 }
114 modrm_byte;
115 
116 /* x86-64 extension prefix.  */
117 typedef int rex_byte;
118 
119 /* 386 opcode byte to code indirect addressing.  */
120 typedef struct
121 {
122   unsigned base;
123   unsigned index;
124   unsigned scale;
125 }
126 sib_byte;
127 
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131   const char *name;		/* arch name */
132   unsigned int len;		/* arch string length */
133   enum processor_type type;	/* arch type */
134   i386_cpu_flags flags;		/* cpu feature flags */
135   unsigned int skip;		/* show_arch should skip this. */
136   unsigned int negated;		/* turn off indicated flags.  */
137 }
138 arch_entry;
139 
140 static void update_code_flag (int, int);
141 static void set_code_flag (int);
142 static void set_16bit_gcc_code_flag (int);
143 static void set_intel_syntax (int);
144 static void set_intel_mnemonic (int);
145 static void set_allow_index_reg (int);
146 static void set_check (int);
147 static void set_cpu_arch (int);
148 #ifdef TE_PE
149 static void pe_directive_secrel (int);
150 #endif
151 static void signed_cons (int);
152 static char *output_invalid (int c);
153 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
154 				    const char *);
155 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
156 				       const char *);
157 static int i386_att_operand (char *);
158 static int i386_intel_operand (char *, int);
159 static int i386_intel_simplify (expressionS *);
160 static int i386_intel_parse_name (const char *, expressionS *);
161 static const reg_entry *parse_register (char *, char **);
162 static char *parse_insn (char *, char *);
163 static char *parse_operands (char *, const char *);
164 static void swap_operands (void);
165 static void swap_2_operands (int, int);
166 static void optimize_imm (void);
167 static void optimize_disp (void);
168 static const insn_template *match_template (void);
169 static int check_string (void);
170 static int process_suffix (void);
171 static int check_byte_reg (void);
172 static int check_long_reg (void);
173 static int check_qword_reg (void);
174 static int check_word_reg (void);
175 static int finalize_imm (void);
176 static int process_operands (void);
177 static const seg_entry *build_modrm_byte (void);
178 static void output_insn (void);
179 static void output_imm (fragS *, offsetT);
180 static void output_disp (fragS *, offsetT);
181 #ifndef I386COFF
182 static void s_bss (int);
183 #endif
184 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185 static void handle_large_common (int small ATTRIBUTE_UNUSED);
186 #endif
187 
188 static const char *default_arch = DEFAULT_ARCH;
189 
190 /* This struct describes rounding control and SAE in the instruction.  */
191 struct RC_Operation
192 {
193   enum rc_type
194     {
195       rne = 0,
196       rd,
197       ru,
198       rz,
199       saeonly
200     } type;
201   int operand;
202 };
203 
204 static struct RC_Operation rc_op;
205 
206 /* The struct describes masking, applied to OPERAND in the instruction.
207    MASK is a pointer to the corresponding mask register.  ZEROING tells
208    whether merging or zeroing mask is used.  */
209 struct Mask_Operation
210 {
211   const reg_entry *mask;
212   unsigned int zeroing;
213   /* The operand where this operation is associated.  */
214   int operand;
215 };
216 
217 static struct Mask_Operation mask_op;
218 
219 /* The struct describes broadcasting, applied to OPERAND.  FACTOR is
220    broadcast factor.  */
221 struct Broadcast_Operation
222 {
223   /* Type of broadcast: no broadcast, {1to8}, or {1to16}.  */
224   int type;
225 
226   /* Index of broadcasted operand.  */
227   int operand;
228 };
229 
230 static struct Broadcast_Operation broadcast_op;
231 
232 /* VEX prefix.  */
233 typedef struct
234 {
235   /* VEX prefix is either 2 byte or 3 byte.  EVEX is 4 byte.  */
236   unsigned char bytes[4];
237   unsigned int length;
238   /* Destination or source register specifier.  */
239   const reg_entry *register_specifier;
240 } vex_prefix;
241 
242 /* 'md_assemble ()' gathers together information and puts it into a
243    i386_insn.  */
244 
245 union i386_op
246   {
247     expressionS *disps;
248     expressionS *imms;
249     const reg_entry *regs;
250   };
251 
252 enum i386_error
253   {
254     operand_size_mismatch,
255     operand_type_mismatch,
256     register_type_mismatch,
257     number_of_operands_mismatch,
258     invalid_instruction_suffix,
259     bad_imm4,
260     old_gcc_only,
261     unsupported_with_intel_mnemonic,
262     unsupported_syntax,
263     unsupported,
264     invalid_vsib_address,
265     invalid_vector_register_set,
266     unsupported_vector_index_register,
267     unsupported_broadcast,
268     broadcast_not_on_src_operand,
269     broadcast_needed,
270     unsupported_masking,
271     mask_not_on_destination,
272     no_default_mask,
273     unsupported_rc_sae,
274     rc_sae_operand_not_last_imm,
275     invalid_register_operand,
276     try_vector_disp8
277   };
278 
279 struct _i386_insn
280   {
281     /* TM holds the template for the insn were currently assembling.  */
282     insn_template tm;
283 
284     /* SUFFIX holds the instruction size suffix for byte, word, dword
285        or qword, if given.  */
286     char suffix;
287 
288     /* OPERANDS gives the number of given operands.  */
289     unsigned int operands;
290 
291     /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292        of given register, displacement, memory operands and immediate
293        operands.  */
294     unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
295 
296     /* TYPES [i] is the type (see above #defines) which tells us how to
297        use OP[i] for the corresponding operand.  */
298     i386_operand_type types[MAX_OPERANDS];
299 
300     /* Displacement expression, immediate expression, or register for each
301        operand.  */
302     union i386_op op[MAX_OPERANDS];
303 
304     /* Flags for operands.  */
305     unsigned int flags[MAX_OPERANDS];
306 #define Operand_PCrel 1
307 
308     /* Relocation type for operand */
309     enum bfd_reloc_code_real reloc[MAX_OPERANDS];
310 
311     /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312        the base index byte below.  */
313     const reg_entry *base_reg;
314     const reg_entry *index_reg;
315     unsigned int log2_scale_factor;
316 
317     /* SEG gives the seg_entries of this insn.  They are zero unless
318        explicit segment overrides are given.  */
319     const seg_entry *seg[2];
320 
321     /* PREFIX holds all the given prefix opcodes (usually null).
322        PREFIXES is the number of prefix opcodes.  */
323     unsigned int prefixes;
324     unsigned char prefix[MAX_PREFIXES];
325 
326     /* RM and SIB are the modrm byte and the sib byte where the
327        addressing modes of this insn are encoded.  */
328     modrm_byte rm;
329     rex_byte rex;
330     rex_byte vrex;
331     sib_byte sib;
332     vex_prefix vex;
333 
334     /* Masking attributes.  */
335     struct Mask_Operation *mask;
336 
337     /* Rounding control and SAE attributes.  */
338     struct RC_Operation *rounding;
339 
340     /* Broadcasting attributes.  */
341     struct Broadcast_Operation *broadcast;
342 
343     /* Compressed disp8*N attribute.  */
344     unsigned int memshift;
345 
346     /* Swap operand in encoding.  */
347     unsigned int swap_operand;
348 
349     /* Prefer 8bit or 32bit displacement in encoding.  */
350     enum
351       {
352 	disp_encoding_default = 0,
353 	disp_encoding_8bit,
354 	disp_encoding_32bit
355       } disp_encoding;
356 
357     /* REP prefix.  */
358     const char *rep_prefix;
359 
360     /* HLE prefix.  */
361     const char *hle_prefix;
362 
363     /* Have BND prefix.  */
364     const char *bnd_prefix;
365 
366     /* Need VREX to support upper 16 registers.  */
367     int need_vrex;
368 
369     /* Error message.  */
370     enum i386_error error;
371   };
372 
373 typedef struct _i386_insn i386_insn;
374 
375 /* Link RC type with corresponding string, that'll be looked for in
376    asm.  */
377 struct RC_name
378 {
379   enum rc_type type;
380   const char *name;
381   unsigned int len;
382 };
383 
384 static const struct RC_name RC_NamesTable[] =
385 {
386   {  rne, STRING_COMMA_LEN ("rn-sae") },
387   {  rd,  STRING_COMMA_LEN ("rd-sae") },
388   {  ru,  STRING_COMMA_LEN ("ru-sae") },
389   {  rz,  STRING_COMMA_LEN ("rz-sae") },
390   {  saeonly,  STRING_COMMA_LEN ("sae") },
391 };
392 
393 /* List of chars besides those in app.c:symbol_chars that can start an
394    operand.  Used to prevent the scrubber eating vital white-space.  */
395 const char extra_symbol_chars[] = "*%-([{"
396 #ifdef LEX_AT
397 	"@"
398 #endif
399 #ifdef LEX_QM
400 	"?"
401 #endif
402 	;
403 
404 #if (defined (TE_I386AIX)				\
405      || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))	\
406 	 && !defined (TE_GNU)				\
407 	 && !defined (TE_LINUX)				\
408 	 && !defined (TE_NACL)				\
409 	 && !defined (TE_NETWARE)			\
410 	 && !defined (TE_FreeBSD)			\
411 	 && !defined (TE_DragonFly)			\
412 	 && !defined (TE_NetBSD)))
413 /* This array holds the chars that always start a comment.  If the
414    pre-processor is disabled, these aren't very useful.  The option
415    --divide will remove '/' from this list.  */
416 const char *i386_comment_chars = "#/";
417 #define SVR4_COMMENT_CHARS 1
418 #define PREFIX_SEPARATOR '\\'
419 
420 #else
421 const char *i386_comment_chars = "#";
422 #define PREFIX_SEPARATOR '/'
423 #endif
424 
425 /* This array holds the chars that only start a comment at the beginning of
426    a line.  If the line seems to have the form '# 123 filename'
427    .line and .file directives will appear in the pre-processed output.
428    Note that input_file.c hand checks for '#' at the beginning of the
429    first line of the input file.  This is because the compiler outputs
430    #NO_APP at the beginning of its output.
431    Also note that comments started like this one will always work if
432    '/' isn't otherwise defined.  */
433 const char line_comment_chars[] = "#/";
434 
435 const char line_separator_chars[] = ";";
436 
437 /* Chars that can be used to separate mant from exp in floating point
438    nums.  */
439 const char EXP_CHARS[] = "eE";
440 
441 /* Chars that mean this number is a floating point constant
442    As in 0f12.456
443    or    0d1.2345e12.  */
444 const char FLT_CHARS[] = "fFdDxX";
445 
446 /* Tables for lexical analysis.  */
447 static char mnemonic_chars[256];
448 static char register_chars[256];
449 static char operand_chars[256];
450 static char identifier_chars[256];
451 static char digit_chars[256];
452 
453 /* Lexical macros.  */
454 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455 #define is_operand_char(x) (operand_chars[(unsigned char) x])
456 #define is_register_char(x) (register_chars[(unsigned char) x])
457 #define is_space_char(x) ((x) == ' ')
458 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459 #define is_digit_char(x) (digit_chars[(unsigned char) x])
460 
461 /* All non-digit non-letter characters that may occur in an operand.  */
462 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
463 
464 /* md_assemble() always leaves the strings it's passed unaltered.  To
465    effect this we maintain a stack of saved characters that we've smashed
466    with '\0's (indicating end of strings for various sub-fields of the
467    assembler instruction).  */
468 static char save_stack[32];
469 static char *save_stack_p;
470 #define END_STRING_AND_SAVE(s) \
471 	do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472 #define RESTORE_END_STRING(s) \
473 	do { *(s) = *--save_stack_p; } while (0)
474 
475 /* The instruction we're assembling.  */
476 static i386_insn i;
477 
478 /* Possible templates for current insn.  */
479 static const templates *current_templates;
480 
481 /* Per instruction expressionS buffers: max displacements & immediates.  */
482 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
483 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
484 
485 /* Current operand we are working on.  */
486 static int this_operand = -1;
487 
488 /* We support four different modes.  FLAG_CODE variable is used to distinguish
489    these.  */
490 
491 enum flag_code {
492 	CODE_32BIT,
493 	CODE_16BIT,
494 	CODE_64BIT };
495 
496 static enum flag_code flag_code;
497 static unsigned int object_64bit;
498 static unsigned int disallow_64bit_reloc;
499 static int use_rela_relocations = 0;
500 
501 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502      || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503      || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
504 
505 /* The ELF ABI to use.  */
506 enum x86_elf_abi
507 {
508   I386_ABI,
509   X86_64_ABI,
510   X86_64_X32_ABI
511 };
512 
513 static enum x86_elf_abi x86_elf_abi = I386_ABI;
514 #endif
515 
516 #if defined (TE_PE) || defined (TE_PEP)
517 /* Use big object file format.  */
518 static int use_big_obj = 0;
519 #endif
520 
521 /* 1 for intel syntax,
522    0 if att syntax.  */
523 static int intel_syntax = 0;
524 
525 /* 1 for intel mnemonic,
526    0 if att mnemonic.  */
527 static int intel_mnemonic = !SYSV386_COMPAT;
528 
529 /* 1 if support old (<= 2.8.1) versions of gcc.  */
530 static int old_gcc = OLDGCC_COMPAT;
531 
532 /* 1 if pseudo registers are permitted.  */
533 static int allow_pseudo_reg = 0;
534 
535 /* 1 if register prefix % not required.  */
536 static int allow_naked_reg = 0;
537 
538 /* 1 if the assembler should add BND prefix for all control-tranferring
539    instructions supporting it, even if this prefix wasn't specified
540    explicitly.  */
541 static int add_bnd_prefix = 0;
542 
543 /* 1 if pseudo index register, eiz/riz, is allowed .  */
544 static int allow_index_reg = 0;
545 
546 /* 1 if the assembler should ignore LOCK prefix, even if it was
547    specified explicitly.  */
548 static int omit_lock_prefix = 0;
549 
550 static enum check_kind
551   {
552     check_none = 0,
553     check_warning,
554     check_error
555   }
556 sse_check, operand_check = check_warning;
557 
558 /* Register prefix used for error message.  */
559 static const char *register_prefix = "%";
560 
561 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
562    leave, push, and pop instructions so that gcc has the same stack
563    frame as in 32 bit mode.  */
564 static char stackop_size = '\0';
565 
566 /* Non-zero to optimize code alignment.  */
567 int optimize_align_code = 1;
568 
569 /* Non-zero to quieten some warnings.  */
570 static int quiet_warnings = 0;
571 
572 /* CPU name.  */
573 static const char *cpu_arch_name = NULL;
574 static char *cpu_sub_arch_name = NULL;
575 
576 /* CPU feature flags.  */
577 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
578 
579 /* If we have selected a cpu we are generating instructions for.  */
580 static int cpu_arch_tune_set = 0;
581 
582 /* Cpu we are generating instructions for.  */
583 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
584 
585 /* CPU feature flags of cpu we are generating instructions for.  */
586 static i386_cpu_flags cpu_arch_tune_flags;
587 
588 /* CPU instruction set architecture used.  */
589 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
590 
591 /* CPU feature flags of instruction set architecture used.  */
592 i386_cpu_flags cpu_arch_isa_flags;
593 
594 /* If set, conditional jumps are not automatically promoted to handle
595    larger than a byte offset.  */
596 static unsigned int no_cond_jump_promotion = 0;
597 
598 /* Encode SSE instructions with VEX prefix.  */
599 static unsigned int sse2avx;
600 
601 /* Encode scalar AVX instructions with specific vector length.  */
602 static enum
603   {
604     vex128 = 0,
605     vex256
606   } avxscalar;
607 
608 /* Encode scalar EVEX LIG instructions with specific vector length.  */
609 static enum
610   {
611     evexl128 = 0,
612     evexl256,
613     evexl512
614   } evexlig;
615 
616 /* Encode EVEX WIG instructions with specific evex.w.  */
617 static enum
618   {
619     evexw0 = 0,
620     evexw1
621   } evexwig;
622 
623 /* Value to encode in EVEX RC bits, for SAE-only instructions.  */
624 static enum rc_type evexrcig = rne;
625 
626 /* Pre-defined "_GLOBAL_OFFSET_TABLE_".  */
627 static symbolS *GOT_symbol;
628 
629 /* The dwarf2 return column, adjusted for 32 or 64 bit.  */
630 unsigned int x86_dwarf2_return_column;
631 
632 /* The dwarf2 data alignment, adjusted for 32 or 64 bit.  */
633 int x86_cie_data_alignment;
634 
635 /* Interface to relax_segment.
636    There are 3 major relax states for 386 jump insns because the
637    different types of jumps add different sizes to frags when we're
638    figuring out what sort of jump to choose to reach a given label.  */
639 
640 /* Types.  */
641 #define UNCOND_JUMP 0
642 #define COND_JUMP 1
643 #define COND_JUMP86 2
644 
645 /* Sizes.  */
646 #define CODE16	1
647 #define SMALL	0
648 #define SMALL16 (SMALL | CODE16)
649 #define BIG	2
650 #define BIG16	(BIG | CODE16)
651 
652 #ifndef INLINE
653 #ifdef __GNUC__
654 #define INLINE __inline__
655 #else
656 #define INLINE
657 #endif
658 #endif
659 
660 #define ENCODE_RELAX_STATE(type, size) \
661   ((relax_substateT) (((type) << 2) | (size)))
662 #define TYPE_FROM_RELAX_STATE(s) \
663   ((s) >> 2)
664 #define DISP_SIZE_FROM_RELAX_STATE(s) \
665     ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
666 
667 /* This table is used by relax_frag to promote short jumps to long
668    ones where necessary.  SMALL (short) jumps may be promoted to BIG
669    (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long).  We
670    don't allow a short jump in a 32 bit code segment to be promoted to
671    a 16 bit offset jump because it's slower (requires data size
672    prefix), and doesn't work, unless the destination is in the bottom
673    64k of the code segment (The top 16 bits of eip are zeroed).  */
674 
675 const relax_typeS md_relax_table[] =
676 {
677   /* The fields are:
678      1) most positive reach of this state,
679      2) most negative reach of this state,
680      3) how many bytes this mode will have in the variable part of the frag
681      4) which index into the table to try if we can't fit into this one.  */
682 
683   /* UNCOND_JUMP states.  */
684   {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
685   {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
686   /* dword jmp adds 4 bytes to frag:
687      0 extra opcode bytes, 4 displacement bytes.  */
688   {0, 0, 4, 0},
689   /* word jmp adds 2 byte2 to frag:
690      0 extra opcode bytes, 2 displacement bytes.  */
691   {0, 0, 2, 0},
692 
693   /* COND_JUMP states.  */
694   {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
695   {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
696   /* dword conditionals adds 5 bytes to frag:
697      1 extra opcode byte, 4 displacement bytes.  */
698   {0, 0, 5, 0},
699   /* word conditionals add 3 bytes to frag:
700      1 extra opcode byte, 2 displacement bytes.  */
701   {0, 0, 3, 0},
702 
703   /* COND_JUMP86 states.  */
704   {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
705   {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
706   /* dword conditionals adds 5 bytes to frag:
707      1 extra opcode byte, 4 displacement bytes.  */
708   {0, 0, 5, 0},
709   /* word conditionals add 4 bytes to frag:
710      1 displacement byte and a 3 byte long branch insn.  */
711   {0, 0, 4, 0}
712 };
713 
714 static const arch_entry cpu_arch[] =
715 {
716   /* Do not replace the first two entries - i386_target_format()
717      relies on them being there in this order.  */
718   { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
719     CPU_GENERIC32_FLAGS, 0, 0 },
720   { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
721     CPU_GENERIC64_FLAGS, 0, 0 },
722   { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
723     CPU_NONE_FLAGS, 0, 0 },
724   { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
725     CPU_I186_FLAGS, 0, 0 },
726   { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
727     CPU_I286_FLAGS, 0, 0 },
728   { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
729     CPU_I386_FLAGS, 0, 0 },
730   { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
731     CPU_I486_FLAGS, 0, 0 },
732   { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
733     CPU_I586_FLAGS, 0, 0 },
734   { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
735     CPU_I686_FLAGS, 0, 0 },
736   { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
737     CPU_I586_FLAGS, 0, 0 },
738   { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
739     CPU_PENTIUMPRO_FLAGS, 0, 0 },
740   { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
741     CPU_P2_FLAGS, 0, 0 },
742   { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
743     CPU_P3_FLAGS, 0, 0 },
744   { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
745     CPU_P4_FLAGS, 0, 0 },
746   { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
747     CPU_CORE_FLAGS, 0, 0 },
748   { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
749     CPU_NOCONA_FLAGS, 0, 0 },
750   { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
751     CPU_CORE_FLAGS, 1, 0 },
752   { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
753     CPU_CORE_FLAGS, 0, 0 },
754   { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
755     CPU_CORE2_FLAGS, 1, 0 },
756   { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
757     CPU_CORE2_FLAGS, 0, 0 },
758   { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
759     CPU_COREI7_FLAGS, 0, 0 },
760   { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
761     CPU_L1OM_FLAGS, 0, 0 },
762   { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
763     CPU_K1OM_FLAGS, 0, 0 },
764   { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
765     CPU_K6_FLAGS, 0, 0 },
766   { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
767     CPU_K6_2_FLAGS, 0, 0 },
768   { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
769     CPU_ATHLON_FLAGS, 0, 0 },
770   { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
771     CPU_K8_FLAGS, 1, 0 },
772   { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
773     CPU_K8_FLAGS, 0, 0 },
774   { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
775     CPU_K8_FLAGS, 0, 0 },
776   { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
777     CPU_AMDFAM10_FLAGS, 0, 0 },
778   { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
779     CPU_BDVER1_FLAGS, 0, 0 },
780   { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
781     CPU_BDVER2_FLAGS, 0, 0 },
782   { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
783     CPU_BDVER3_FLAGS, 0, 0 },
784   { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
785     CPU_BDVER4_FLAGS, 0, 0 },
786   { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
787     CPU_BTVER1_FLAGS, 0, 0 },
788   { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
789     CPU_BTVER2_FLAGS, 0, 0 },
790   { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
791     CPU_8087_FLAGS, 0, 0 },
792   { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
793     CPU_287_FLAGS, 0, 0 },
794   { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
795     CPU_387_FLAGS, 0, 0 },
796   { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
797     CPU_ANY87_FLAGS, 0, 1 },
798   { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
799     CPU_MMX_FLAGS, 0, 0 },
800   { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
801     CPU_3DNOWA_FLAGS, 0, 1 },
802   { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
803     CPU_SSE_FLAGS, 0, 0 },
804   { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
805     CPU_SSE2_FLAGS, 0, 0 },
806   { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
807     CPU_SSE3_FLAGS, 0, 0 },
808   { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
809     CPU_SSSE3_FLAGS, 0, 0 },
810   { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
811     CPU_SSE4_1_FLAGS, 0, 0 },
812   { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
813     CPU_SSE4_2_FLAGS, 0, 0 },
814   { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
815     CPU_SSE4_2_FLAGS, 0, 0 },
816   { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
817     CPU_ANY_SSE_FLAGS, 0, 1 },
818   { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
819     CPU_AVX_FLAGS, 0, 0 },
820   { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
821     CPU_AVX2_FLAGS, 0, 0 },
822   { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
823     CPU_AVX512F_FLAGS, 0, 0 },
824   { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
825     CPU_AVX512CD_FLAGS, 0, 0 },
826   { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
827     CPU_AVX512ER_FLAGS, 0, 0 },
828   { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
829     CPU_AVX512PF_FLAGS, 0, 0 },
830   { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
831     CPU_AVX512DQ_FLAGS, 0, 0 },
832   { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
833     CPU_AVX512BW_FLAGS, 0, 0 },
834   { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
835     CPU_AVX512VL_FLAGS, 0, 0 },
836   { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
837     CPU_ANY_AVX_FLAGS, 0, 1 },
838   { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
839     CPU_VMX_FLAGS, 0, 0 },
840   { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
841     CPU_VMFUNC_FLAGS, 0, 0 },
842   { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
843     CPU_SMX_FLAGS, 0, 0 },
844   { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
845     CPU_XSAVE_FLAGS, 0, 0 },
846   { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
847     CPU_XSAVEOPT_FLAGS, 0, 0 },
848   { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
849     CPU_XSAVEC_FLAGS, 0, 0 },
850   { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
851     CPU_XSAVES_FLAGS, 0, 0 },
852   { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
853     CPU_AES_FLAGS, 0, 0 },
854   { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
855     CPU_PCLMUL_FLAGS, 0, 0 },
856   { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
857     CPU_PCLMUL_FLAGS, 1, 0 },
858   { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
859     CPU_FSGSBASE_FLAGS, 0, 0 },
860   { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
861     CPU_RDRND_FLAGS, 0, 0 },
862   { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
863     CPU_F16C_FLAGS, 0, 0 },
864   { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
865     CPU_BMI2_FLAGS, 0, 0 },
866   { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
867     CPU_FMA_FLAGS, 0, 0 },
868   { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
869     CPU_FMA4_FLAGS, 0, 0 },
870   { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
871     CPU_XOP_FLAGS, 0, 0 },
872   { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
873     CPU_LWP_FLAGS, 0, 0 },
874   { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
875     CPU_MOVBE_FLAGS, 0, 0 },
876   { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
877     CPU_CX16_FLAGS, 0, 0 },
878   { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
879     CPU_EPT_FLAGS, 0, 0 },
880   { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
881     CPU_LZCNT_FLAGS, 0, 0 },
882   { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
883     CPU_HLE_FLAGS, 0, 0 },
884   { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
885     CPU_RTM_FLAGS, 0, 0 },
886   { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
887     CPU_INVPCID_FLAGS, 0, 0 },
888   { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
889     CPU_CLFLUSH_FLAGS, 0, 0 },
890   { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
891     CPU_NOP_FLAGS, 0, 0 },
892   { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
893     CPU_SYSCALL_FLAGS, 0, 0 },
894   { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
895     CPU_RDTSCP_FLAGS, 0, 0 },
896   { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
897     CPU_3DNOW_FLAGS, 0, 0 },
898   { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
899     CPU_3DNOWA_FLAGS, 0, 0 },
900   { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
901     CPU_PADLOCK_FLAGS, 0, 0 },
902   { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
903     CPU_SVME_FLAGS, 1, 0 },
904   { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
905     CPU_SVME_FLAGS, 0, 0 },
906   { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
907     CPU_SSE4A_FLAGS, 0, 0 },
908   { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
909     CPU_ABM_FLAGS, 0, 0 },
910   { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
911     CPU_BMI_FLAGS, 0, 0 },
912   { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
913     CPU_TBM_FLAGS, 0, 0 },
914   { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
915     CPU_ADX_FLAGS, 0, 0 },
916   { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
917     CPU_RDSEED_FLAGS, 0, 0 },
918   { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
919     CPU_PRFCHW_FLAGS, 0, 0 },
920   { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
921     CPU_SMAP_FLAGS, 0, 0 },
922   { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
923     CPU_MPX_FLAGS, 0, 0 },
924   { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
925     CPU_SHA_FLAGS, 0, 0 },
926   { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
927     CPU_CLFLUSHOPT_FLAGS, 0, 0 },
928   { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
929     CPU_PREFETCHWT1_FLAGS, 0, 0 },
930   { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
931     CPU_SE1_FLAGS, 0, 0 },
932   { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
933     CPU_CLWB_FLAGS, 0, 0 },
934   { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
935     CPU_PCOMMIT_FLAGS, 0, 0 },
936   { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
937     CPU_AVX512IFMA_FLAGS, 0, 0 },
938   { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
939     CPU_AVX512VBMI_FLAGS, 0, 0 },
940 };
941 
942 #ifdef I386COFF
943 /* Like s_lcomm_internal in gas/read.c but the alignment string
944    is allowed to be optional.  */
945 
946 static symbolS *
pe_lcomm_internal(int needs_align,symbolS * symbolP,addressT size)947 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
948 {
949   addressT align = 0;
950 
951   SKIP_WHITESPACE ();
952 
953   if (needs_align
954       && *input_line_pointer == ',')
955     {
956       align = parse_align (needs_align - 1);
957 
958       if (align == (addressT) -1)
959 	return NULL;
960     }
961   else
962     {
963       if (size >= 8)
964 	align = 3;
965       else if (size >= 4)
966 	align = 2;
967       else if (size >= 2)
968 	align = 1;
969       else
970 	align = 0;
971     }
972 
973   bss_alloc (symbolP, size, align);
974   return symbolP;
975 }
976 
977 static void
pe_lcomm(int needs_align)978 pe_lcomm (int needs_align)
979 {
980   s_comm_internal (needs_align * 2, pe_lcomm_internal);
981 }
982 #endif
983 
984 const pseudo_typeS md_pseudo_table[] =
985 {
986 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
987   {"align", s_align_bytes, 0},
988 #else
989   {"align", s_align_ptwo, 0},
990 #endif
991   {"arch", set_cpu_arch, 0},
992 #ifndef I386COFF
993   {"bss", s_bss, 0},
994 #else
995   {"lcomm", pe_lcomm, 1},
996 #endif
997   {"ffloat", float_cons, 'f'},
998   {"dfloat", float_cons, 'd'},
999   {"tfloat", float_cons, 'x'},
1000   {"value", cons, 2},
1001   {"slong", signed_cons, 4},
1002   {"noopt", s_ignore, 0},
1003   {"optim", s_ignore, 0},
1004   {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1005   {"code16", set_code_flag, CODE_16BIT},
1006   {"code32", set_code_flag, CODE_32BIT},
1007   {"code64", set_code_flag, CODE_64BIT},
1008   {"intel_syntax", set_intel_syntax, 1},
1009   {"att_syntax", set_intel_syntax, 0},
1010   {"intel_mnemonic", set_intel_mnemonic, 1},
1011   {"att_mnemonic", set_intel_mnemonic, 0},
1012   {"allow_index_reg", set_allow_index_reg, 1},
1013   {"disallow_index_reg", set_allow_index_reg, 0},
1014   {"sse_check", set_check, 0},
1015   {"operand_check", set_check, 1},
1016 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1017   {"largecomm", handle_large_common, 0},
1018 #else
1019   {"file", (void (*) (int)) dwarf2_directive_file, 0},
1020   {"loc", dwarf2_directive_loc, 0},
1021   {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1022 #endif
1023 #ifdef TE_PE
1024   {"secrel32", pe_directive_secrel, 0},
1025 #endif
1026   {0, 0, 0}
1027 };
1028 
1029 /* For interface with expression ().  */
1030 extern char *input_line_pointer;
1031 
1032 /* Hash table for instruction mnemonic lookup.  */
1033 static struct hash_control *op_hash;
1034 
1035 /* Hash table for register lookup.  */
1036 static struct hash_control *reg_hash;
1037 
1038 void
i386_align_code(fragS * fragP,int count)1039 i386_align_code (fragS *fragP, int count)
1040 {
1041   /* Various efficient no-op patterns for aligning code labels.
1042      Note: Don't try to assemble the instructions in the comments.
1043      0L and 0w are not legal.  */
1044   static const char f32_1[] =
1045     {0x90};					/* nop			*/
1046   static const char f32_2[] =
1047     {0x66,0x90};				/* xchg %ax,%ax */
1048   static const char f32_3[] =
1049     {0x8d,0x76,0x00};				/* leal 0(%esi),%esi	*/
1050   static const char f32_4[] =
1051     {0x8d,0x74,0x26,0x00};			/* leal 0(%esi,1),%esi	*/
1052   static const char f32_5[] =
1053     {0x90,					/* nop			*/
1054      0x8d,0x74,0x26,0x00};			/* leal 0(%esi,1),%esi	*/
1055   static const char f32_6[] =
1056     {0x8d,0xb6,0x00,0x00,0x00,0x00};		/* leal 0L(%esi),%esi	*/
1057   static const char f32_7[] =
1058     {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};	/* leal 0L(%esi,1),%esi */
1059   static const char f32_8[] =
1060     {0x90,					/* nop			*/
1061      0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};	/* leal 0L(%esi,1),%esi */
1062   static const char f32_9[] =
1063     {0x89,0xf6,					/* movl %esi,%esi	*/
1064      0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1065   static const char f32_10[] =
1066     {0x8d,0x76,0x00,				/* leal 0(%esi),%esi	*/
1067      0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1068   static const char f32_11[] =
1069     {0x8d,0x74,0x26,0x00,			/* leal 0(%esi,1),%esi	*/
1070      0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1071   static const char f32_12[] =
1072     {0x8d,0xb6,0x00,0x00,0x00,0x00,		/* leal 0L(%esi),%esi	*/
1073      0x8d,0xbf,0x00,0x00,0x00,0x00};		/* leal 0L(%edi),%edi	*/
1074   static const char f32_13[] =
1075     {0x8d,0xb6,0x00,0x00,0x00,0x00,		/* leal 0L(%esi),%esi	*/
1076      0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1077   static const char f32_14[] =
1078     {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00,	/* leal 0L(%esi,1),%esi */
1079      0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1080   static const char f16_3[] =
1081     {0x8d,0x74,0x00};				/* lea 0(%esi),%esi	*/
1082   static const char f16_4[] =
1083     {0x8d,0xb4,0x00,0x00};			/* lea 0w(%si),%si	*/
1084   static const char f16_5[] =
1085     {0x90,					/* nop			*/
1086      0x8d,0xb4,0x00,0x00};			/* lea 0w(%si),%si	*/
1087   static const char f16_6[] =
1088     {0x89,0xf6,					/* mov %si,%si		*/
1089      0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
1090   static const char f16_7[] =
1091     {0x8d,0x74,0x00,				/* lea 0(%si),%si	*/
1092      0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
1093   static const char f16_8[] =
1094     {0x8d,0xb4,0x00,0x00,			/* lea 0w(%si),%si	*/
1095      0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
1096   static const char jump_31[] =
1097     {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90,	/* jmp .+31; lotsa nops	*/
1098      0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1099      0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1100      0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1101   static const char *const f32_patt[] = {
1102     f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1103     f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1104   };
1105   static const char *const f16_patt[] = {
1106     f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1107   };
1108   /* nopl (%[re]ax) */
1109   static const char alt_3[] =
1110     {0x0f,0x1f,0x00};
1111   /* nopl 0(%[re]ax) */
1112   static const char alt_4[] =
1113     {0x0f,0x1f,0x40,0x00};
1114   /* nopl 0(%[re]ax,%[re]ax,1) */
1115   static const char alt_5[] =
1116     {0x0f,0x1f,0x44,0x00,0x00};
1117   /* nopw 0(%[re]ax,%[re]ax,1) */
1118   static const char alt_6[] =
1119     {0x66,0x0f,0x1f,0x44,0x00,0x00};
1120   /* nopl 0L(%[re]ax) */
1121   static const char alt_7[] =
1122     {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1123   /* nopl 0L(%[re]ax,%[re]ax,1) */
1124   static const char alt_8[] =
1125     {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1126   /* nopw 0L(%[re]ax,%[re]ax,1) */
1127   static const char alt_9[] =
1128     {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1129   /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1130   static const char alt_10[] =
1131     {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1132   /* data16
1133      nopw %cs:0L(%[re]ax,%[re]ax,1) */
1134   static const char alt_long_11[] =
1135     {0x66,
1136      0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1137   /* data16
1138      data16
1139      nopw %cs:0L(%[re]ax,%[re]ax,1) */
1140   static const char alt_long_12[] =
1141     {0x66,
1142      0x66,
1143      0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1144   /* data16
1145      data16
1146      data16
1147      nopw %cs:0L(%[re]ax,%[re]ax,1) */
1148   static const char alt_long_13[] =
1149     {0x66,
1150      0x66,
1151      0x66,
1152      0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1153   /* data16
1154      data16
1155      data16
1156      data16
1157      nopw %cs:0L(%[re]ax,%[re]ax,1) */
1158   static const char alt_long_14[] =
1159     {0x66,
1160      0x66,
1161      0x66,
1162      0x66,
1163      0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1164   /* data16
1165      data16
1166      data16
1167      data16
1168      data16
1169      nopw %cs:0L(%[re]ax,%[re]ax,1) */
1170   static const char alt_long_15[] =
1171     {0x66,
1172      0x66,
1173      0x66,
1174      0x66,
1175      0x66,
1176      0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1177   /* nopl 0(%[re]ax,%[re]ax,1)
1178      nopw 0(%[re]ax,%[re]ax,1) */
1179   static const char alt_short_11[] =
1180     {0x0f,0x1f,0x44,0x00,0x00,
1181      0x66,0x0f,0x1f,0x44,0x00,0x00};
1182   /* nopw 0(%[re]ax,%[re]ax,1)
1183      nopw 0(%[re]ax,%[re]ax,1) */
1184   static const char alt_short_12[] =
1185     {0x66,0x0f,0x1f,0x44,0x00,0x00,
1186      0x66,0x0f,0x1f,0x44,0x00,0x00};
1187   /* nopw 0(%[re]ax,%[re]ax,1)
1188      nopl 0L(%[re]ax) */
1189   static const char alt_short_13[] =
1190     {0x66,0x0f,0x1f,0x44,0x00,0x00,
1191      0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1192   /* nopl 0L(%[re]ax)
1193      nopl 0L(%[re]ax) */
1194   static const char alt_short_14[] =
1195     {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1196      0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1197   /* nopl 0L(%[re]ax)
1198      nopl 0L(%[re]ax,%[re]ax,1) */
1199   static const char alt_short_15[] =
1200     {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1201      0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1202   static const char *const alt_short_patt[] = {
1203     f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1204     alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1205     alt_short_14, alt_short_15
1206   };
1207   static const char *const alt_long_patt[] = {
1208     f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1209     alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1210     alt_long_14, alt_long_15
1211   };
1212 
1213   /* Only align for at least a positive non-zero boundary. */
1214   if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1215     return;
1216 
1217   /* We need to decide which NOP sequence to use for 32bit and
1218      64bit. When -mtune= is used:
1219 
1220      1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1221      PROCESSOR_GENERIC32, f32_patt will be used.
1222      2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1223      PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1224      PROCESSOR_GENERIC64, alt_long_patt will be used.
1225      3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1226      PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
1227      will be used.
1228 
1229      When -mtune= isn't used, alt_long_patt will be used if
1230      cpu_arch_isa_flags has CpuNop.  Otherwise, f32_patt will
1231      be used.
1232 
1233      When -march= or .arch is used, we can't use anything beyond
1234      cpu_arch_isa_flags.   */
1235 
1236   if (flag_code == CODE_16BIT)
1237     {
1238       if (count > 8)
1239 	{
1240 	  memcpy (fragP->fr_literal + fragP->fr_fix,
1241 		  jump_31, count);
1242 	  /* Adjust jump offset.  */
1243 	  fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1244 	}
1245       else
1246 	memcpy (fragP->fr_literal + fragP->fr_fix,
1247 		f16_patt[count - 1], count);
1248     }
1249   else
1250     {
1251       const char *const *patt = NULL;
1252 
1253       if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1254 	{
1255 	  /* PROCESSOR_UNKNOWN means that all ISAs may be used.  */
1256 	  switch (cpu_arch_tune)
1257 	    {
1258 	    case PROCESSOR_UNKNOWN:
1259 	      /* We use cpu_arch_isa_flags to check if we SHOULD
1260 		 optimize with nops.  */
1261 	      if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1262 		patt = alt_long_patt;
1263 	      else
1264 		patt = f32_patt;
1265 	      break;
1266 	    case PROCESSOR_PENTIUM4:
1267 	    case PROCESSOR_NOCONA:
1268 	    case PROCESSOR_CORE:
1269 	    case PROCESSOR_CORE2:
1270 	    case PROCESSOR_COREI7:
1271 	    case PROCESSOR_L1OM:
1272 	    case PROCESSOR_K1OM:
1273 	    case PROCESSOR_GENERIC64:
1274 	      patt = alt_long_patt;
1275 	      break;
1276 	    case PROCESSOR_K6:
1277 	    case PROCESSOR_ATHLON:
1278 	    case PROCESSOR_K8:
1279 	    case PROCESSOR_AMDFAM10:
1280 	    case PROCESSOR_BD:
1281 	    case PROCESSOR_BT:
1282 	      patt = alt_short_patt;
1283 	      break;
1284 	    case PROCESSOR_I386:
1285 	    case PROCESSOR_I486:
1286 	    case PROCESSOR_PENTIUM:
1287 	    case PROCESSOR_PENTIUMPRO:
1288 	    case PROCESSOR_GENERIC32:
1289 	      patt = f32_patt;
1290 	      break;
1291 	    }
1292 	}
1293       else
1294 	{
1295 	  switch (fragP->tc_frag_data.tune)
1296 	    {
1297 	    case PROCESSOR_UNKNOWN:
1298 	      /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1299 		 PROCESSOR_UNKNOWN.  */
1300 	      abort ();
1301 	      break;
1302 
1303 	    case PROCESSOR_I386:
1304 	    case PROCESSOR_I486:
1305 	    case PROCESSOR_PENTIUM:
1306 	    case PROCESSOR_K6:
1307 	    case PROCESSOR_ATHLON:
1308 	    case PROCESSOR_K8:
1309 	    case PROCESSOR_AMDFAM10:
1310 	    case PROCESSOR_BD:
1311 	    case PROCESSOR_BT:
1312 	    case PROCESSOR_GENERIC32:
1313 	      /* We use cpu_arch_isa_flags to check if we CAN optimize
1314 		 with nops.  */
1315 	      if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1316 		patt = alt_short_patt;
1317 	      else
1318 		patt = f32_patt;
1319 	      break;
1320 	    case PROCESSOR_PENTIUMPRO:
1321 	    case PROCESSOR_PENTIUM4:
1322 	    case PROCESSOR_NOCONA:
1323 	    case PROCESSOR_CORE:
1324 	    case PROCESSOR_CORE2:
1325 	    case PROCESSOR_COREI7:
1326 	    case PROCESSOR_L1OM:
1327 	    case PROCESSOR_K1OM:
1328 	      if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1329 		patt = alt_long_patt;
1330 	      else
1331 		patt = f32_patt;
1332 	      break;
1333 	    case PROCESSOR_GENERIC64:
1334 	      patt = alt_long_patt;
1335 	      break;
1336 	    }
1337 	}
1338 
1339       if (patt == f32_patt)
1340 	{
1341 	  /* If the padding is less than 15 bytes, we use the normal
1342 	     ones.  Otherwise, we use a jump instruction and adjust
1343 	     its offset.   */
1344 	  int limit;
1345 
1346 	  /* For 64bit, the limit is 3 bytes.  */
1347 	  if (flag_code == CODE_64BIT
1348 	      && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1349 	    limit = 3;
1350 	  else
1351 	    limit = 15;
1352 	  if (count < limit)
1353 	    memcpy (fragP->fr_literal + fragP->fr_fix,
1354 		    patt[count - 1], count);
1355 	  else
1356 	    {
1357 	      memcpy (fragP->fr_literal + fragP->fr_fix,
1358 		      jump_31, count);
1359 	      /* Adjust jump offset.  */
1360 	      fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1361 	    }
1362 	}
1363       else
1364 	{
1365 	  /* Maximum length of an instruction is 15 byte.  If the
1366 	     padding is greater than 15 bytes and we don't use jump,
1367 	     we have to break it into smaller pieces.  */
1368 	  int padding = count;
1369 	  while (padding > 15)
1370 	    {
1371 	      padding -= 15;
1372 	      memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1373 		      patt [14], 15);
1374 	    }
1375 
1376 	  if (padding)
1377 	    memcpy (fragP->fr_literal + fragP->fr_fix,
1378 		    patt [padding - 1], padding);
1379 	}
1380     }
1381   fragP->fr_var = count;
1382 }
1383 
1384 static INLINE int
operand_type_all_zero(const union i386_operand_type * x)1385 operand_type_all_zero (const union i386_operand_type *x)
1386 {
1387   switch (ARRAY_SIZE(x->array))
1388     {
1389     case 3:
1390       if (x->array[2])
1391 	return 0;
1392     case 2:
1393       if (x->array[1])
1394 	return 0;
1395     case 1:
1396       return !x->array[0];
1397     default:
1398       abort ();
1399     }
1400 }
1401 
1402 static INLINE void
operand_type_set(union i386_operand_type * x,unsigned int v)1403 operand_type_set (union i386_operand_type *x, unsigned int v)
1404 {
1405   switch (ARRAY_SIZE(x->array))
1406     {
1407     case 3:
1408       x->array[2] = v;
1409     case 2:
1410       x->array[1] = v;
1411     case 1:
1412       x->array[0] = v;
1413       break;
1414     default:
1415       abort ();
1416     }
1417 }
1418 
1419 static INLINE int
operand_type_equal(const union i386_operand_type * x,const union i386_operand_type * y)1420 operand_type_equal (const union i386_operand_type *x,
1421 		    const union i386_operand_type *y)
1422 {
1423   switch (ARRAY_SIZE(x->array))
1424     {
1425     case 3:
1426       if (x->array[2] != y->array[2])
1427 	return 0;
1428     case 2:
1429       if (x->array[1] != y->array[1])
1430 	return 0;
1431     case 1:
1432       return x->array[0] == y->array[0];
1433       break;
1434     default:
1435       abort ();
1436     }
1437 }
1438 
1439 static INLINE int
cpu_flags_all_zero(const union i386_cpu_flags * x)1440 cpu_flags_all_zero (const union i386_cpu_flags *x)
1441 {
1442   switch (ARRAY_SIZE(x->array))
1443     {
1444     case 3:
1445       if (x->array[2])
1446 	return 0;
1447     case 2:
1448       if (x->array[1])
1449 	return 0;
1450     case 1:
1451       return !x->array[0];
1452     default:
1453       abort ();
1454     }
1455 }
1456 
1457 static INLINE void
cpu_flags_set(union i386_cpu_flags * x,unsigned int v)1458 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1459 {
1460   switch (ARRAY_SIZE(x->array))
1461     {
1462     case 3:
1463       x->array[2] = v;
1464     case 2:
1465       x->array[1] = v;
1466     case 1:
1467       x->array[0] = v;
1468       break;
1469     default:
1470       abort ();
1471     }
1472 }
1473 
1474 static INLINE int
cpu_flags_equal(const union i386_cpu_flags * x,const union i386_cpu_flags * y)1475 cpu_flags_equal (const union i386_cpu_flags *x,
1476 		 const union i386_cpu_flags *y)
1477 {
1478   switch (ARRAY_SIZE(x->array))
1479     {
1480     case 3:
1481       if (x->array[2] != y->array[2])
1482 	return 0;
1483     case 2:
1484       if (x->array[1] != y->array[1])
1485 	return 0;
1486     case 1:
1487       return x->array[0] == y->array[0];
1488       break;
1489     default:
1490       abort ();
1491     }
1492 }
1493 
1494 static INLINE int
cpu_flags_check_cpu64(i386_cpu_flags f)1495 cpu_flags_check_cpu64 (i386_cpu_flags f)
1496 {
1497   return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1498 	   || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1499 }
1500 
1501 static INLINE i386_cpu_flags
cpu_flags_and(i386_cpu_flags x,i386_cpu_flags y)1502 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1503 {
1504   switch (ARRAY_SIZE (x.array))
1505     {
1506     case 3:
1507       x.array [2] &= y.array [2];
1508     case 2:
1509       x.array [1] &= y.array [1];
1510     case 1:
1511       x.array [0] &= y.array [0];
1512       break;
1513     default:
1514       abort ();
1515     }
1516   return x;
1517 }
1518 
1519 static INLINE i386_cpu_flags
cpu_flags_or(i386_cpu_flags x,i386_cpu_flags y)1520 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1521 {
1522   switch (ARRAY_SIZE (x.array))
1523     {
1524     case 3:
1525       x.array [2] |= y.array [2];
1526     case 2:
1527       x.array [1] |= y.array [1];
1528     case 1:
1529       x.array [0] |= y.array [0];
1530       break;
1531     default:
1532       abort ();
1533     }
1534   return x;
1535 }
1536 
1537 static INLINE i386_cpu_flags
cpu_flags_and_not(i386_cpu_flags x,i386_cpu_flags y)1538 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1539 {
1540   switch (ARRAY_SIZE (x.array))
1541     {
1542     case 3:
1543       x.array [2] &= ~y.array [2];
1544     case 2:
1545       x.array [1] &= ~y.array [1];
1546     case 1:
1547       x.array [0] &= ~y.array [0];
1548       break;
1549     default:
1550       abort ();
1551     }
1552   return x;
1553 }
1554 
1555 #define CPU_FLAGS_ARCH_MATCH		0x1
1556 #define CPU_FLAGS_64BIT_MATCH		0x2
1557 #define CPU_FLAGS_AES_MATCH		0x4
1558 #define CPU_FLAGS_PCLMUL_MATCH		0x8
1559 #define CPU_FLAGS_AVX_MATCH	       0x10
1560 
1561 #define CPU_FLAGS_32BIT_MATCH \
1562   (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1563    | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1564 #define CPU_FLAGS_PERFECT_MATCH \
1565   (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1566 
1567 /* Return CPU flags match bits. */
1568 
1569 static int
cpu_flags_match(const insn_template * t)1570 cpu_flags_match (const insn_template *t)
1571 {
1572   i386_cpu_flags x = t->cpu_flags;
1573   int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1574 
1575   x.bitfield.cpu64 = 0;
1576   x.bitfield.cpuno64 = 0;
1577 
1578   if (cpu_flags_all_zero (&x))
1579     {
1580       /* This instruction is available on all archs.  */
1581       match |= CPU_FLAGS_32BIT_MATCH;
1582     }
1583   else
1584     {
1585       /* This instruction is available only on some archs.  */
1586       i386_cpu_flags cpu = cpu_arch_flags;
1587 
1588       cpu.bitfield.cpu64 = 0;
1589       cpu.bitfield.cpuno64 = 0;
1590       cpu = cpu_flags_and (x, cpu);
1591       if (!cpu_flags_all_zero (&cpu))
1592 	{
1593 	  if (x.bitfield.cpuavx)
1594 	    {
1595 	      /* We only need to check AES/PCLMUL/SSE2AVX with AVX.  */
1596 	      if (cpu.bitfield.cpuavx)
1597 		{
1598 		  /* Check SSE2AVX.  */
1599 		  if (!t->opcode_modifier.sse2avx|| sse2avx)
1600 		    {
1601 		      match |= (CPU_FLAGS_ARCH_MATCH
1602 				| CPU_FLAGS_AVX_MATCH);
1603 		      /* Check AES.  */
1604 		      if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1605 			match |= CPU_FLAGS_AES_MATCH;
1606 		      /* Check PCLMUL.  */
1607 		      if (!x.bitfield.cpupclmul
1608 			  || cpu.bitfield.cpupclmul)
1609 			match |= CPU_FLAGS_PCLMUL_MATCH;
1610 		    }
1611 		}
1612 	      else
1613 		match |= CPU_FLAGS_ARCH_MATCH;
1614 	    }
1615 	  else
1616 	    match |= CPU_FLAGS_32BIT_MATCH;
1617 	}
1618     }
1619   return match;
1620 }
1621 
1622 static INLINE i386_operand_type
operand_type_and(i386_operand_type x,i386_operand_type y)1623 operand_type_and (i386_operand_type x, i386_operand_type y)
1624 {
1625   switch (ARRAY_SIZE (x.array))
1626     {
1627     case 3:
1628       x.array [2] &= y.array [2];
1629     case 2:
1630       x.array [1] &= y.array [1];
1631     case 1:
1632       x.array [0] &= y.array [0];
1633       break;
1634     default:
1635       abort ();
1636     }
1637   return x;
1638 }
1639 
1640 static INLINE i386_operand_type
operand_type_or(i386_operand_type x,i386_operand_type y)1641 operand_type_or (i386_operand_type x, i386_operand_type y)
1642 {
1643   switch (ARRAY_SIZE (x.array))
1644     {
1645     case 3:
1646       x.array [2] |= y.array [2];
1647     case 2:
1648       x.array [1] |= y.array [1];
1649     case 1:
1650       x.array [0] |= y.array [0];
1651       break;
1652     default:
1653       abort ();
1654     }
1655   return x;
1656 }
1657 
1658 static INLINE i386_operand_type
operand_type_xor(i386_operand_type x,i386_operand_type y)1659 operand_type_xor (i386_operand_type x, i386_operand_type y)
1660 {
1661   switch (ARRAY_SIZE (x.array))
1662     {
1663     case 3:
1664       x.array [2] ^= y.array [2];
1665     case 2:
1666       x.array [1] ^= y.array [1];
1667     case 1:
1668       x.array [0] ^= y.array [0];
1669       break;
1670     default:
1671       abort ();
1672     }
1673   return x;
1674 }
1675 
1676 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1677 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1678 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1679 static const i386_operand_type inoutportreg
1680   = OPERAND_TYPE_INOUTPORTREG;
1681 static const i386_operand_type reg16_inoutportreg
1682   = OPERAND_TYPE_REG16_INOUTPORTREG;
1683 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1684 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1685 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1686 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1687 static const i386_operand_type anydisp
1688   = OPERAND_TYPE_ANYDISP;
1689 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1690 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1691 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1692 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1693 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1694 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1695 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1696 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1697 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1698 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1699 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1700 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1701 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1702 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1703 
1704 enum operand_type
1705 {
1706   reg,
1707   imm,
1708   disp,
1709   anymem
1710 };
1711 
1712 static INLINE int
operand_type_check(i386_operand_type t,enum operand_type c)1713 operand_type_check (i386_operand_type t, enum operand_type c)
1714 {
1715   switch (c)
1716     {
1717     case reg:
1718       return (t.bitfield.reg8
1719 	      || t.bitfield.reg16
1720 	      || t.bitfield.reg32
1721 	      || t.bitfield.reg64);
1722 
1723     case imm:
1724       return (t.bitfield.imm8
1725 	      || t.bitfield.imm8s
1726 	      || t.bitfield.imm16
1727 	      || t.bitfield.imm32
1728 	      || t.bitfield.imm32s
1729 	      || t.bitfield.imm64);
1730 
1731     case disp:
1732       return (t.bitfield.disp8
1733 	      || t.bitfield.disp16
1734 	      || t.bitfield.disp32
1735 	      || t.bitfield.disp32s
1736 	      || t.bitfield.disp64);
1737 
1738     case anymem:
1739       return (t.bitfield.disp8
1740 	      || t.bitfield.disp16
1741 	      || t.bitfield.disp32
1742 	      || t.bitfield.disp32s
1743 	      || t.bitfield.disp64
1744 	      || t.bitfield.baseindex);
1745 
1746     default:
1747       abort ();
1748     }
1749 
1750   return 0;
1751 }
1752 
1753 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1754    operand J for instruction template T.  */
1755 
1756 static INLINE int
match_reg_size(const insn_template * t,unsigned int j)1757 match_reg_size (const insn_template *t, unsigned int j)
1758 {
1759   return !((i.types[j].bitfield.byte
1760 	    && !t->operand_types[j].bitfield.byte)
1761 	   || (i.types[j].bitfield.word
1762 	       && !t->operand_types[j].bitfield.word)
1763 	   || (i.types[j].bitfield.dword
1764 	       && !t->operand_types[j].bitfield.dword)
1765 	   || (i.types[j].bitfield.qword
1766 	       && !t->operand_types[j].bitfield.qword));
1767 }
1768 
1769 /* Return 1 if there is no conflict in any size on operand J for
1770    instruction template T.  */
1771 
1772 static INLINE int
match_mem_size(const insn_template * t,unsigned int j)1773 match_mem_size (const insn_template *t, unsigned int j)
1774 {
1775   return (match_reg_size (t, j)
1776 	  && !((i.types[j].bitfield.unspecified
1777 		&& !t->operand_types[j].bitfield.unspecified)
1778 	       || (i.types[j].bitfield.fword
1779 		   && !t->operand_types[j].bitfield.fword)
1780 	       || (i.types[j].bitfield.tbyte
1781 		   && !t->operand_types[j].bitfield.tbyte)
1782 	       || (i.types[j].bitfield.xmmword
1783 		   && !t->operand_types[j].bitfield.xmmword)
1784 	       || (i.types[j].bitfield.ymmword
1785 		   && !t->operand_types[j].bitfield.ymmword)
1786 	       || (i.types[j].bitfield.zmmword
1787 		   && !t->operand_types[j].bitfield.zmmword)));
1788 }
1789 
1790 /* Return 1 if there is no size conflict on any operands for
1791    instruction template T.  */
1792 
1793 static INLINE int
operand_size_match(const insn_template * t)1794 operand_size_match (const insn_template *t)
1795 {
1796   unsigned int j;
1797   int match = 1;
1798 
1799   /* Don't check jump instructions.  */
1800   if (t->opcode_modifier.jump
1801       || t->opcode_modifier.jumpbyte
1802       || t->opcode_modifier.jumpdword
1803       || t->opcode_modifier.jumpintersegment)
1804     return match;
1805 
1806   /* Check memory and accumulator operand size.  */
1807   for (j = 0; j < i.operands; j++)
1808     {
1809       if (t->operand_types[j].bitfield.anysize)
1810 	continue;
1811 
1812       if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1813 	{
1814 	  match = 0;
1815 	  break;
1816 	}
1817 
1818       if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1819 	{
1820 	  match = 0;
1821 	  break;
1822 	}
1823     }
1824 
1825   if (match)
1826     return match;
1827   else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1828     {
1829 mismatch:
1830       i.error = operand_size_mismatch;
1831       return 0;
1832     }
1833 
1834   /* Check reverse.  */
1835   gas_assert (i.operands == 2);
1836 
1837   match = 1;
1838   for (j = 0; j < 2; j++)
1839     {
1840       if (t->operand_types[j].bitfield.acc
1841 	  && !match_reg_size (t, j ? 0 : 1))
1842 	goto mismatch;
1843 
1844       if (i.types[j].bitfield.mem
1845 	  && !match_mem_size (t, j ? 0 : 1))
1846 	goto mismatch;
1847     }
1848 
1849   return match;
1850 }
1851 
1852 static INLINE int
operand_type_match(i386_operand_type overlap,i386_operand_type given)1853 operand_type_match (i386_operand_type overlap,
1854 		    i386_operand_type given)
1855 {
1856   i386_operand_type temp = overlap;
1857 
1858   temp.bitfield.jumpabsolute = 0;
1859   temp.bitfield.unspecified = 0;
1860   temp.bitfield.byte = 0;
1861   temp.bitfield.word = 0;
1862   temp.bitfield.dword = 0;
1863   temp.bitfield.fword = 0;
1864   temp.bitfield.qword = 0;
1865   temp.bitfield.tbyte = 0;
1866   temp.bitfield.xmmword = 0;
1867   temp.bitfield.ymmword = 0;
1868   temp.bitfield.zmmword = 0;
1869   if (operand_type_all_zero (&temp))
1870     goto mismatch;
1871 
1872   if (given.bitfield.baseindex == overlap.bitfield.baseindex
1873       && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1874     return 1;
1875 
1876 mismatch:
1877   i.error = operand_type_mismatch;
1878   return 0;
1879 }
1880 
1881 /* If given types g0 and g1 are registers they must be of the same type
1882    unless the expected operand type register overlap is null.
1883    Note that Acc in a template matches every size of reg.  */
1884 
1885 static INLINE int
operand_type_register_match(i386_operand_type m0,i386_operand_type g0,i386_operand_type t0,i386_operand_type m1,i386_operand_type g1,i386_operand_type t1)1886 operand_type_register_match (i386_operand_type m0,
1887 			     i386_operand_type g0,
1888 			     i386_operand_type t0,
1889 			     i386_operand_type m1,
1890 			     i386_operand_type g1,
1891 			     i386_operand_type t1)
1892 {
1893   if (!operand_type_check (g0, reg))
1894     return 1;
1895 
1896   if (!operand_type_check (g1, reg))
1897     return 1;
1898 
1899   if (g0.bitfield.reg8 == g1.bitfield.reg8
1900       && g0.bitfield.reg16 == g1.bitfield.reg16
1901       && g0.bitfield.reg32 == g1.bitfield.reg32
1902       && g0.bitfield.reg64 == g1.bitfield.reg64)
1903     return 1;
1904 
1905   if (m0.bitfield.acc)
1906     {
1907       t0.bitfield.reg8 = 1;
1908       t0.bitfield.reg16 = 1;
1909       t0.bitfield.reg32 = 1;
1910       t0.bitfield.reg64 = 1;
1911     }
1912 
1913   if (m1.bitfield.acc)
1914     {
1915       t1.bitfield.reg8 = 1;
1916       t1.bitfield.reg16 = 1;
1917       t1.bitfield.reg32 = 1;
1918       t1.bitfield.reg64 = 1;
1919     }
1920 
1921   if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1922       && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1923       && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1924       && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1925     return 1;
1926 
1927   i.error = register_type_mismatch;
1928 
1929   return 0;
1930 }
1931 
1932 static INLINE unsigned int
register_number(const reg_entry * r)1933 register_number (const reg_entry *r)
1934 {
1935   unsigned int nr = r->reg_num;
1936 
1937   if (r->reg_flags & RegRex)
1938     nr += 8;
1939 
1940   return nr;
1941 }
1942 
1943 static INLINE unsigned int
mode_from_disp_size(i386_operand_type t)1944 mode_from_disp_size (i386_operand_type t)
1945 {
1946   if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1947     return 1;
1948   else if (t.bitfield.disp16
1949 	   || t.bitfield.disp32
1950 	   || t.bitfield.disp32s)
1951     return 2;
1952   else
1953     return 0;
1954 }
1955 
1956 static INLINE int
fits_in_signed_byte(addressT num)1957 fits_in_signed_byte (addressT num)
1958 {
1959   return num + 0x80 <= 0xff;
1960 }
1961 
1962 static INLINE int
fits_in_unsigned_byte(addressT num)1963 fits_in_unsigned_byte (addressT num)
1964 {
1965   return num <= 0xff;
1966 }
1967 
1968 static INLINE int
fits_in_unsigned_word(addressT num)1969 fits_in_unsigned_word (addressT num)
1970 {
1971   return num <= 0xffff;
1972 }
1973 
1974 static INLINE int
fits_in_signed_word(addressT num)1975 fits_in_signed_word (addressT num)
1976 {
1977   return num + 0x8000 <= 0xffff;
1978 }
1979 
1980 static INLINE int
fits_in_signed_long(addressT num ATTRIBUTE_UNUSED)1981 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1982 {
1983 #ifndef BFD64
1984   return 1;
1985 #else
1986   return num + 0x80000000 <= 0xffffffff;
1987 #endif
1988 }				/* fits_in_signed_long() */
1989 
1990 static INLINE int
fits_in_unsigned_long(addressT num ATTRIBUTE_UNUSED)1991 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1992 {
1993 #ifndef BFD64
1994   return 1;
1995 #else
1996   return num <= 0xffffffff;
1997 #endif
1998 }				/* fits_in_unsigned_long() */
1999 
2000 static INLINE int
fits_in_vec_disp8(offsetT num)2001 fits_in_vec_disp8 (offsetT num)
2002 {
2003   int shift = i.memshift;
2004   unsigned int mask;
2005 
2006   if (shift == -1)
2007     abort ();
2008 
2009   mask = (1 << shift) - 1;
2010 
2011   /* Return 0 if NUM isn't properly aligned.  */
2012   if ((num & mask))
2013     return 0;
2014 
2015   /* Check if NUM will fit in 8bit after shift.  */
2016   return fits_in_signed_byte (num >> shift);
2017 }
2018 
2019 static INLINE int
fits_in_imm4(offsetT num)2020 fits_in_imm4 (offsetT num)
2021 {
2022   return (num & 0xf) == num;
2023 }
2024 
2025 static i386_operand_type
smallest_imm_type(offsetT num)2026 smallest_imm_type (offsetT num)
2027 {
2028   i386_operand_type t;
2029 
2030   operand_type_set (&t, 0);
2031   t.bitfield.imm64 = 1;
2032 
2033   if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2034     {
2035       /* This code is disabled on the 486 because all the Imm1 forms
2036 	 in the opcode table are slower on the i486.  They're the
2037 	 versions with the implicitly specified single-position
2038 	 displacement, which has another syntax if you really want to
2039 	 use that form.  */
2040       t.bitfield.imm1 = 1;
2041       t.bitfield.imm8 = 1;
2042       t.bitfield.imm8s = 1;
2043       t.bitfield.imm16 = 1;
2044       t.bitfield.imm32 = 1;
2045       t.bitfield.imm32s = 1;
2046     }
2047   else if (fits_in_signed_byte (num))
2048     {
2049       t.bitfield.imm8 = 1;
2050       t.bitfield.imm8s = 1;
2051       t.bitfield.imm16 = 1;
2052       t.bitfield.imm32 = 1;
2053       t.bitfield.imm32s = 1;
2054     }
2055   else if (fits_in_unsigned_byte (num))
2056     {
2057       t.bitfield.imm8 = 1;
2058       t.bitfield.imm16 = 1;
2059       t.bitfield.imm32 = 1;
2060       t.bitfield.imm32s = 1;
2061     }
2062   else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2063     {
2064       t.bitfield.imm16 = 1;
2065       t.bitfield.imm32 = 1;
2066       t.bitfield.imm32s = 1;
2067     }
2068   else if (fits_in_signed_long (num))
2069     {
2070       t.bitfield.imm32 = 1;
2071       t.bitfield.imm32s = 1;
2072     }
2073   else if (fits_in_unsigned_long (num))
2074     t.bitfield.imm32 = 1;
2075 
2076   return t;
2077 }
2078 
2079 static offsetT
offset_in_range(offsetT val,int size)2080 offset_in_range (offsetT val, int size)
2081 {
2082   addressT mask;
2083 
2084   switch (size)
2085     {
2086     case 1: mask = ((addressT) 1 <<  8) - 1; break;
2087     case 2: mask = ((addressT) 1 << 16) - 1; break;
2088     case 4: mask = ((addressT) 2 << 31) - 1; break;
2089 #ifdef BFD64
2090     case 8: mask = ((addressT) 2 << 63) - 1; break;
2091 #endif
2092     default: abort ();
2093     }
2094 
2095 #ifdef BFD64
2096   /* If BFD64, sign extend val for 32bit address mode.  */
2097   if (flag_code != CODE_64BIT
2098       || i.prefix[ADDR_PREFIX])
2099     if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2100       val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2101 #endif
2102 
2103   if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2104     {
2105       char buf1[40], buf2[40];
2106 
2107       sprint_value (buf1, val);
2108       sprint_value (buf2, val & mask);
2109       as_warn (_("%s shortened to %s"), buf1, buf2);
2110     }
2111   return val & mask;
2112 }
2113 
2114 enum PREFIX_GROUP
2115 {
2116   PREFIX_EXIST = 0,
2117   PREFIX_LOCK,
2118   PREFIX_REP,
2119   PREFIX_OTHER
2120 };
2121 
2122 /* Returns
2123    a. PREFIX_EXIST if attempting to add a prefix where one from the
2124    same class already exists.
2125    b. PREFIX_LOCK if lock prefix is added.
2126    c. PREFIX_REP if rep/repne prefix is added.
2127    d. PREFIX_OTHER if other prefix is added.
2128  */
2129 
2130 static enum PREFIX_GROUP
add_prefix(unsigned int prefix)2131 add_prefix (unsigned int prefix)
2132 {
2133   enum PREFIX_GROUP ret = PREFIX_OTHER;
2134   unsigned int q;
2135 
2136   if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2137       && flag_code == CODE_64BIT)
2138     {
2139       if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2140 	  || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2141 	      && (prefix & (REX_R | REX_X | REX_B))))
2142 	ret = PREFIX_EXIST;
2143       q = REX_PREFIX;
2144     }
2145   else
2146     {
2147       switch (prefix)
2148 	{
2149 	default:
2150 	  abort ();
2151 
2152 	case CS_PREFIX_OPCODE:
2153 	case DS_PREFIX_OPCODE:
2154 	case ES_PREFIX_OPCODE:
2155 	case FS_PREFIX_OPCODE:
2156 	case GS_PREFIX_OPCODE:
2157 	case SS_PREFIX_OPCODE:
2158 	  q = SEG_PREFIX;
2159 	  break;
2160 
2161 	case REPNE_PREFIX_OPCODE:
2162 	case REPE_PREFIX_OPCODE:
2163 	  q = REP_PREFIX;
2164 	  ret = PREFIX_REP;
2165 	  break;
2166 
2167 	case LOCK_PREFIX_OPCODE:
2168 	  q = LOCK_PREFIX;
2169 	  ret = PREFIX_LOCK;
2170 	  break;
2171 
2172 	case FWAIT_OPCODE:
2173 	  q = WAIT_PREFIX;
2174 	  break;
2175 
2176 	case ADDR_PREFIX_OPCODE:
2177 	  q = ADDR_PREFIX;
2178 	  break;
2179 
2180 	case DATA_PREFIX_OPCODE:
2181 	  q = DATA_PREFIX;
2182 	  break;
2183 	}
2184       if (i.prefix[q] != 0)
2185 	ret = PREFIX_EXIST;
2186     }
2187 
2188   if (ret)
2189     {
2190       if (!i.prefix[q])
2191 	++i.prefixes;
2192       i.prefix[q] |= prefix;
2193     }
2194   else
2195     as_bad (_("same type of prefix used twice"));
2196 
2197   return ret;
2198 }
2199 
2200 static void
update_code_flag(int value,int check)2201 update_code_flag (int value, int check)
2202 {
2203   PRINTF_LIKE ((*as_error));
2204 
2205   flag_code = (enum flag_code) value;
2206   if (flag_code == CODE_64BIT)
2207     {
2208       cpu_arch_flags.bitfield.cpu64 = 1;
2209       cpu_arch_flags.bitfield.cpuno64 = 0;
2210     }
2211   else
2212     {
2213       cpu_arch_flags.bitfield.cpu64 = 0;
2214       cpu_arch_flags.bitfield.cpuno64 = 1;
2215     }
2216   if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2217     {
2218       if (check)
2219 	as_error = as_fatal;
2220       else
2221 	as_error = as_bad;
2222       (*as_error) (_("64bit mode not supported on `%s'."),
2223 		   cpu_arch_name ? cpu_arch_name : default_arch);
2224     }
2225   if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2226     {
2227       if (check)
2228 	as_error = as_fatal;
2229       else
2230 	as_error = as_bad;
2231       (*as_error) (_("32bit mode not supported on `%s'."),
2232 		   cpu_arch_name ? cpu_arch_name : default_arch);
2233     }
2234   stackop_size = '\0';
2235 }
2236 
2237 static void
set_code_flag(int value)2238 set_code_flag (int value)
2239 {
2240   update_code_flag (value, 0);
2241 }
2242 
2243 static void
set_16bit_gcc_code_flag(int new_code_flag)2244 set_16bit_gcc_code_flag (int new_code_flag)
2245 {
2246   flag_code = (enum flag_code) new_code_flag;
2247   if (flag_code != CODE_16BIT)
2248     abort ();
2249   cpu_arch_flags.bitfield.cpu64 = 0;
2250   cpu_arch_flags.bitfield.cpuno64 = 1;
2251   stackop_size = LONG_MNEM_SUFFIX;
2252 }
2253 
2254 static void
set_intel_syntax(int syntax_flag)2255 set_intel_syntax (int syntax_flag)
2256 {
2257   /* Find out if register prefixing is specified.  */
2258   int ask_naked_reg = 0;
2259 
2260   SKIP_WHITESPACE ();
2261   if (!is_end_of_line[(unsigned char) *input_line_pointer])
2262     {
2263       char *string = input_line_pointer;
2264       int e = get_symbol_end ();
2265 
2266       if (strcmp (string, "prefix") == 0)
2267 	ask_naked_reg = 1;
2268       else if (strcmp (string, "noprefix") == 0)
2269 	ask_naked_reg = -1;
2270       else
2271 	as_bad (_("bad argument to syntax directive."));
2272       *input_line_pointer = e;
2273     }
2274   demand_empty_rest_of_line ();
2275 
2276   intel_syntax = syntax_flag;
2277 
2278   if (ask_naked_reg == 0)
2279     allow_naked_reg = (intel_syntax
2280 		       && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2281   else
2282     allow_naked_reg = (ask_naked_reg < 0);
2283 
2284   expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2285 
2286   identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2287   identifier_chars['$'] = intel_syntax ? '$' : 0;
2288   register_prefix = allow_naked_reg ? "" : "%";
2289 }
2290 
2291 static void
set_intel_mnemonic(int mnemonic_flag)2292 set_intel_mnemonic (int mnemonic_flag)
2293 {
2294   intel_mnemonic = mnemonic_flag;
2295 }
2296 
2297 static void
set_allow_index_reg(int flag)2298 set_allow_index_reg (int flag)
2299 {
2300   allow_index_reg = flag;
2301 }
2302 
2303 static void
set_check(int what)2304 set_check (int what)
2305 {
2306   enum check_kind *kind;
2307   const char *str;
2308 
2309   if (what)
2310     {
2311       kind = &operand_check;
2312       str = "operand";
2313     }
2314   else
2315     {
2316       kind = &sse_check;
2317       str = "sse";
2318     }
2319 
2320   SKIP_WHITESPACE ();
2321 
2322   if (!is_end_of_line[(unsigned char) *input_line_pointer])
2323     {
2324       char *string = input_line_pointer;
2325       int e = get_symbol_end ();
2326 
2327       if (strcmp (string, "none") == 0)
2328 	*kind = check_none;
2329       else if (strcmp (string, "warning") == 0)
2330 	*kind = check_warning;
2331       else if (strcmp (string, "error") == 0)
2332 	*kind = check_error;
2333       else
2334 	as_bad (_("bad argument to %s_check directive."), str);
2335       *input_line_pointer = e;
2336     }
2337   else
2338     as_bad (_("missing argument for %s_check directive"), str);
2339 
2340   demand_empty_rest_of_line ();
2341 }
2342 
2343 static void
check_cpu_arch_compatible(const char * name ATTRIBUTE_UNUSED,i386_cpu_flags new_flag ATTRIBUTE_UNUSED)2344 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2345 			   i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2346 {
2347 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2348   static const char *arch;
2349 
2350   /* Intel LIOM is only supported on ELF.  */
2351   if (!IS_ELF)
2352     return;
2353 
2354   if (!arch)
2355     {
2356       /* Use cpu_arch_name if it is set in md_parse_option.  Otherwise
2357 	 use default_arch.  */
2358       arch = cpu_arch_name;
2359       if (!arch)
2360 	arch = default_arch;
2361     }
2362 
2363   /* If we are targeting Intel L1OM, we must enable it.  */
2364   if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2365       || new_flag.bitfield.cpul1om)
2366     return;
2367 
2368   /* If we are targeting Intel K1OM, we must enable it.  */
2369   if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2370       || new_flag.bitfield.cpuk1om)
2371     return;
2372 
2373   as_bad (_("`%s' is not supported on `%s'"), name, arch);
2374 #endif
2375 }
2376 
2377 static void
set_cpu_arch(int dummy ATTRIBUTE_UNUSED)2378 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2379 {
2380   SKIP_WHITESPACE ();
2381 
2382   if (!is_end_of_line[(unsigned char) *input_line_pointer])
2383     {
2384       char *string = input_line_pointer;
2385       int e = get_symbol_end ();
2386       unsigned int j;
2387       i386_cpu_flags flags;
2388 
2389       for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2390 	{
2391 	  if (strcmp (string, cpu_arch[j].name) == 0)
2392 	    {
2393 	      check_cpu_arch_compatible (string, cpu_arch[j].flags);
2394 
2395 	      if (*string != '.')
2396 		{
2397 		  cpu_arch_name = cpu_arch[j].name;
2398 		  cpu_sub_arch_name = NULL;
2399 		  cpu_arch_flags = cpu_arch[j].flags;
2400 		  if (flag_code == CODE_64BIT)
2401 		    {
2402 		      cpu_arch_flags.bitfield.cpu64 = 1;
2403 		      cpu_arch_flags.bitfield.cpuno64 = 0;
2404 		    }
2405 		  else
2406 		    {
2407 		      cpu_arch_flags.bitfield.cpu64 = 0;
2408 		      cpu_arch_flags.bitfield.cpuno64 = 1;
2409 		    }
2410 		  cpu_arch_isa = cpu_arch[j].type;
2411 		  cpu_arch_isa_flags = cpu_arch[j].flags;
2412 		  if (!cpu_arch_tune_set)
2413 		    {
2414 		      cpu_arch_tune = cpu_arch_isa;
2415 		      cpu_arch_tune_flags = cpu_arch_isa_flags;
2416 		    }
2417 		  break;
2418 		}
2419 
2420 	      if (!cpu_arch[j].negated)
2421 		flags = cpu_flags_or (cpu_arch_flags,
2422 				      cpu_arch[j].flags);
2423 	      else
2424 		flags = cpu_flags_and_not (cpu_arch_flags,
2425 					   cpu_arch[j].flags);
2426 	      if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2427 		{
2428 		  if (cpu_sub_arch_name)
2429 		    {
2430 		      char *name = cpu_sub_arch_name;
2431 		      cpu_sub_arch_name = concat (name,
2432 						  cpu_arch[j].name,
2433 						  (const char *) NULL);
2434 		      free (name);
2435 		    }
2436 		  else
2437 		    cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2438 		  cpu_arch_flags = flags;
2439 		  cpu_arch_isa_flags = flags;
2440 		}
2441 	      *input_line_pointer = e;
2442 	      demand_empty_rest_of_line ();
2443 	      return;
2444 	    }
2445 	}
2446       if (j >= ARRAY_SIZE (cpu_arch))
2447 	as_bad (_("no such architecture: `%s'"), string);
2448 
2449       *input_line_pointer = e;
2450     }
2451   else
2452     as_bad (_("missing cpu architecture"));
2453 
2454   no_cond_jump_promotion = 0;
2455   if (*input_line_pointer == ','
2456       && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2457     {
2458       char *string = ++input_line_pointer;
2459       int e = get_symbol_end ();
2460 
2461       if (strcmp (string, "nojumps") == 0)
2462 	no_cond_jump_promotion = 1;
2463       else if (strcmp (string, "jumps") == 0)
2464 	;
2465       else
2466 	as_bad (_("no such architecture modifier: `%s'"), string);
2467 
2468       *input_line_pointer = e;
2469     }
2470 
2471   demand_empty_rest_of_line ();
2472 }
2473 
2474 enum bfd_architecture
i386_arch(void)2475 i386_arch (void)
2476 {
2477   if (cpu_arch_isa == PROCESSOR_L1OM)
2478     {
2479       if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2480 	  || flag_code != CODE_64BIT)
2481 	as_fatal (_("Intel L1OM is 64bit ELF only"));
2482       return bfd_arch_l1om;
2483     }
2484   else if (cpu_arch_isa == PROCESSOR_K1OM)
2485     {
2486       if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2487 	  || flag_code != CODE_64BIT)
2488 	as_fatal (_("Intel K1OM is 64bit ELF only"));
2489       return bfd_arch_k1om;
2490     }
2491   else
2492     return bfd_arch_i386;
2493 }
2494 
2495 unsigned long
i386_mach(void)2496 i386_mach (void)
2497 {
2498   if (!strncmp (default_arch, "x86_64", 6))
2499     {
2500       if (cpu_arch_isa == PROCESSOR_L1OM)
2501 	{
2502 	  if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2503 	      || default_arch[6] != '\0')
2504 	    as_fatal (_("Intel L1OM is 64bit ELF only"));
2505 	  return bfd_mach_l1om;
2506 	}
2507       else if (cpu_arch_isa == PROCESSOR_K1OM)
2508 	{
2509 	  if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2510 	      || default_arch[6] != '\0')
2511 	    as_fatal (_("Intel K1OM is 64bit ELF only"));
2512 	  return bfd_mach_k1om;
2513 	}
2514       else if (default_arch[6] == '\0')
2515 	return bfd_mach_x86_64;
2516       else
2517 	return bfd_mach_x64_32;
2518     }
2519   else if (!strcmp (default_arch, "i386"))
2520     return bfd_mach_i386_i386;
2521   else
2522     as_fatal (_("unknown architecture"));
2523 }
2524 
2525 void
md_begin(void)2526 md_begin (void)
2527 {
2528   const char *hash_err;
2529 
2530   /* Initialize op_hash hash table.  */
2531   op_hash = hash_new ();
2532 
2533   {
2534     const insn_template *optab;
2535     templates *core_optab;
2536 
2537     /* Setup for loop.  */
2538     optab = i386_optab;
2539     core_optab = (templates *) xmalloc (sizeof (templates));
2540     core_optab->start = optab;
2541 
2542     while (1)
2543       {
2544 	++optab;
2545 	if (optab->name == NULL
2546 	    || strcmp (optab->name, (optab - 1)->name) != 0)
2547 	  {
2548 	    /* different name --> ship out current template list;
2549 	       add to hash table; & begin anew.  */
2550 	    core_optab->end = optab;
2551 	    hash_err = hash_insert (op_hash,
2552 				    (optab - 1)->name,
2553 				    (void *) core_optab);
2554 	    if (hash_err)
2555 	      {
2556 		as_fatal (_("can't hash %s: %s"),
2557 			  (optab - 1)->name,
2558 			  hash_err);
2559 	      }
2560 	    if (optab->name == NULL)
2561 	      break;
2562 	    core_optab = (templates *) xmalloc (sizeof (templates));
2563 	    core_optab->start = optab;
2564 	  }
2565       }
2566   }
2567 
2568   /* Initialize reg_hash hash table.  */
2569   reg_hash = hash_new ();
2570   {
2571     const reg_entry *regtab;
2572     unsigned int regtab_size = i386_regtab_size;
2573 
2574     for (regtab = i386_regtab; regtab_size--; regtab++)
2575       {
2576 	hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2577 	if (hash_err)
2578 	  as_fatal (_("can't hash %s: %s"),
2579 		    regtab->reg_name,
2580 		    hash_err);
2581       }
2582   }
2583 
2584   /* Fill in lexical tables:  mnemonic_chars, operand_chars.  */
2585   {
2586     int c;
2587     char *p;
2588 
2589     for (c = 0; c < 256; c++)
2590       {
2591 	if (ISDIGIT (c))
2592 	  {
2593 	    digit_chars[c] = c;
2594 	    mnemonic_chars[c] = c;
2595 	    register_chars[c] = c;
2596 	    operand_chars[c] = c;
2597 	  }
2598 	else if (ISLOWER (c))
2599 	  {
2600 	    mnemonic_chars[c] = c;
2601 	    register_chars[c] = c;
2602 	    operand_chars[c] = c;
2603 	  }
2604 	else if (ISUPPER (c))
2605 	  {
2606 	    mnemonic_chars[c] = TOLOWER (c);
2607 	    register_chars[c] = mnemonic_chars[c];
2608 	    operand_chars[c] = c;
2609 	  }
2610 	else if (c == '{' || c == '}')
2611 	  operand_chars[c] = c;
2612 
2613 	if (ISALPHA (c) || ISDIGIT (c))
2614 	  identifier_chars[c] = c;
2615 	else if (c >= 128)
2616 	  {
2617 	    identifier_chars[c] = c;
2618 	    operand_chars[c] = c;
2619 	  }
2620       }
2621 
2622 #ifdef LEX_AT
2623     identifier_chars['@'] = '@';
2624 #endif
2625 #ifdef LEX_QM
2626     identifier_chars['?'] = '?';
2627     operand_chars['?'] = '?';
2628 #endif
2629     digit_chars['-'] = '-';
2630     mnemonic_chars['_'] = '_';
2631     mnemonic_chars['-'] = '-';
2632     mnemonic_chars['.'] = '.';
2633     identifier_chars['_'] = '_';
2634     identifier_chars['.'] = '.';
2635 
2636     for (p = operand_special_chars; *p != '\0'; p++)
2637       operand_chars[(unsigned char) *p] = *p;
2638   }
2639 
2640   if (flag_code == CODE_64BIT)
2641     {
2642 #if defined (OBJ_COFF) && defined (TE_PE)
2643       x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2644 				  ? 32 : 16);
2645 #else
2646       x86_dwarf2_return_column = 16;
2647 #endif
2648       x86_cie_data_alignment = -8;
2649     }
2650   else
2651     {
2652       x86_dwarf2_return_column = 8;
2653       x86_cie_data_alignment = -4;
2654     }
2655 }
2656 
2657 void
i386_print_statistics(FILE * file)2658 i386_print_statistics (FILE *file)
2659 {
2660   hash_print_statistics (file, "i386 opcode", op_hash);
2661   hash_print_statistics (file, "i386 register", reg_hash);
2662 }
2663 
2664 #ifdef DEBUG386
2665 
2666 /* Debugging routines for md_assemble.  */
2667 static void pte (insn_template *);
2668 static void pt (i386_operand_type);
2669 static void pe (expressionS *);
2670 static void ps (symbolS *);
2671 
2672 static void
pi(char * line,i386_insn * x)2673 pi (char *line, i386_insn *x)
2674 {
2675   unsigned int j;
2676 
2677   fprintf (stdout, "%s: template ", line);
2678   pte (&x->tm);
2679   fprintf (stdout, "  address: base %s  index %s  scale %x\n",
2680 	   x->base_reg ? x->base_reg->reg_name : "none",
2681 	   x->index_reg ? x->index_reg->reg_name : "none",
2682 	   x->log2_scale_factor);
2683   fprintf (stdout, "  modrm:  mode %x  reg %x  reg/mem %x\n",
2684 	   x->rm.mode, x->rm.reg, x->rm.regmem);
2685   fprintf (stdout, "  sib:  base %x  index %x  scale %x\n",
2686 	   x->sib.base, x->sib.index, x->sib.scale);
2687   fprintf (stdout, "  rex: 64bit %x  extX %x  extY %x  extZ %x\n",
2688 	   (x->rex & REX_W) != 0,
2689 	   (x->rex & REX_R) != 0,
2690 	   (x->rex & REX_X) != 0,
2691 	   (x->rex & REX_B) != 0);
2692   for (j = 0; j < x->operands; j++)
2693     {
2694       fprintf (stdout, "    #%d:  ", j + 1);
2695       pt (x->types[j]);
2696       fprintf (stdout, "\n");
2697       if (x->types[j].bitfield.reg8
2698 	  || x->types[j].bitfield.reg16
2699 	  || x->types[j].bitfield.reg32
2700 	  || x->types[j].bitfield.reg64
2701 	  || x->types[j].bitfield.regmmx
2702 	  || x->types[j].bitfield.regxmm
2703 	  || x->types[j].bitfield.regymm
2704 	  || x->types[j].bitfield.regzmm
2705 	  || x->types[j].bitfield.sreg2
2706 	  || x->types[j].bitfield.sreg3
2707 	  || x->types[j].bitfield.control
2708 	  || x->types[j].bitfield.debug
2709 	  || x->types[j].bitfield.test)
2710 	fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2711       if (operand_type_check (x->types[j], imm))
2712 	pe (x->op[j].imms);
2713       if (operand_type_check (x->types[j], disp))
2714 	pe (x->op[j].disps);
2715     }
2716 }
2717 
2718 static void
pte(insn_template * t)2719 pte (insn_template *t)
2720 {
2721   unsigned int j;
2722   fprintf (stdout, " %d operands ", t->operands);
2723   fprintf (stdout, "opcode %x ", t->base_opcode);
2724   if (t->extension_opcode != None)
2725     fprintf (stdout, "ext %x ", t->extension_opcode);
2726   if (t->opcode_modifier.d)
2727     fprintf (stdout, "D");
2728   if (t->opcode_modifier.w)
2729     fprintf (stdout, "W");
2730   fprintf (stdout, "\n");
2731   for (j = 0; j < t->operands; j++)
2732     {
2733       fprintf (stdout, "    #%d type ", j + 1);
2734       pt (t->operand_types[j]);
2735       fprintf (stdout, "\n");
2736     }
2737 }
2738 
2739 static void
pe(expressionS * e)2740 pe (expressionS *e)
2741 {
2742   fprintf (stdout, "    operation     %d\n", e->X_op);
2743   fprintf (stdout, "    add_number    %ld (%lx)\n",
2744 	   (long) e->X_add_number, (long) e->X_add_number);
2745   if (e->X_add_symbol)
2746     {
2747       fprintf (stdout, "    add_symbol    ");
2748       ps (e->X_add_symbol);
2749       fprintf (stdout, "\n");
2750     }
2751   if (e->X_op_symbol)
2752     {
2753       fprintf (stdout, "    op_symbol    ");
2754       ps (e->X_op_symbol);
2755       fprintf (stdout, "\n");
2756     }
2757 }
2758 
2759 static void
ps(symbolS * s)2760 ps (symbolS *s)
2761 {
2762   fprintf (stdout, "%s type %s%s",
2763 	   S_GET_NAME (s),
2764 	   S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2765 	   segment_name (S_GET_SEGMENT (s)));
2766 }
2767 
2768 static struct type_name
2769   {
2770     i386_operand_type mask;
2771     const char *name;
2772   }
2773 const type_names[] =
2774 {
2775   { OPERAND_TYPE_REG8, "r8" },
2776   { OPERAND_TYPE_REG16, "r16" },
2777   { OPERAND_TYPE_REG32, "r32" },
2778   { OPERAND_TYPE_REG64, "r64" },
2779   { OPERAND_TYPE_IMM8, "i8" },
2780   { OPERAND_TYPE_IMM8, "i8s" },
2781   { OPERAND_TYPE_IMM16, "i16" },
2782   { OPERAND_TYPE_IMM32, "i32" },
2783   { OPERAND_TYPE_IMM32S, "i32s" },
2784   { OPERAND_TYPE_IMM64, "i64" },
2785   { OPERAND_TYPE_IMM1, "i1" },
2786   { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2787   { OPERAND_TYPE_DISP8, "d8" },
2788   { OPERAND_TYPE_DISP16, "d16" },
2789   { OPERAND_TYPE_DISP32, "d32" },
2790   { OPERAND_TYPE_DISP32S, "d32s" },
2791   { OPERAND_TYPE_DISP64, "d64" },
2792   { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2793   { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2794   { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2795   { OPERAND_TYPE_CONTROL, "control reg" },
2796   { OPERAND_TYPE_TEST, "test reg" },
2797   { OPERAND_TYPE_DEBUG, "debug reg" },
2798   { OPERAND_TYPE_FLOATREG, "FReg" },
2799   { OPERAND_TYPE_FLOATACC, "FAcc" },
2800   { OPERAND_TYPE_SREG2, "SReg2" },
2801   { OPERAND_TYPE_SREG3, "SReg3" },
2802   { OPERAND_TYPE_ACC, "Acc" },
2803   { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2804   { OPERAND_TYPE_REGMMX, "rMMX" },
2805   { OPERAND_TYPE_REGXMM, "rXMM" },
2806   { OPERAND_TYPE_REGYMM, "rYMM" },
2807   { OPERAND_TYPE_REGZMM, "rZMM" },
2808   { OPERAND_TYPE_REGMASK, "Mask reg" },
2809   { OPERAND_TYPE_ESSEG, "es" },
2810 };
2811 
2812 static void
pt(i386_operand_type t)2813 pt (i386_operand_type t)
2814 {
2815   unsigned int j;
2816   i386_operand_type a;
2817 
2818   for (j = 0; j < ARRAY_SIZE (type_names); j++)
2819     {
2820       a = operand_type_and (t, type_names[j].mask);
2821       if (!operand_type_all_zero (&a))
2822 	fprintf (stdout, "%s, ",  type_names[j].name);
2823     }
2824   fflush (stdout);
2825 }
2826 
2827 #endif /* DEBUG386 */
2828 
2829 static bfd_reloc_code_real_type
reloc(unsigned int size,int pcrel,int sign,int bnd_prefix,bfd_reloc_code_real_type other)2830 reloc (unsigned int size,
2831        int pcrel,
2832        int sign,
2833        int bnd_prefix,
2834        bfd_reloc_code_real_type other)
2835 {
2836   if (other != NO_RELOC)
2837     {
2838       reloc_howto_type *rel;
2839 
2840       if (size == 8)
2841 	switch (other)
2842 	  {
2843 	  case BFD_RELOC_X86_64_GOT32:
2844 	    return BFD_RELOC_X86_64_GOT64;
2845 	    break;
2846 	  case BFD_RELOC_X86_64_GOTPLT64:
2847 	    return BFD_RELOC_X86_64_GOTPLT64;
2848 	    break;
2849 	  case BFD_RELOC_X86_64_PLTOFF64:
2850 	    return BFD_RELOC_X86_64_PLTOFF64;
2851 	    break;
2852 	  case BFD_RELOC_X86_64_GOTPC32:
2853 	    other = BFD_RELOC_X86_64_GOTPC64;
2854 	    break;
2855 	  case BFD_RELOC_X86_64_GOTPCREL:
2856 	    other = BFD_RELOC_X86_64_GOTPCREL64;
2857 	    break;
2858 	  case BFD_RELOC_X86_64_TPOFF32:
2859 	    other = BFD_RELOC_X86_64_TPOFF64;
2860 	    break;
2861 	  case BFD_RELOC_X86_64_DTPOFF32:
2862 	    other = BFD_RELOC_X86_64_DTPOFF64;
2863 	    break;
2864 	  default:
2865 	    break;
2866 	  }
2867 
2868 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2869       if (other == BFD_RELOC_SIZE32)
2870 	{
2871 	  if (size == 8)
2872 	    other = BFD_RELOC_SIZE64;
2873 	  if (pcrel)
2874 	    {
2875 	      as_bad (_("there are no pc-relative size relocations"));
2876 	      return NO_RELOC;
2877 	    }
2878 	}
2879 #endif
2880 
2881       /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless.  */
2882       if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2883 	sign = -1;
2884 
2885       rel = bfd_reloc_type_lookup (stdoutput, other);
2886       if (!rel)
2887 	as_bad (_("unknown relocation (%u)"), other);
2888       else if (size != bfd_get_reloc_size (rel))
2889 	as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2890 		bfd_get_reloc_size (rel),
2891 		size);
2892       else if (pcrel && !rel->pc_relative)
2893 	as_bad (_("non-pc-relative relocation for pc-relative field"));
2894       else if ((rel->complain_on_overflow == complain_overflow_signed
2895 		&& !sign)
2896 	       || (rel->complain_on_overflow == complain_overflow_unsigned
2897 		   && sign > 0))
2898 	as_bad (_("relocated field and relocation type differ in signedness"));
2899       else
2900 	return other;
2901       return NO_RELOC;
2902     }
2903 
2904   if (pcrel)
2905     {
2906       if (!sign)
2907 	as_bad (_("there are no unsigned pc-relative relocations"));
2908       switch (size)
2909 	{
2910 	case 1: return BFD_RELOC_8_PCREL;
2911 	case 2: return BFD_RELOC_16_PCREL;
2912 	case 4: return (bnd_prefix && object_64bit
2913 			? BFD_RELOC_X86_64_PC32_BND
2914 			: BFD_RELOC_32_PCREL);
2915 	case 8: return BFD_RELOC_64_PCREL;
2916 	}
2917       as_bad (_("cannot do %u byte pc-relative relocation"), size);
2918     }
2919   else
2920     {
2921       if (sign > 0)
2922 	switch (size)
2923 	  {
2924 	  case 4: return BFD_RELOC_X86_64_32S;
2925 	  }
2926       else
2927 	switch (size)
2928 	  {
2929 	  case 1: return BFD_RELOC_8;
2930 	  case 2: return BFD_RELOC_16;
2931 	  case 4: return BFD_RELOC_32;
2932 	  case 8: return BFD_RELOC_64;
2933 	  }
2934       as_bad (_("cannot do %s %u byte relocation"),
2935 	      sign > 0 ? "signed" : "unsigned", size);
2936     }
2937 
2938   return NO_RELOC;
2939 }
2940 
2941 /* Here we decide which fixups can be adjusted to make them relative to
2942    the beginning of the section instead of the symbol.  Basically we need
2943    to make sure that the dynamic relocations are done correctly, so in
2944    some cases we force the original symbol to be used.  */
2945 
2946 int
tc_i386_fix_adjustable(fixS * fixP ATTRIBUTE_UNUSED)2947 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2948 {
2949 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2950   if (!IS_ELF)
2951     return 1;
2952 
2953   /* Don't adjust pc-relative references to merge sections in 64-bit
2954      mode.  */
2955   if (use_rela_relocations
2956       && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2957       && fixP->fx_pcrel)
2958     return 0;
2959 
2960   /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2961      and changed later by validate_fix.  */
2962   if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2963       && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2964     return 0;
2965 
2966   /* Adjust_reloc_syms doesn't know about the GOT.  Need to keep symbol
2967      for size relocations.  */
2968   if (fixP->fx_r_type == BFD_RELOC_SIZE32
2969       || fixP->fx_r_type == BFD_RELOC_SIZE64
2970       || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2971       || fixP->fx_r_type == BFD_RELOC_386_PLT32
2972       || fixP->fx_r_type == BFD_RELOC_386_GOT32
2973       || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2974       || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2975       || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2976       || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2977       || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2978       || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2979       || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2980       || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2981       || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2982       || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2983       || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2984       || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2985       || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2986       || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2987       || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2988       || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2989       || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2990       || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2991       || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2992       || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2993       || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2994       || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2995       || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2996       || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2997       || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2998     return 0;
2999 #endif
3000   return 1;
3001 }
3002 
3003 static int
intel_float_operand(const char * mnemonic)3004 intel_float_operand (const char *mnemonic)
3005 {
3006   /* Note that the value returned is meaningful only for opcodes with (memory)
3007      operands, hence the code here is free to improperly handle opcodes that
3008      have no operands (for better performance and smaller code). */
3009 
3010   if (mnemonic[0] != 'f')
3011     return 0; /* non-math */
3012 
3013   switch (mnemonic[1])
3014     {
3015     /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3016        the fs segment override prefix not currently handled because no
3017        call path can make opcodes without operands get here */
3018     case 'i':
3019       return 2 /* integer op */;
3020     case 'l':
3021       if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3022 	return 3; /* fldcw/fldenv */
3023       break;
3024     case 'n':
3025       if (mnemonic[2] != 'o' /* fnop */)
3026 	return 3; /* non-waiting control op */
3027       break;
3028     case 'r':
3029       if (mnemonic[2] == 's')
3030 	return 3; /* frstor/frstpm */
3031       break;
3032     case 's':
3033       if (mnemonic[2] == 'a')
3034 	return 3; /* fsave */
3035       if (mnemonic[2] == 't')
3036 	{
3037 	  switch (mnemonic[3])
3038 	    {
3039 	    case 'c': /* fstcw */
3040 	    case 'd': /* fstdw */
3041 	    case 'e': /* fstenv */
3042 	    case 's': /* fsts[gw] */
3043 	      return 3;
3044 	    }
3045 	}
3046       break;
3047     case 'x':
3048       if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3049 	return 0; /* fxsave/fxrstor are not really math ops */
3050       break;
3051     }
3052 
3053   return 1;
3054 }
3055 
3056 /* Build the VEX prefix.  */
3057 
3058 static void
build_vex_prefix(const insn_template * t)3059 build_vex_prefix (const insn_template *t)
3060 {
3061   unsigned int register_specifier;
3062   unsigned int implied_prefix;
3063   unsigned int vector_length;
3064 
3065   /* Check register specifier.  */
3066   if (i.vex.register_specifier)
3067     {
3068       register_specifier =
3069 	~register_number (i.vex.register_specifier) & 0xf;
3070       gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3071     }
3072   else
3073     register_specifier = 0xf;
3074 
3075   /* Use 2-byte VEX prefix by swappping destination and source
3076      operand.  */
3077   if (!i.swap_operand
3078       && i.operands == i.reg_operands
3079       && i.tm.opcode_modifier.vexopcode == VEX0F
3080       && i.tm.opcode_modifier.s
3081       && i.rex == REX_B)
3082     {
3083       unsigned int xchg = i.operands - 1;
3084       union i386_op temp_op;
3085       i386_operand_type temp_type;
3086 
3087       temp_type = i.types[xchg];
3088       i.types[xchg] = i.types[0];
3089       i.types[0] = temp_type;
3090       temp_op = i.op[xchg];
3091       i.op[xchg] = i.op[0];
3092       i.op[0] = temp_op;
3093 
3094       gas_assert (i.rm.mode == 3);
3095 
3096       i.rex = REX_R;
3097       xchg = i.rm.regmem;
3098       i.rm.regmem = i.rm.reg;
3099       i.rm.reg = xchg;
3100 
3101       /* Use the next insn.  */
3102       i.tm = t[1];
3103     }
3104 
3105   if (i.tm.opcode_modifier.vex == VEXScalar)
3106     vector_length = avxscalar;
3107   else
3108     vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3109 
3110   switch ((i.tm.base_opcode >> 8) & 0xff)
3111     {
3112     case 0:
3113       implied_prefix = 0;
3114       break;
3115     case DATA_PREFIX_OPCODE:
3116       implied_prefix = 1;
3117       break;
3118     case REPE_PREFIX_OPCODE:
3119       implied_prefix = 2;
3120       break;
3121     case REPNE_PREFIX_OPCODE:
3122       implied_prefix = 3;
3123       break;
3124     default:
3125       abort ();
3126     }
3127 
3128   /* Use 2-byte VEX prefix if possible.  */
3129   if (i.tm.opcode_modifier.vexopcode == VEX0F
3130       && i.tm.opcode_modifier.vexw != VEXW1
3131       && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3132     {
3133       /* 2-byte VEX prefix.  */
3134       unsigned int r;
3135 
3136       i.vex.length = 2;
3137       i.vex.bytes[0] = 0xc5;
3138 
3139       /* Check the REX.R bit.  */
3140       r = (i.rex & REX_R) ? 0 : 1;
3141       i.vex.bytes[1] = (r << 7
3142 			| register_specifier << 3
3143 			| vector_length << 2
3144 			| implied_prefix);
3145     }
3146   else
3147     {
3148       /* 3-byte VEX prefix.  */
3149       unsigned int m, w;
3150 
3151       i.vex.length = 3;
3152 
3153       switch (i.tm.opcode_modifier.vexopcode)
3154 	{
3155 	case VEX0F:
3156 	  m = 0x1;
3157 	  i.vex.bytes[0] = 0xc4;
3158 	  break;
3159 	case VEX0F38:
3160 	  m = 0x2;
3161 	  i.vex.bytes[0] = 0xc4;
3162 	  break;
3163 	case VEX0F3A:
3164 	  m = 0x3;
3165 	  i.vex.bytes[0] = 0xc4;
3166 	  break;
3167 	case XOP08:
3168 	  m = 0x8;
3169 	  i.vex.bytes[0] = 0x8f;
3170 	  break;
3171 	case XOP09:
3172 	  m = 0x9;
3173 	  i.vex.bytes[0] = 0x8f;
3174 	  break;
3175 	case XOP0A:
3176 	  m = 0xa;
3177 	  i.vex.bytes[0] = 0x8f;
3178 	  break;
3179 	default:
3180 	  abort ();
3181 	}
3182 
3183       /* The high 3 bits of the second VEX byte are 1's compliment
3184 	 of RXB bits from REX.  */
3185       i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3186 
3187       /* Check the REX.W bit.  */
3188       w = (i.rex & REX_W) ? 1 : 0;
3189       if (i.tm.opcode_modifier.vexw == VEXW1)
3190 	w = 1;
3191 
3192       i.vex.bytes[2] = (w << 7
3193 			| register_specifier << 3
3194 			| vector_length << 2
3195 			| implied_prefix);
3196     }
3197 }
3198 
3199 /* Build the EVEX prefix.  */
3200 
3201 static void
build_evex_prefix(void)3202 build_evex_prefix (void)
3203 {
3204   unsigned int register_specifier;
3205   unsigned int implied_prefix;
3206   unsigned int m, w;
3207   rex_byte vrex_used = 0;
3208 
3209   /* Check register specifier.  */
3210   if (i.vex.register_specifier)
3211     {
3212       gas_assert ((i.vrex & REX_X) == 0);
3213 
3214       register_specifier = i.vex.register_specifier->reg_num;
3215       if ((i.vex.register_specifier->reg_flags & RegRex))
3216 	register_specifier += 8;
3217       /* The upper 16 registers are encoded in the fourth byte of the
3218 	 EVEX prefix.  */
3219       if (!(i.vex.register_specifier->reg_flags & RegVRex))
3220 	i.vex.bytes[3] = 0x8;
3221       register_specifier = ~register_specifier & 0xf;
3222     }
3223   else
3224     {
3225       register_specifier = 0xf;
3226 
3227       /* Encode upper 16 vector index register in the fourth byte of
3228 	 the EVEX prefix.  */
3229       if (!(i.vrex & REX_X))
3230 	i.vex.bytes[3] = 0x8;
3231       else
3232 	vrex_used |= REX_X;
3233     }
3234 
3235   switch ((i.tm.base_opcode >> 8) & 0xff)
3236     {
3237     case 0:
3238       implied_prefix = 0;
3239       break;
3240     case DATA_PREFIX_OPCODE:
3241       implied_prefix = 1;
3242       break;
3243     case REPE_PREFIX_OPCODE:
3244       implied_prefix = 2;
3245       break;
3246     case REPNE_PREFIX_OPCODE:
3247       implied_prefix = 3;
3248       break;
3249     default:
3250       abort ();
3251     }
3252 
3253   /* 4 byte EVEX prefix.  */
3254   i.vex.length = 4;
3255   i.vex.bytes[0] = 0x62;
3256 
3257   /* mmmm bits.  */
3258   switch (i.tm.opcode_modifier.vexopcode)
3259     {
3260     case VEX0F:
3261       m = 1;
3262       break;
3263     case VEX0F38:
3264       m = 2;
3265       break;
3266     case VEX0F3A:
3267       m = 3;
3268       break;
3269     default:
3270       abort ();
3271       break;
3272     }
3273 
3274   /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3275      bits from REX.  */
3276   i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3277 
3278   /* The fifth bit of the second EVEX byte is 1's compliment of the
3279      REX_R bit in VREX.  */
3280   if (!(i.vrex & REX_R))
3281     i.vex.bytes[1] |= 0x10;
3282   else
3283     vrex_used |= REX_R;
3284 
3285   if ((i.reg_operands + i.imm_operands) == i.operands)
3286     {
3287       /* When all operands are registers, the REX_X bit in REX is not
3288 	 used.  We reuse it to encode the upper 16 registers, which is
3289 	 indicated by the REX_B bit in VREX.  The REX_X bit is encoded
3290 	 as 1's compliment.  */
3291       if ((i.vrex & REX_B))
3292 	{
3293 	  vrex_used |= REX_B;
3294 	  i.vex.bytes[1] &= ~0x40;
3295 	}
3296     }
3297 
3298   /* EVEX instructions shouldn't need the REX prefix.  */
3299   i.vrex &= ~vrex_used;
3300   gas_assert (i.vrex == 0);
3301 
3302   /* Check the REX.W bit.  */
3303   w = (i.rex & REX_W) ? 1 : 0;
3304   if (i.tm.opcode_modifier.vexw)
3305     {
3306       if (i.tm.opcode_modifier.vexw == VEXW1)
3307 	w = 1;
3308     }
3309   /* If w is not set it means we are dealing with WIG instruction.  */
3310   else if (!w)
3311     {
3312       if (evexwig == evexw1)
3313         w = 1;
3314     }
3315 
3316   /* Encode the U bit.  */
3317   implied_prefix |= 0x4;
3318 
3319   /* The third byte of the EVEX prefix.  */
3320   i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3321 
3322   /* The fourth byte of the EVEX prefix.  */
3323   /* The zeroing-masking bit.  */
3324   if (i.mask && i.mask->zeroing)
3325     i.vex.bytes[3] |= 0x80;
3326 
3327   /* Don't always set the broadcast bit if there is no RC.  */
3328   if (!i.rounding)
3329     {
3330       /* Encode the vector length.  */
3331       unsigned int vec_length;
3332 
3333       switch (i.tm.opcode_modifier.evex)
3334 	{
3335 	case EVEXLIG: /* LL' is ignored */
3336 	  vec_length = evexlig << 5;
3337 	  break;
3338 	case EVEX128:
3339 	  vec_length = 0 << 5;
3340 	  break;
3341 	case EVEX256:
3342 	  vec_length = 1 << 5;
3343 	  break;
3344 	case EVEX512:
3345 	  vec_length = 2 << 5;
3346 	  break;
3347 	default:
3348 	  abort ();
3349 	  break;
3350 	}
3351       i.vex.bytes[3] |= vec_length;
3352       /* Encode the broadcast bit.  */
3353       if (i.broadcast)
3354 	i.vex.bytes[3] |= 0x10;
3355     }
3356   else
3357     {
3358       if (i.rounding->type != saeonly)
3359 	i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3360       else
3361 	i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3362     }
3363 
3364   if (i.mask && i.mask->mask)
3365     i.vex.bytes[3] |= i.mask->mask->reg_num;
3366 }
3367 
3368 static void
process_immext(void)3369 process_immext (void)
3370 {
3371   expressionS *exp;
3372 
3373   if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3374       && i.operands > 0)
3375     {
3376       /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3377 	 with an opcode suffix which is coded in the same place as an
3378 	 8-bit immediate field would be.
3379 	 Here we check those operands and remove them afterwards.  */
3380       unsigned int x;
3381 
3382       for (x = 0; x < i.operands; x++)
3383 	if (register_number (i.op[x].regs) != x)
3384 	  as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3385 		  register_prefix, i.op[x].regs->reg_name, x + 1,
3386 		  i.tm.name);
3387 
3388       i.operands = 0;
3389     }
3390 
3391   /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3392      which is coded in the same place as an 8-bit immediate field
3393      would be.  Here we fake an 8-bit immediate operand from the
3394      opcode suffix stored in tm.extension_opcode.
3395 
3396      AVX instructions also use this encoding, for some of
3397      3 argument instructions.  */
3398 
3399   gas_assert (i.imm_operands <= 1
3400 	      && (i.operands <= 2
3401 		  || ((i.tm.opcode_modifier.vex
3402 		       || i.tm.opcode_modifier.evex)
3403 		      && i.operands <= 4)));
3404 
3405   exp = &im_expressions[i.imm_operands++];
3406   i.op[i.operands].imms = exp;
3407   i.types[i.operands] = imm8;
3408   i.operands++;
3409   exp->X_op = O_constant;
3410   exp->X_add_number = i.tm.extension_opcode;
3411   i.tm.extension_opcode = None;
3412 }
3413 
3414 
3415 static int
check_hle(void)3416 check_hle (void)
3417 {
3418   switch (i.tm.opcode_modifier.hleprefixok)
3419     {
3420     default:
3421       abort ();
3422     case HLEPrefixNone:
3423       as_bad (_("invalid instruction `%s' after `%s'"),
3424 	      i.tm.name, i.hle_prefix);
3425       return 0;
3426     case HLEPrefixLock:
3427       if (i.prefix[LOCK_PREFIX])
3428 	return 1;
3429       as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3430       return 0;
3431     case HLEPrefixAny:
3432       return 1;
3433     case HLEPrefixRelease:
3434       if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3435 	{
3436 	  as_bad (_("instruction `%s' after `xacquire' not allowed"),
3437 		  i.tm.name);
3438 	  return 0;
3439 	}
3440       if (i.mem_operands == 0
3441 	  || !operand_type_check (i.types[i.operands - 1], anymem))
3442 	{
3443 	  as_bad (_("memory destination needed for instruction `%s'"
3444 		    " after `xrelease'"), i.tm.name);
3445 	  return 0;
3446 	}
3447       return 1;
3448     }
3449 }
3450 
3451 /* This is the guts of the machine-dependent assembler.  LINE points to a
3452    machine dependent instruction.  This function is supposed to emit
3453    the frags/bytes it assembles to.  */
3454 
3455 void
md_assemble(char * line)3456 md_assemble (char *line)
3457 {
3458   unsigned int j;
3459   char mnemonic[MAX_MNEM_SIZE];
3460   const insn_template *t;
3461 
3462   /* Initialize globals.  */
3463   memset (&i, '\0', sizeof (i));
3464   for (j = 0; j < MAX_OPERANDS; j++)
3465     i.reloc[j] = NO_RELOC;
3466   memset (disp_expressions, '\0', sizeof (disp_expressions));
3467   memset (im_expressions, '\0', sizeof (im_expressions));
3468   save_stack_p = save_stack;
3469 
3470   /* First parse an instruction mnemonic & call i386_operand for the operands.
3471      We assume that the scrubber has arranged it so that line[0] is the valid
3472      start of a (possibly prefixed) mnemonic.  */
3473 
3474   line = parse_insn (line, mnemonic);
3475   if (line == NULL)
3476     return;
3477 
3478   line = parse_operands (line, mnemonic);
3479   this_operand = -1;
3480   if (line == NULL)
3481     return;
3482 
3483   /* Now we've parsed the mnemonic into a set of templates, and have the
3484      operands at hand.  */
3485 
3486   /* All intel opcodes have reversed operands except for "bound" and
3487      "enter".  We also don't reverse intersegment "jmp" and "call"
3488      instructions with 2 immediate operands so that the immediate segment
3489      precedes the offset, as it does when in AT&T mode. */
3490   if (intel_syntax
3491       && i.operands > 1
3492       && (strcmp (mnemonic, "bound") != 0)
3493       && (strcmp (mnemonic, "invlpga") != 0)
3494       && !(operand_type_check (i.types[0], imm)
3495 	   && operand_type_check (i.types[1], imm)))
3496     swap_operands ();
3497 
3498   /* The order of the immediates should be reversed
3499      for 2 immediates extrq and insertq instructions */
3500   if (i.imm_operands == 2
3501       && (strcmp (mnemonic, "extrq") == 0
3502 	  || strcmp (mnemonic, "insertq") == 0))
3503       swap_2_operands (0, 1);
3504 
3505   if (i.imm_operands)
3506     optimize_imm ();
3507 
3508   /* Don't optimize displacement for movabs since it only takes 64bit
3509      displacement.  */
3510   if (i.disp_operands
3511       && i.disp_encoding != disp_encoding_32bit
3512       && (flag_code != CODE_64BIT
3513 	  || strcmp (mnemonic, "movabs") != 0))
3514     optimize_disp ();
3515 
3516   /* Next, we find a template that matches the given insn,
3517      making sure the overlap of the given operands types is consistent
3518      with the template operand types.  */
3519 
3520   if (!(t = match_template ()))
3521     return;
3522 
3523   if (sse_check != check_none
3524       && !i.tm.opcode_modifier.noavx
3525       && (i.tm.cpu_flags.bitfield.cpusse
3526 	  || i.tm.cpu_flags.bitfield.cpusse2
3527 	  || i.tm.cpu_flags.bitfield.cpusse3
3528 	  || i.tm.cpu_flags.bitfield.cpussse3
3529 	  || i.tm.cpu_flags.bitfield.cpusse4_1
3530 	  || i.tm.cpu_flags.bitfield.cpusse4_2))
3531     {
3532       (sse_check == check_warning
3533        ? as_warn
3534        : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3535     }
3536 
3537   /* Zap movzx and movsx suffix.  The suffix has been set from
3538      "word ptr" or "byte ptr" on the source operand in Intel syntax
3539      or extracted from mnemonic in AT&T syntax.  But we'll use
3540      the destination register to choose the suffix for encoding.  */
3541   if ((i.tm.base_opcode & ~9) == 0x0fb6)
3542     {
3543       /* In Intel syntax, there must be a suffix.  In AT&T syntax, if
3544 	 there is no suffix, the default will be byte extension.  */
3545       if (i.reg_operands != 2
3546 	  && !i.suffix
3547 	  && intel_syntax)
3548 	as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3549 
3550       i.suffix = 0;
3551     }
3552 
3553   if (i.tm.opcode_modifier.fwait)
3554     if (!add_prefix (FWAIT_OPCODE))
3555       return;
3556 
3557   /* Check if REP prefix is OK.  */
3558   if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3559     {
3560       as_bad (_("invalid instruction `%s' after `%s'"),
3561 		i.tm.name, i.rep_prefix);
3562       return;
3563     }
3564 
3565   /* Check for lock without a lockable instruction.  Destination operand
3566      must be memory unless it is xchg (0x86).  */
3567   if (i.prefix[LOCK_PREFIX]
3568       && (!i.tm.opcode_modifier.islockable
3569 	  || i.mem_operands == 0
3570 	  || (i.tm.base_opcode != 0x86
3571 	      && !operand_type_check (i.types[i.operands - 1], anymem))))
3572     {
3573       as_bad (_("expecting lockable instruction after `lock'"));
3574       return;
3575     }
3576 
3577   /* Check if HLE prefix is OK.  */
3578   if (i.hle_prefix && !check_hle ())
3579     return;
3580 
3581   /* Check BND prefix.  */
3582   if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3583     as_bad (_("expecting valid branch instruction after `bnd'"));
3584 
3585   if (i.tm.cpu_flags.bitfield.cpumpx
3586       && flag_code == CODE_64BIT
3587       && i.prefix[ADDR_PREFIX])
3588     as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3589 
3590   /* Insert BND prefix.  */
3591   if (add_bnd_prefix
3592       && i.tm.opcode_modifier.bndprefixok
3593       && !i.prefix[BND_PREFIX])
3594     add_prefix (BND_PREFIX_OPCODE);
3595 
3596   /* Check string instruction segment overrides.  */
3597   if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3598     {
3599       if (!check_string ())
3600 	return;
3601       i.disp_operands = 0;
3602     }
3603 
3604   if (!process_suffix ())
3605     return;
3606 
3607   /* Update operand types.  */
3608   for (j = 0; j < i.operands; j++)
3609     i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3610 
3611   /* Make still unresolved immediate matches conform to size of immediate
3612      given in i.suffix.  */
3613   if (!finalize_imm ())
3614     return;
3615 
3616   if (i.types[0].bitfield.imm1)
3617     i.imm_operands = 0;	/* kludge for shift insns.  */
3618 
3619   /* We only need to check those implicit registers for instructions
3620      with 3 operands or less.  */
3621   if (i.operands <= 3)
3622     for (j = 0; j < i.operands; j++)
3623       if (i.types[j].bitfield.inoutportreg
3624 	  || i.types[j].bitfield.shiftcount
3625 	  || i.types[j].bitfield.acc
3626 	  || i.types[j].bitfield.floatacc)
3627 	i.reg_operands--;
3628 
3629   /* ImmExt should be processed after SSE2AVX.  */
3630   if (!i.tm.opcode_modifier.sse2avx
3631       && i.tm.opcode_modifier.immext)
3632     process_immext ();
3633 
3634   /* For insns with operands there are more diddles to do to the opcode.  */
3635   if (i.operands)
3636     {
3637       if (!process_operands ())
3638 	return;
3639     }
3640   else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3641     {
3642       /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc.  */
3643       as_warn (_("translating to `%sp'"), i.tm.name);
3644     }
3645 
3646   if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3647     {
3648       if (flag_code == CODE_16BIT)
3649 	{
3650 	  as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3651 		  i.tm.name);
3652 	  return;
3653 	}
3654 
3655       if (i.tm.opcode_modifier.vex)
3656 	build_vex_prefix (t);
3657       else
3658 	build_evex_prefix ();
3659     }
3660 
3661   /* Handle conversion of 'int $3' --> special int3 insn.  XOP or FMA4
3662      instructions may define INT_OPCODE as well, so avoid this corner
3663      case for those instructions that use MODRM.  */
3664   if (i.tm.base_opcode == INT_OPCODE
3665       && !i.tm.opcode_modifier.modrm
3666       && i.op[0].imms->X_add_number == 3)
3667     {
3668       i.tm.base_opcode = INT3_OPCODE;
3669       i.imm_operands = 0;
3670     }
3671 
3672   if ((i.tm.opcode_modifier.jump
3673        || i.tm.opcode_modifier.jumpbyte
3674        || i.tm.opcode_modifier.jumpdword)
3675       && i.op[0].disps->X_op == O_constant)
3676     {
3677       /* Convert "jmp constant" (and "call constant") to a jump (call) to
3678 	 the absolute address given by the constant.  Since ix86 jumps and
3679 	 calls are pc relative, we need to generate a reloc.  */
3680       i.op[0].disps->X_add_symbol = &abs_symbol;
3681       i.op[0].disps->X_op = O_symbol;
3682     }
3683 
3684   if (i.tm.opcode_modifier.rex64)
3685     i.rex |= REX_W;
3686 
3687   /* For 8 bit registers we need an empty rex prefix.  Also if the
3688      instruction already has a prefix, we need to convert old
3689      registers to new ones.  */
3690 
3691   if ((i.types[0].bitfield.reg8
3692        && (i.op[0].regs->reg_flags & RegRex64) != 0)
3693       || (i.types[1].bitfield.reg8
3694 	  && (i.op[1].regs->reg_flags & RegRex64) != 0)
3695       || ((i.types[0].bitfield.reg8
3696 	   || i.types[1].bitfield.reg8)
3697 	  && i.rex != 0))
3698     {
3699       int x;
3700 
3701       i.rex |= REX_OPCODE;
3702       for (x = 0; x < 2; x++)
3703 	{
3704 	  /* Look for 8 bit operand that uses old registers.  */
3705 	  if (i.types[x].bitfield.reg8
3706 	      && (i.op[x].regs->reg_flags & RegRex64) == 0)
3707 	    {
3708 	      /* In case it is "hi" register, give up.  */
3709 	      if (i.op[x].regs->reg_num > 3)
3710 		as_bad (_("can't encode register '%s%s' in an "
3711 			  "instruction requiring REX prefix."),
3712 			register_prefix, i.op[x].regs->reg_name);
3713 
3714 	      /* Otherwise it is equivalent to the extended register.
3715 		 Since the encoding doesn't change this is merely
3716 		 cosmetic cleanup for debug output.  */
3717 
3718 	      i.op[x].regs = i.op[x].regs + 8;
3719 	    }
3720 	}
3721     }
3722 
3723   if (i.rex != 0)
3724     add_prefix (REX_OPCODE | i.rex);
3725 
3726   /* We are ready to output the insn.  */
3727   output_insn ();
3728 }
3729 
3730 static char *
parse_insn(char * line,char * mnemonic)3731 parse_insn (char *line, char *mnemonic)
3732 {
3733   char *l = line;
3734   char *token_start = l;
3735   char *mnem_p;
3736   int supported;
3737   const insn_template *t;
3738   char *dot_p = NULL;
3739 
3740   while (1)
3741     {
3742       mnem_p = mnemonic;
3743       while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3744 	{
3745 	  if (*mnem_p == '.')
3746 	    dot_p = mnem_p;
3747 	  mnem_p++;
3748 	  if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3749 	    {
3750 	      as_bad (_("no such instruction: `%s'"), token_start);
3751 	      return NULL;
3752 	    }
3753 	  l++;
3754 	}
3755       if (!is_space_char (*l)
3756 	  && *l != END_OF_INSN
3757 	  && (intel_syntax
3758 	      || (*l != PREFIX_SEPARATOR
3759 		  && *l != ',')))
3760 	{
3761 	  as_bad (_("invalid character %s in mnemonic"),
3762 		  output_invalid (*l));
3763 	  return NULL;
3764 	}
3765       if (token_start == l)
3766 	{
3767 	  if (!intel_syntax && *l == PREFIX_SEPARATOR)
3768 	    as_bad (_("expecting prefix; got nothing"));
3769 	  else
3770 	    as_bad (_("expecting mnemonic; got nothing"));
3771 	  return NULL;
3772 	}
3773 
3774       /* Look up instruction (or prefix) via hash table.  */
3775       current_templates = (const templates *) hash_find (op_hash, mnemonic);
3776 
3777       if (*l != END_OF_INSN
3778 	  && (!is_space_char (*l) || l[1] != END_OF_INSN)
3779 	  && current_templates
3780 	  && current_templates->start->opcode_modifier.isprefix)
3781 	{
3782 	  if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3783 	    {
3784 	      as_bad ((flag_code != CODE_64BIT
3785 		       ? _("`%s' is only supported in 64-bit mode")
3786 		       : _("`%s' is not supported in 64-bit mode")),
3787 		      current_templates->start->name);
3788 	      return NULL;
3789 	    }
3790 	  /* If we are in 16-bit mode, do not allow addr16 or data16.
3791 	     Similarly, in 32-bit mode, do not allow addr32 or data32.  */
3792 	  if ((current_templates->start->opcode_modifier.size16
3793 	       || current_templates->start->opcode_modifier.size32)
3794 	      && flag_code != CODE_64BIT
3795 	      && (current_templates->start->opcode_modifier.size32
3796 		  ^ (flag_code == CODE_16BIT)))
3797 	    {
3798 	      as_bad (_("redundant %s prefix"),
3799 		      current_templates->start->name);
3800 	      return NULL;
3801 	    }
3802 	  /* Add prefix, checking for repeated prefixes.  */
3803 	  switch (add_prefix (current_templates->start->base_opcode))
3804 	    {
3805 	    case PREFIX_EXIST:
3806 	      return NULL;
3807 	    case PREFIX_REP:
3808 	      if (current_templates->start->cpu_flags.bitfield.cpuhle)
3809 		i.hle_prefix = current_templates->start->name;
3810 	      else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3811 		i.bnd_prefix = current_templates->start->name;
3812 	      else
3813 		i.rep_prefix = current_templates->start->name;
3814 	      break;
3815 	    default:
3816 	      break;
3817 	    }
3818 	  /* Skip past PREFIX_SEPARATOR and reset token_start.  */
3819 	  token_start = ++l;
3820 	}
3821       else
3822 	break;
3823     }
3824 
3825   if (!current_templates)
3826     {
3827       /* Check if we should swap operand or force 32bit displacement in
3828 	 encoding.  */
3829       if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3830 	i.swap_operand = 1;
3831       else if (mnem_p - 3 == dot_p
3832 	       && dot_p[1] == 'd'
3833 	       && dot_p[2] == '8')
3834 	i.disp_encoding = disp_encoding_8bit;
3835       else if (mnem_p - 4 == dot_p
3836 	       && dot_p[1] == 'd'
3837 	       && dot_p[2] == '3'
3838 	       && dot_p[3] == '2')
3839 	i.disp_encoding = disp_encoding_32bit;
3840       else
3841 	goto check_suffix;
3842       mnem_p = dot_p;
3843       *dot_p = '\0';
3844       current_templates = (const templates *) hash_find (op_hash, mnemonic);
3845     }
3846 
3847   if (!current_templates)
3848     {
3849 check_suffix:
3850       /* See if we can get a match by trimming off a suffix.  */
3851       switch (mnem_p[-1])
3852 	{
3853 	case WORD_MNEM_SUFFIX:
3854 	  if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3855 	    i.suffix = SHORT_MNEM_SUFFIX;
3856 	  else
3857 	case BYTE_MNEM_SUFFIX:
3858 	case QWORD_MNEM_SUFFIX:
3859 	  i.suffix = mnem_p[-1];
3860 	  mnem_p[-1] = '\0';
3861 	  current_templates = (const templates *) hash_find (op_hash,
3862                                                              mnemonic);
3863 	  break;
3864 	case SHORT_MNEM_SUFFIX:
3865 	case LONG_MNEM_SUFFIX:
3866 	  if (!intel_syntax)
3867 	    {
3868 	      i.suffix = mnem_p[-1];
3869 	      mnem_p[-1] = '\0';
3870 	      current_templates = (const templates *) hash_find (op_hash,
3871                                                                  mnemonic);
3872 	    }
3873 	  break;
3874 
3875 	  /* Intel Syntax.  */
3876 	case 'd':
3877 	  if (intel_syntax)
3878 	    {
3879 	      if (intel_float_operand (mnemonic) == 1)
3880 		i.suffix = SHORT_MNEM_SUFFIX;
3881 	      else
3882 		i.suffix = LONG_MNEM_SUFFIX;
3883 	      mnem_p[-1] = '\0';
3884 	      current_templates = (const templates *) hash_find (op_hash,
3885                                                                  mnemonic);
3886 	    }
3887 	  break;
3888 	}
3889       if (!current_templates)
3890 	{
3891 	  as_bad (_("no such instruction: `%s'"), token_start);
3892 	  return NULL;
3893 	}
3894     }
3895 
3896   if (current_templates->start->opcode_modifier.jump
3897       || current_templates->start->opcode_modifier.jumpbyte)
3898     {
3899       /* Check for a branch hint.  We allow ",pt" and ",pn" for
3900 	 predict taken and predict not taken respectively.
3901 	 I'm not sure that branch hints actually do anything on loop
3902 	 and jcxz insns (JumpByte) for current Pentium4 chips.  They
3903 	 may work in the future and it doesn't hurt to accept them
3904 	 now.  */
3905       if (l[0] == ',' && l[1] == 'p')
3906 	{
3907 	  if (l[2] == 't')
3908 	    {
3909 	      if (!add_prefix (DS_PREFIX_OPCODE))
3910 		return NULL;
3911 	      l += 3;
3912 	    }
3913 	  else if (l[2] == 'n')
3914 	    {
3915 	      if (!add_prefix (CS_PREFIX_OPCODE))
3916 		return NULL;
3917 	      l += 3;
3918 	    }
3919 	}
3920     }
3921   /* Any other comma loses.  */
3922   if (*l == ',')
3923     {
3924       as_bad (_("invalid character %s in mnemonic"),
3925 	      output_invalid (*l));
3926       return NULL;
3927     }
3928 
3929   /* Check if instruction is supported on specified architecture.  */
3930   supported = 0;
3931   for (t = current_templates->start; t < current_templates->end; ++t)
3932     {
3933       supported |= cpu_flags_match (t);
3934       if (supported == CPU_FLAGS_PERFECT_MATCH)
3935 	goto skip;
3936     }
3937 
3938   if (!(supported & CPU_FLAGS_64BIT_MATCH))
3939     {
3940       as_bad (flag_code == CODE_64BIT
3941 	      ? _("`%s' is not supported in 64-bit mode")
3942 	      : _("`%s' is only supported in 64-bit mode"),
3943 	      current_templates->start->name);
3944       return NULL;
3945     }
3946   if (supported != CPU_FLAGS_PERFECT_MATCH)
3947     {
3948       as_bad (_("`%s' is not supported on `%s%s'"),
3949 	      current_templates->start->name,
3950 	      cpu_arch_name ? cpu_arch_name : default_arch,
3951 	      cpu_sub_arch_name ? cpu_sub_arch_name : "");
3952       return NULL;
3953     }
3954 
3955 skip:
3956   if (!cpu_arch_flags.bitfield.cpui386
3957 	   && (flag_code != CODE_16BIT))
3958     {
3959       as_warn (_("use .code16 to ensure correct addressing mode"));
3960     }
3961 
3962   return l;
3963 }
3964 
3965 static char *
parse_operands(char * l,const char * mnemonic)3966 parse_operands (char *l, const char *mnemonic)
3967 {
3968   char *token_start;
3969 
3970   /* 1 if operand is pending after ','.  */
3971   unsigned int expecting_operand = 0;
3972 
3973   /* Non-zero if operand parens not balanced.  */
3974   unsigned int paren_not_balanced;
3975 
3976   while (*l != END_OF_INSN)
3977     {
3978       /* Skip optional white space before operand.  */
3979       if (is_space_char (*l))
3980 	++l;
3981       if (!is_operand_char (*l) && *l != END_OF_INSN)
3982 	{
3983 	  as_bad (_("invalid character %s before operand %d"),
3984 		  output_invalid (*l),
3985 		  i.operands + 1);
3986 	  return NULL;
3987 	}
3988       token_start = l;	/* after white space */
3989       paren_not_balanced = 0;
3990       while (paren_not_balanced || *l != ',')
3991 	{
3992 	  if (*l == END_OF_INSN)
3993 	    {
3994 	      if (paren_not_balanced)
3995 		{
3996 		  if (!intel_syntax)
3997 		    as_bad (_("unbalanced parenthesis in operand %d."),
3998 			    i.operands + 1);
3999 		  else
4000 		    as_bad (_("unbalanced brackets in operand %d."),
4001 			    i.operands + 1);
4002 		  return NULL;
4003 		}
4004 	      else
4005 		break;	/* we are done */
4006 	    }
4007 	  else if (!is_operand_char (*l) && !is_space_char (*l))
4008 	    {
4009 	      as_bad (_("invalid character %s in operand %d"),
4010 		      output_invalid (*l),
4011 		      i.operands + 1);
4012 	      return NULL;
4013 	    }
4014 	  if (!intel_syntax)
4015 	    {
4016 	      if (*l == '(')
4017 		++paren_not_balanced;
4018 	      if (*l == ')')
4019 		--paren_not_balanced;
4020 	    }
4021 	  else
4022 	    {
4023 	      if (*l == '[')
4024 		++paren_not_balanced;
4025 	      if (*l == ']')
4026 		--paren_not_balanced;
4027 	    }
4028 	  l++;
4029 	}
4030       if (l != token_start)
4031 	{			/* Yes, we've read in another operand.  */
4032 	  unsigned int operand_ok;
4033 	  this_operand = i.operands++;
4034 	  i.types[this_operand].bitfield.unspecified = 1;
4035 	  if (i.operands > MAX_OPERANDS)
4036 	    {
4037 	      as_bad (_("spurious operands; (%d operands/instruction max)"),
4038 		      MAX_OPERANDS);
4039 	      return NULL;
4040 	    }
4041 	  /* Now parse operand adding info to 'i' as we go along.  */
4042 	  END_STRING_AND_SAVE (l);
4043 
4044 	  if (intel_syntax)
4045 	    operand_ok =
4046 	      i386_intel_operand (token_start,
4047 				  intel_float_operand (mnemonic));
4048 	  else
4049 	    operand_ok = i386_att_operand (token_start);
4050 
4051 	  RESTORE_END_STRING (l);
4052 	  if (!operand_ok)
4053 	    return NULL;
4054 	}
4055       else
4056 	{
4057 	  if (expecting_operand)
4058 	    {
4059 	    expecting_operand_after_comma:
4060 	      as_bad (_("expecting operand after ','; got nothing"));
4061 	      return NULL;
4062 	    }
4063 	  if (*l == ',')
4064 	    {
4065 	      as_bad (_("expecting operand before ','; got nothing"));
4066 	      return NULL;
4067 	    }
4068 	}
4069 
4070       /* Now *l must be either ',' or END_OF_INSN.  */
4071       if (*l == ',')
4072 	{
4073 	  if (*++l == END_OF_INSN)
4074 	    {
4075 	      /* Just skip it, if it's \n complain.  */
4076 	      goto expecting_operand_after_comma;
4077 	    }
4078 	  expecting_operand = 1;
4079 	}
4080     }
4081   return l;
4082 }
4083 
4084 static void
swap_2_operands(int xchg1,int xchg2)4085 swap_2_operands (int xchg1, int xchg2)
4086 {
4087   union i386_op temp_op;
4088   i386_operand_type temp_type;
4089   enum bfd_reloc_code_real temp_reloc;
4090 
4091   temp_type = i.types[xchg2];
4092   i.types[xchg2] = i.types[xchg1];
4093   i.types[xchg1] = temp_type;
4094   temp_op = i.op[xchg2];
4095   i.op[xchg2] = i.op[xchg1];
4096   i.op[xchg1] = temp_op;
4097   temp_reloc = i.reloc[xchg2];
4098   i.reloc[xchg2] = i.reloc[xchg1];
4099   i.reloc[xchg1] = temp_reloc;
4100 
4101   if (i.mask)
4102     {
4103       if (i.mask->operand == xchg1)
4104 	i.mask->operand = xchg2;
4105       else if (i.mask->operand == xchg2)
4106 	i.mask->operand = xchg1;
4107     }
4108   if (i.broadcast)
4109     {
4110       if (i.broadcast->operand == xchg1)
4111 	i.broadcast->operand = xchg2;
4112       else if (i.broadcast->operand == xchg2)
4113 	i.broadcast->operand = xchg1;
4114     }
4115   if (i.rounding)
4116     {
4117       if (i.rounding->operand == xchg1)
4118 	i.rounding->operand = xchg2;
4119       else if (i.rounding->operand == xchg2)
4120 	i.rounding->operand = xchg1;
4121     }
4122 }
4123 
4124 static void
swap_operands(void)4125 swap_operands (void)
4126 {
4127   switch (i.operands)
4128     {
4129     case 5:
4130     case 4:
4131       swap_2_operands (1, i.operands - 2);
4132     case 3:
4133     case 2:
4134       swap_2_operands (0, i.operands - 1);
4135       break;
4136     default:
4137       abort ();
4138     }
4139 
4140   if (i.mem_operands == 2)
4141     {
4142       const seg_entry *temp_seg;
4143       temp_seg = i.seg[0];
4144       i.seg[0] = i.seg[1];
4145       i.seg[1] = temp_seg;
4146     }
4147 }
4148 
4149 /* Try to ensure constant immediates are represented in the smallest
4150    opcode possible.  */
4151 static void
optimize_imm(void)4152 optimize_imm (void)
4153 {
4154   char guess_suffix = 0;
4155   int op;
4156 
4157   if (i.suffix)
4158     guess_suffix = i.suffix;
4159   else if (i.reg_operands)
4160     {
4161       /* Figure out a suffix from the last register operand specified.
4162 	 We can't do this properly yet, ie. excluding InOutPortReg,
4163 	 but the following works for instructions with immediates.
4164 	 In any case, we can't set i.suffix yet.  */
4165       for (op = i.operands; --op >= 0;)
4166 	if (i.types[op].bitfield.reg8)
4167 	  {
4168 	    guess_suffix = BYTE_MNEM_SUFFIX;
4169 	    break;
4170 	  }
4171 	else if (i.types[op].bitfield.reg16)
4172 	  {
4173 	    guess_suffix = WORD_MNEM_SUFFIX;
4174 	    break;
4175 	  }
4176 	else if (i.types[op].bitfield.reg32)
4177 	  {
4178 	    guess_suffix = LONG_MNEM_SUFFIX;
4179 	    break;
4180 	  }
4181 	else if (i.types[op].bitfield.reg64)
4182 	  {
4183 	    guess_suffix = QWORD_MNEM_SUFFIX;
4184 	    break;
4185 	  }
4186     }
4187   else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4188     guess_suffix = WORD_MNEM_SUFFIX;
4189 
4190   for (op = i.operands; --op >= 0;)
4191     if (operand_type_check (i.types[op], imm))
4192       {
4193 	switch (i.op[op].imms->X_op)
4194 	  {
4195 	  case O_constant:
4196 	    /* If a suffix is given, this operand may be shortened.  */
4197 	    switch (guess_suffix)
4198 	      {
4199 	      case LONG_MNEM_SUFFIX:
4200 		i.types[op].bitfield.imm32 = 1;
4201 		i.types[op].bitfield.imm64 = 1;
4202 		break;
4203 	      case WORD_MNEM_SUFFIX:
4204 		i.types[op].bitfield.imm16 = 1;
4205 		i.types[op].bitfield.imm32 = 1;
4206 		i.types[op].bitfield.imm32s = 1;
4207 		i.types[op].bitfield.imm64 = 1;
4208 		break;
4209 	      case BYTE_MNEM_SUFFIX:
4210 		i.types[op].bitfield.imm8 = 1;
4211 		i.types[op].bitfield.imm8s = 1;
4212 		i.types[op].bitfield.imm16 = 1;
4213 		i.types[op].bitfield.imm32 = 1;
4214 		i.types[op].bitfield.imm32s = 1;
4215 		i.types[op].bitfield.imm64 = 1;
4216 		break;
4217 	      }
4218 
4219 	    /* If this operand is at most 16 bits, convert it
4220 	       to a signed 16 bit number before trying to see
4221 	       whether it will fit in an even smaller size.
4222 	       This allows a 16-bit operand such as $0xffe0 to
4223 	       be recognised as within Imm8S range.  */
4224 	    if ((i.types[op].bitfield.imm16)
4225 		&& (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4226 	      {
4227 		i.op[op].imms->X_add_number =
4228 		  (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4229 	      }
4230 	    if ((i.types[op].bitfield.imm32)
4231 		&& ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4232 		    == 0))
4233 	      {
4234 		i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4235 						^ ((offsetT) 1 << 31))
4236 					       - ((offsetT) 1 << 31));
4237 	      }
4238 	    i.types[op]
4239 	      = operand_type_or (i.types[op],
4240 				 smallest_imm_type (i.op[op].imms->X_add_number));
4241 
4242 	    /* We must avoid matching of Imm32 templates when 64bit
4243 	       only immediate is available.  */
4244 	    if (guess_suffix == QWORD_MNEM_SUFFIX)
4245 	      i.types[op].bitfield.imm32 = 0;
4246 	    break;
4247 
4248 	  case O_absent:
4249 	  case O_register:
4250 	    abort ();
4251 
4252 	    /* Symbols and expressions.  */
4253 	  default:
4254 	    /* Convert symbolic operand to proper sizes for matching, but don't
4255 	       prevent matching a set of insns that only supports sizes other
4256 	       than those matching the insn suffix.  */
4257 	    {
4258 	      i386_operand_type mask, allowed;
4259 	      const insn_template *t;
4260 
4261 	      operand_type_set (&mask, 0);
4262 	      operand_type_set (&allowed, 0);
4263 
4264 	      for (t = current_templates->start;
4265 		   t < current_templates->end;
4266 		   ++t)
4267 		allowed = operand_type_or (allowed,
4268 					   t->operand_types[op]);
4269 	      switch (guess_suffix)
4270 		{
4271 		case QWORD_MNEM_SUFFIX:
4272 		  mask.bitfield.imm64 = 1;
4273 		  mask.bitfield.imm32s = 1;
4274 		  break;
4275 		case LONG_MNEM_SUFFIX:
4276 		  mask.bitfield.imm32 = 1;
4277 		  break;
4278 		case WORD_MNEM_SUFFIX:
4279 		  mask.bitfield.imm16 = 1;
4280 		  break;
4281 		case BYTE_MNEM_SUFFIX:
4282 		  mask.bitfield.imm8 = 1;
4283 		  break;
4284 		default:
4285 		  break;
4286 		}
4287 	      allowed = operand_type_and (mask, allowed);
4288 	      if (!operand_type_all_zero (&allowed))
4289 		i.types[op] = operand_type_and (i.types[op], mask);
4290 	    }
4291 	    break;
4292 	  }
4293       }
4294 }
4295 
4296 /* Try to use the smallest displacement type too.  */
4297 static void
optimize_disp(void)4298 optimize_disp (void)
4299 {
4300   int op;
4301 
4302   for (op = i.operands; --op >= 0;)
4303     if (operand_type_check (i.types[op], disp))
4304       {
4305 	if (i.op[op].disps->X_op == O_constant)
4306 	  {
4307 	    offsetT op_disp = i.op[op].disps->X_add_number;
4308 
4309 	    if (i.types[op].bitfield.disp16
4310 		&& (op_disp & ~(offsetT) 0xffff) == 0)
4311 	      {
4312 		/* If this operand is at most 16 bits, convert
4313 		   to a signed 16 bit number and don't use 64bit
4314 		   displacement.  */
4315 		op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4316 		i.types[op].bitfield.disp64 = 0;
4317 	      }
4318 	    if (i.types[op].bitfield.disp32
4319 		&& (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4320 	      {
4321 		/* If this operand is at most 32 bits, convert
4322 		   to a signed 32 bit number and don't use 64bit
4323 		   displacement.  */
4324 		op_disp &= (((offsetT) 2 << 31) - 1);
4325 		op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4326 		i.types[op].bitfield.disp64 = 0;
4327 	      }
4328 	    if (!op_disp && i.types[op].bitfield.baseindex)
4329 	      {
4330 		i.types[op].bitfield.disp8 = 0;
4331 		i.types[op].bitfield.disp16 = 0;
4332 		i.types[op].bitfield.disp32 = 0;
4333 		i.types[op].bitfield.disp32s = 0;
4334 		i.types[op].bitfield.disp64 = 0;
4335 		i.op[op].disps = 0;
4336 		i.disp_operands--;
4337 	      }
4338 	    else if (flag_code == CODE_64BIT)
4339 	      {
4340 		if (fits_in_signed_long (op_disp))
4341 		  {
4342 		    i.types[op].bitfield.disp64 = 0;
4343 		    i.types[op].bitfield.disp32s = 1;
4344 		  }
4345 		if (i.prefix[ADDR_PREFIX]
4346 		    && fits_in_unsigned_long (op_disp))
4347 		  i.types[op].bitfield.disp32 = 1;
4348 	      }
4349 	    if ((i.types[op].bitfield.disp32
4350 		 || i.types[op].bitfield.disp32s
4351 		 || i.types[op].bitfield.disp16)
4352 		&& fits_in_signed_byte (op_disp))
4353 	      i.types[op].bitfield.disp8 = 1;
4354 	  }
4355 	else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4356 		 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4357 	  {
4358 	    fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4359 			 i.op[op].disps, 0, i.reloc[op]);
4360 	    i.types[op].bitfield.disp8 = 0;
4361 	    i.types[op].bitfield.disp16 = 0;
4362 	    i.types[op].bitfield.disp32 = 0;
4363 	    i.types[op].bitfield.disp32s = 0;
4364 	    i.types[op].bitfield.disp64 = 0;
4365 	  }
4366  	else
4367 	  /* We only support 64bit displacement on constants.  */
4368 	  i.types[op].bitfield.disp64 = 0;
4369       }
4370 }
4371 
4372 /* Check if operands are valid for the instruction.  */
4373 
4374 static int
check_VecOperands(const insn_template * t)4375 check_VecOperands (const insn_template *t)
4376 {
4377   unsigned int op;
4378 
4379   /* Without VSIB byte, we can't have a vector register for index.  */
4380   if (!t->opcode_modifier.vecsib
4381       && i.index_reg
4382       && (i.index_reg->reg_type.bitfield.regxmm
4383 	  || i.index_reg->reg_type.bitfield.regymm
4384 	  || i.index_reg->reg_type.bitfield.regzmm))
4385     {
4386       i.error = unsupported_vector_index_register;
4387       return 1;
4388     }
4389 
4390   /* Check if default mask is allowed.  */
4391   if (t->opcode_modifier.nodefmask
4392       && (!i.mask || i.mask->mask->reg_num == 0))
4393     {
4394       i.error = no_default_mask;
4395       return 1;
4396     }
4397 
4398   /* For VSIB byte, we need a vector register for index, and all vector
4399      registers must be distinct.  */
4400   if (t->opcode_modifier.vecsib)
4401     {
4402       if (!i.index_reg
4403 	  || !((t->opcode_modifier.vecsib == VecSIB128
4404 		&& i.index_reg->reg_type.bitfield.regxmm)
4405 	       || (t->opcode_modifier.vecsib == VecSIB256
4406 		   && i.index_reg->reg_type.bitfield.regymm)
4407 	       || (t->opcode_modifier.vecsib == VecSIB512
4408 		   && i.index_reg->reg_type.bitfield.regzmm)))
4409       {
4410 	i.error = invalid_vsib_address;
4411 	return 1;
4412       }
4413 
4414       gas_assert (i.reg_operands == 2 || i.mask);
4415       if (i.reg_operands == 2 && !i.mask)
4416 	{
4417 	  gas_assert (i.types[0].bitfield.regxmm
4418 		      || i.types[0].bitfield.regymm);
4419 	  gas_assert (i.types[2].bitfield.regxmm
4420 		      || i.types[2].bitfield.regymm);
4421 	  if (operand_check == check_none)
4422 	    return 0;
4423 	  if (register_number (i.op[0].regs)
4424 	      != register_number (i.index_reg)
4425 	      && register_number (i.op[2].regs)
4426 		 != register_number (i.index_reg)
4427 	      && register_number (i.op[0].regs)
4428 		 != register_number (i.op[2].regs))
4429 	    return 0;
4430 	  if (operand_check == check_error)
4431 	    {
4432 	      i.error = invalid_vector_register_set;
4433 	      return 1;
4434 	    }
4435 	  as_warn (_("mask, index, and destination registers should be distinct"));
4436 	}
4437       else if (i.reg_operands == 1 && i.mask)
4438 	{
4439 	  if ((i.types[1].bitfield.regymm
4440 	       || i.types[1].bitfield.regzmm)
4441 	      && (register_number (i.op[1].regs)
4442 		  == register_number (i.index_reg)))
4443 	    {
4444 	      if (operand_check == check_error)
4445 		{
4446 		  i.error = invalid_vector_register_set;
4447 		  return 1;
4448 		}
4449 	      if (operand_check != check_none)
4450 		as_warn (_("index and destination registers should be distinct"));
4451 	    }
4452 	}
4453     }
4454 
4455   /* Check if broadcast is supported by the instruction and is applied
4456      to the memory operand.  */
4457   if (i.broadcast)
4458     {
4459       int broadcasted_opnd_size;
4460 
4461       /* Check if specified broadcast is supported in this instruction,
4462 	 and it's applied to memory operand of DWORD or QWORD type,
4463 	 depending on VecESize.  */
4464       if (i.broadcast->type != t->opcode_modifier.broadcast
4465 	  || !i.types[i.broadcast->operand].bitfield.mem
4466 	  || (t->opcode_modifier.vecesize == 0
4467 	      && !i.types[i.broadcast->operand].bitfield.dword
4468 	      && !i.types[i.broadcast->operand].bitfield.unspecified)
4469 	  || (t->opcode_modifier.vecesize == 1
4470 	      && !i.types[i.broadcast->operand].bitfield.qword
4471 	      && !i.types[i.broadcast->operand].bitfield.unspecified))
4472 	goto bad_broadcast;
4473 
4474       broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4475       if (i.broadcast->type == BROADCAST_1TO16)
4476 	broadcasted_opnd_size <<= 4; /* Broadcast 1to16.  */
4477       else if (i.broadcast->type == BROADCAST_1TO8)
4478 	broadcasted_opnd_size <<= 3; /* Broadcast 1to8.  */
4479       else if (i.broadcast->type == BROADCAST_1TO4)
4480 	broadcasted_opnd_size <<= 2; /* Broadcast 1to4.  */
4481       else if (i.broadcast->type == BROADCAST_1TO2)
4482 	broadcasted_opnd_size <<= 1; /* Broadcast 1to2.  */
4483       else
4484 	goto bad_broadcast;
4485 
4486       if ((broadcasted_opnd_size == 256
4487 	   && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4488 	  || (broadcasted_opnd_size == 512
4489 	      && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4490 	{
4491 	bad_broadcast:
4492 	  i.error = unsupported_broadcast;
4493 	  return 1;
4494 	}
4495     }
4496   /* If broadcast is supported in this instruction, we need to check if
4497      operand of one-element size isn't specified without broadcast.  */
4498   else if (t->opcode_modifier.broadcast && i.mem_operands)
4499     {
4500       /* Find memory operand.  */
4501       for (op = 0; op < i.operands; op++)
4502 	if (operand_type_check (i.types[op], anymem))
4503 	  break;
4504       gas_assert (op < i.operands);
4505       /* Check size of the memory operand.  */
4506       if ((t->opcode_modifier.vecesize == 0
4507 	   && i.types[op].bitfield.dword)
4508 	  || (t->opcode_modifier.vecesize == 1
4509 	      && i.types[op].bitfield.qword))
4510 	{
4511 	  i.error = broadcast_needed;
4512 	  return 1;
4513 	}
4514     }
4515 
4516   /* Check if requested masking is supported.  */
4517   if (i.mask
4518       && (!t->opcode_modifier.masking
4519 	  || (i.mask->zeroing
4520 	      && t->opcode_modifier.masking == MERGING_MASKING)))
4521     {
4522       i.error = unsupported_masking;
4523       return 1;
4524     }
4525 
4526   /* Check if masking is applied to dest operand.  */
4527   if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4528     {
4529       i.error = mask_not_on_destination;
4530       return 1;
4531     }
4532 
4533   /* Check RC/SAE.  */
4534   if (i.rounding)
4535     {
4536       if ((i.rounding->type != saeonly
4537 	   && !t->opcode_modifier.staticrounding)
4538 	  || (i.rounding->type == saeonly
4539 	      && (t->opcode_modifier.staticrounding
4540 		  || !t->opcode_modifier.sae)))
4541 	{
4542 	  i.error = unsupported_rc_sae;
4543 	  return 1;
4544 	}
4545       /* If the instruction has several immediate operands and one of
4546 	 them is rounding, the rounding operand should be the last
4547 	 immediate operand.  */
4548       if (i.imm_operands > 1
4549 	  && i.rounding->operand != (int) (i.imm_operands - 1))
4550 	{
4551 	  i.error = rc_sae_operand_not_last_imm;
4552 	  return 1;
4553 	}
4554     }
4555 
4556   /* Check vector Disp8 operand.  */
4557   if (t->opcode_modifier.disp8memshift)
4558     {
4559       if (i.broadcast)
4560 	i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4561       else
4562 	i.memshift = t->opcode_modifier.disp8memshift;
4563 
4564       for (op = 0; op < i.operands; op++)
4565 	if (operand_type_check (i.types[op], disp)
4566 	    && i.op[op].disps->X_op == O_constant)
4567 	  {
4568 	    offsetT value = i.op[op].disps->X_add_number;
4569 	    int vec_disp8_ok = fits_in_vec_disp8 (value);
4570 	    if (t->operand_types [op].bitfield.vec_disp8)
4571 	      {
4572 		if (vec_disp8_ok)
4573 		  i.types[op].bitfield.vec_disp8 = 1;
4574 		else
4575 		  {
4576 		    /* Vector insn can only have Vec_Disp8/Disp32 in
4577 		       32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4578 		       mode.  */
4579 		    i.types[op].bitfield.disp8 = 0;
4580 		    if (flag_code != CODE_16BIT)
4581 		      i.types[op].bitfield.disp16 = 0;
4582 		  }
4583 	      }
4584 	    else if (flag_code != CODE_16BIT)
4585 	      {
4586 		/* One form of this instruction supports vector Disp8.
4587 		   Try vector Disp8 if we need to use Disp32.  */
4588 		if (vec_disp8_ok && !fits_in_signed_byte (value))
4589 		  {
4590 		    i.error = try_vector_disp8;
4591 		    return 1;
4592 		  }
4593 	      }
4594 	  }
4595     }
4596   else
4597     i.memshift = -1;
4598 
4599   return 0;
4600 }
4601 
4602 /* Check if operands are valid for the instruction.  Update VEX
4603    operand types.  */
4604 
4605 static int
VEX_check_operands(const insn_template * t)4606 VEX_check_operands (const insn_template *t)
4607 {
4608   /* VREX is only valid with EVEX prefix.  */
4609   if (i.need_vrex && !t->opcode_modifier.evex)
4610     {
4611       i.error = invalid_register_operand;
4612       return 1;
4613     }
4614 
4615   if (!t->opcode_modifier.vex)
4616     return 0;
4617 
4618   /* Only check VEX_Imm4, which must be the first operand.  */
4619   if (t->operand_types[0].bitfield.vec_imm4)
4620     {
4621       if (i.op[0].imms->X_op != O_constant
4622 	  || !fits_in_imm4 (i.op[0].imms->X_add_number))
4623 	{
4624 	  i.error = bad_imm4;
4625 	  return 1;
4626 	}
4627 
4628       /* Turn off Imm8 so that update_imm won't complain.  */
4629       i.types[0] = vec_imm4;
4630     }
4631 
4632   return 0;
4633 }
4634 
4635 static const insn_template *
match_template(void)4636 match_template (void)
4637 {
4638   /* Points to template once we've found it.  */
4639   const insn_template *t;
4640   i386_operand_type overlap0, overlap1, overlap2, overlap3;
4641   i386_operand_type overlap4;
4642   unsigned int found_reverse_match;
4643   i386_opcode_modifier suffix_check;
4644   i386_operand_type operand_types [MAX_OPERANDS];
4645   int addr_prefix_disp;
4646   unsigned int j;
4647   unsigned int found_cpu_match;
4648   unsigned int check_register;
4649   enum i386_error specific_error = 0;
4650 
4651 #if MAX_OPERANDS != 5
4652 # error "MAX_OPERANDS must be 5."
4653 #endif
4654 
4655   found_reverse_match = 0;
4656   addr_prefix_disp = -1;
4657 
4658   memset (&suffix_check, 0, sizeof (suffix_check));
4659   if (i.suffix == BYTE_MNEM_SUFFIX)
4660     suffix_check.no_bsuf = 1;
4661   else if (i.suffix == WORD_MNEM_SUFFIX)
4662     suffix_check.no_wsuf = 1;
4663   else if (i.suffix == SHORT_MNEM_SUFFIX)
4664     suffix_check.no_ssuf = 1;
4665   else if (i.suffix == LONG_MNEM_SUFFIX)
4666     suffix_check.no_lsuf = 1;
4667   else if (i.suffix == QWORD_MNEM_SUFFIX)
4668     suffix_check.no_qsuf = 1;
4669   else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4670     suffix_check.no_ldsuf = 1;
4671 
4672   /* Must have right number of operands.  */
4673   i.error = number_of_operands_mismatch;
4674 
4675   for (t = current_templates->start; t < current_templates->end; t++)
4676     {
4677       addr_prefix_disp = -1;
4678 
4679       if (i.operands != t->operands)
4680 	continue;
4681 
4682       /* Check processor support.  */
4683       i.error = unsupported;
4684       found_cpu_match = (cpu_flags_match (t)
4685 			 == CPU_FLAGS_PERFECT_MATCH);
4686       if (!found_cpu_match)
4687 	continue;
4688 
4689       /* Check old gcc support. */
4690       i.error = old_gcc_only;
4691       if (!old_gcc && t->opcode_modifier.oldgcc)
4692 	continue;
4693 
4694       /* Check AT&T mnemonic.   */
4695       i.error = unsupported_with_intel_mnemonic;
4696       if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4697 	continue;
4698 
4699       /* Check AT&T/Intel syntax.   */
4700       i.error = unsupported_syntax;
4701       if ((intel_syntax && t->opcode_modifier.attsyntax)
4702 	  || (!intel_syntax && t->opcode_modifier.intelsyntax))
4703 	continue;
4704 
4705       /* Check the suffix, except for some instructions in intel mode.  */
4706       i.error = invalid_instruction_suffix;
4707       if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4708 	  && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4709 	      || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4710 	      || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4711 	      || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4712 	      || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4713 	      || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4714 	continue;
4715 
4716       if (!operand_size_match (t))
4717 	continue;
4718 
4719       for (j = 0; j < MAX_OPERANDS; j++)
4720 	operand_types[j] = t->operand_types[j];
4721 
4722       /* In general, don't allow 64-bit operands in 32-bit mode.  */
4723       if (i.suffix == QWORD_MNEM_SUFFIX
4724 	  && flag_code != CODE_64BIT
4725 	  && (intel_syntax
4726 	      ? (!t->opcode_modifier.ignoresize
4727 		 && !intel_float_operand (t->name))
4728 	      : intel_float_operand (t->name) != 2)
4729 	  && ((!operand_types[0].bitfield.regmmx
4730 	       && !operand_types[0].bitfield.regxmm
4731 	       && !operand_types[0].bitfield.regymm
4732 	       && !operand_types[0].bitfield.regzmm)
4733 	      || (!operand_types[t->operands > 1].bitfield.regmmx
4734 		  && operand_types[t->operands > 1].bitfield.regxmm
4735 		  && operand_types[t->operands > 1].bitfield.regymm
4736 		  && operand_types[t->operands > 1].bitfield.regzmm))
4737 	  && (t->base_opcode != 0x0fc7
4738 	      || t->extension_opcode != 1 /* cmpxchg8b */))
4739 	continue;
4740 
4741       /* In general, don't allow 32-bit operands on pre-386.  */
4742       else if (i.suffix == LONG_MNEM_SUFFIX
4743 	       && !cpu_arch_flags.bitfield.cpui386
4744 	       && (intel_syntax
4745 		   ? (!t->opcode_modifier.ignoresize
4746 		      && !intel_float_operand (t->name))
4747 		   : intel_float_operand (t->name) != 2)
4748 	       && ((!operand_types[0].bitfield.regmmx
4749 		    && !operand_types[0].bitfield.regxmm)
4750 		   || (!operand_types[t->operands > 1].bitfield.regmmx
4751 		       && operand_types[t->operands > 1].bitfield.regxmm)))
4752 	continue;
4753 
4754       /* Do not verify operands when there are none.  */
4755       else
4756 	{
4757 	  if (!t->operands)
4758 	    /* We've found a match; break out of loop.  */
4759 	    break;
4760 	}
4761 
4762       /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4763 	 into Disp32/Disp16/Disp32 operand.  */
4764       if (i.prefix[ADDR_PREFIX] != 0)
4765 	  {
4766 	    /* There should be only one Disp operand.  */
4767 	    switch (flag_code)
4768 	    {
4769 	    case CODE_16BIT:
4770 	      for (j = 0; j < MAX_OPERANDS; j++)
4771 		{
4772 		  if (operand_types[j].bitfield.disp16)
4773 		    {
4774 		      addr_prefix_disp = j;
4775 		      operand_types[j].bitfield.disp32 = 1;
4776 		      operand_types[j].bitfield.disp16 = 0;
4777 		      break;
4778 		    }
4779 		}
4780 	      break;
4781 	    case CODE_32BIT:
4782 	      for (j = 0; j < MAX_OPERANDS; j++)
4783 		{
4784 		  if (operand_types[j].bitfield.disp32)
4785 		    {
4786 		      addr_prefix_disp = j;
4787 		      operand_types[j].bitfield.disp32 = 0;
4788 		      operand_types[j].bitfield.disp16 = 1;
4789 		      break;
4790 		    }
4791 		}
4792 	      break;
4793 	    case CODE_64BIT:
4794 	      for (j = 0; j < MAX_OPERANDS; j++)
4795 		{
4796 		  if (operand_types[j].bitfield.disp64)
4797 		    {
4798 		      addr_prefix_disp = j;
4799 		      operand_types[j].bitfield.disp64 = 0;
4800 		      operand_types[j].bitfield.disp32 = 1;
4801 		      break;
4802 		    }
4803 		}
4804 	      break;
4805 	    }
4806 	  }
4807 
4808       /* We check register size if needed.  */
4809       check_register = t->opcode_modifier.checkregsize;
4810       overlap0 = operand_type_and (i.types[0], operand_types[0]);
4811       switch (t->operands)
4812 	{
4813 	case 1:
4814 	  if (!operand_type_match (overlap0, i.types[0]))
4815 	    continue;
4816 	  break;
4817 	case 2:
4818 	  /* xchg %eax, %eax is a special case. It is an aliase for nop
4819 	     only in 32bit mode and we can use opcode 0x90.  In 64bit
4820 	     mode, we can't use 0x90 for xchg %eax, %eax since it should
4821 	     zero-extend %eax to %rax.  */
4822 	  if (flag_code == CODE_64BIT
4823 	      && t->base_opcode == 0x90
4824 	      && operand_type_equal (&i.types [0], &acc32)
4825 	      && operand_type_equal (&i.types [1], &acc32))
4826 	    continue;
4827 	  if (i.swap_operand)
4828 	    {
4829 	      /* If we swap operand in encoding, we either match
4830 		 the next one or reverse direction of operands.  */
4831 	      if (t->opcode_modifier.s)
4832 		continue;
4833 	      else if (t->opcode_modifier.d)
4834 		goto check_reverse;
4835 	    }
4836 
4837 	case 3:
4838 	  /* If we swap operand in encoding, we match the next one.  */
4839 	  if (i.swap_operand && t->opcode_modifier.s)
4840 	    continue;
4841 	case 4:
4842 	case 5:
4843 	  overlap1 = operand_type_and (i.types[1], operand_types[1]);
4844 	  if (!operand_type_match (overlap0, i.types[0])
4845 	      || !operand_type_match (overlap1, i.types[1])
4846 	      || (check_register
4847 		  && !operand_type_register_match (overlap0, i.types[0],
4848 						   operand_types[0],
4849 						   overlap1, i.types[1],
4850 						   operand_types[1])))
4851 	    {
4852 	      /* Check if other direction is valid ...  */
4853 	      if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4854 		continue;
4855 
4856 check_reverse:
4857 	      /* Try reversing direction of operands.  */
4858 	      overlap0 = operand_type_and (i.types[0], operand_types[1]);
4859 	      overlap1 = operand_type_and (i.types[1], operand_types[0]);
4860 	      if (!operand_type_match (overlap0, i.types[0])
4861 		  || !operand_type_match (overlap1, i.types[1])
4862 		  || (check_register
4863 		      && !operand_type_register_match (overlap0,
4864 						       i.types[0],
4865 						       operand_types[1],
4866 						       overlap1,
4867 						       i.types[1],
4868 						       operand_types[0])))
4869 		{
4870 		  /* Does not match either direction.  */
4871 		  continue;
4872 		}
4873 	      /* found_reverse_match holds which of D or FloatDR
4874 		 we've found.  */
4875 	      if (t->opcode_modifier.d)
4876 		found_reverse_match = Opcode_D;
4877 	      else if (t->opcode_modifier.floatd)
4878 		found_reverse_match = Opcode_FloatD;
4879 	      else
4880 		found_reverse_match = 0;
4881 	      if (t->opcode_modifier.floatr)
4882 		found_reverse_match |= Opcode_FloatR;
4883 	    }
4884 	  else
4885 	    {
4886 	      /* Found a forward 2 operand match here.  */
4887 	      switch (t->operands)
4888 		{
4889 		case 5:
4890 		  overlap4 = operand_type_and (i.types[4],
4891 					       operand_types[4]);
4892 		case 4:
4893 		  overlap3 = operand_type_and (i.types[3],
4894 					       operand_types[3]);
4895 		case 3:
4896 		  overlap2 = operand_type_and (i.types[2],
4897 					       operand_types[2]);
4898 		  break;
4899 		}
4900 
4901 	      switch (t->operands)
4902 		{
4903 		case 5:
4904 		  if (!operand_type_match (overlap4, i.types[4])
4905 		      || !operand_type_register_match (overlap3,
4906 						       i.types[3],
4907 						       operand_types[3],
4908 						       overlap4,
4909 						       i.types[4],
4910 						       operand_types[4]))
4911 		    continue;
4912 		case 4:
4913 		  if (!operand_type_match (overlap3, i.types[3])
4914 		      || (check_register
4915 			  && !operand_type_register_match (overlap2,
4916 							   i.types[2],
4917 							   operand_types[2],
4918 							   overlap3,
4919 							   i.types[3],
4920 							   operand_types[3])))
4921 		    continue;
4922 		case 3:
4923 		  /* Here we make use of the fact that there are no
4924 		     reverse match 3 operand instructions, and all 3
4925 		     operand instructions only need to be checked for
4926 		     register consistency between operands 2 and 3.  */
4927 		  if (!operand_type_match (overlap2, i.types[2])
4928 		      || (check_register
4929 			  && !operand_type_register_match (overlap1,
4930 							   i.types[1],
4931 							   operand_types[1],
4932 							   overlap2,
4933 							   i.types[2],
4934 							   operand_types[2])))
4935 		    continue;
4936 		  break;
4937 		}
4938 	    }
4939 	  /* Found either forward/reverse 2, 3 or 4 operand match here:
4940 	     slip through to break.  */
4941 	}
4942       if (!found_cpu_match)
4943 	{
4944 	  found_reverse_match = 0;
4945 	  continue;
4946 	}
4947 
4948       /* Check if vector and VEX operands are valid.  */
4949       if (check_VecOperands (t) || VEX_check_operands (t))
4950 	{
4951 	  specific_error = i.error;
4952 	  continue;
4953 	}
4954 
4955       /* We've found a match; break out of loop.  */
4956       break;
4957     }
4958 
4959   if (t == current_templates->end)
4960     {
4961       /* We found no match.  */
4962       const char *err_msg;
4963       switch (specific_error ? specific_error : i.error)
4964 	{
4965 	default:
4966 	  abort ();
4967 	case operand_size_mismatch:
4968 	  err_msg = _("operand size mismatch");
4969 	  break;
4970 	case operand_type_mismatch:
4971 	  err_msg = _("operand type mismatch");
4972 	  break;
4973 	case register_type_mismatch:
4974 	  err_msg = _("register type mismatch");
4975 	  break;
4976 	case number_of_operands_mismatch:
4977 	  err_msg = _("number of operands mismatch");
4978 	  break;
4979 	case invalid_instruction_suffix:
4980 	  err_msg = _("invalid instruction suffix");
4981 	  break;
4982 	case bad_imm4:
4983 	  err_msg = _("constant doesn't fit in 4 bits");
4984 	  break;
4985 	case old_gcc_only:
4986 	  err_msg = _("only supported with old gcc");
4987 	  break;
4988 	case unsupported_with_intel_mnemonic:
4989 	  err_msg = _("unsupported with Intel mnemonic");
4990 	  break;
4991 	case unsupported_syntax:
4992 	  err_msg = _("unsupported syntax");
4993 	  break;
4994 	case unsupported:
4995 	  as_bad (_("unsupported instruction `%s'"),
4996 		  current_templates->start->name);
4997 	  return NULL;
4998 	case invalid_vsib_address:
4999 	  err_msg = _("invalid VSIB address");
5000 	  break;
5001 	case invalid_vector_register_set:
5002 	  err_msg = _("mask, index, and destination registers must be distinct");
5003 	  break;
5004 	case unsupported_vector_index_register:
5005 	  err_msg = _("unsupported vector index register");
5006 	  break;
5007 	case unsupported_broadcast:
5008 	  err_msg = _("unsupported broadcast");
5009 	  break;
5010 	case broadcast_not_on_src_operand:
5011 	  err_msg = _("broadcast not on source memory operand");
5012 	  break;
5013 	case broadcast_needed:
5014 	  err_msg = _("broadcast is needed for operand of such type");
5015 	  break;
5016 	case unsupported_masking:
5017 	  err_msg = _("unsupported masking");
5018 	  break;
5019 	case mask_not_on_destination:
5020 	  err_msg = _("mask not on destination operand");
5021 	  break;
5022 	case no_default_mask:
5023 	  err_msg = _("default mask isn't allowed");
5024 	  break;
5025 	case unsupported_rc_sae:
5026 	  err_msg = _("unsupported static rounding/sae");
5027 	  break;
5028 	case rc_sae_operand_not_last_imm:
5029 	  if (intel_syntax)
5030 	    err_msg = _("RC/SAE operand must precede immediate operands");
5031 	  else
5032 	    err_msg = _("RC/SAE operand must follow immediate operands");
5033 	  break;
5034 	case invalid_register_operand:
5035 	  err_msg = _("invalid register operand");
5036 	  break;
5037 	}
5038       as_bad (_("%s for `%s'"), err_msg,
5039 	      current_templates->start->name);
5040       return NULL;
5041     }
5042 
5043   if (!quiet_warnings)
5044     {
5045       if (!intel_syntax
5046 	  && (i.types[0].bitfield.jumpabsolute
5047 	      != operand_types[0].bitfield.jumpabsolute))
5048 	{
5049 	  as_warn (_("indirect %s without `*'"), t->name);
5050 	}
5051 
5052       if (t->opcode_modifier.isprefix
5053 	  && t->opcode_modifier.ignoresize)
5054 	{
5055 	  /* Warn them that a data or address size prefix doesn't
5056 	     affect assembly of the next line of code.  */
5057 	  as_warn (_("stand-alone `%s' prefix"), t->name);
5058 	}
5059     }
5060 
5061   /* Copy the template we found.  */
5062   i.tm = *t;
5063 
5064   if (addr_prefix_disp != -1)
5065     i.tm.operand_types[addr_prefix_disp]
5066       = operand_types[addr_prefix_disp];
5067 
5068   if (found_reverse_match)
5069     {
5070       /* If we found a reverse match we must alter the opcode
5071 	 direction bit.  found_reverse_match holds bits to change
5072 	 (different for int & float insns).  */
5073 
5074       i.tm.base_opcode ^= found_reverse_match;
5075 
5076       i.tm.operand_types[0] = operand_types[1];
5077       i.tm.operand_types[1] = operand_types[0];
5078     }
5079 
5080   return t;
5081 }
5082 
5083 static int
check_string(void)5084 check_string (void)
5085 {
5086   int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5087   if (i.tm.operand_types[mem_op].bitfield.esseg)
5088     {
5089       if (i.seg[0] != NULL && i.seg[0] != &es)
5090 	{
5091 	  as_bad (_("`%s' operand %d must use `%ses' segment"),
5092 		  i.tm.name,
5093 		  mem_op + 1,
5094 		  register_prefix);
5095 	  return 0;
5096 	}
5097       /* There's only ever one segment override allowed per instruction.
5098 	 This instruction possibly has a legal segment override on the
5099 	 second operand, so copy the segment to where non-string
5100 	 instructions store it, allowing common code.  */
5101       i.seg[0] = i.seg[1];
5102     }
5103   else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5104     {
5105       if (i.seg[1] != NULL && i.seg[1] != &es)
5106 	{
5107 	  as_bad (_("`%s' operand %d must use `%ses' segment"),
5108 		  i.tm.name,
5109 		  mem_op + 2,
5110 		  register_prefix);
5111 	  return 0;
5112 	}
5113     }
5114   return 1;
5115 }
5116 
5117 static int
process_suffix(void)5118 process_suffix (void)
5119 {
5120   /* If matched instruction specifies an explicit instruction mnemonic
5121      suffix, use it.  */
5122   if (i.tm.opcode_modifier.size16)
5123     i.suffix = WORD_MNEM_SUFFIX;
5124   else if (i.tm.opcode_modifier.size32)
5125     i.suffix = LONG_MNEM_SUFFIX;
5126   else if (i.tm.opcode_modifier.size64)
5127     i.suffix = QWORD_MNEM_SUFFIX;
5128   else if (i.reg_operands)
5129     {
5130       /* If there's no instruction mnemonic suffix we try to invent one
5131 	 based on register operands.  */
5132       if (!i.suffix)
5133 	{
5134 	  /* We take i.suffix from the last register operand specified,
5135 	     Destination register type is more significant than source
5136 	     register type.  crc32 in SSE4.2 prefers source register
5137 	     type. */
5138 	  if (i.tm.base_opcode == 0xf20f38f1)
5139 	    {
5140 	      if (i.types[0].bitfield.reg16)
5141 		i.suffix = WORD_MNEM_SUFFIX;
5142 	      else if (i.types[0].bitfield.reg32)
5143 		i.suffix = LONG_MNEM_SUFFIX;
5144 	      else if (i.types[0].bitfield.reg64)
5145 		i.suffix = QWORD_MNEM_SUFFIX;
5146 	    }
5147 	  else if (i.tm.base_opcode == 0xf20f38f0)
5148 	    {
5149 	      if (i.types[0].bitfield.reg8)
5150 		i.suffix = BYTE_MNEM_SUFFIX;
5151 	    }
5152 
5153 	  if (!i.suffix)
5154 	    {
5155 	      int op;
5156 
5157 	      if (i.tm.base_opcode == 0xf20f38f1
5158 		  || i.tm.base_opcode == 0xf20f38f0)
5159 		{
5160 		  /* We have to know the operand size for crc32.  */
5161 		  as_bad (_("ambiguous memory operand size for `%s`"),
5162 			  i.tm.name);
5163 		  return 0;
5164 		}
5165 
5166 	      for (op = i.operands; --op >= 0;)
5167 		if (!i.tm.operand_types[op].bitfield.inoutportreg)
5168 		  {
5169 		    if (i.types[op].bitfield.reg8)
5170 		      {
5171 			i.suffix = BYTE_MNEM_SUFFIX;
5172 			break;
5173 		      }
5174 		    else if (i.types[op].bitfield.reg16)
5175 		      {
5176 			i.suffix = WORD_MNEM_SUFFIX;
5177 			break;
5178 		      }
5179 		    else if (i.types[op].bitfield.reg32)
5180 		      {
5181 			i.suffix = LONG_MNEM_SUFFIX;
5182 			break;
5183 		      }
5184 		    else if (i.types[op].bitfield.reg64)
5185 		      {
5186 			i.suffix = QWORD_MNEM_SUFFIX;
5187 			break;
5188 		      }
5189 		  }
5190 	    }
5191 	}
5192       else if (i.suffix == BYTE_MNEM_SUFFIX)
5193 	{
5194 	  if (intel_syntax
5195 	      && i.tm.opcode_modifier.ignoresize
5196 	      && i.tm.opcode_modifier.no_bsuf)
5197 	    i.suffix = 0;
5198 	  else if (!check_byte_reg ())
5199 	    return 0;
5200 	}
5201       else if (i.suffix == LONG_MNEM_SUFFIX)
5202 	{
5203 	  if (intel_syntax
5204 	      && i.tm.opcode_modifier.ignoresize
5205 	      && i.tm.opcode_modifier.no_lsuf)
5206 	    i.suffix = 0;
5207 	  else if (!check_long_reg ())
5208 	    return 0;
5209 	}
5210       else if (i.suffix == QWORD_MNEM_SUFFIX)
5211 	{
5212 	  if (intel_syntax
5213 	      && i.tm.opcode_modifier.ignoresize
5214 	      && i.tm.opcode_modifier.no_qsuf)
5215 	    i.suffix = 0;
5216 	  else if (!check_qword_reg ())
5217 	    return 0;
5218 	}
5219       else if (i.suffix == WORD_MNEM_SUFFIX)
5220 	{
5221 	  if (intel_syntax
5222 	      && i.tm.opcode_modifier.ignoresize
5223 	      && i.tm.opcode_modifier.no_wsuf)
5224 	    i.suffix = 0;
5225 	  else if (!check_word_reg ())
5226 	    return 0;
5227 	}
5228       else if (i.suffix == XMMWORD_MNEM_SUFFIX
5229 	       || i.suffix == YMMWORD_MNEM_SUFFIX
5230 	       || i.suffix == ZMMWORD_MNEM_SUFFIX)
5231 	{
5232 	  /* Skip if the instruction has x/y/z suffix.  match_template
5233 	     should check if it is a valid suffix.  */
5234 	}
5235       else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5236 	/* Do nothing if the instruction is going to ignore the prefix.  */
5237 	;
5238       else
5239 	abort ();
5240     }
5241   else if (i.tm.opcode_modifier.defaultsize
5242 	   && !i.suffix
5243 	   /* exclude fldenv/frstor/fsave/fstenv */
5244 	   && i.tm.opcode_modifier.no_ssuf)
5245     {
5246       i.suffix = stackop_size;
5247     }
5248   else if (intel_syntax
5249 	   && !i.suffix
5250 	   && (i.tm.operand_types[0].bitfield.jumpabsolute
5251 	       || i.tm.opcode_modifier.jumpbyte
5252 	       || i.tm.opcode_modifier.jumpintersegment
5253 	       || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5254 		   && i.tm.extension_opcode <= 3)))
5255     {
5256       switch (flag_code)
5257 	{
5258 	case CODE_64BIT:
5259 	  if (!i.tm.opcode_modifier.no_qsuf)
5260 	    {
5261 	      i.suffix = QWORD_MNEM_SUFFIX;
5262 	      break;
5263 	    }
5264 	case CODE_32BIT:
5265 	  if (!i.tm.opcode_modifier.no_lsuf)
5266 	    i.suffix = LONG_MNEM_SUFFIX;
5267 	  break;
5268 	case CODE_16BIT:
5269 	  if (!i.tm.opcode_modifier.no_wsuf)
5270 	    i.suffix = WORD_MNEM_SUFFIX;
5271 	  break;
5272 	}
5273     }
5274 
5275   if (!i.suffix)
5276     {
5277       if (!intel_syntax)
5278 	{
5279 	  if (i.tm.opcode_modifier.w)
5280 	    {
5281 	      as_bad (_("no instruction mnemonic suffix given and "
5282 			"no register operands; can't size instruction"));
5283 	      return 0;
5284 	    }
5285 	}
5286       else
5287 	{
5288 	  unsigned int suffixes;
5289 
5290 	  suffixes = !i.tm.opcode_modifier.no_bsuf;
5291 	  if (!i.tm.opcode_modifier.no_wsuf)
5292 	    suffixes |= 1 << 1;
5293 	  if (!i.tm.opcode_modifier.no_lsuf)
5294 	    suffixes |= 1 << 2;
5295 	  if (!i.tm.opcode_modifier.no_ldsuf)
5296 	    suffixes |= 1 << 3;
5297 	  if (!i.tm.opcode_modifier.no_ssuf)
5298 	    suffixes |= 1 << 4;
5299 	  if (!i.tm.opcode_modifier.no_qsuf)
5300 	    suffixes |= 1 << 5;
5301 
5302 	  /* There are more than suffix matches.  */
5303 	  if (i.tm.opcode_modifier.w
5304 	      || ((suffixes & (suffixes - 1))
5305 		  && !i.tm.opcode_modifier.defaultsize
5306 		  && !i.tm.opcode_modifier.ignoresize))
5307 	    {
5308 	      as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5309 	      return 0;
5310 	    }
5311 	}
5312     }
5313 
5314   /* Change the opcode based on the operand size given by i.suffix;
5315      We don't need to change things for byte insns.  */
5316 
5317   if (i.suffix
5318       && i.suffix != BYTE_MNEM_SUFFIX
5319       && i.suffix != XMMWORD_MNEM_SUFFIX
5320       && i.suffix != YMMWORD_MNEM_SUFFIX
5321       && i.suffix != ZMMWORD_MNEM_SUFFIX)
5322     {
5323       /* It's not a byte, select word/dword operation.  */
5324       if (i.tm.opcode_modifier.w)
5325 	{
5326 	  if (i.tm.opcode_modifier.shortform)
5327 	    i.tm.base_opcode |= 8;
5328 	  else
5329 	    i.tm.base_opcode |= 1;
5330 	}
5331 
5332       /* Now select between word & dword operations via the operand
5333 	 size prefix, except for instructions that will ignore this
5334 	 prefix anyway.  */
5335       if (i.tm.opcode_modifier.addrprefixop0)
5336 	{
5337 	  /* The address size override prefix changes the size of the
5338 	     first operand.  */
5339 	  if ((flag_code == CODE_32BIT
5340 	       && i.op->regs[0].reg_type.bitfield.reg16)
5341 	      || (flag_code != CODE_32BIT
5342 		  && i.op->regs[0].reg_type.bitfield.reg32))
5343 	    if (!add_prefix (ADDR_PREFIX_OPCODE))
5344 	      return 0;
5345 	}
5346       else if (i.suffix != QWORD_MNEM_SUFFIX
5347 	       && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5348 	       && !i.tm.opcode_modifier.ignoresize
5349 	       && !i.tm.opcode_modifier.floatmf
5350 	       && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5351 		   || (flag_code == CODE_64BIT
5352 		       && i.tm.opcode_modifier.jumpbyte)))
5353 	{
5354 	  unsigned int prefix = DATA_PREFIX_OPCODE;
5355 
5356 	  if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5357 	    prefix = ADDR_PREFIX_OPCODE;
5358 
5359 	  if (!add_prefix (prefix))
5360 	    return 0;
5361 	}
5362 
5363       /* Set mode64 for an operand.  */
5364       if (i.suffix == QWORD_MNEM_SUFFIX
5365 	  && flag_code == CODE_64BIT
5366 	  && !i.tm.opcode_modifier.norex64)
5367 	{
5368 	  /* Special case for xchg %rax,%rax.  It is NOP and doesn't
5369 	     need rex64.  cmpxchg8b is also a special case. */
5370 	  if (! (i.operands == 2
5371 		 && i.tm.base_opcode == 0x90
5372 		 && i.tm.extension_opcode == None
5373 		 && operand_type_equal (&i.types [0], &acc64)
5374 		 && operand_type_equal (&i.types [1], &acc64))
5375 	      && ! (i.operands == 1
5376 		    && i.tm.base_opcode == 0xfc7
5377 		    && i.tm.extension_opcode == 1
5378 		    && !operand_type_check (i.types [0], reg)
5379 		    && operand_type_check (i.types [0], anymem)))
5380 	    i.rex |= REX_W;
5381 	}
5382 
5383       /* Size floating point instruction.  */
5384       if (i.suffix == LONG_MNEM_SUFFIX)
5385 	if (i.tm.opcode_modifier.floatmf)
5386 	  i.tm.base_opcode ^= 4;
5387     }
5388 
5389   return 1;
5390 }
5391 
5392 static int
check_byte_reg(void)5393 check_byte_reg (void)
5394 {
5395   int op;
5396 
5397   for (op = i.operands; --op >= 0;)
5398     {
5399       /* If this is an eight bit register, it's OK.  If it's the 16 or
5400 	 32 bit version of an eight bit register, we will just use the
5401 	 low portion, and that's OK too.  */
5402       if (i.types[op].bitfield.reg8)
5403 	continue;
5404 
5405       /* I/O port address operands are OK too.  */
5406       if (i.tm.operand_types[op].bitfield.inoutportreg)
5407 	continue;
5408 
5409       /* crc32 doesn't generate this warning.  */
5410       if (i.tm.base_opcode == 0xf20f38f0)
5411 	continue;
5412 
5413       if ((i.types[op].bitfield.reg16
5414 	   || i.types[op].bitfield.reg32
5415 	   || i.types[op].bitfield.reg64)
5416 	  && i.op[op].regs->reg_num < 4
5417 	  /* Prohibit these changes in 64bit mode, since the lowering
5418 	     would be more complicated.  */
5419 	  && flag_code != CODE_64BIT)
5420 	{
5421 #if REGISTER_WARNINGS
5422 	  if (!quiet_warnings)
5423 	    as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5424 		     register_prefix,
5425 		     (i.op[op].regs + (i.types[op].bitfield.reg16
5426 				       ? REGNAM_AL - REGNAM_AX
5427 				       : REGNAM_AL - REGNAM_EAX))->reg_name,
5428 		     register_prefix,
5429 		     i.op[op].regs->reg_name,
5430 		     i.suffix);
5431 #endif
5432 	  continue;
5433 	}
5434       /* Any other register is bad.  */
5435       if (i.types[op].bitfield.reg16
5436 	  || i.types[op].bitfield.reg32
5437 	  || i.types[op].bitfield.reg64
5438 	  || i.types[op].bitfield.regmmx
5439 	  || i.types[op].bitfield.regxmm
5440 	  || i.types[op].bitfield.regymm
5441 	  || i.types[op].bitfield.regzmm
5442 	  || i.types[op].bitfield.sreg2
5443 	  || i.types[op].bitfield.sreg3
5444 	  || i.types[op].bitfield.control
5445 	  || i.types[op].bitfield.debug
5446 	  || i.types[op].bitfield.test
5447 	  || i.types[op].bitfield.floatreg
5448 	  || i.types[op].bitfield.floatacc)
5449 	{
5450 	  as_bad (_("`%s%s' not allowed with `%s%c'"),
5451 		  register_prefix,
5452 		  i.op[op].regs->reg_name,
5453 		  i.tm.name,
5454 		  i.suffix);
5455 	  return 0;
5456 	}
5457     }
5458   return 1;
5459 }
5460 
5461 static int
check_long_reg(void)5462 check_long_reg (void)
5463 {
5464   int op;
5465 
5466   for (op = i.operands; --op >= 0;)
5467     /* Reject eight bit registers, except where the template requires
5468        them. (eg. movzb)  */
5469     if (i.types[op].bitfield.reg8
5470 	&& (i.tm.operand_types[op].bitfield.reg16
5471 	    || i.tm.operand_types[op].bitfield.reg32
5472 	    || i.tm.operand_types[op].bitfield.acc))
5473       {
5474 	as_bad (_("`%s%s' not allowed with `%s%c'"),
5475 		register_prefix,
5476 		i.op[op].regs->reg_name,
5477 		i.tm.name,
5478 		i.suffix);
5479 	return 0;
5480       }
5481     /* Warn if the e prefix on a general reg is missing.  */
5482     else if ((!quiet_warnings || flag_code == CODE_64BIT)
5483 	     && i.types[op].bitfield.reg16
5484 	     && (i.tm.operand_types[op].bitfield.reg32
5485 		 || i.tm.operand_types[op].bitfield.acc))
5486       {
5487 	/* Prohibit these changes in the 64bit mode, since the
5488 	   lowering is more complicated.  */
5489 	if (flag_code == CODE_64BIT)
5490 	  {
5491 	    as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5492 		    register_prefix, i.op[op].regs->reg_name,
5493 		    i.suffix);
5494 	    return 0;
5495 	  }
5496 #if REGISTER_WARNINGS
5497 	as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5498 		 register_prefix,
5499 		 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5500 		 register_prefix, i.op[op].regs->reg_name, i.suffix);
5501 #endif
5502       }
5503     /* Warn if the r prefix on a general reg is present.  */
5504     else if (i.types[op].bitfield.reg64
5505 	     && (i.tm.operand_types[op].bitfield.reg32
5506 		 || i.tm.operand_types[op].bitfield.acc))
5507       {
5508 	if (intel_syntax
5509 	    && i.tm.opcode_modifier.toqword
5510 	    && !i.types[0].bitfield.regxmm)
5511 	  {
5512 	    /* Convert to QWORD.  We want REX byte. */
5513 	    i.suffix = QWORD_MNEM_SUFFIX;
5514 	  }
5515 	else
5516 	  {
5517 	    as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5518 		    register_prefix, i.op[op].regs->reg_name,
5519 		    i.suffix);
5520 	    return 0;
5521 	  }
5522       }
5523   return 1;
5524 }
5525 
5526 static int
check_qword_reg(void)5527 check_qword_reg (void)
5528 {
5529   int op;
5530 
5531   for (op = i.operands; --op >= 0; )
5532     /* Reject eight bit registers, except where the template requires
5533        them. (eg. movzb)  */
5534     if (i.types[op].bitfield.reg8
5535 	&& (i.tm.operand_types[op].bitfield.reg16
5536 	    || i.tm.operand_types[op].bitfield.reg32
5537 	    || i.tm.operand_types[op].bitfield.acc))
5538       {
5539 	as_bad (_("`%s%s' not allowed with `%s%c'"),
5540 		register_prefix,
5541 		i.op[op].regs->reg_name,
5542 		i.tm.name,
5543 		i.suffix);
5544 	return 0;
5545       }
5546     /* Warn if the r prefix on a general reg is missing.  */
5547     else if ((i.types[op].bitfield.reg16
5548 	      || i.types[op].bitfield.reg32)
5549 	     && (i.tm.operand_types[op].bitfield.reg32
5550 		 || i.tm.operand_types[op].bitfield.acc))
5551       {
5552 	/* Prohibit these changes in the 64bit mode, since the
5553 	   lowering is more complicated.  */
5554 	if (intel_syntax
5555 	    && i.tm.opcode_modifier.todword
5556 	    && !i.types[0].bitfield.regxmm)
5557 	  {
5558 	    /* Convert to DWORD.  We don't want REX byte. */
5559 	    i.suffix = LONG_MNEM_SUFFIX;
5560 	  }
5561 	else
5562 	  {
5563 	    as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5564 		    register_prefix, i.op[op].regs->reg_name,
5565 		    i.suffix);
5566 	    return 0;
5567 	  }
5568       }
5569   return 1;
5570 }
5571 
5572 static int
check_word_reg(void)5573 check_word_reg (void)
5574 {
5575   int op;
5576   for (op = i.operands; --op >= 0;)
5577     /* Reject eight bit registers, except where the template requires
5578        them. (eg. movzb)  */
5579     if (i.types[op].bitfield.reg8
5580 	&& (i.tm.operand_types[op].bitfield.reg16
5581 	    || i.tm.operand_types[op].bitfield.reg32
5582 	    || i.tm.operand_types[op].bitfield.acc))
5583       {
5584 	as_bad (_("`%s%s' not allowed with `%s%c'"),
5585 		register_prefix,
5586 		i.op[op].regs->reg_name,
5587 		i.tm.name,
5588 		i.suffix);
5589 	return 0;
5590       }
5591     /* Warn if the e or r prefix on a general reg is present.  */
5592     else if ((!quiet_warnings || flag_code == CODE_64BIT)
5593 	     && (i.types[op].bitfield.reg32
5594 		 || i.types[op].bitfield.reg64)
5595 	     && (i.tm.operand_types[op].bitfield.reg16
5596 		 || i.tm.operand_types[op].bitfield.acc))
5597       {
5598 	/* Prohibit these changes in the 64bit mode, since the
5599 	   lowering is more complicated.  */
5600 	if (flag_code == CODE_64BIT)
5601 	  {
5602 	    as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5603 		    register_prefix, i.op[op].regs->reg_name,
5604 		    i.suffix);
5605 	    return 0;
5606 	  }
5607 #if REGISTER_WARNINGS
5608 	as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5609 		 register_prefix,
5610 		 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5611 		 register_prefix, i.op[op].regs->reg_name, i.suffix);
5612 #endif
5613       }
5614   return 1;
5615 }
5616 
5617 static int
update_imm(unsigned int j)5618 update_imm (unsigned int j)
5619 {
5620   i386_operand_type overlap = i.types[j];
5621   if ((overlap.bitfield.imm8
5622        || overlap.bitfield.imm8s
5623        || overlap.bitfield.imm16
5624        || overlap.bitfield.imm32
5625        || overlap.bitfield.imm32s
5626        || overlap.bitfield.imm64)
5627       && !operand_type_equal (&overlap, &imm8)
5628       && !operand_type_equal (&overlap, &imm8s)
5629       && !operand_type_equal (&overlap, &imm16)
5630       && !operand_type_equal (&overlap, &imm32)
5631       && !operand_type_equal (&overlap, &imm32s)
5632       && !operand_type_equal (&overlap, &imm64))
5633     {
5634       if (i.suffix)
5635 	{
5636 	  i386_operand_type temp;
5637 
5638 	  operand_type_set (&temp, 0);
5639 	  if (i.suffix == BYTE_MNEM_SUFFIX)
5640 	    {
5641 	      temp.bitfield.imm8 = overlap.bitfield.imm8;
5642 	      temp.bitfield.imm8s = overlap.bitfield.imm8s;
5643 	    }
5644 	  else if (i.suffix == WORD_MNEM_SUFFIX)
5645 	    temp.bitfield.imm16 = overlap.bitfield.imm16;
5646 	  else if (i.suffix == QWORD_MNEM_SUFFIX)
5647 	    {
5648 	      temp.bitfield.imm64 = overlap.bitfield.imm64;
5649 	      temp.bitfield.imm32s = overlap.bitfield.imm32s;
5650 	    }
5651 	  else
5652 	    temp.bitfield.imm32 = overlap.bitfield.imm32;
5653 	  overlap = temp;
5654 	}
5655       else if (operand_type_equal (&overlap, &imm16_32_32s)
5656 	       || operand_type_equal (&overlap, &imm16_32)
5657 	       || operand_type_equal (&overlap, &imm16_32s))
5658 	{
5659 	  if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5660 	    overlap = imm16;
5661 	  else
5662 	    overlap = imm32s;
5663 	}
5664       if (!operand_type_equal (&overlap, &imm8)
5665 	  && !operand_type_equal (&overlap, &imm8s)
5666 	  && !operand_type_equal (&overlap, &imm16)
5667 	  && !operand_type_equal (&overlap, &imm32)
5668 	  && !operand_type_equal (&overlap, &imm32s)
5669 	  && !operand_type_equal (&overlap, &imm64))
5670 	{
5671 	  as_bad (_("no instruction mnemonic suffix given; "
5672 		    "can't determine immediate size"));
5673 	  return 0;
5674 	}
5675     }
5676   i.types[j] = overlap;
5677 
5678   return 1;
5679 }
5680 
5681 static int
finalize_imm(void)5682 finalize_imm (void)
5683 {
5684   unsigned int j, n;
5685 
5686   /* Update the first 2 immediate operands.  */
5687   n = i.operands > 2 ? 2 : i.operands;
5688   if (n)
5689     {
5690       for (j = 0; j < n; j++)
5691 	if (update_imm (j) == 0)
5692 	  return 0;
5693 
5694       /* The 3rd operand can't be immediate operand.  */
5695       gas_assert (operand_type_check (i.types[2], imm) == 0);
5696     }
5697 
5698   return 1;
5699 }
5700 
5701 static int
bad_implicit_operand(int xmm)5702 bad_implicit_operand (int xmm)
5703 {
5704   const char *ireg = xmm ? "xmm0" : "ymm0";
5705 
5706   if (intel_syntax)
5707     as_bad (_("the last operand of `%s' must be `%s%s'"),
5708 	    i.tm.name, register_prefix, ireg);
5709   else
5710     as_bad (_("the first operand of `%s' must be `%s%s'"),
5711 	    i.tm.name, register_prefix, ireg);
5712   return 0;
5713 }
5714 
5715 static int
process_operands(void)5716 process_operands (void)
5717 {
5718   /* Default segment register this instruction will use for memory
5719      accesses.  0 means unknown.  This is only for optimizing out
5720      unnecessary segment overrides.  */
5721   const seg_entry *default_seg = 0;
5722 
5723   if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5724     {
5725       unsigned int dupl = i.operands;
5726       unsigned int dest = dupl - 1;
5727       unsigned int j;
5728 
5729       /* The destination must be an xmm register.  */
5730       gas_assert (i.reg_operands
5731 		  && MAX_OPERANDS > dupl
5732 		  && operand_type_equal (&i.types[dest], &regxmm));
5733 
5734       if (i.tm.opcode_modifier.firstxmm0)
5735 	{
5736 	  /* The first operand is implicit and must be xmm0.  */
5737 	  gas_assert (operand_type_equal (&i.types[0], &regxmm));
5738 	  if (register_number (i.op[0].regs) != 0)
5739 	    return bad_implicit_operand (1);
5740 
5741 	  if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5742 	    {
5743 	      /* Keep xmm0 for instructions with VEX prefix and 3
5744 		 sources.  */
5745 	      goto duplicate;
5746 	    }
5747 	  else
5748 	    {
5749 	      /* We remove the first xmm0 and keep the number of
5750 		 operands unchanged, which in fact duplicates the
5751 		 destination.  */
5752 	      for (j = 1; j < i.operands; j++)
5753 		{
5754 		  i.op[j - 1] = i.op[j];
5755 		  i.types[j - 1] = i.types[j];
5756 		  i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5757 		}
5758 	    }
5759 	}
5760       else if (i.tm.opcode_modifier.implicit1stxmm0)
5761 	{
5762 	  gas_assert ((MAX_OPERANDS - 1) > dupl
5763 		      && (i.tm.opcode_modifier.vexsources
5764 			  == VEX3SOURCES));
5765 
5766 	  /* Add the implicit xmm0 for instructions with VEX prefix
5767 	     and 3 sources.  */
5768 	  for (j = i.operands; j > 0; j--)
5769 	    {
5770 	      i.op[j] = i.op[j - 1];
5771 	      i.types[j] = i.types[j - 1];
5772 	      i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5773 	    }
5774 	  i.op[0].regs
5775 	    = (const reg_entry *) hash_find (reg_hash, "xmm0");
5776 	  i.types[0] = regxmm;
5777 	  i.tm.operand_types[0] = regxmm;
5778 
5779 	  i.operands += 2;
5780 	  i.reg_operands += 2;
5781 	  i.tm.operands += 2;
5782 
5783 	  dupl++;
5784 	  dest++;
5785 	  i.op[dupl] = i.op[dest];
5786 	  i.types[dupl] = i.types[dest];
5787 	  i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5788 	}
5789       else
5790 	{
5791 duplicate:
5792 	  i.operands++;
5793 	  i.reg_operands++;
5794 	  i.tm.operands++;
5795 
5796 	  i.op[dupl] = i.op[dest];
5797 	  i.types[dupl] = i.types[dest];
5798 	  i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5799 	}
5800 
5801        if (i.tm.opcode_modifier.immext)
5802 	 process_immext ();
5803     }
5804   else if (i.tm.opcode_modifier.firstxmm0)
5805     {
5806       unsigned int j;
5807 
5808       /* The first operand is implicit and must be xmm0/ymm0/zmm0.  */
5809       gas_assert (i.reg_operands
5810 		  && (operand_type_equal (&i.types[0], &regxmm)
5811 		      || operand_type_equal (&i.types[0], &regymm)
5812 		      || operand_type_equal (&i.types[0], &regzmm)));
5813       if (register_number (i.op[0].regs) != 0)
5814 	return bad_implicit_operand (i.types[0].bitfield.regxmm);
5815 
5816       for (j = 1; j < i.operands; j++)
5817 	{
5818 	  i.op[j - 1] = i.op[j];
5819 	  i.types[j - 1] = i.types[j];
5820 
5821 	  /* We need to adjust fields in i.tm since they are used by
5822 	     build_modrm_byte.  */
5823 	  i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5824 	}
5825 
5826       i.operands--;
5827       i.reg_operands--;
5828       i.tm.operands--;
5829     }
5830   else if (i.tm.opcode_modifier.regkludge)
5831     {
5832       /* The imul $imm, %reg instruction is converted into
5833 	 imul $imm, %reg, %reg, and the clr %reg instruction
5834 	 is converted into xor %reg, %reg.  */
5835 
5836       unsigned int first_reg_op;
5837 
5838       if (operand_type_check (i.types[0], reg))
5839 	first_reg_op = 0;
5840       else
5841 	first_reg_op = 1;
5842       /* Pretend we saw the extra register operand.  */
5843       gas_assert (i.reg_operands == 1
5844 		  && i.op[first_reg_op + 1].regs == 0);
5845       i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5846       i.types[first_reg_op + 1] = i.types[first_reg_op];
5847       i.operands++;
5848       i.reg_operands++;
5849     }
5850 
5851   if (i.tm.opcode_modifier.shortform)
5852     {
5853       if (i.types[0].bitfield.sreg2
5854 	  || i.types[0].bitfield.sreg3)
5855 	{
5856 	  if (i.tm.base_opcode == POP_SEG_SHORT
5857 	      && i.op[0].regs->reg_num == 1)
5858 	    {
5859 	      as_bad (_("you can't `pop %scs'"), register_prefix);
5860 	      return 0;
5861 	    }
5862 	  i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5863 	  if ((i.op[0].regs->reg_flags & RegRex) != 0)
5864 	    i.rex |= REX_B;
5865 	}
5866       else
5867 	{
5868 	  /* The register or float register operand is in operand
5869 	     0 or 1.  */
5870 	  unsigned int op;
5871 
5872 	  if (i.types[0].bitfield.floatreg
5873 	      || operand_type_check (i.types[0], reg))
5874 	    op = 0;
5875 	  else
5876 	    op = 1;
5877 	  /* Register goes in low 3 bits of opcode.  */
5878 	  i.tm.base_opcode |= i.op[op].regs->reg_num;
5879 	  if ((i.op[op].regs->reg_flags & RegRex) != 0)
5880 	    i.rex |= REX_B;
5881 	  if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5882 	    {
5883 	      /* Warn about some common errors, but press on regardless.
5884 		 The first case can be generated by gcc (<= 2.8.1).  */
5885 	      if (i.operands == 2)
5886 		{
5887 		  /* Reversed arguments on faddp, fsubp, etc.  */
5888 		  as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5889 			   register_prefix, i.op[!intel_syntax].regs->reg_name,
5890 			   register_prefix, i.op[intel_syntax].regs->reg_name);
5891 		}
5892 	      else
5893 		{
5894 		  /* Extraneous `l' suffix on fp insn.  */
5895 		  as_warn (_("translating to `%s %s%s'"), i.tm.name,
5896 			   register_prefix, i.op[0].regs->reg_name);
5897 		}
5898 	    }
5899 	}
5900     }
5901   else if (i.tm.opcode_modifier.modrm)
5902     {
5903       /* The opcode is completed (modulo i.tm.extension_opcode which
5904 	 must be put into the modrm byte).  Now, we make the modrm and
5905 	 index base bytes based on all the info we've collected.  */
5906 
5907       default_seg = build_modrm_byte ();
5908     }
5909   else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5910     {
5911       default_seg = &ds;
5912     }
5913   else if (i.tm.opcode_modifier.isstring)
5914     {
5915       /* For the string instructions that allow a segment override
5916 	 on one of their operands, the default segment is ds.  */
5917       default_seg = &ds;
5918     }
5919 
5920   if (i.tm.base_opcode == 0x8d /* lea */
5921       && i.seg[0]
5922       && !quiet_warnings)
5923     as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5924 
5925   /* If a segment was explicitly specified, and the specified segment
5926      is not the default, use an opcode prefix to select it.  If we
5927      never figured out what the default segment is, then default_seg
5928      will be zero at this point, and the specified segment prefix will
5929      always be used.  */
5930   if ((i.seg[0]) && (i.seg[0] != default_seg))
5931     {
5932       if (!add_prefix (i.seg[0]->seg_prefix))
5933 	return 0;
5934     }
5935   return 1;
5936 }
5937 
5938 static const seg_entry *
build_modrm_byte(void)5939 build_modrm_byte (void)
5940 {
5941   const seg_entry *default_seg = 0;
5942   unsigned int source, dest;
5943   int vex_3_sources;
5944 
5945   /* The first operand of instructions with VEX prefix and 3 sources
5946      must be VEX_Imm4.  */
5947   vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5948   if (vex_3_sources)
5949     {
5950       unsigned int nds, reg_slot;
5951       expressionS *exp;
5952 
5953       if (i.tm.opcode_modifier.veximmext
5954           && i.tm.opcode_modifier.immext)
5955         {
5956           dest = i.operands - 2;
5957           gas_assert (dest == 3);
5958         }
5959       else
5960         dest = i.operands - 1;
5961       nds = dest - 1;
5962 
5963       /* There are 2 kinds of instructions:
5964          1. 5 operands: 4 register operands or 3 register operands
5965          plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5966          VexW0 or VexW1.  The destination must be either XMM, YMM or
5967 	 ZMM register.
5968          2. 4 operands: 4 register operands or 3 register operands
5969          plus 1 memory operand, VexXDS, and VexImmExt  */
5970       gas_assert ((i.reg_operands == 4
5971                    || (i.reg_operands == 3 && i.mem_operands == 1))
5972                   && i.tm.opcode_modifier.vexvvvv == VEXXDS
5973                   && (i.tm.opcode_modifier.veximmext
5974                       || (i.imm_operands == 1
5975                           && i.types[0].bitfield.vec_imm4
5976                           && (i.tm.opcode_modifier.vexw == VEXW0
5977                               || i.tm.opcode_modifier.vexw == VEXW1)
5978                           && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5979                               || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5980                               || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5981 
5982       if (i.imm_operands == 0)
5983         {
5984           /* When there is no immediate operand, generate an 8bit
5985              immediate operand to encode the first operand.  */
5986           exp = &im_expressions[i.imm_operands++];
5987           i.op[i.operands].imms = exp;
5988           i.types[i.operands] = imm8;
5989           i.operands++;
5990           /* If VexW1 is set, the first operand is the source and
5991              the second operand is encoded in the immediate operand.  */
5992           if (i.tm.opcode_modifier.vexw == VEXW1)
5993             {
5994               source = 0;
5995               reg_slot = 1;
5996             }
5997           else
5998             {
5999               source = 1;
6000               reg_slot = 0;
6001             }
6002 
6003           /* FMA swaps REG and NDS.  */
6004           if (i.tm.cpu_flags.bitfield.cpufma)
6005             {
6006               unsigned int tmp;
6007               tmp = reg_slot;
6008               reg_slot = nds;
6009               nds = tmp;
6010             }
6011 
6012           gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6013 					  &regxmm)
6014                       || operand_type_equal (&i.tm.operand_types[reg_slot],
6015                                              &regymm)
6016                       || operand_type_equal (&i.tm.operand_types[reg_slot],
6017                                              &regzmm));
6018           exp->X_op = O_constant;
6019           exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6020 	  gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6021 	}
6022       else
6023         {
6024           unsigned int imm_slot;
6025 
6026           if (i.tm.opcode_modifier.vexw == VEXW0)
6027             {
6028               /* If VexW0 is set, the third operand is the source and
6029                  the second operand is encoded in the immediate
6030                  operand.  */
6031               source = 2;
6032               reg_slot = 1;
6033             }
6034           else
6035             {
6036               /* VexW1 is set, the second operand is the source and
6037                  the third operand is encoded in the immediate
6038                  operand.  */
6039               source = 1;
6040               reg_slot = 2;
6041             }
6042 
6043           if (i.tm.opcode_modifier.immext)
6044             {
6045               /* When ImmExt is set, the immdiate byte is the last
6046                  operand.  */
6047               imm_slot = i.operands - 1;
6048               source--;
6049               reg_slot--;
6050             }
6051           else
6052             {
6053               imm_slot = 0;
6054 
6055               /* Turn on Imm8 so that output_imm will generate it.  */
6056               i.types[imm_slot].bitfield.imm8 = 1;
6057             }
6058 
6059           gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6060 					  &regxmm)
6061 		      || operand_type_equal (&i.tm.operand_types[reg_slot],
6062 					     &regymm)
6063 		      || operand_type_equal (&i.tm.operand_types[reg_slot],
6064 					     &regzmm));
6065           i.op[imm_slot].imms->X_add_number
6066               |= register_number (i.op[reg_slot].regs) << 4;
6067 	  gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6068         }
6069 
6070       gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6071                   || operand_type_equal (&i.tm.operand_types[nds],
6072                                          &regymm)
6073                   || operand_type_equal (&i.tm.operand_types[nds],
6074                                          &regzmm));
6075       i.vex.register_specifier = i.op[nds].regs;
6076     }
6077   else
6078     source = dest = 0;
6079 
6080   /* i.reg_operands MUST be the number of real register operands;
6081      implicit registers do not count.  If there are 3 register
6082      operands, it must be a instruction with VexNDS.  For a
6083      instruction with VexNDD, the destination register is encoded
6084      in VEX prefix.  If there are 4 register operands, it must be
6085      a instruction with VEX prefix and 3 sources.  */
6086   if (i.mem_operands == 0
6087       && ((i.reg_operands == 2
6088 	   && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6089 	  || (i.reg_operands == 3
6090 	      && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6091 	  || (i.reg_operands == 4 && vex_3_sources)))
6092     {
6093       switch (i.operands)
6094 	{
6095 	case 2:
6096 	  source = 0;
6097 	  break;
6098 	case 3:
6099 	  /* When there are 3 operands, one of them may be immediate,
6100 	     which may be the first or the last operand.  Otherwise,
6101 	     the first operand must be shift count register (cl) or it
6102 	     is an instruction with VexNDS. */
6103 	  gas_assert (i.imm_operands == 1
6104 		      || (i.imm_operands == 0
6105 			  && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6106 			      || i.types[0].bitfield.shiftcount)));
6107 	  if (operand_type_check (i.types[0], imm)
6108 	      || i.types[0].bitfield.shiftcount)
6109 	    source = 1;
6110 	  else
6111 	    source = 0;
6112 	  break;
6113 	case 4:
6114 	  /* When there are 4 operands, the first two must be 8bit
6115 	     immediate operands. The source operand will be the 3rd
6116 	     one.
6117 
6118 	     For instructions with VexNDS, if the first operand
6119 	     an imm8, the source operand is the 2nd one.  If the last
6120 	     operand is imm8, the source operand is the first one.  */
6121 	  gas_assert ((i.imm_operands == 2
6122 		       && i.types[0].bitfield.imm8
6123 		       && i.types[1].bitfield.imm8)
6124 		      || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6125 			  && i.imm_operands == 1
6126 			  && (i.types[0].bitfield.imm8
6127 			      || i.types[i.operands - 1].bitfield.imm8
6128 			      || i.rounding)));
6129 	  if (i.imm_operands == 2)
6130 	    source = 2;
6131 	  else
6132 	    {
6133 	      if (i.types[0].bitfield.imm8)
6134 		source = 1;
6135 	      else
6136 		source = 0;
6137 	    }
6138 	  break;
6139 	case 5:
6140 	  if (i.tm.opcode_modifier.evex)
6141 	    {
6142 	      /* For EVEX instructions, when there are 5 operands, the
6143 		 first one must be immediate operand.  If the second one
6144 		 is immediate operand, the source operand is the 3th
6145 		 one.  If the last one is immediate operand, the source
6146 		 operand is the 2nd one.  */
6147 	      gas_assert (i.imm_operands == 2
6148 			  && i.tm.opcode_modifier.sae
6149 			  && operand_type_check (i.types[0], imm));
6150 	      if (operand_type_check (i.types[1], imm))
6151 		source = 2;
6152 	      else if (operand_type_check (i.types[4], imm))
6153 		source = 1;
6154 	      else
6155 		abort ();
6156 	    }
6157 	  break;
6158 	default:
6159 	  abort ();
6160 	}
6161 
6162       if (!vex_3_sources)
6163 	{
6164 	  dest = source + 1;
6165 
6166 	  /* RC/SAE operand could be between DEST and SRC.  That happens
6167 	     when one operand is GPR and the other one is XMM/YMM/ZMM
6168 	     register.  */
6169 	  if (i.rounding && i.rounding->operand == (int) dest)
6170 	    dest++;
6171 
6172 	  if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6173 	    {
6174 	      /* For instructions with VexNDS, the register-only source
6175 		 operand must be 32/64bit integer, XMM, YMM or ZMM
6176 		 register.  It is encoded in VEX prefix.  We need to
6177 		 clear RegMem bit before calling operand_type_equal.  */
6178 
6179 	      i386_operand_type op;
6180 	      unsigned int vvvv;
6181 
6182 	      /* Check register-only source operand when two source
6183 		 operands are swapped.  */
6184 	      if (!i.tm.operand_types[source].bitfield.baseindex
6185 		  && i.tm.operand_types[dest].bitfield.baseindex)
6186 		{
6187 		  vvvv = source;
6188 		  source = dest;
6189 		}
6190 	      else
6191 		vvvv = dest;
6192 
6193 	      op = i.tm.operand_types[vvvv];
6194 	      op.bitfield.regmem = 0;
6195 	      if ((dest + 1) >= i.operands
6196 		  || (!op.bitfield.reg32
6197 		      && op.bitfield.reg64
6198 		      && !operand_type_equal (&op, &regxmm)
6199 		      && !operand_type_equal (&op, &regymm)
6200 		      && !operand_type_equal (&op, &regzmm)
6201 		      && !operand_type_equal (&op, &regmask)))
6202 		abort ();
6203 	      i.vex.register_specifier = i.op[vvvv].regs;
6204 	      dest++;
6205 	    }
6206 	}
6207 
6208       i.rm.mode = 3;
6209       /* One of the register operands will be encoded in the i.tm.reg
6210 	 field, the other in the combined i.tm.mode and i.tm.regmem
6211 	 fields.  If no form of this instruction supports a memory
6212 	 destination operand, then we assume the source operand may
6213 	 sometimes be a memory operand and so we need to store the
6214 	 destination in the i.rm.reg field.  */
6215       if (!i.tm.operand_types[dest].bitfield.regmem
6216 	  && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6217 	{
6218 	  i.rm.reg = i.op[dest].regs->reg_num;
6219 	  i.rm.regmem = i.op[source].regs->reg_num;
6220 	  if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6221 	    i.rex |= REX_R;
6222 	  if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6223 	    i.vrex |= REX_R;
6224 	  if ((i.op[source].regs->reg_flags & RegRex) != 0)
6225 	    i.rex |= REX_B;
6226 	  if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6227 	    i.vrex |= REX_B;
6228 	}
6229       else
6230 	{
6231 	  i.rm.reg = i.op[source].regs->reg_num;
6232 	  i.rm.regmem = i.op[dest].regs->reg_num;
6233 	  if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6234 	    i.rex |= REX_B;
6235 	  if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6236 	    i.vrex |= REX_B;
6237 	  if ((i.op[source].regs->reg_flags & RegRex) != 0)
6238 	    i.rex |= REX_R;
6239 	  if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6240 	    i.vrex |= REX_R;
6241 	}
6242       if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6243 	{
6244 	  if (!i.types[0].bitfield.control
6245 	      && !i.types[1].bitfield.control)
6246 	    abort ();
6247 	  i.rex &= ~(REX_R | REX_B);
6248 	  add_prefix (LOCK_PREFIX_OPCODE);
6249 	}
6250     }
6251   else
6252     {			/* If it's not 2 reg operands...  */
6253       unsigned int mem;
6254 
6255       if (i.mem_operands)
6256 	{
6257 	  unsigned int fake_zero_displacement = 0;
6258 	  unsigned int op;
6259 
6260 	  for (op = 0; op < i.operands; op++)
6261 	    if (operand_type_check (i.types[op], anymem))
6262 	      break;
6263 	  gas_assert (op < i.operands);
6264 
6265 	  if (i.tm.opcode_modifier.vecsib)
6266 	    {
6267 	      if (i.index_reg->reg_num == RegEiz
6268 		  || i.index_reg->reg_num == RegRiz)
6269 		abort ();
6270 
6271 	      i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6272 	      if (!i.base_reg)
6273 		{
6274 		  i.sib.base = NO_BASE_REGISTER;
6275 		  i.sib.scale = i.log2_scale_factor;
6276 		  /* No Vec_Disp8 if there is no base.  */
6277 		  i.types[op].bitfield.vec_disp8 = 0;
6278 		  i.types[op].bitfield.disp8 = 0;
6279 		  i.types[op].bitfield.disp16 = 0;
6280 		  i.types[op].bitfield.disp64 = 0;
6281 		  if (flag_code != CODE_64BIT)
6282 		    {
6283 		      /* Must be 32 bit */
6284 		      i.types[op].bitfield.disp32 = 1;
6285 		      i.types[op].bitfield.disp32s = 0;
6286 		    }
6287 		  else
6288 		    {
6289 		      i.types[op].bitfield.disp32 = 0;
6290 		      i.types[op].bitfield.disp32s = 1;
6291 		    }
6292 		}
6293 	      i.sib.index = i.index_reg->reg_num;
6294 	      if ((i.index_reg->reg_flags & RegRex) != 0)
6295 		i.rex |= REX_X;
6296 	      if ((i.index_reg->reg_flags & RegVRex) != 0)
6297 		i.vrex |= REX_X;
6298 	    }
6299 
6300 	  default_seg = &ds;
6301 
6302 	  if (i.base_reg == 0)
6303 	    {
6304 	      i.rm.mode = 0;
6305 	      if (!i.disp_operands)
6306 		{
6307 		  fake_zero_displacement = 1;
6308 		  /* Instructions with VSIB byte need 32bit displacement
6309 		     if there is no base register.  */
6310 		  if (i.tm.opcode_modifier.vecsib)
6311 		    i.types[op].bitfield.disp32 = 1;
6312 		}
6313 	      if (i.index_reg == 0)
6314 		{
6315 		  gas_assert (!i.tm.opcode_modifier.vecsib);
6316 		  /* Operand is just <disp>  */
6317 		  if (flag_code == CODE_64BIT)
6318 		    {
6319 		      /* 64bit mode overwrites the 32bit absolute
6320 			 addressing by RIP relative addressing and
6321 			 absolute addressing is encoded by one of the
6322 			 redundant SIB forms.  */
6323 		      i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6324 		      i.sib.base = NO_BASE_REGISTER;
6325 		      i.sib.index = NO_INDEX_REGISTER;
6326 		      i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6327 				     ? disp32s : disp32);
6328 		    }
6329 		  else if ((flag_code == CODE_16BIT)
6330 			   ^ (i.prefix[ADDR_PREFIX] != 0))
6331 		    {
6332 		      i.rm.regmem = NO_BASE_REGISTER_16;
6333 		      i.types[op] = disp16;
6334 		    }
6335 		  else
6336 		    {
6337 		      i.rm.regmem = NO_BASE_REGISTER;
6338 		      i.types[op] = disp32;
6339 		    }
6340 		}
6341 	      else if (!i.tm.opcode_modifier.vecsib)
6342 		{
6343 		  /* !i.base_reg && i.index_reg  */
6344 		  if (i.index_reg->reg_num == RegEiz
6345 		      || i.index_reg->reg_num == RegRiz)
6346 		    i.sib.index = NO_INDEX_REGISTER;
6347 		  else
6348 		    i.sib.index = i.index_reg->reg_num;
6349 		  i.sib.base = NO_BASE_REGISTER;
6350 		  i.sib.scale = i.log2_scale_factor;
6351 		  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6352 		  /* No Vec_Disp8 if there is no base.  */
6353 		  i.types[op].bitfield.vec_disp8 = 0;
6354 		  i.types[op].bitfield.disp8 = 0;
6355 		  i.types[op].bitfield.disp16 = 0;
6356 		  i.types[op].bitfield.disp64 = 0;
6357 		  if (flag_code != CODE_64BIT)
6358 		    {
6359 		      /* Must be 32 bit */
6360 		      i.types[op].bitfield.disp32 = 1;
6361 		      i.types[op].bitfield.disp32s = 0;
6362 		    }
6363 		  else
6364 		    {
6365 		      i.types[op].bitfield.disp32 = 0;
6366 		      i.types[op].bitfield.disp32s = 1;
6367 		    }
6368 		  if ((i.index_reg->reg_flags & RegRex) != 0)
6369 		    i.rex |= REX_X;
6370 		}
6371 	    }
6372 	  /* RIP addressing for 64bit mode.  */
6373 	  else if (i.base_reg->reg_num == RegRip ||
6374 		   i.base_reg->reg_num == RegEip)
6375 	    {
6376 	      gas_assert (!i.tm.opcode_modifier.vecsib);
6377 	      i.rm.regmem = NO_BASE_REGISTER;
6378 	      i.types[op].bitfield.disp8 = 0;
6379 	      i.types[op].bitfield.disp16 = 0;
6380 	      i.types[op].bitfield.disp32 = 0;
6381 	      i.types[op].bitfield.disp32s = 1;
6382 	      i.types[op].bitfield.disp64 = 0;
6383 	      i.types[op].bitfield.vec_disp8 = 0;
6384 	      i.flags[op] |= Operand_PCrel;
6385 	      if (! i.disp_operands)
6386 		fake_zero_displacement = 1;
6387 	    }
6388 	  else if (i.base_reg->reg_type.bitfield.reg16)
6389 	    {
6390 	      gas_assert (!i.tm.opcode_modifier.vecsib);
6391 	      switch (i.base_reg->reg_num)
6392 		{
6393 		case 3: /* (%bx)  */
6394 		  if (i.index_reg == 0)
6395 		    i.rm.regmem = 7;
6396 		  else /* (%bx,%si) -> 0, or (%bx,%di) -> 1  */
6397 		    i.rm.regmem = i.index_reg->reg_num - 6;
6398 		  break;
6399 		case 5: /* (%bp)  */
6400 		  default_seg = &ss;
6401 		  if (i.index_reg == 0)
6402 		    {
6403 		      i.rm.regmem = 6;
6404 		      if (operand_type_check (i.types[op], disp) == 0)
6405 			{
6406 			  /* fake (%bp) into 0(%bp)  */
6407 			  if (i.tm.operand_types[op].bitfield.vec_disp8)
6408 			    i.types[op].bitfield.vec_disp8 = 1;
6409 			  else
6410 			    i.types[op].bitfield.disp8 = 1;
6411 			  fake_zero_displacement = 1;
6412 			}
6413 		    }
6414 		  else /* (%bp,%si) -> 2, or (%bp,%di) -> 3  */
6415 		    i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6416 		  break;
6417 		default: /* (%si) -> 4 or (%di) -> 5  */
6418 		  i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6419 		}
6420 	      i.rm.mode = mode_from_disp_size (i.types[op]);
6421 	    }
6422 	  else /* i.base_reg and 32/64 bit mode  */
6423 	    {
6424 	      if (flag_code == CODE_64BIT
6425 		  && operand_type_check (i.types[op], disp))
6426 		{
6427 		  i386_operand_type temp;
6428 		  operand_type_set (&temp, 0);
6429 		  temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6430 		  temp.bitfield.vec_disp8
6431 		    = i.types[op].bitfield.vec_disp8;
6432 		  i.types[op] = temp;
6433 		  if (i.prefix[ADDR_PREFIX] == 0)
6434 		    i.types[op].bitfield.disp32s = 1;
6435 		  else
6436 		    i.types[op].bitfield.disp32 = 1;
6437 		}
6438 
6439 	      if (!i.tm.opcode_modifier.vecsib)
6440 		i.rm.regmem = i.base_reg->reg_num;
6441 	      if ((i.base_reg->reg_flags & RegRex) != 0)
6442 		i.rex |= REX_B;
6443 	      i.sib.base = i.base_reg->reg_num;
6444 	      /* x86-64 ignores REX prefix bit here to avoid decoder
6445 		 complications.  */
6446 	      if (!(i.base_reg->reg_flags & RegRex)
6447 		  && (i.base_reg->reg_num == EBP_REG_NUM
6448 		   || i.base_reg->reg_num == ESP_REG_NUM))
6449 		  default_seg = &ss;
6450 	      if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6451 		{
6452 		  fake_zero_displacement = 1;
6453 		  if (i.tm.operand_types [op].bitfield.vec_disp8)
6454 		    i.types[op].bitfield.vec_disp8 = 1;
6455 		  else
6456 		    i.types[op].bitfield.disp8 = 1;
6457 		}
6458 	      i.sib.scale = i.log2_scale_factor;
6459 	      if (i.index_reg == 0)
6460 		{
6461 		  gas_assert (!i.tm.opcode_modifier.vecsib);
6462 		  /* <disp>(%esp) becomes two byte modrm with no index
6463 		     register.  We've already stored the code for esp
6464 		     in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6465 		     Any base register besides %esp will not use the
6466 		     extra modrm byte.  */
6467 		  i.sib.index = NO_INDEX_REGISTER;
6468 		}
6469 	      else if (!i.tm.opcode_modifier.vecsib)
6470 		{
6471 		  if (i.index_reg->reg_num == RegEiz
6472 		      || i.index_reg->reg_num == RegRiz)
6473 		    i.sib.index = NO_INDEX_REGISTER;
6474 		  else
6475 		    i.sib.index = i.index_reg->reg_num;
6476 		  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6477 		  if ((i.index_reg->reg_flags & RegRex) != 0)
6478 		    i.rex |= REX_X;
6479 		}
6480 
6481 	      if (i.disp_operands
6482 		  && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6483 		      || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6484 		i.rm.mode = 0;
6485 	      else
6486 		{
6487 		  if (!fake_zero_displacement
6488 		      && !i.disp_operands
6489 		      && i.disp_encoding)
6490 		    {
6491 		      fake_zero_displacement = 1;
6492 		      if (i.disp_encoding == disp_encoding_8bit)
6493 			i.types[op].bitfield.disp8 = 1;
6494 		      else
6495 			i.types[op].bitfield.disp32 = 1;
6496 		    }
6497 		  i.rm.mode = mode_from_disp_size (i.types[op]);
6498 		}
6499 	    }
6500 
6501 	  if (fake_zero_displacement)
6502 	    {
6503 	      /* Fakes a zero displacement assuming that i.types[op]
6504 		 holds the correct displacement size.  */
6505 	      expressionS *exp;
6506 
6507 	      gas_assert (i.op[op].disps == 0);
6508 	      exp = &disp_expressions[i.disp_operands++];
6509 	      i.op[op].disps = exp;
6510 	      exp->X_op = O_constant;
6511 	      exp->X_add_number = 0;
6512 	      exp->X_add_symbol = (symbolS *) 0;
6513 	      exp->X_op_symbol = (symbolS *) 0;
6514 	    }
6515 
6516 	  mem = op;
6517 	}
6518       else
6519 	mem = ~0;
6520 
6521       if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6522 	{
6523 	  if (operand_type_check (i.types[0], imm))
6524 	    i.vex.register_specifier = NULL;
6525 	  else
6526 	    {
6527 	      /* VEX.vvvv encodes one of the sources when the first
6528 		 operand is not an immediate.  */
6529 	      if (i.tm.opcode_modifier.vexw == VEXW0)
6530 		i.vex.register_specifier = i.op[0].regs;
6531 	      else
6532 		i.vex.register_specifier = i.op[1].regs;
6533 	    }
6534 
6535 	  /* Destination is a XMM register encoded in the ModRM.reg
6536 	     and VEX.R bit.  */
6537 	  i.rm.reg = i.op[2].regs->reg_num;
6538 	  if ((i.op[2].regs->reg_flags & RegRex) != 0)
6539 	    i.rex |= REX_R;
6540 
6541 	  /* ModRM.rm and VEX.B encodes the other source.  */
6542 	  if (!i.mem_operands)
6543 	    {
6544 	      i.rm.mode = 3;
6545 
6546 	      if (i.tm.opcode_modifier.vexw == VEXW0)
6547 		i.rm.regmem = i.op[1].regs->reg_num;
6548 	      else
6549 		i.rm.regmem = i.op[0].regs->reg_num;
6550 
6551 	      if ((i.op[1].regs->reg_flags & RegRex) != 0)
6552 		i.rex |= REX_B;
6553 	    }
6554 	}
6555       else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6556 	{
6557 	  i.vex.register_specifier = i.op[2].regs;
6558 	  if (!i.mem_operands)
6559 	    {
6560 	      i.rm.mode = 3;
6561 	      i.rm.regmem = i.op[1].regs->reg_num;
6562 	      if ((i.op[1].regs->reg_flags & RegRex) != 0)
6563 		i.rex |= REX_B;
6564 	    }
6565 	}
6566       /* Fill in i.rm.reg or i.rm.regmem field with register operand
6567 	 (if any) based on i.tm.extension_opcode.  Again, we must be
6568 	 careful to make sure that segment/control/debug/test/MMX
6569 	 registers are coded into the i.rm.reg field.  */
6570       else if (i.reg_operands)
6571 	{
6572 	  unsigned int op;
6573 	  unsigned int vex_reg = ~0;
6574 
6575 	  for (op = 0; op < i.operands; op++)
6576 	    if (i.types[op].bitfield.reg8
6577 		|| i.types[op].bitfield.reg16
6578 		|| i.types[op].bitfield.reg32
6579 		|| i.types[op].bitfield.reg64
6580 		|| i.types[op].bitfield.regmmx
6581 		|| i.types[op].bitfield.regxmm
6582 		|| i.types[op].bitfield.regymm
6583 		|| i.types[op].bitfield.regbnd
6584 		|| i.types[op].bitfield.regzmm
6585 		|| i.types[op].bitfield.regmask
6586 		|| i.types[op].bitfield.sreg2
6587 		|| i.types[op].bitfield.sreg3
6588 		|| i.types[op].bitfield.control
6589 		|| i.types[op].bitfield.debug
6590 		|| i.types[op].bitfield.test)
6591 	      break;
6592 
6593 	  if (vex_3_sources)
6594 	    op = dest;
6595 	  else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6596 	    {
6597 	      /* For instructions with VexNDS, the register-only
6598 		 source operand is encoded in VEX prefix. */
6599 	      gas_assert (mem != (unsigned int) ~0);
6600 
6601 	      if (op > mem)
6602 		{
6603 		  vex_reg = op++;
6604 		  gas_assert (op < i.operands);
6605 		}
6606 	      else
6607 		{
6608 		  /* Check register-only source operand when two source
6609 		     operands are swapped.  */
6610 		  if (!i.tm.operand_types[op].bitfield.baseindex
6611 		      && i.tm.operand_types[op + 1].bitfield.baseindex)
6612 		    {
6613 		      vex_reg = op;
6614 		      op += 2;
6615 		      gas_assert (mem == (vex_reg + 1)
6616 				  && op < i.operands);
6617 		    }
6618 		  else
6619 		    {
6620 		      vex_reg = op + 1;
6621 		      gas_assert (vex_reg < i.operands);
6622 		    }
6623 		}
6624 	    }
6625 	  else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6626 	    {
6627 	      /* For instructions with VexNDD, the register destination
6628 		 is encoded in VEX prefix.  */
6629 	      if (i.mem_operands == 0)
6630 		{
6631 		  /* There is no memory operand.  */
6632 		  gas_assert ((op + 2) == i.operands);
6633 		  vex_reg = op + 1;
6634 		}
6635 	      else
6636 		{
6637 		  /* There are only 2 operands.  */
6638 		  gas_assert (op < 2 && i.operands == 2);
6639 		  vex_reg = 1;
6640 		}
6641 	    }
6642 	  else
6643 	    gas_assert (op < i.operands);
6644 
6645 	  if (vex_reg != (unsigned int) ~0)
6646 	    {
6647 	      i386_operand_type *type = &i.tm.operand_types[vex_reg];
6648 
6649 	      if (type->bitfield.reg32 != 1
6650 		  && type->bitfield.reg64 != 1
6651 		  && !operand_type_equal (type, &regxmm)
6652 		  && !operand_type_equal (type, &regymm)
6653 		  && !operand_type_equal (type, &regzmm)
6654 		  && !operand_type_equal (type, &regmask))
6655 		abort ();
6656 
6657 	      i.vex.register_specifier = i.op[vex_reg].regs;
6658 	    }
6659 
6660 	  /* Don't set OP operand twice.  */
6661 	  if (vex_reg != op)
6662 	    {
6663 	      /* If there is an extension opcode to put here, the
6664 		 register number must be put into the regmem field.  */
6665 	      if (i.tm.extension_opcode != None)
6666 		{
6667 		  i.rm.regmem = i.op[op].regs->reg_num;
6668 		  if ((i.op[op].regs->reg_flags & RegRex) != 0)
6669 		    i.rex |= REX_B;
6670 		  if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6671 		    i.vrex |= REX_B;
6672 		}
6673 	      else
6674 		{
6675 		  i.rm.reg = i.op[op].regs->reg_num;
6676 		  if ((i.op[op].regs->reg_flags & RegRex) != 0)
6677 		    i.rex |= REX_R;
6678 		  if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6679 		    i.vrex |= REX_R;
6680 		}
6681 	    }
6682 
6683 	  /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6684 	     must set it to 3 to indicate this is a register operand
6685 	     in the regmem field.  */
6686 	  if (!i.mem_operands)
6687 	    i.rm.mode = 3;
6688 	}
6689 
6690       /* Fill in i.rm.reg field with extension opcode (if any).  */
6691       if (i.tm.extension_opcode != None)
6692 	i.rm.reg = i.tm.extension_opcode;
6693     }
6694   return default_seg;
6695 }
6696 
6697 static void
output_branch(void)6698 output_branch (void)
6699 {
6700   char *p;
6701   int size;
6702   int code16;
6703   int prefix;
6704   relax_substateT subtype;
6705   symbolS *sym;
6706   offsetT off;
6707 
6708   code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6709   size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6710 
6711   prefix = 0;
6712   if (i.prefix[DATA_PREFIX] != 0)
6713     {
6714       prefix = 1;
6715       i.prefixes -= 1;
6716       code16 ^= CODE16;
6717     }
6718   /* Pentium4 branch hints.  */
6719   if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6720       || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6721     {
6722       prefix++;
6723       i.prefixes--;
6724     }
6725   if (i.prefix[REX_PREFIX] != 0)
6726     {
6727       prefix++;
6728       i.prefixes--;
6729     }
6730 
6731   /* BND prefixed jump.  */
6732   if (i.prefix[BND_PREFIX] != 0)
6733     {
6734       FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6735       i.prefixes -= 1;
6736     }
6737 
6738   if (i.prefixes != 0 && !intel_syntax)
6739     as_warn (_("skipping prefixes on this instruction"));
6740 
6741   /* It's always a symbol;  End frag & setup for relax.
6742      Make sure there is enough room in this frag for the largest
6743      instruction we may generate in md_convert_frag.  This is 2
6744      bytes for the opcode and room for the prefix and largest
6745      displacement.  */
6746   frag_grow (prefix + 2 + 4);
6747   /* Prefix and 1 opcode byte go in fr_fix.  */
6748   p = frag_more (prefix + 1);
6749   if (i.prefix[DATA_PREFIX] != 0)
6750     *p++ = DATA_PREFIX_OPCODE;
6751   if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6752       || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6753     *p++ = i.prefix[SEG_PREFIX];
6754   if (i.prefix[REX_PREFIX] != 0)
6755     *p++ = i.prefix[REX_PREFIX];
6756   *p = i.tm.base_opcode;
6757 
6758   if ((unsigned char) *p == JUMP_PC_RELATIVE)
6759     subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6760   else if (cpu_arch_flags.bitfield.cpui386)
6761     subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6762   else
6763     subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6764   subtype |= code16;
6765 
6766   sym = i.op[0].disps->X_add_symbol;
6767   off = i.op[0].disps->X_add_number;
6768 
6769   if (i.op[0].disps->X_op != O_constant
6770       && i.op[0].disps->X_op != O_symbol)
6771     {
6772       /* Handle complex expressions.  */
6773       sym = make_expr_symbol (i.op[0].disps);
6774       off = 0;
6775     }
6776 
6777   /* 1 possible extra opcode + 4 byte displacement go in var part.
6778      Pass reloc in fr_var.  */
6779   frag_var (rs_machine_dependent, 5,
6780 	    ((!object_64bit
6781 	      || i.reloc[0] != NO_RELOC
6782 	      || (i.bnd_prefix == NULL && !add_bnd_prefix))
6783 	     ? i.reloc[0]
6784 	     : BFD_RELOC_X86_64_PC32_BND),
6785 	    subtype, sym, off, p);
6786 }
6787 
6788 static void
output_jump(void)6789 output_jump (void)
6790 {
6791   char *p;
6792   int size;
6793   fixS *fixP;
6794 
6795   if (i.tm.opcode_modifier.jumpbyte)
6796     {
6797       /* This is a loop or jecxz type instruction.  */
6798       size = 1;
6799       if (i.prefix[ADDR_PREFIX] != 0)
6800 	{
6801 	  FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6802 	  i.prefixes -= 1;
6803 	}
6804       /* Pentium4 branch hints.  */
6805       if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6806 	  || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6807 	{
6808 	  FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6809 	  i.prefixes--;
6810 	}
6811     }
6812   else
6813     {
6814       int code16;
6815 
6816       code16 = 0;
6817       if (flag_code == CODE_16BIT)
6818 	code16 = CODE16;
6819 
6820       if (i.prefix[DATA_PREFIX] != 0)
6821 	{
6822 	  FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6823 	  i.prefixes -= 1;
6824 	  code16 ^= CODE16;
6825 	}
6826 
6827       size = 4;
6828       if (code16)
6829 	size = 2;
6830     }
6831 
6832   if (i.prefix[REX_PREFIX] != 0)
6833     {
6834       FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6835       i.prefixes -= 1;
6836     }
6837 
6838   /* BND prefixed jump.  */
6839   if (i.prefix[BND_PREFIX] != 0)
6840     {
6841       FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6842       i.prefixes -= 1;
6843     }
6844 
6845   if (i.prefixes != 0 && !intel_syntax)
6846     as_warn (_("skipping prefixes on this instruction"));
6847 
6848   p = frag_more (i.tm.opcode_length + size);
6849   switch (i.tm.opcode_length)
6850     {
6851     case 2:
6852       *p++ = i.tm.base_opcode >> 8;
6853     case 1:
6854       *p++ = i.tm.base_opcode;
6855       break;
6856     default:
6857       abort ();
6858     }
6859 
6860   fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6861 		      i.op[0].disps, 1, reloc (size, 1, 1,
6862 					       (i.bnd_prefix != NULL
6863 						|| add_bnd_prefix),
6864 					       i.reloc[0]));
6865 
6866   /* All jumps handled here are signed, but don't use a signed limit
6867      check for 32 and 16 bit jumps as we want to allow wrap around at
6868      4G and 64k respectively.  */
6869   if (size == 1)
6870     fixP->fx_signed = 1;
6871 }
6872 
6873 static void
output_interseg_jump(void)6874 output_interseg_jump (void)
6875 {
6876   char *p;
6877   int size;
6878   int prefix;
6879   int code16;
6880 
6881   code16 = 0;
6882   if (flag_code == CODE_16BIT)
6883     code16 = CODE16;
6884 
6885   prefix = 0;
6886   if (i.prefix[DATA_PREFIX] != 0)
6887     {
6888       prefix = 1;
6889       i.prefixes -= 1;
6890       code16 ^= CODE16;
6891     }
6892   if (i.prefix[REX_PREFIX] != 0)
6893     {
6894       prefix++;
6895       i.prefixes -= 1;
6896     }
6897 
6898   size = 4;
6899   if (code16)
6900     size = 2;
6901 
6902   if (i.prefixes != 0 && !intel_syntax)
6903     as_warn (_("skipping prefixes on this instruction"));
6904 
6905   /* 1 opcode; 2 segment; offset  */
6906   p = frag_more (prefix + 1 + 2 + size);
6907 
6908   if (i.prefix[DATA_PREFIX] != 0)
6909     *p++ = DATA_PREFIX_OPCODE;
6910 
6911   if (i.prefix[REX_PREFIX] != 0)
6912     *p++ = i.prefix[REX_PREFIX];
6913 
6914   *p++ = i.tm.base_opcode;
6915   if (i.op[1].imms->X_op == O_constant)
6916     {
6917       offsetT n = i.op[1].imms->X_add_number;
6918 
6919       if (size == 2
6920 	  && !fits_in_unsigned_word (n)
6921 	  && !fits_in_signed_word (n))
6922 	{
6923 	  as_bad (_("16-bit jump out of range"));
6924 	  return;
6925 	}
6926       md_number_to_chars (p, n, size);
6927     }
6928   else
6929     fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6930 		 i.op[1].imms, 0, reloc (size, 0, 0, 0, i.reloc[1]));
6931   if (i.op[0].imms->X_op != O_constant)
6932     as_bad (_("can't handle non absolute segment in `%s'"),
6933 	    i.tm.name);
6934   md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6935 }
6936 
6937 static void
output_insn(void)6938 output_insn (void)
6939 {
6940   fragS *insn_start_frag;
6941   offsetT insn_start_off;
6942 
6943   /* Tie dwarf2 debug info to the address at the start of the insn.
6944      We can't do this after the insn has been output as the current
6945      frag may have been closed off.  eg. by frag_var.  */
6946   dwarf2_emit_insn (0);
6947 
6948   insn_start_frag = frag_now;
6949   insn_start_off = frag_now_fix ();
6950 
6951   /* Output jumps.  */
6952   if (i.tm.opcode_modifier.jump)
6953     output_branch ();
6954   else if (i.tm.opcode_modifier.jumpbyte
6955 	   || i.tm.opcode_modifier.jumpdword)
6956     output_jump ();
6957   else if (i.tm.opcode_modifier.jumpintersegment)
6958     output_interseg_jump ();
6959   else
6960     {
6961       /* Output normal instructions here.  */
6962       char *p;
6963       unsigned char *q;
6964       unsigned int j;
6965       unsigned int prefix;
6966 
6967       /* Some processors fail on LOCK prefix. This options makes
6968 	 assembler ignore LOCK prefix and serves as a workaround.  */
6969       if (omit_lock_prefix)
6970 	{
6971 	  if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
6972 	    return;
6973 	  i.prefix[LOCK_PREFIX] = 0;
6974 	}
6975 
6976       /* Since the VEX/EVEX prefix contains the implicit prefix, we
6977 	 don't need the explicit prefix.  */
6978       if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6979 	{
6980 	  switch (i.tm.opcode_length)
6981 	    {
6982 	    case 3:
6983 	      if (i.tm.base_opcode & 0xff000000)
6984 		{
6985 		  prefix = (i.tm.base_opcode >> 24) & 0xff;
6986 		  goto check_prefix;
6987 		}
6988 	      break;
6989 	    case 2:
6990 	      if ((i.tm.base_opcode & 0xff0000) != 0)
6991 		{
6992 		  prefix = (i.tm.base_opcode >> 16) & 0xff;
6993 		  if (i.tm.cpu_flags.bitfield.cpupadlock)
6994 		    {
6995 check_prefix:
6996 		      if (prefix != REPE_PREFIX_OPCODE
6997 			  || (i.prefix[REP_PREFIX]
6998 			      != REPE_PREFIX_OPCODE))
6999 			add_prefix (prefix);
7000 		    }
7001 		  else
7002 		    add_prefix (prefix);
7003 		}
7004 	      break;
7005 	    case 1:
7006 	      break;
7007 	    default:
7008 	      abort ();
7009 	    }
7010 
7011 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7012 	  /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7013 	     R_X86_64_GOTTPOFF relocation so that linker can safely
7014 	     perform IE->LE optimization.  */
7015 	  if (x86_elf_abi == X86_64_X32_ABI
7016 	      && i.operands == 2
7017 	      && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7018 	      && i.prefix[REX_PREFIX] == 0)
7019 	    add_prefix (REX_OPCODE);
7020 #endif
7021 
7022 	  /* The prefix bytes.  */
7023 	  for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7024 	    if (*q)
7025 	      FRAG_APPEND_1_CHAR (*q);
7026 	}
7027       else
7028 	{
7029 	  for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7030 	    if (*q)
7031 	      switch (j)
7032 		{
7033 		case REX_PREFIX:
7034 		  /* REX byte is encoded in VEX prefix.  */
7035 		  break;
7036 		case SEG_PREFIX:
7037 		case ADDR_PREFIX:
7038 		  FRAG_APPEND_1_CHAR (*q);
7039 		  break;
7040 		default:
7041 		  /* There should be no other prefixes for instructions
7042 		     with VEX prefix.  */
7043 		  abort ();
7044 		}
7045 
7046 	  /* For EVEX instructions i.vrex should become 0 after
7047 	     build_evex_prefix.  For VEX instructions upper 16 registers
7048 	     aren't available, so VREX should be 0.  */
7049 	  if (i.vrex)
7050 	    abort ();
7051 	  /* Now the VEX prefix.  */
7052 	  p = frag_more (i.vex.length);
7053 	  for (j = 0; j < i.vex.length; j++)
7054 	    p[j] = i.vex.bytes[j];
7055 	}
7056 
7057       /* Now the opcode; be careful about word order here!  */
7058       if (i.tm.opcode_length == 1)
7059 	{
7060 	  FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7061 	}
7062       else
7063 	{
7064 	  switch (i.tm.opcode_length)
7065 	    {
7066 	    case 4:
7067 	      p = frag_more (4);
7068 	      *p++ = (i.tm.base_opcode >> 24) & 0xff;
7069 	      *p++ = (i.tm.base_opcode >> 16) & 0xff;
7070 	      break;
7071 	    case 3:
7072 	      p = frag_more (3);
7073 	      *p++ = (i.tm.base_opcode >> 16) & 0xff;
7074 	      break;
7075 	    case 2:
7076 	      p = frag_more (2);
7077 	      break;
7078 	    default:
7079 	      abort ();
7080 	      break;
7081 	    }
7082 
7083 	  /* Put out high byte first: can't use md_number_to_chars!  */
7084 	  *p++ = (i.tm.base_opcode >> 8) & 0xff;
7085 	  *p = i.tm.base_opcode & 0xff;
7086 	}
7087 
7088       /* Now the modrm byte and sib byte (if present).  */
7089       if (i.tm.opcode_modifier.modrm)
7090 	{
7091 	  FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7092 			       | i.rm.reg << 3
7093 			       | i.rm.mode << 6));
7094 	  /* If i.rm.regmem == ESP (4)
7095 	     && i.rm.mode != (Register mode)
7096 	     && not 16 bit
7097 	     ==> need second modrm byte.  */
7098 	  if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7099 	      && i.rm.mode != 3
7100 	      && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7101 	    FRAG_APPEND_1_CHAR ((i.sib.base << 0
7102 				 | i.sib.index << 3
7103 				 | i.sib.scale << 6));
7104 	}
7105 
7106       if (i.disp_operands)
7107 	output_disp (insn_start_frag, insn_start_off);
7108 
7109       if (i.imm_operands)
7110 	output_imm (insn_start_frag, insn_start_off);
7111     }
7112 
7113 #ifdef DEBUG386
7114   if (flag_debug)
7115     {
7116       pi ("" /*line*/, &i);
7117     }
7118 #endif /* DEBUG386  */
7119 }
7120 
7121 /* Return the size of the displacement operand N.  */
7122 
7123 static int
disp_size(unsigned int n)7124 disp_size (unsigned int n)
7125 {
7126   int size = 4;
7127 
7128   /* Vec_Disp8 has to be 8bit.  */
7129   if (i.types[n].bitfield.vec_disp8)
7130     size = 1;
7131   else if (i.types[n].bitfield.disp64)
7132     size = 8;
7133   else if (i.types[n].bitfield.disp8)
7134     size = 1;
7135   else if (i.types[n].bitfield.disp16)
7136     size = 2;
7137   return size;
7138 }
7139 
7140 /* Return the size of the immediate operand N.  */
7141 
7142 static int
imm_size(unsigned int n)7143 imm_size (unsigned int n)
7144 {
7145   int size = 4;
7146   if (i.types[n].bitfield.imm64)
7147     size = 8;
7148   else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7149     size = 1;
7150   else if (i.types[n].bitfield.imm16)
7151     size = 2;
7152   return size;
7153 }
7154 
7155 static void
output_disp(fragS * insn_start_frag,offsetT insn_start_off)7156 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7157 {
7158   char *p;
7159   unsigned int n;
7160 
7161   for (n = 0; n < i.operands; n++)
7162     {
7163       if (i.types[n].bitfield.vec_disp8
7164 	  || operand_type_check (i.types[n], disp))
7165 	{
7166 	  if (i.op[n].disps->X_op == O_constant)
7167 	    {
7168 	      int size = disp_size (n);
7169 	      offsetT val = i.op[n].disps->X_add_number;
7170 
7171 	      if (i.types[n].bitfield.vec_disp8)
7172 		val >>= i.memshift;
7173 	      val = offset_in_range (val, size);
7174 	      p = frag_more (size);
7175 	      md_number_to_chars (p, val, size);
7176 	    }
7177 	  else
7178 	    {
7179 	      enum bfd_reloc_code_real reloc_type;
7180 	      int size = disp_size (n);
7181 	      int sign = i.types[n].bitfield.disp32s;
7182 	      int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7183 
7184 	      /* We can't have 8 bit displacement here.  */
7185 	      gas_assert (!i.types[n].bitfield.disp8);
7186 
7187 	      /* The PC relative address is computed relative
7188 		 to the instruction boundary, so in case immediate
7189 		 fields follows, we need to adjust the value.  */
7190 	      if (pcrel && i.imm_operands)
7191 		{
7192 		  unsigned int n1;
7193 		  int sz = 0;
7194 
7195 		  for (n1 = 0; n1 < i.operands; n1++)
7196 		    if (operand_type_check (i.types[n1], imm))
7197 		      {
7198 			/* Only one immediate is allowed for PC
7199 			   relative address.  */
7200 			gas_assert (sz == 0);
7201 			sz = imm_size (n1);
7202 			i.op[n].disps->X_add_number -= sz;
7203 		      }
7204 		  /* We should find the immediate.  */
7205 		  gas_assert (sz != 0);
7206 		}
7207 
7208 	      p = frag_more (size);
7209 	      reloc_type = reloc (size, pcrel, sign,
7210 				  (i.bnd_prefix != NULL
7211 				   || add_bnd_prefix),
7212 				  i.reloc[n]);
7213 	      if (GOT_symbol
7214 		  && GOT_symbol == i.op[n].disps->X_add_symbol
7215 		  && (((reloc_type == BFD_RELOC_32
7216 			|| reloc_type == BFD_RELOC_X86_64_32S
7217 			|| (reloc_type == BFD_RELOC_64
7218 			    && object_64bit))
7219 		       && (i.op[n].disps->X_op == O_symbol
7220 			   || (i.op[n].disps->X_op == O_add
7221 			       && ((symbol_get_value_expression
7222 				    (i.op[n].disps->X_op_symbol)->X_op)
7223 				   == O_subtract))))
7224 		      || reloc_type == BFD_RELOC_32_PCREL))
7225 		{
7226 		  offsetT add;
7227 
7228 		  if (insn_start_frag == frag_now)
7229 		    add = (p - frag_now->fr_literal) - insn_start_off;
7230 		  else
7231 		    {
7232 		      fragS *fr;
7233 
7234 		      add = insn_start_frag->fr_fix - insn_start_off;
7235 		      for (fr = insn_start_frag->fr_next;
7236 			   fr && fr != frag_now; fr = fr->fr_next)
7237 			add += fr->fr_fix;
7238 		      add += p - frag_now->fr_literal;
7239 		    }
7240 
7241 		  if (!object_64bit)
7242 		    {
7243 		      reloc_type = BFD_RELOC_386_GOTPC;
7244 		      i.op[n].imms->X_add_number += add;
7245 		    }
7246 		  else if (reloc_type == BFD_RELOC_64)
7247 		    reloc_type = BFD_RELOC_X86_64_GOTPC64;
7248 		  else
7249 		    /* Don't do the adjustment for x86-64, as there
7250 		       the pcrel addressing is relative to the _next_
7251 		       insn, and that is taken care of in other code.  */
7252 		    reloc_type = BFD_RELOC_X86_64_GOTPC32;
7253 		}
7254 	      fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7255 			   i.op[n].disps, pcrel, reloc_type);
7256 	    }
7257 	}
7258     }
7259 }
7260 
7261 static void
output_imm(fragS * insn_start_frag,offsetT insn_start_off)7262 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7263 {
7264   char *p;
7265   unsigned int n;
7266 
7267   for (n = 0; n < i.operands; n++)
7268     {
7269       /* Skip SAE/RC Imm operand in EVEX.  They are already handled.  */
7270       if (i.rounding && (int) n == i.rounding->operand)
7271 	continue;
7272 
7273       if (operand_type_check (i.types[n], imm))
7274 	{
7275 	  if (i.op[n].imms->X_op == O_constant)
7276 	    {
7277 	      int size = imm_size (n);
7278 	      offsetT val;
7279 
7280 	      val = offset_in_range (i.op[n].imms->X_add_number,
7281 				     size);
7282 	      p = frag_more (size);
7283 	      md_number_to_chars (p, val, size);
7284 	    }
7285 	  else
7286 	    {
7287 	      /* Not absolute_section.
7288 		 Need a 32-bit fixup (don't support 8bit
7289 		 non-absolute imms).  Try to support other
7290 		 sizes ...  */
7291 	      enum bfd_reloc_code_real reloc_type;
7292 	      int size = imm_size (n);
7293 	      int sign;
7294 
7295 	      if (i.types[n].bitfield.imm32s
7296 		  && (i.suffix == QWORD_MNEM_SUFFIX
7297 		      || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7298 		sign = 1;
7299 	      else
7300 		sign = 0;
7301 
7302 	      p = frag_more (size);
7303 	      reloc_type = reloc (size, 0, sign, 0, i.reloc[n]);
7304 
7305 	      /*   This is tough to explain.  We end up with this one if we
7306 	       * have operands that look like
7307 	       * "_GLOBAL_OFFSET_TABLE_+[.-.L284]".  The goal here is to
7308 	       * obtain the absolute address of the GOT, and it is strongly
7309 	       * preferable from a performance point of view to avoid using
7310 	       * a runtime relocation for this.  The actual sequence of
7311 	       * instructions often look something like:
7312 	       *
7313 	       *	call	.L66
7314 	       * .L66:
7315 	       *	popl	%ebx
7316 	       *	addl	$_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7317 	       *
7318 	       *   The call and pop essentially return the absolute address
7319 	       * of the label .L66 and store it in %ebx.  The linker itself
7320 	       * will ultimately change the first operand of the addl so
7321 	       * that %ebx points to the GOT, but to keep things simple, the
7322 	       * .o file must have this operand set so that it generates not
7323 	       * the absolute address of .L66, but the absolute address of
7324 	       * itself.  This allows the linker itself simply treat a GOTPC
7325 	       * relocation as asking for a pcrel offset to the GOT to be
7326 	       * added in, and the addend of the relocation is stored in the
7327 	       * operand field for the instruction itself.
7328 	       *
7329 	       *   Our job here is to fix the operand so that it would add
7330 	       * the correct offset so that %ebx would point to itself.  The
7331 	       * thing that is tricky is that .-.L66 will point to the
7332 	       * beginning of the instruction, so we need to further modify
7333 	       * the operand so that it will point to itself.  There are
7334 	       * other cases where you have something like:
7335 	       *
7336 	       *	.long	$_GLOBAL_OFFSET_TABLE_+[.-.L66]
7337 	       *
7338 	       * and here no correction would be required.  Internally in
7339 	       * the assembler we treat operands of this form as not being
7340 	       * pcrel since the '.' is explicitly mentioned, and I wonder
7341 	       * whether it would simplify matters to do it this way.  Who
7342 	       * knows.  In earlier versions of the PIC patches, the
7343 	       * pcrel_adjust field was used to store the correction, but
7344 	       * since the expression is not pcrel, I felt it would be
7345 	       * confusing to do it this way.  */
7346 
7347 	      if ((reloc_type == BFD_RELOC_32
7348 		   || reloc_type == BFD_RELOC_X86_64_32S
7349 		   || reloc_type == BFD_RELOC_64)
7350 		  && GOT_symbol
7351 		  && GOT_symbol == i.op[n].imms->X_add_symbol
7352 		  && (i.op[n].imms->X_op == O_symbol
7353 		      || (i.op[n].imms->X_op == O_add
7354 			  && ((symbol_get_value_expression
7355 			       (i.op[n].imms->X_op_symbol)->X_op)
7356 			      == O_subtract))))
7357 		{
7358 		  offsetT add;
7359 
7360 		  if (insn_start_frag == frag_now)
7361 		    add = (p - frag_now->fr_literal) - insn_start_off;
7362 		  else
7363 		    {
7364 		      fragS *fr;
7365 
7366 		      add = insn_start_frag->fr_fix - insn_start_off;
7367 		      for (fr = insn_start_frag->fr_next;
7368 			   fr && fr != frag_now; fr = fr->fr_next)
7369 			add += fr->fr_fix;
7370 		      add += p - frag_now->fr_literal;
7371 		    }
7372 
7373 		  if (!object_64bit)
7374 		    reloc_type = BFD_RELOC_386_GOTPC;
7375 		  else if (size == 4)
7376 		    reloc_type = BFD_RELOC_X86_64_GOTPC32;
7377 		  else if (size == 8)
7378 		    reloc_type = BFD_RELOC_X86_64_GOTPC64;
7379 		  i.op[n].imms->X_add_number += add;
7380 		}
7381 	      fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7382 			   i.op[n].imms, 0, reloc_type);
7383 	    }
7384 	}
7385     }
7386 }
7387 
7388 /* x86_cons_fix_new is called via the expression parsing code when a
7389    reloc is needed.  We use this hook to get the correct .got reloc.  */
7390 static int cons_sign = -1;
7391 
7392 void
x86_cons_fix_new(fragS * frag,unsigned int off,unsigned int len,expressionS * exp,bfd_reloc_code_real_type r)7393 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7394 		  expressionS *exp, bfd_reloc_code_real_type r)
7395 {
7396   r = reloc (len, 0, cons_sign, 0, r);
7397 
7398 #ifdef TE_PE
7399   if (exp->X_op == O_secrel)
7400     {
7401       exp->X_op = O_symbol;
7402       r = BFD_RELOC_32_SECREL;
7403     }
7404 #endif
7405 
7406   fix_new_exp (frag, off, len, exp, 0, r);
7407 }
7408 
7409 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7410    purpose of the `.dc.a' internal pseudo-op.  */
7411 
7412 int
x86_address_bytes(void)7413 x86_address_bytes (void)
7414 {
7415   if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7416     return 4;
7417   return stdoutput->arch_info->bits_per_address / 8;
7418 }
7419 
7420 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7421     || defined (LEX_AT)
7422 # define lex_got(reloc, adjust, types, bnd_prefix) NULL
7423 #else
7424 /* Parse operands of the form
7425    <symbol>@GOTOFF+<nnn>
7426    and similar .plt or .got references.
7427 
7428    If we find one, set up the correct relocation in RELOC and copy the
7429    input string, minus the `@GOTOFF' into a malloc'd buffer for
7430    parsing by the calling routine.  Return this buffer, and if ADJUST
7431    is non-null set it to the length of the string we removed from the
7432    input line.  Otherwise return NULL.  */
7433 static char *
lex_got(enum bfd_reloc_code_real * rel,int * adjust,i386_operand_type * types,int bnd_prefix)7434 lex_got (enum bfd_reloc_code_real *rel,
7435 	 int *adjust,
7436 	 i386_operand_type *types,
7437 	 int bnd_prefix)
7438 {
7439   /* Some of the relocations depend on the size of what field is to
7440      be relocated.  But in our callers i386_immediate and i386_displacement
7441      we don't yet know the operand size (this will be set by insn
7442      matching).  Hence we record the word32 relocation here,
7443      and adjust the reloc according to the real size in reloc().  */
7444   static const struct {
7445     const char *str;
7446     int len;
7447     const enum bfd_reloc_code_real rel[2];
7448     const i386_operand_type types64;
7449   } gotrel[] = {
7450 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7451     { STRING_COMMA_LEN ("SIZE"),      { BFD_RELOC_SIZE32,
7452 					BFD_RELOC_SIZE32 },
7453       OPERAND_TYPE_IMM32_64 },
7454 #endif
7455     { STRING_COMMA_LEN ("PLTOFF"),   { _dummy_first_bfd_reloc_code_real,
7456 				       BFD_RELOC_X86_64_PLTOFF64 },
7457       OPERAND_TYPE_IMM64 },
7458     { STRING_COMMA_LEN ("PLT"),      { BFD_RELOC_386_PLT32,
7459 				       BFD_RELOC_X86_64_PLT32    },
7460       OPERAND_TYPE_IMM32_32S_DISP32 },
7461     { STRING_COMMA_LEN ("GOTPLT"),   { _dummy_first_bfd_reloc_code_real,
7462 				       BFD_RELOC_X86_64_GOTPLT64 },
7463       OPERAND_TYPE_IMM64_DISP64 },
7464     { STRING_COMMA_LEN ("GOTOFF"),   { BFD_RELOC_386_GOTOFF,
7465 				       BFD_RELOC_X86_64_GOTOFF64 },
7466       OPERAND_TYPE_IMM64_DISP64 },
7467     { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7468 				       BFD_RELOC_X86_64_GOTPCREL },
7469       OPERAND_TYPE_IMM32_32S_DISP32 },
7470     { STRING_COMMA_LEN ("TLSGD"),    { BFD_RELOC_386_TLS_GD,
7471 				       BFD_RELOC_X86_64_TLSGD    },
7472       OPERAND_TYPE_IMM32_32S_DISP32 },
7473     { STRING_COMMA_LEN ("TLSLDM"),   { BFD_RELOC_386_TLS_LDM,
7474 				       _dummy_first_bfd_reloc_code_real },
7475       OPERAND_TYPE_NONE },
7476     { STRING_COMMA_LEN ("TLSLD"),    { _dummy_first_bfd_reloc_code_real,
7477 				       BFD_RELOC_X86_64_TLSLD    },
7478       OPERAND_TYPE_IMM32_32S_DISP32 },
7479     { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7480 				       BFD_RELOC_X86_64_GOTTPOFF },
7481       OPERAND_TYPE_IMM32_32S_DISP32 },
7482     { STRING_COMMA_LEN ("TPOFF"),    { BFD_RELOC_386_TLS_LE_32,
7483 				       BFD_RELOC_X86_64_TPOFF32  },
7484       OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7485     { STRING_COMMA_LEN ("NTPOFF"),   { BFD_RELOC_386_TLS_LE,
7486 				       _dummy_first_bfd_reloc_code_real },
7487       OPERAND_TYPE_NONE },
7488     { STRING_COMMA_LEN ("DTPOFF"),   { BFD_RELOC_386_TLS_LDO_32,
7489 				       BFD_RELOC_X86_64_DTPOFF32 },
7490       OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7491     { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7492 				       _dummy_first_bfd_reloc_code_real },
7493       OPERAND_TYPE_NONE },
7494     { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7495 				       _dummy_first_bfd_reloc_code_real },
7496       OPERAND_TYPE_NONE },
7497     { STRING_COMMA_LEN ("GOT"),      { BFD_RELOC_386_GOT32,
7498 				       BFD_RELOC_X86_64_GOT32    },
7499       OPERAND_TYPE_IMM32_32S_64_DISP32 },
7500     { STRING_COMMA_LEN ("TLSDESC"),  { BFD_RELOC_386_TLS_GOTDESC,
7501 				       BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7502       OPERAND_TYPE_IMM32_32S_DISP32 },
7503     { STRING_COMMA_LEN ("TLSCALL"),  { BFD_RELOC_386_TLS_DESC_CALL,
7504 				       BFD_RELOC_X86_64_TLSDESC_CALL },
7505       OPERAND_TYPE_IMM32_32S_DISP32 },
7506   };
7507   char *cp;
7508   unsigned int j;
7509 
7510 #if defined (OBJ_MAYBE_ELF)
7511   if (!IS_ELF)
7512     return NULL;
7513 #endif
7514 
7515   for (cp = input_line_pointer; *cp != '@'; cp++)
7516     if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7517       return NULL;
7518 
7519   for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7520     {
7521       int len = gotrel[j].len;
7522       if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7523 	{
7524 	  if (gotrel[j].rel[object_64bit] != 0)
7525 	    {
7526 	      int first, second;
7527 	      char *tmpbuf, *past_reloc;
7528 
7529 	      *rel = gotrel[j].rel[object_64bit];
7530 
7531 	      if (types)
7532 		{
7533 		  if (flag_code != CODE_64BIT)
7534 		    {
7535 		      types->bitfield.imm32 = 1;
7536 		      types->bitfield.disp32 = 1;
7537 		    }
7538 		  else
7539 		    *types = gotrel[j].types64;
7540 		}
7541 
7542 	      if (j != 0 && GOT_symbol == NULL)
7543 		GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7544 
7545 	      /* The length of the first part of our input line.  */
7546 	      first = cp - input_line_pointer;
7547 
7548 	      /* The second part goes from after the reloc token until
7549 		 (and including) an end_of_line char or comma.  */
7550 	      past_reloc = cp + 1 + len;
7551 	      cp = past_reloc;
7552 	      while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7553 		++cp;
7554 	      second = cp + 1 - past_reloc;
7555 
7556 	      /* Allocate and copy string.  The trailing NUL shouldn't
7557 		 be necessary, but be safe.  */
7558 	      tmpbuf = (char *) xmalloc (first + second + 2);
7559 	      memcpy (tmpbuf, input_line_pointer, first);
7560 	      if (second != 0 && *past_reloc != ' ')
7561 		/* Replace the relocation token with ' ', so that
7562 		   errors like foo@GOTOFF1 will be detected.  */
7563 		tmpbuf[first++] = ' ';
7564 	      else
7565 		/* Increment length by 1 if the relocation token is
7566 		   removed.  */
7567 		len++;
7568 	      if (adjust)
7569 		*adjust = len;
7570 	      memcpy (tmpbuf + first, past_reloc, second);
7571 	      tmpbuf[first + second] = '\0';
7572 	      if (bnd_prefix && *rel == BFD_RELOC_X86_64_PLT32)
7573 		*rel = BFD_RELOC_X86_64_PLT32_BND;
7574 	      return tmpbuf;
7575 	    }
7576 
7577 	  as_bad (_("@%s reloc is not supported with %d-bit output format"),
7578 		  gotrel[j].str, 1 << (5 + object_64bit));
7579 	  return NULL;
7580 	}
7581     }
7582 
7583   /* Might be a symbol version string.  Don't as_bad here.  */
7584   return NULL;
7585 }
7586 #endif
7587 
7588 #ifdef TE_PE
7589 #ifdef lex_got
7590 #undef lex_got
7591 #endif
7592 /* Parse operands of the form
7593    <symbol>@SECREL32+<nnn>
7594 
7595    If we find one, set up the correct relocation in RELOC and copy the
7596    input string, minus the `@SECREL32' into a malloc'd buffer for
7597    parsing by the calling routine.  Return this buffer, and if ADJUST
7598    is non-null set it to the length of the string we removed from the
7599    input line.  Otherwise return NULL.
7600 
7601    This function is copied from the ELF version above adjusted for PE targets.  */
7602 
7603 static char *
lex_got(enum bfd_reloc_code_real * rel ATTRIBUTE_UNUSED,int * adjust ATTRIBUTE_UNUSED,i386_operand_type * types,int bnd_prefix ATTRIBUTE_UNUSED)7604 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7605 	 int *adjust ATTRIBUTE_UNUSED,
7606 	 i386_operand_type *types,
7607 	 int bnd_prefix ATTRIBUTE_UNUSED)
7608 {
7609   static const struct
7610   {
7611     const char *str;
7612     int len;
7613     const enum bfd_reloc_code_real rel[2];
7614     const i386_operand_type types64;
7615   }
7616   gotrel[] =
7617   {
7618     { STRING_COMMA_LEN ("SECREL32"),    { BFD_RELOC_32_SECREL,
7619 					  BFD_RELOC_32_SECREL },
7620       OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7621   };
7622 
7623   char *cp;
7624   unsigned j;
7625 
7626   for (cp = input_line_pointer; *cp != '@'; cp++)
7627     if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7628       return NULL;
7629 
7630   for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7631     {
7632       int len = gotrel[j].len;
7633 
7634       if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7635 	{
7636 	  if (gotrel[j].rel[object_64bit] != 0)
7637 	    {
7638 	      int first, second;
7639 	      char *tmpbuf, *past_reloc;
7640 
7641 	      *rel = gotrel[j].rel[object_64bit];
7642 	      if (adjust)
7643 		*adjust = len;
7644 
7645 	      if (types)
7646 		{
7647 		  if (flag_code != CODE_64BIT)
7648 		    {
7649 		      types->bitfield.imm32 = 1;
7650 		      types->bitfield.disp32 = 1;
7651 		    }
7652 		  else
7653 		    *types = gotrel[j].types64;
7654 		}
7655 
7656 	      /* The length of the first part of our input line.  */
7657 	      first = cp - input_line_pointer;
7658 
7659 	      /* The second part goes from after the reloc token until
7660 		 (and including) an end_of_line char or comma.  */
7661 	      past_reloc = cp + 1 + len;
7662 	      cp = past_reloc;
7663 	      while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7664 		++cp;
7665 	      second = cp + 1 - past_reloc;
7666 
7667 	      /* Allocate and copy string.  The trailing NUL shouldn't
7668 		 be necessary, but be safe.  */
7669 	      tmpbuf = (char *) xmalloc (first + second + 2);
7670 	      memcpy (tmpbuf, input_line_pointer, first);
7671 	      if (second != 0 && *past_reloc != ' ')
7672 		/* Replace the relocation token with ' ', so that
7673 		   errors like foo@SECLREL321 will be detected.  */
7674 		tmpbuf[first++] = ' ';
7675 	      memcpy (tmpbuf + first, past_reloc, second);
7676 	      tmpbuf[first + second] = '\0';
7677 	      return tmpbuf;
7678 	    }
7679 
7680 	  as_bad (_("@%s reloc is not supported with %d-bit output format"),
7681 		  gotrel[j].str, 1 << (5 + object_64bit));
7682 	  return NULL;
7683 	}
7684     }
7685 
7686   /* Might be a symbol version string.  Don't as_bad here.  */
7687   return NULL;
7688 }
7689 
7690 #endif /* TE_PE */
7691 
7692 bfd_reloc_code_real_type
x86_cons(expressionS * exp,int size)7693 x86_cons (expressionS *exp, int size)
7694 {
7695   bfd_reloc_code_real_type got_reloc = NO_RELOC;
7696 
7697   intel_syntax = -intel_syntax;
7698 
7699   exp->X_md = 0;
7700   if (size == 4 || (object_64bit && size == 8))
7701     {
7702       /* Handle @GOTOFF and the like in an expression.  */
7703       char *save;
7704       char *gotfree_input_line;
7705       int adjust = 0;
7706 
7707       save = input_line_pointer;
7708       gotfree_input_line = lex_got (&got_reloc, &adjust, NULL, 0);
7709       if (gotfree_input_line)
7710 	input_line_pointer = gotfree_input_line;
7711 
7712       expression (exp);
7713 
7714       if (gotfree_input_line)
7715 	{
7716 	  /* expression () has merrily parsed up to the end of line,
7717 	     or a comma - in the wrong buffer.  Transfer how far
7718 	     input_line_pointer has moved to the right buffer.  */
7719 	  input_line_pointer = (save
7720 				+ (input_line_pointer - gotfree_input_line)
7721 				+ adjust);
7722 	  free (gotfree_input_line);
7723 	  if (exp->X_op == O_constant
7724 	      || exp->X_op == O_absent
7725 	      || exp->X_op == O_illegal
7726 	      || exp->X_op == O_register
7727 	      || exp->X_op == O_big)
7728 	    {
7729 	      char c = *input_line_pointer;
7730 	      *input_line_pointer = 0;
7731 	      as_bad (_("missing or invalid expression `%s'"), save);
7732 	      *input_line_pointer = c;
7733 	    }
7734 	}
7735     }
7736   else
7737     expression (exp);
7738 
7739   intel_syntax = -intel_syntax;
7740 
7741   if (intel_syntax)
7742     i386_intel_simplify (exp);
7743 
7744   return got_reloc;
7745 }
7746 
7747 static void
signed_cons(int size)7748 signed_cons (int size)
7749 {
7750   if (flag_code == CODE_64BIT)
7751     cons_sign = 1;
7752   cons (size);
7753   cons_sign = -1;
7754 }
7755 
7756 #ifdef TE_PE
7757 static void
pe_directive_secrel(int dummy ATTRIBUTE_UNUSED)7758 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7759 {
7760   expressionS exp;
7761 
7762   do
7763     {
7764       expression (&exp);
7765       if (exp.X_op == O_symbol)
7766 	exp.X_op = O_secrel;
7767 
7768       emit_expr (&exp, 4);
7769     }
7770   while (*input_line_pointer++ == ',');
7771 
7772   input_line_pointer--;
7773   demand_empty_rest_of_line ();
7774 }
7775 #endif
7776 
7777 /* Handle Vector operations.  */
7778 
7779 static char *
check_VecOperations(char * op_string,char * op_end)7780 check_VecOperations (char *op_string, char *op_end)
7781 {
7782   const reg_entry *mask;
7783   const char *saved;
7784   char *end_op;
7785 
7786   while (*op_string
7787 	 && (op_end == NULL || op_string < op_end))
7788     {
7789       saved = op_string;
7790       if (*op_string == '{')
7791 	{
7792 	  op_string++;
7793 
7794 	  /* Check broadcasts.  */
7795 	  if (strncmp (op_string, "1to", 3) == 0)
7796 	    {
7797 	      int bcst_type;
7798 
7799 	      if (i.broadcast)
7800 		goto duplicated_vec_op;
7801 
7802 	      op_string += 3;
7803 	      if (*op_string == '8')
7804 		bcst_type = BROADCAST_1TO8;
7805 	      else if (*op_string == '4')
7806 		bcst_type = BROADCAST_1TO4;
7807 	      else if (*op_string == '2')
7808 		bcst_type = BROADCAST_1TO2;
7809 	      else if (*op_string == '1'
7810 		       && *(op_string+1) == '6')
7811 		{
7812 		  bcst_type = BROADCAST_1TO16;
7813 		  op_string++;
7814 		}
7815 	      else
7816 		{
7817 		  as_bad (_("Unsupported broadcast: `%s'"), saved);
7818 		  return NULL;
7819 		}
7820 	      op_string++;
7821 
7822 	      broadcast_op.type = bcst_type;
7823 	      broadcast_op.operand = this_operand;
7824 	      i.broadcast = &broadcast_op;
7825 	    }
7826 	  /* Check masking operation.  */
7827 	  else if ((mask = parse_register (op_string, &end_op)) != NULL)
7828 	    {
7829 	      /* k0 can't be used for write mask.  */
7830 	      if (mask->reg_num == 0)
7831 		{
7832 		  as_bad (_("`%s' can't be used for write mask"),
7833 			  op_string);
7834 		  return NULL;
7835 		}
7836 
7837 	      if (!i.mask)
7838 		{
7839 		  mask_op.mask = mask;
7840 		  mask_op.zeroing = 0;
7841 		  mask_op.operand = this_operand;
7842 		  i.mask = &mask_op;
7843 		}
7844 	      else
7845 		{
7846 		  if (i.mask->mask)
7847 		    goto duplicated_vec_op;
7848 
7849 		  i.mask->mask = mask;
7850 
7851 		  /* Only "{z}" is allowed here.  No need to check
7852 		     zeroing mask explicitly.  */
7853 		  if (i.mask->operand != this_operand)
7854 		    {
7855 		      as_bad (_("invalid write mask `%s'"), saved);
7856 		      return NULL;
7857 		    }
7858 		}
7859 
7860 	      op_string = end_op;
7861 	    }
7862 	  /* Check zeroing-flag for masking operation.  */
7863 	  else if (*op_string == 'z')
7864 	    {
7865 	      if (!i.mask)
7866 		{
7867 		  mask_op.mask = NULL;
7868 		  mask_op.zeroing = 1;
7869 		  mask_op.operand = this_operand;
7870 		  i.mask = &mask_op;
7871 		}
7872 	      else
7873 		{
7874 		  if (i.mask->zeroing)
7875 		    {
7876 		    duplicated_vec_op:
7877 		      as_bad (_("duplicated `%s'"), saved);
7878 		      return NULL;
7879 		    }
7880 
7881 		  i.mask->zeroing = 1;
7882 
7883 		  /* Only "{%k}" is allowed here.  No need to check mask
7884 		     register explicitly.  */
7885 		  if (i.mask->operand != this_operand)
7886 		    {
7887 		      as_bad (_("invalid zeroing-masking `%s'"),
7888 			      saved);
7889 		      return NULL;
7890 		    }
7891 		}
7892 
7893 	      op_string++;
7894 	    }
7895 	  else
7896 	    goto unknown_vec_op;
7897 
7898 	  if (*op_string != '}')
7899 	    {
7900 	      as_bad (_("missing `}' in `%s'"), saved);
7901 	      return NULL;
7902 	    }
7903 	  op_string++;
7904 	  continue;
7905 	}
7906     unknown_vec_op:
7907       /* We don't know this one.  */
7908       as_bad (_("unknown vector operation: `%s'"), saved);
7909       return NULL;
7910     }
7911 
7912   return op_string;
7913 }
7914 
7915 static int
i386_immediate(char * imm_start)7916 i386_immediate (char *imm_start)
7917 {
7918   char *save_input_line_pointer;
7919   char *gotfree_input_line;
7920   segT exp_seg = 0;
7921   expressionS *exp;
7922   i386_operand_type types;
7923 
7924   operand_type_set (&types, ~0);
7925 
7926   if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7927     {
7928       as_bad (_("at most %d immediate operands are allowed"),
7929 	      MAX_IMMEDIATE_OPERANDS);
7930       return 0;
7931     }
7932 
7933   exp = &im_expressions[i.imm_operands++];
7934   i.op[this_operand].imms = exp;
7935 
7936   if (is_space_char (*imm_start))
7937     ++imm_start;
7938 
7939   save_input_line_pointer = input_line_pointer;
7940   input_line_pointer = imm_start;
7941 
7942   gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
7943 				(i.bnd_prefix != NULL
7944 				 || add_bnd_prefix));
7945   if (gotfree_input_line)
7946     input_line_pointer = gotfree_input_line;
7947 
7948   exp_seg = expression (exp);
7949 
7950   SKIP_WHITESPACE ();
7951 
7952   /* Handle vector operations.  */
7953   if (*input_line_pointer == '{')
7954     {
7955       input_line_pointer = check_VecOperations (input_line_pointer,
7956 						NULL);
7957       if (input_line_pointer == NULL)
7958 	return 0;
7959     }
7960 
7961   if (*input_line_pointer)
7962     as_bad (_("junk `%s' after expression"), input_line_pointer);
7963 
7964   input_line_pointer = save_input_line_pointer;
7965   if (gotfree_input_line)
7966     {
7967       free (gotfree_input_line);
7968 
7969       if (exp->X_op == O_constant || exp->X_op == O_register)
7970 	exp->X_op = O_illegal;
7971     }
7972 
7973   return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7974 }
7975 
7976 static int
i386_finalize_immediate(segT exp_seg ATTRIBUTE_UNUSED,expressionS * exp,i386_operand_type types,const char * imm_start)7977 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7978 			 i386_operand_type types, const char *imm_start)
7979 {
7980   if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7981     {
7982       if (imm_start)
7983 	as_bad (_("missing or invalid immediate expression `%s'"),
7984 		imm_start);
7985       return 0;
7986     }
7987   else if (exp->X_op == O_constant)
7988     {
7989       /* Size it properly later.  */
7990       i.types[this_operand].bitfield.imm64 = 1;
7991       /* If not 64bit, sign extend val.  */
7992       if (flag_code != CODE_64BIT
7993 	  && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7994 	exp->X_add_number
7995 	  = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7996     }
7997 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7998   else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7999 	   && exp_seg != absolute_section
8000 	   && exp_seg != text_section
8001 	   && exp_seg != data_section
8002 	   && exp_seg != bss_section
8003 	   && exp_seg != undefined_section
8004 	   && !bfd_is_com_section (exp_seg))
8005     {
8006       as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8007       return 0;
8008     }
8009 #endif
8010   else if (!intel_syntax && exp_seg == reg_section)
8011     {
8012       if (imm_start)
8013 	as_bad (_("illegal immediate register operand %s"), imm_start);
8014       return 0;
8015     }
8016   else
8017     {
8018       /* This is an address.  The size of the address will be
8019 	 determined later, depending on destination register,
8020 	 suffix, or the default for the section.  */
8021       i.types[this_operand].bitfield.imm8 = 1;
8022       i.types[this_operand].bitfield.imm16 = 1;
8023       i.types[this_operand].bitfield.imm32 = 1;
8024       i.types[this_operand].bitfield.imm32s = 1;
8025       i.types[this_operand].bitfield.imm64 = 1;
8026       i.types[this_operand] = operand_type_and (i.types[this_operand],
8027 						types);
8028     }
8029 
8030   return 1;
8031 }
8032 
8033 static char *
i386_scale(char * scale)8034 i386_scale (char *scale)
8035 {
8036   offsetT val;
8037   char *save = input_line_pointer;
8038 
8039   input_line_pointer = scale;
8040   val = get_absolute_expression ();
8041 
8042   switch (val)
8043     {
8044     case 1:
8045       i.log2_scale_factor = 0;
8046       break;
8047     case 2:
8048       i.log2_scale_factor = 1;
8049       break;
8050     case 4:
8051       i.log2_scale_factor = 2;
8052       break;
8053     case 8:
8054       i.log2_scale_factor = 3;
8055       break;
8056     default:
8057       {
8058 	char sep = *input_line_pointer;
8059 
8060 	*input_line_pointer = '\0';
8061 	as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8062 		scale);
8063 	*input_line_pointer = sep;
8064 	input_line_pointer = save;
8065 	return NULL;
8066       }
8067     }
8068   if (i.log2_scale_factor != 0 && i.index_reg == 0)
8069     {
8070       as_warn (_("scale factor of %d without an index register"),
8071 	       1 << i.log2_scale_factor);
8072       i.log2_scale_factor = 0;
8073     }
8074   scale = input_line_pointer;
8075   input_line_pointer = save;
8076   return scale;
8077 }
8078 
8079 static int
i386_displacement(char * disp_start,char * disp_end)8080 i386_displacement (char *disp_start, char *disp_end)
8081 {
8082   expressionS *exp;
8083   segT exp_seg = 0;
8084   char *save_input_line_pointer;
8085   char *gotfree_input_line;
8086   int override;
8087   i386_operand_type bigdisp, types = anydisp;
8088   int ret;
8089 
8090   if (i.disp_operands == MAX_MEMORY_OPERANDS)
8091     {
8092       as_bad (_("at most %d displacement operands are allowed"),
8093 	      MAX_MEMORY_OPERANDS);
8094       return 0;
8095     }
8096 
8097   operand_type_set (&bigdisp, 0);
8098   if ((i.types[this_operand].bitfield.jumpabsolute)
8099       || (!current_templates->start->opcode_modifier.jump
8100 	  && !current_templates->start->opcode_modifier.jumpdword))
8101     {
8102       bigdisp.bitfield.disp32 = 1;
8103       override = (i.prefix[ADDR_PREFIX] != 0);
8104       if (flag_code == CODE_64BIT)
8105 	{
8106 	  if (!override)
8107 	    {
8108 	      bigdisp.bitfield.disp32s = 1;
8109 	      bigdisp.bitfield.disp64 = 1;
8110 	    }
8111 	}
8112       else if ((flag_code == CODE_16BIT) ^ override)
8113 	{
8114 	  bigdisp.bitfield.disp32 = 0;
8115 	  bigdisp.bitfield.disp16 = 1;
8116 	}
8117     }
8118   else
8119     {
8120       /* For PC-relative branches, the width of the displacement
8121 	 is dependent upon data size, not address size.  */
8122       override = (i.prefix[DATA_PREFIX] != 0);
8123       if (flag_code == CODE_64BIT)
8124 	{
8125 	  if (override || i.suffix == WORD_MNEM_SUFFIX)
8126 	    bigdisp.bitfield.disp16 = 1;
8127 	  else
8128 	    {
8129 	      bigdisp.bitfield.disp32 = 1;
8130 	      bigdisp.bitfield.disp32s = 1;
8131 	    }
8132 	}
8133       else
8134 	{
8135 	  if (!override)
8136 	    override = (i.suffix == (flag_code != CODE_16BIT
8137 				     ? WORD_MNEM_SUFFIX
8138 				     : LONG_MNEM_SUFFIX));
8139 	  bigdisp.bitfield.disp32 = 1;
8140 	  if ((flag_code == CODE_16BIT) ^ override)
8141 	    {
8142 	      bigdisp.bitfield.disp32 = 0;
8143 	      bigdisp.bitfield.disp16 = 1;
8144 	    }
8145 	}
8146     }
8147   i.types[this_operand] = operand_type_or (i.types[this_operand],
8148 					   bigdisp);
8149 
8150   exp = &disp_expressions[i.disp_operands];
8151   i.op[this_operand].disps = exp;
8152   i.disp_operands++;
8153   save_input_line_pointer = input_line_pointer;
8154   input_line_pointer = disp_start;
8155   END_STRING_AND_SAVE (disp_end);
8156 
8157 #ifndef GCC_ASM_O_HACK
8158 #define GCC_ASM_O_HACK 0
8159 #endif
8160 #if GCC_ASM_O_HACK
8161   END_STRING_AND_SAVE (disp_end + 1);
8162   if (i.types[this_operand].bitfield.baseIndex
8163       && displacement_string_end[-1] == '+')
8164     {
8165       /* This hack is to avoid a warning when using the "o"
8166 	 constraint within gcc asm statements.
8167 	 For instance:
8168 
8169 	 #define _set_tssldt_desc(n,addr,limit,type) \
8170 	 __asm__ __volatile__ ( \
8171 	 "movw %w2,%0\n\t" \
8172 	 "movw %w1,2+%0\n\t" \
8173 	 "rorl $16,%1\n\t" \
8174 	 "movb %b1,4+%0\n\t" \
8175 	 "movb %4,5+%0\n\t" \
8176 	 "movb $0,6+%0\n\t" \
8177 	 "movb %h1,7+%0\n\t" \
8178 	 "rorl $16,%1" \
8179 	 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8180 
8181 	 This works great except that the output assembler ends
8182 	 up looking a bit weird if it turns out that there is
8183 	 no offset.  You end up producing code that looks like:
8184 
8185 	 #APP
8186 	 movw $235,(%eax)
8187 	 movw %dx,2+(%eax)
8188 	 rorl $16,%edx
8189 	 movb %dl,4+(%eax)
8190 	 movb $137,5+(%eax)
8191 	 movb $0,6+(%eax)
8192 	 movb %dh,7+(%eax)
8193 	 rorl $16,%edx
8194 	 #NO_APP
8195 
8196 	 So here we provide the missing zero.  */
8197 
8198       *displacement_string_end = '0';
8199     }
8200 #endif
8201   gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
8202 				(i.bnd_prefix != NULL
8203 				 || add_bnd_prefix));
8204   if (gotfree_input_line)
8205     input_line_pointer = gotfree_input_line;
8206 
8207   exp_seg = expression (exp);
8208 
8209   SKIP_WHITESPACE ();
8210   if (*input_line_pointer)
8211     as_bad (_("junk `%s' after expression"), input_line_pointer);
8212 #if GCC_ASM_O_HACK
8213   RESTORE_END_STRING (disp_end + 1);
8214 #endif
8215   input_line_pointer = save_input_line_pointer;
8216   if (gotfree_input_line)
8217     {
8218       free (gotfree_input_line);
8219 
8220       if (exp->X_op == O_constant || exp->X_op == O_register)
8221 	exp->X_op = O_illegal;
8222     }
8223 
8224   ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8225 
8226   RESTORE_END_STRING (disp_end);
8227 
8228   return ret;
8229 }
8230 
8231 static int
i386_finalize_displacement(segT exp_seg ATTRIBUTE_UNUSED,expressionS * exp,i386_operand_type types,const char * disp_start)8232 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8233 			    i386_operand_type types, const char *disp_start)
8234 {
8235   i386_operand_type bigdisp;
8236   int ret = 1;
8237 
8238   /* We do this to make sure that the section symbol is in
8239      the symbol table.  We will ultimately change the relocation
8240      to be relative to the beginning of the section.  */
8241   if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8242       || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8243       || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8244     {
8245       if (exp->X_op != O_symbol)
8246 	goto inv_disp;
8247 
8248       if (S_IS_LOCAL (exp->X_add_symbol)
8249 	  && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8250 	  && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8251 	section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8252       exp->X_op = O_subtract;
8253       exp->X_op_symbol = GOT_symbol;
8254       if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8255 	i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8256       else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8257 	i.reloc[this_operand] = BFD_RELOC_64;
8258       else
8259 	i.reloc[this_operand] = BFD_RELOC_32;
8260     }
8261 
8262   else if (exp->X_op == O_absent
8263 	   || exp->X_op == O_illegal
8264 	   || exp->X_op == O_big)
8265     {
8266     inv_disp:
8267       as_bad (_("missing or invalid displacement expression `%s'"),
8268 	      disp_start);
8269       ret = 0;
8270     }
8271 
8272   else if (flag_code == CODE_64BIT
8273 	   && !i.prefix[ADDR_PREFIX]
8274 	   && exp->X_op == O_constant)
8275     {
8276       /* Since displacement is signed extended to 64bit, don't allow
8277 	 disp32 and turn off disp32s if they are out of range.  */
8278       i.types[this_operand].bitfield.disp32 = 0;
8279       if (!fits_in_signed_long (exp->X_add_number))
8280 	{
8281 	  i.types[this_operand].bitfield.disp32s = 0;
8282 	  if (i.types[this_operand].bitfield.baseindex)
8283 	    {
8284 	      as_bad (_("0x%lx out range of signed 32bit displacement"),
8285 		      (long) exp->X_add_number);
8286 	      ret = 0;
8287 	    }
8288 	}
8289     }
8290 
8291 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8292   else if (exp->X_op != O_constant
8293 	   && OUTPUT_FLAVOR == bfd_target_aout_flavour
8294 	   && exp_seg != absolute_section
8295 	   && exp_seg != text_section
8296 	   && exp_seg != data_section
8297 	   && exp_seg != bss_section
8298 	   && exp_seg != undefined_section
8299 	   && !bfd_is_com_section (exp_seg))
8300     {
8301       as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8302       ret = 0;
8303     }
8304 #endif
8305 
8306   /* Check if this is a displacement only operand.  */
8307   bigdisp = i.types[this_operand];
8308   bigdisp.bitfield.disp8 = 0;
8309   bigdisp.bitfield.disp16 = 0;
8310   bigdisp.bitfield.disp32 = 0;
8311   bigdisp.bitfield.disp32s = 0;
8312   bigdisp.bitfield.disp64 = 0;
8313   if (operand_type_all_zero (&bigdisp))
8314     i.types[this_operand] = operand_type_and (i.types[this_operand],
8315 					      types);
8316 
8317   return ret;
8318 }
8319 
8320 /* Make sure the memory operand we've been dealt is valid.
8321    Return 1 on success, 0 on a failure.  */
8322 
8323 static int
i386_index_check(const char * operand_string)8324 i386_index_check (const char *operand_string)
8325 {
8326   const char *kind = "base/index";
8327   enum flag_code addr_mode;
8328 
8329   if (i.prefix[ADDR_PREFIX])
8330     addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8331   else
8332     {
8333       addr_mode = flag_code;
8334 
8335 #if INFER_ADDR_PREFIX
8336       if (i.mem_operands == 0)
8337 	{
8338 	  /* Infer address prefix from the first memory operand.  */
8339 	  const reg_entry *addr_reg = i.base_reg;
8340 
8341 	  if (addr_reg == NULL)
8342 	    addr_reg = i.index_reg;
8343 
8344 	  if (addr_reg)
8345 	    {
8346 	      if (addr_reg->reg_num == RegEip
8347 		  || addr_reg->reg_num == RegEiz
8348 		  || addr_reg->reg_type.bitfield.reg32)
8349 		addr_mode = CODE_32BIT;
8350 	      else if (flag_code != CODE_64BIT
8351 		       && addr_reg->reg_type.bitfield.reg16)
8352 		addr_mode = CODE_16BIT;
8353 
8354 	      if (addr_mode != flag_code)
8355 		{
8356 		  i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8357 		  i.prefixes += 1;
8358 		  /* Change the size of any displacement too.  At most one
8359 		     of Disp16 or Disp32 is set.
8360 		     FIXME.  There doesn't seem to be any real need for
8361 		     separate Disp16 and Disp32 flags.  The same goes for
8362 		     Imm16 and Imm32.  Removing them would probably clean
8363 		     up the code quite a lot.  */
8364 		  if (flag_code != CODE_64BIT
8365 		      && (i.types[this_operand].bitfield.disp16
8366 			  || i.types[this_operand].bitfield.disp32))
8367 		    i.types[this_operand]
8368 		      = operand_type_xor (i.types[this_operand], disp16_32);
8369 		}
8370 	    }
8371 	}
8372 #endif
8373     }
8374 
8375   if (current_templates->start->opcode_modifier.isstring
8376       && !current_templates->start->opcode_modifier.immext
8377       && (current_templates->end[-1].opcode_modifier.isstring
8378 	  || i.mem_operands))
8379     {
8380       /* Memory operands of string insns are special in that they only allow
8381 	 a single register (rDI, rSI, or rBX) as their memory address.  */
8382       const reg_entry *expected_reg;
8383       static const char *di_si[][2] =
8384 	{
8385 	  { "esi", "edi" },
8386 	  { "si", "di" },
8387 	  { "rsi", "rdi" }
8388 	};
8389       static const char *bx[] = { "ebx", "bx", "rbx" };
8390 
8391       kind = "string address";
8392 
8393       if (current_templates->start->opcode_modifier.w)
8394 	{
8395 	  i386_operand_type type = current_templates->end[-1].operand_types[0];
8396 
8397 	  if (!type.bitfield.baseindex
8398 	      || ((!i.mem_operands != !intel_syntax)
8399 		  && current_templates->end[-1].operand_types[1]
8400 		     .bitfield.baseindex))
8401 	    type = current_templates->end[-1].operand_types[1];
8402 	  expected_reg = hash_find (reg_hash,
8403 				    di_si[addr_mode][type.bitfield.esseg]);
8404 
8405 	}
8406       else
8407 	expected_reg = hash_find (reg_hash, bx[addr_mode]);
8408 
8409       if (i.base_reg != expected_reg
8410 	  || i.index_reg
8411 	  || operand_type_check (i.types[this_operand], disp))
8412 	{
8413 	  /* The second memory operand must have the same size as
8414 	     the first one.  */
8415 	  if (i.mem_operands
8416 	      && i.base_reg
8417 	      && !((addr_mode == CODE_64BIT
8418 		    && i.base_reg->reg_type.bitfield.reg64)
8419 		   || (addr_mode == CODE_32BIT
8420 		       ? i.base_reg->reg_type.bitfield.reg32
8421 		       : i.base_reg->reg_type.bitfield.reg16)))
8422 	    goto bad_address;
8423 
8424 	  as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8425 		   operand_string,
8426 		   intel_syntax ? '[' : '(',
8427 		   register_prefix,
8428 		   expected_reg->reg_name,
8429 		   intel_syntax ? ']' : ')');
8430 	  return 1;
8431 	}
8432       else
8433 	return 1;
8434 
8435 bad_address:
8436       as_bad (_("`%s' is not a valid %s expression"),
8437 	      operand_string, kind);
8438       return 0;
8439     }
8440   else
8441     {
8442       if (addr_mode != CODE_16BIT)
8443 	{
8444 	  /* 32-bit/64-bit checks.  */
8445 	  if ((i.base_reg
8446 	       && (addr_mode == CODE_64BIT
8447 		   ? !i.base_reg->reg_type.bitfield.reg64
8448 		   : !i.base_reg->reg_type.bitfield.reg32)
8449 	       && (i.index_reg
8450 		   || (i.base_reg->reg_num
8451 		       != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8452 	      || (i.index_reg
8453 		  && !i.index_reg->reg_type.bitfield.regxmm
8454 		  && !i.index_reg->reg_type.bitfield.regymm
8455 		  && !i.index_reg->reg_type.bitfield.regzmm
8456 		  && ((addr_mode == CODE_64BIT
8457 		       ? !(i.index_reg->reg_type.bitfield.reg64
8458 			   || i.index_reg->reg_num == RegRiz)
8459 		       : !(i.index_reg->reg_type.bitfield.reg32
8460 			   || i.index_reg->reg_num == RegEiz))
8461 		      || !i.index_reg->reg_type.bitfield.baseindex)))
8462 	    goto bad_address;
8463 	}
8464       else
8465 	{
8466 	  /* 16-bit checks.  */
8467 	  if ((i.base_reg
8468 	       && (!i.base_reg->reg_type.bitfield.reg16
8469 		   || !i.base_reg->reg_type.bitfield.baseindex))
8470 	      || (i.index_reg
8471 		  && (!i.index_reg->reg_type.bitfield.reg16
8472 		      || !i.index_reg->reg_type.bitfield.baseindex
8473 		      || !(i.base_reg
8474 			   && i.base_reg->reg_num < 6
8475 			   && i.index_reg->reg_num >= 6
8476 			   && i.log2_scale_factor == 0))))
8477 	    goto bad_address;
8478 	}
8479     }
8480   return 1;
8481 }
8482 
8483 /* Handle vector immediates.  */
8484 
8485 static int
RC_SAE_immediate(const char * imm_start)8486 RC_SAE_immediate (const char *imm_start)
8487 {
8488   unsigned int match_found, j;
8489   const char *pstr = imm_start;
8490   expressionS *exp;
8491 
8492   if (*pstr != '{')
8493     return 0;
8494 
8495   pstr++;
8496   match_found = 0;
8497   for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8498     {
8499       if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8500 	{
8501 	  if (!i.rounding)
8502 	    {
8503 	      rc_op.type = RC_NamesTable[j].type;
8504 	      rc_op.operand = this_operand;
8505 	      i.rounding = &rc_op;
8506 	    }
8507 	  else
8508 	    {
8509 	      as_bad (_("duplicated `%s'"), imm_start);
8510 	      return 0;
8511 	    }
8512 	  pstr += RC_NamesTable[j].len;
8513 	  match_found = 1;
8514 	  break;
8515 	}
8516     }
8517   if (!match_found)
8518     return 0;
8519 
8520   if (*pstr++ != '}')
8521     {
8522       as_bad (_("Missing '}': '%s'"), imm_start);
8523       return 0;
8524     }
8525   /* RC/SAE immediate string should contain nothing more.  */;
8526   if (*pstr != 0)
8527     {
8528       as_bad (_("Junk after '}': '%s'"), imm_start);
8529       return 0;
8530     }
8531 
8532   exp = &im_expressions[i.imm_operands++];
8533   i.op[this_operand].imms = exp;
8534 
8535   exp->X_op = O_constant;
8536   exp->X_add_number = 0;
8537   exp->X_add_symbol = (symbolS *) 0;
8538   exp->X_op_symbol = (symbolS *) 0;
8539 
8540   i.types[this_operand].bitfield.imm8 = 1;
8541   return 1;
8542 }
8543 
8544 /* Parse OPERAND_STRING into the i386_insn structure I.  Returns zero
8545    on error.  */
8546 
8547 static int
i386_att_operand(char * operand_string)8548 i386_att_operand (char *operand_string)
8549 {
8550   const reg_entry *r;
8551   char *end_op;
8552   char *op_string = operand_string;
8553 
8554   if (is_space_char (*op_string))
8555     ++op_string;
8556 
8557   /* We check for an absolute prefix (differentiating,
8558      for example, 'jmp pc_relative_label' from 'jmp *absolute_label'.  */
8559   if (*op_string == ABSOLUTE_PREFIX)
8560     {
8561       ++op_string;
8562       if (is_space_char (*op_string))
8563 	++op_string;
8564       i.types[this_operand].bitfield.jumpabsolute = 1;
8565     }
8566 
8567   /* Check if operand is a register.  */
8568   if ((r = parse_register (op_string, &end_op)) != NULL)
8569     {
8570       i386_operand_type temp;
8571 
8572       /* Check for a segment override by searching for ':' after a
8573 	 segment register.  */
8574       op_string = end_op;
8575       if (is_space_char (*op_string))
8576 	++op_string;
8577       if (*op_string == ':'
8578 	  && (r->reg_type.bitfield.sreg2
8579 	      || r->reg_type.bitfield.sreg3))
8580 	{
8581 	  switch (r->reg_num)
8582 	    {
8583 	    case 0:
8584 	      i.seg[i.mem_operands] = &es;
8585 	      break;
8586 	    case 1:
8587 	      i.seg[i.mem_operands] = &cs;
8588 	      break;
8589 	    case 2:
8590 	      i.seg[i.mem_operands] = &ss;
8591 	      break;
8592 	    case 3:
8593 	      i.seg[i.mem_operands] = &ds;
8594 	      break;
8595 	    case 4:
8596 	      i.seg[i.mem_operands] = &fs;
8597 	      break;
8598 	    case 5:
8599 	      i.seg[i.mem_operands] = &gs;
8600 	      break;
8601 	    }
8602 
8603 	  /* Skip the ':' and whitespace.  */
8604 	  ++op_string;
8605 	  if (is_space_char (*op_string))
8606 	    ++op_string;
8607 
8608 	  if (!is_digit_char (*op_string)
8609 	      && !is_identifier_char (*op_string)
8610 	      && *op_string != '('
8611 	      && *op_string != ABSOLUTE_PREFIX)
8612 	    {
8613 	      as_bad (_("bad memory operand `%s'"), op_string);
8614 	      return 0;
8615 	    }
8616 	  /* Handle case of %es:*foo.  */
8617 	  if (*op_string == ABSOLUTE_PREFIX)
8618 	    {
8619 	      ++op_string;
8620 	      if (is_space_char (*op_string))
8621 		++op_string;
8622 	      i.types[this_operand].bitfield.jumpabsolute = 1;
8623 	    }
8624 	  goto do_memory_reference;
8625 	}
8626 
8627       /* Handle vector operations.  */
8628       if (*op_string == '{')
8629 	{
8630 	  op_string = check_VecOperations (op_string, NULL);
8631 	  if (op_string == NULL)
8632 	    return 0;
8633 	}
8634 
8635       if (*op_string)
8636 	{
8637 	  as_bad (_("junk `%s' after register"), op_string);
8638 	  return 0;
8639 	}
8640       temp = r->reg_type;
8641       temp.bitfield.baseindex = 0;
8642       i.types[this_operand] = operand_type_or (i.types[this_operand],
8643 					       temp);
8644       i.types[this_operand].bitfield.unspecified = 0;
8645       i.op[this_operand].regs = r;
8646       i.reg_operands++;
8647     }
8648   else if (*op_string == REGISTER_PREFIX)
8649     {
8650       as_bad (_("bad register name `%s'"), op_string);
8651       return 0;
8652     }
8653   else if (*op_string == IMMEDIATE_PREFIX)
8654     {
8655       ++op_string;
8656       if (i.types[this_operand].bitfield.jumpabsolute)
8657 	{
8658 	  as_bad (_("immediate operand illegal with absolute jump"));
8659 	  return 0;
8660 	}
8661       if (!i386_immediate (op_string))
8662 	return 0;
8663     }
8664   else if (RC_SAE_immediate (operand_string))
8665     {
8666       /* If it is a RC or SAE immediate, do nothing.  */
8667       ;
8668     }
8669   else if (is_digit_char (*op_string)
8670 	   || is_identifier_char (*op_string)
8671 	   || *op_string == '(')
8672     {
8673       /* This is a memory reference of some sort.  */
8674       char *base_string;
8675 
8676       /* Start and end of displacement string expression (if found).  */
8677       char *displacement_string_start;
8678       char *displacement_string_end;
8679       char *vop_start;
8680 
8681     do_memory_reference:
8682       if ((i.mem_operands == 1
8683 	   && !current_templates->start->opcode_modifier.isstring)
8684 	  || i.mem_operands == 2)
8685 	{
8686 	  as_bad (_("too many memory references for `%s'"),
8687 		  current_templates->start->name);
8688 	  return 0;
8689 	}
8690 
8691       /* Check for base index form.  We detect the base index form by
8692 	 looking for an ')' at the end of the operand, searching
8693 	 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8694 	 after the '('.  */
8695       base_string = op_string + strlen (op_string);
8696 
8697       /* Handle vector operations.  */
8698       vop_start = strchr (op_string, '{');
8699       if (vop_start && vop_start < base_string)
8700 	{
8701 	  if (check_VecOperations (vop_start, base_string) == NULL)
8702 	    return 0;
8703 	  base_string = vop_start;
8704 	}
8705 
8706       --base_string;
8707       if (is_space_char (*base_string))
8708 	--base_string;
8709 
8710       /* If we only have a displacement, set-up for it to be parsed later.  */
8711       displacement_string_start = op_string;
8712       displacement_string_end = base_string + 1;
8713 
8714       if (*base_string == ')')
8715 	{
8716 	  char *temp_string;
8717 	  unsigned int parens_balanced = 1;
8718 	  /* We've already checked that the number of left & right ()'s are
8719 	     equal, so this loop will not be infinite.  */
8720 	  do
8721 	    {
8722 	      base_string--;
8723 	      if (*base_string == ')')
8724 		parens_balanced++;
8725 	      if (*base_string == '(')
8726 		parens_balanced--;
8727 	    }
8728 	  while (parens_balanced);
8729 
8730 	  temp_string = base_string;
8731 
8732 	  /* Skip past '(' and whitespace.  */
8733 	  ++base_string;
8734 	  if (is_space_char (*base_string))
8735 	    ++base_string;
8736 
8737 	  if (*base_string == ','
8738 	      || ((i.base_reg = parse_register (base_string, &end_op))
8739 		  != NULL))
8740 	    {
8741 	      displacement_string_end = temp_string;
8742 
8743 	      i.types[this_operand].bitfield.baseindex = 1;
8744 
8745 	      if (i.base_reg)
8746 		{
8747 		  base_string = end_op;
8748 		  if (is_space_char (*base_string))
8749 		    ++base_string;
8750 		}
8751 
8752 	      /* There may be an index reg or scale factor here.  */
8753 	      if (*base_string == ',')
8754 		{
8755 		  ++base_string;
8756 		  if (is_space_char (*base_string))
8757 		    ++base_string;
8758 
8759 		  if ((i.index_reg = parse_register (base_string, &end_op))
8760 		      != NULL)
8761 		    {
8762 		      base_string = end_op;
8763 		      if (is_space_char (*base_string))
8764 			++base_string;
8765 		      if (*base_string == ',')
8766 			{
8767 			  ++base_string;
8768 			  if (is_space_char (*base_string))
8769 			    ++base_string;
8770 			}
8771 		      else if (*base_string != ')')
8772 			{
8773 			  as_bad (_("expecting `,' or `)' "
8774 				    "after index register in `%s'"),
8775 				  operand_string);
8776 			  return 0;
8777 			}
8778 		    }
8779 		  else if (*base_string == REGISTER_PREFIX)
8780 		    {
8781 		      end_op = strchr (base_string, ',');
8782 		      if (end_op)
8783 			*end_op = '\0';
8784 		      as_bad (_("bad register name `%s'"), base_string);
8785 		      return 0;
8786 		    }
8787 
8788 		  /* Check for scale factor.  */
8789 		  if (*base_string != ')')
8790 		    {
8791 		      char *end_scale = i386_scale (base_string);
8792 
8793 		      if (!end_scale)
8794 			return 0;
8795 
8796 		      base_string = end_scale;
8797 		      if (is_space_char (*base_string))
8798 			++base_string;
8799 		      if (*base_string != ')')
8800 			{
8801 			  as_bad (_("expecting `)' "
8802 				    "after scale factor in `%s'"),
8803 				  operand_string);
8804 			  return 0;
8805 			}
8806 		    }
8807 		  else if (!i.index_reg)
8808 		    {
8809 		      as_bad (_("expecting index register or scale factor "
8810 				"after `,'; got '%c'"),
8811 			      *base_string);
8812 		      return 0;
8813 		    }
8814 		}
8815 	      else if (*base_string != ')')
8816 		{
8817 		  as_bad (_("expecting `,' or `)' "
8818 			    "after base register in `%s'"),
8819 			  operand_string);
8820 		  return 0;
8821 		}
8822 	    }
8823 	  else if (*base_string == REGISTER_PREFIX)
8824 	    {
8825 	      end_op = strchr (base_string, ',');
8826 	      if (end_op)
8827 		*end_op = '\0';
8828 	      as_bad (_("bad register name `%s'"), base_string);
8829 	      return 0;
8830 	    }
8831 	}
8832 
8833       /* If there's an expression beginning the operand, parse it,
8834 	 assuming displacement_string_start and
8835 	 displacement_string_end are meaningful.  */
8836       if (displacement_string_start != displacement_string_end)
8837 	{
8838 	  if (!i386_displacement (displacement_string_start,
8839 				  displacement_string_end))
8840 	    return 0;
8841 	}
8842 
8843       /* Special case for (%dx) while doing input/output op.  */
8844       if (i.base_reg
8845 	  && operand_type_equal (&i.base_reg->reg_type,
8846 				 &reg16_inoutportreg)
8847 	  && i.index_reg == 0
8848 	  && i.log2_scale_factor == 0
8849 	  && i.seg[i.mem_operands] == 0
8850 	  && !operand_type_check (i.types[this_operand], disp))
8851 	{
8852 	  i.types[this_operand] = inoutportreg;
8853 	  return 1;
8854 	}
8855 
8856       if (i386_index_check (operand_string) == 0)
8857 	return 0;
8858       i.types[this_operand].bitfield.mem = 1;
8859       i.mem_operands++;
8860     }
8861   else
8862     {
8863       /* It's not a memory operand; argh!  */
8864       as_bad (_("invalid char %s beginning operand %d `%s'"),
8865 	      output_invalid (*op_string),
8866 	      this_operand + 1,
8867 	      op_string);
8868       return 0;
8869     }
8870   return 1;			/* Normal return.  */
8871 }
8872 
8873 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8874    that an rs_machine_dependent frag may reach.  */
8875 
8876 unsigned int
i386_frag_max_var(fragS * frag)8877 i386_frag_max_var (fragS *frag)
8878 {
8879   /* The only relaxable frags are for jumps.
8880      Unconditional jumps can grow by 4 bytes and others by 5 bytes.  */
8881   gas_assert (frag->fr_type == rs_machine_dependent);
8882   return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8883 }
8884 
8885 /* md_estimate_size_before_relax()
8886 
8887    Called just before relax() for rs_machine_dependent frags.  The x86
8888    assembler uses these frags to handle variable size jump
8889    instructions.
8890 
8891    Any symbol that is now undefined will not become defined.
8892    Return the correct fr_subtype in the frag.
8893    Return the initial "guess for variable size of frag" to caller.
8894    The guess is actually the growth beyond the fixed part.  Whatever
8895    we do to grow the fixed or variable part contributes to our
8896    returned value.  */
8897 
8898 int
md_estimate_size_before_relax(fragS * fragP,segT segment)8899 md_estimate_size_before_relax (fragS *fragP, segT segment)
8900 {
8901   /* We've already got fragP->fr_subtype right;  all we have to do is
8902      check for un-relaxable symbols.  On an ELF system, we can't relax
8903      an externally visible symbol, because it may be overridden by a
8904      shared library.  */
8905   if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8906 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8907       || (IS_ELF
8908 	  && (S_IS_EXTERNAL (fragP->fr_symbol)
8909 	      || S_IS_WEAK (fragP->fr_symbol)
8910 	      || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8911 		   & BSF_GNU_INDIRECT_FUNCTION))))
8912 #endif
8913 #if defined (OBJ_COFF) && defined (TE_PE)
8914       || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8915 	  && S_IS_WEAK (fragP->fr_symbol))
8916 #endif
8917       )
8918     {
8919       /* Symbol is undefined in this segment, or we need to keep a
8920 	 reloc so that weak symbols can be overridden.  */
8921       int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8922       enum bfd_reloc_code_real reloc_type;
8923       unsigned char *opcode;
8924       int old_fr_fix;
8925 
8926       if (fragP->fr_var != NO_RELOC)
8927 	reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8928       else if (size == 2)
8929 	reloc_type = BFD_RELOC_16_PCREL;
8930       else
8931 	reloc_type = BFD_RELOC_32_PCREL;
8932 
8933       old_fr_fix = fragP->fr_fix;
8934       opcode = (unsigned char *) fragP->fr_opcode;
8935 
8936       switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8937 	{
8938 	case UNCOND_JUMP:
8939 	  /* Make jmp (0xeb) a (d)word displacement jump.  */
8940 	  opcode[0] = 0xe9;
8941 	  fragP->fr_fix += size;
8942 	  fix_new (fragP, old_fr_fix, size,
8943 		   fragP->fr_symbol,
8944 		   fragP->fr_offset, 1,
8945 		   reloc_type);
8946 	  break;
8947 
8948 	case COND_JUMP86:
8949 	  if (size == 2
8950 	      && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8951 	    {
8952 	      /* Negate the condition, and branch past an
8953 		 unconditional jump.  */
8954 	      opcode[0] ^= 1;
8955 	      opcode[1] = 3;
8956 	      /* Insert an unconditional jump.  */
8957 	      opcode[2] = 0xe9;
8958 	      /* We added two extra opcode bytes, and have a two byte
8959 		 offset.  */
8960 	      fragP->fr_fix += 2 + 2;
8961 	      fix_new (fragP, old_fr_fix + 2, 2,
8962 		       fragP->fr_symbol,
8963 		       fragP->fr_offset, 1,
8964 		       reloc_type);
8965 	      break;
8966 	    }
8967 	  /* Fall through.  */
8968 
8969 	case COND_JUMP:
8970 	  if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8971 	    {
8972 	      fixS *fixP;
8973 
8974 	      fragP->fr_fix += 1;
8975 	      fixP = fix_new (fragP, old_fr_fix, 1,
8976 			      fragP->fr_symbol,
8977 			      fragP->fr_offset, 1,
8978 			      BFD_RELOC_8_PCREL);
8979 	      fixP->fx_signed = 1;
8980 	      break;
8981 	    }
8982 
8983 	  /* This changes the byte-displacement jump 0x7N
8984 	     to the (d)word-displacement jump 0x0f,0x8N.  */
8985 	  opcode[1] = opcode[0] + 0x10;
8986 	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8987 	  /* We've added an opcode byte.  */
8988 	  fragP->fr_fix += 1 + size;
8989 	  fix_new (fragP, old_fr_fix + 1, size,
8990 		   fragP->fr_symbol,
8991 		   fragP->fr_offset, 1,
8992 		   reloc_type);
8993 	  break;
8994 
8995 	default:
8996 	  BAD_CASE (fragP->fr_subtype);
8997 	  break;
8998 	}
8999       frag_wane (fragP);
9000       return fragP->fr_fix - old_fr_fix;
9001     }
9002 
9003   /* Guess size depending on current relax state.  Initially the relax
9004      state will correspond to a short jump and we return 1, because
9005      the variable part of the frag (the branch offset) is one byte
9006      long.  However, we can relax a section more than once and in that
9007      case we must either set fr_subtype back to the unrelaxed state,
9008      or return the value for the appropriate branch.  */
9009   return md_relax_table[fragP->fr_subtype].rlx_length;
9010 }
9011 
9012 /* Called after relax() is finished.
9013 
9014    In:	Address of frag.
9015 	fr_type == rs_machine_dependent.
9016 	fr_subtype is what the address relaxed to.
9017 
9018    Out:	Any fixSs and constants are set up.
9019 	Caller will turn frag into a ".space 0".  */
9020 
9021 void
md_convert_frag(bfd * abfd ATTRIBUTE_UNUSED,segT sec ATTRIBUTE_UNUSED,fragS * fragP)9022 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9023                  fragS *fragP)
9024 {
9025   unsigned char *opcode;
9026   unsigned char *where_to_put_displacement = NULL;
9027   offsetT target_address;
9028   offsetT opcode_address;
9029   unsigned int extension = 0;
9030   offsetT displacement_from_opcode_start;
9031 
9032   opcode = (unsigned char *) fragP->fr_opcode;
9033 
9034   /* Address we want to reach in file space.  */
9035   target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9036 
9037   /* Address opcode resides at in file space.  */
9038   opcode_address = fragP->fr_address + fragP->fr_fix;
9039 
9040   /* Displacement from opcode start to fill into instruction.  */
9041   displacement_from_opcode_start = target_address - opcode_address;
9042 
9043   if ((fragP->fr_subtype & BIG) == 0)
9044     {
9045       /* Don't have to change opcode.  */
9046       extension = 1;		/* 1 opcode + 1 displacement  */
9047       where_to_put_displacement = &opcode[1];
9048     }
9049   else
9050     {
9051       if (no_cond_jump_promotion
9052 	  && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9053 	as_warn_where (fragP->fr_file, fragP->fr_line,
9054 		       _("long jump required"));
9055 
9056       switch (fragP->fr_subtype)
9057 	{
9058 	case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9059 	  extension = 4;		/* 1 opcode + 4 displacement  */
9060 	  opcode[0] = 0xe9;
9061 	  where_to_put_displacement = &opcode[1];
9062 	  break;
9063 
9064 	case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9065 	  extension = 2;		/* 1 opcode + 2 displacement  */
9066 	  opcode[0] = 0xe9;
9067 	  where_to_put_displacement = &opcode[1];
9068 	  break;
9069 
9070 	case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9071 	case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9072 	  extension = 5;		/* 2 opcode + 4 displacement  */
9073 	  opcode[1] = opcode[0] + 0x10;
9074 	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9075 	  where_to_put_displacement = &opcode[2];
9076 	  break;
9077 
9078 	case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9079 	  extension = 3;		/* 2 opcode + 2 displacement  */
9080 	  opcode[1] = opcode[0] + 0x10;
9081 	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9082 	  where_to_put_displacement = &opcode[2];
9083 	  break;
9084 
9085 	case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9086 	  extension = 4;
9087 	  opcode[0] ^= 1;
9088 	  opcode[1] = 3;
9089 	  opcode[2] = 0xe9;
9090 	  where_to_put_displacement = &opcode[3];
9091 	  break;
9092 
9093 	default:
9094 	  BAD_CASE (fragP->fr_subtype);
9095 	  break;
9096 	}
9097     }
9098 
9099   /* If size if less then four we are sure that the operand fits,
9100      but if it's 4, then it could be that the displacement is larger
9101      then -/+ 2GB.  */
9102   if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9103       && object_64bit
9104       && ((addressT) (displacement_from_opcode_start - extension
9105 		      + ((addressT) 1 << 31))
9106 	  > (((addressT) 2 << 31) - 1)))
9107     {
9108       as_bad_where (fragP->fr_file, fragP->fr_line,
9109 		    _("jump target out of range"));
9110       /* Make us emit 0.  */
9111       displacement_from_opcode_start = extension;
9112     }
9113   /* Now put displacement after opcode.  */
9114   md_number_to_chars ((char *) where_to_put_displacement,
9115 		      (valueT) (displacement_from_opcode_start - extension),
9116 		      DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9117   fragP->fr_fix += extension;
9118 }
9119 
9120 /* Apply a fixup (fixP) to segment data, once it has been determined
9121    by our caller that we have all the info we need to fix it up.
9122 
9123    Parameter valP is the pointer to the value of the bits.
9124 
9125    On the 386, immediates, displacements, and data pointers are all in
9126    the same (little-endian) format, so we don't need to care about which
9127    we are handling.  */
9128 
9129 void
md_apply_fix(fixS * fixP,valueT * valP,segT seg ATTRIBUTE_UNUSED)9130 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9131 {
9132   char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9133   valueT value = *valP;
9134 
9135 #if !defined (TE_Mach)
9136   if (fixP->fx_pcrel)
9137     {
9138       switch (fixP->fx_r_type)
9139 	{
9140 	default:
9141 	  break;
9142 
9143 	case BFD_RELOC_64:
9144 	  fixP->fx_r_type = BFD_RELOC_64_PCREL;
9145 	  break;
9146 	case BFD_RELOC_32:
9147 	case BFD_RELOC_X86_64_32S:
9148 	  fixP->fx_r_type = BFD_RELOC_32_PCREL;
9149 	  break;
9150 	case BFD_RELOC_16:
9151 	  fixP->fx_r_type = BFD_RELOC_16_PCREL;
9152 	  break;
9153 	case BFD_RELOC_8:
9154 	  fixP->fx_r_type = BFD_RELOC_8_PCREL;
9155 	  break;
9156 	}
9157     }
9158 
9159   if (fixP->fx_addsy != NULL
9160       && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9161 	  || fixP->fx_r_type == BFD_RELOC_64_PCREL
9162 	  || fixP->fx_r_type == BFD_RELOC_16_PCREL
9163 	  || fixP->fx_r_type == BFD_RELOC_8_PCREL
9164 	  || fixP->fx_r_type == BFD_RELOC_X86_64_PC32_BND)
9165       && !use_rela_relocations)
9166     {
9167       /* This is a hack.  There should be a better way to handle this.
9168 	 This covers for the fact that bfd_install_relocation will
9169 	 subtract the current location (for partial_inplace, PC relative
9170 	 relocations); see more below.  */
9171 #ifndef OBJ_AOUT
9172       if (IS_ELF
9173 #ifdef TE_PE
9174 	  || OUTPUT_FLAVOR == bfd_target_coff_flavour
9175 #endif
9176 	  )
9177 	value += fixP->fx_where + fixP->fx_frag->fr_address;
9178 #endif
9179 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9180       if (IS_ELF)
9181 	{
9182 	  segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9183 
9184 	  if ((sym_seg == seg
9185 	       || (symbol_section_p (fixP->fx_addsy)
9186 		   && sym_seg != absolute_section))
9187 	      && !generic_force_reloc (fixP))
9188 	    {
9189 	      /* Yes, we add the values in twice.  This is because
9190 		 bfd_install_relocation subtracts them out again.  I think
9191 		 bfd_install_relocation is broken, but I don't dare change
9192 		 it.  FIXME.  */
9193 	      value += fixP->fx_where + fixP->fx_frag->fr_address;
9194 	    }
9195 	}
9196 #endif
9197 #if defined (OBJ_COFF) && defined (TE_PE)
9198       /* For some reason, the PE format does not store a
9199 	 section address offset for a PC relative symbol.  */
9200       if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9201 	  || S_IS_WEAK (fixP->fx_addsy))
9202 	value += md_pcrel_from (fixP);
9203 #endif
9204     }
9205 #if defined (OBJ_COFF) && defined (TE_PE)
9206   if (fixP->fx_addsy != NULL
9207       && S_IS_WEAK (fixP->fx_addsy)
9208       /* PR 16858: Do not modify weak function references.  */
9209       && ! fixP->fx_pcrel)
9210     {
9211 #if !defined (TE_PEP)
9212       /* For x86 PE weak function symbols are neither PC-relative
9213 	 nor do they set S_IS_FUNCTION.  So the only reliable way
9214 	 to detect them is to check the flags of their containing
9215 	 section.  */
9216       if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9217 	  && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9218 	;
9219       else
9220 #endif
9221       value -= S_GET_VALUE (fixP->fx_addsy);
9222     }
9223 #endif
9224 
9225   /* Fix a few things - the dynamic linker expects certain values here,
9226      and we must not disappoint it.  */
9227 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9228   if (IS_ELF && fixP->fx_addsy)
9229     switch (fixP->fx_r_type)
9230       {
9231       case BFD_RELOC_386_PLT32:
9232       case BFD_RELOC_X86_64_PLT32:
9233       case BFD_RELOC_X86_64_PLT32_BND:
9234 	/* Make the jump instruction point to the address of the operand.  At
9235 	   runtime we merely add the offset to the actual PLT entry.  */
9236 	value = -4;
9237 	break;
9238 
9239       case BFD_RELOC_386_TLS_GD:
9240       case BFD_RELOC_386_TLS_LDM:
9241       case BFD_RELOC_386_TLS_IE_32:
9242       case BFD_RELOC_386_TLS_IE:
9243       case BFD_RELOC_386_TLS_GOTIE:
9244       case BFD_RELOC_386_TLS_GOTDESC:
9245       case BFD_RELOC_X86_64_TLSGD:
9246       case BFD_RELOC_X86_64_TLSLD:
9247       case BFD_RELOC_X86_64_GOTTPOFF:
9248       case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9249 	value = 0; /* Fully resolved at runtime.  No addend.  */
9250 	/* Fallthrough */
9251       case BFD_RELOC_386_TLS_LE:
9252       case BFD_RELOC_386_TLS_LDO_32:
9253       case BFD_RELOC_386_TLS_LE_32:
9254       case BFD_RELOC_X86_64_DTPOFF32:
9255       case BFD_RELOC_X86_64_DTPOFF64:
9256       case BFD_RELOC_X86_64_TPOFF32:
9257       case BFD_RELOC_X86_64_TPOFF64:
9258 	S_SET_THREAD_LOCAL (fixP->fx_addsy);
9259 	break;
9260 
9261       case BFD_RELOC_386_TLS_DESC_CALL:
9262       case BFD_RELOC_X86_64_TLSDESC_CALL:
9263 	value = 0; /* Fully resolved at runtime.  No addend.  */
9264 	S_SET_THREAD_LOCAL (fixP->fx_addsy);
9265 	fixP->fx_done = 0;
9266 	return;
9267 
9268       case BFD_RELOC_386_GOT32:
9269       case BFD_RELOC_X86_64_GOT32:
9270 	value = 0; /* Fully resolved at runtime.  No addend.  */
9271 	break;
9272 
9273       case BFD_RELOC_VTABLE_INHERIT:
9274       case BFD_RELOC_VTABLE_ENTRY:
9275 	fixP->fx_done = 0;
9276 	return;
9277 
9278       default:
9279 	break;
9280       }
9281 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)  */
9282   *valP = value;
9283 #endif /* !defined (TE_Mach)  */
9284 
9285   /* Are we finished with this relocation now?  */
9286   if (fixP->fx_addsy == NULL)
9287     fixP->fx_done = 1;
9288 #if defined (OBJ_COFF) && defined (TE_PE)
9289   else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9290     {
9291       fixP->fx_done = 0;
9292       /* Remember value for tc_gen_reloc.  */
9293       fixP->fx_addnumber = value;
9294       /* Clear out the frag for now.  */
9295       value = 0;
9296     }
9297 #endif
9298   else if (use_rela_relocations)
9299     {
9300       fixP->fx_no_overflow = 1;
9301       /* Remember value for tc_gen_reloc.  */
9302       fixP->fx_addnumber = value;
9303       value = 0;
9304     }
9305 
9306   md_number_to_chars (p, value, fixP->fx_size);
9307 }
9308 
9309 char *
md_atof(int type,char * litP,int * sizeP)9310 md_atof (int type, char *litP, int *sizeP)
9311 {
9312   /* This outputs the LITTLENUMs in REVERSE order;
9313      in accord with the bigendian 386.  */
9314   return ieee_md_atof (type, litP, sizeP, FALSE);
9315 }
9316 
9317 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9318 
9319 static char *
output_invalid(int c)9320 output_invalid (int c)
9321 {
9322   if (ISPRINT (c))
9323     snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9324 	      "'%c'", c);
9325   else
9326     snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9327 	      "(0x%x)", (unsigned char) c);
9328   return output_invalid_buf;
9329 }
9330 
9331 /* REG_STRING starts *before* REGISTER_PREFIX.  */
9332 
9333 static const reg_entry *
parse_real_register(char * reg_string,char ** end_op)9334 parse_real_register (char *reg_string, char **end_op)
9335 {
9336   char *s = reg_string;
9337   char *p;
9338   char reg_name_given[MAX_REG_NAME_SIZE + 1];
9339   const reg_entry *r;
9340 
9341   /* Skip possible REGISTER_PREFIX and possible whitespace.  */
9342   if (*s == REGISTER_PREFIX)
9343     ++s;
9344 
9345   if (is_space_char (*s))
9346     ++s;
9347 
9348   p = reg_name_given;
9349   while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9350     {
9351       if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9352 	return (const reg_entry *) NULL;
9353       s++;
9354     }
9355 
9356   /* For naked regs, make sure that we are not dealing with an identifier.
9357      This prevents confusing an identifier like `eax_var' with register
9358      `eax'.  */
9359   if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9360     return (const reg_entry *) NULL;
9361 
9362   *end_op = s;
9363 
9364   r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9365 
9366   /* Handle floating point regs, allowing spaces in the (i) part.  */
9367   if (r == i386_regtab /* %st is first entry of table  */)
9368     {
9369       if (is_space_char (*s))
9370 	++s;
9371       if (*s == '(')
9372 	{
9373 	  ++s;
9374 	  if (is_space_char (*s))
9375 	    ++s;
9376 	  if (*s >= '0' && *s <= '7')
9377 	    {
9378 	      int fpr = *s - '0';
9379 	      ++s;
9380 	      if (is_space_char (*s))
9381 		++s;
9382 	      if (*s == ')')
9383 		{
9384 		  *end_op = s + 1;
9385 		  r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9386 		  know (r);
9387 		  return r + fpr;
9388 		}
9389 	    }
9390 	  /* We have "%st(" then garbage.  */
9391 	  return (const reg_entry *) NULL;
9392 	}
9393     }
9394 
9395   if (r == NULL || allow_pseudo_reg)
9396     return r;
9397 
9398   if (operand_type_all_zero (&r->reg_type))
9399     return (const reg_entry *) NULL;
9400 
9401   if ((r->reg_type.bitfield.reg32
9402        || r->reg_type.bitfield.sreg3
9403        || r->reg_type.bitfield.control
9404        || r->reg_type.bitfield.debug
9405        || r->reg_type.bitfield.test)
9406       && !cpu_arch_flags.bitfield.cpui386)
9407     return (const reg_entry *) NULL;
9408 
9409   if (r->reg_type.bitfield.floatreg
9410       && !cpu_arch_flags.bitfield.cpu8087
9411       && !cpu_arch_flags.bitfield.cpu287
9412       && !cpu_arch_flags.bitfield.cpu387)
9413     return (const reg_entry *) NULL;
9414 
9415   if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9416     return (const reg_entry *) NULL;
9417 
9418   if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9419     return (const reg_entry *) NULL;
9420 
9421   if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9422     return (const reg_entry *) NULL;
9423 
9424   if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9425        && !cpu_arch_flags.bitfield.cpuavx512f)
9426     return (const reg_entry *) NULL;
9427 
9428   /* Don't allow fake index register unless allow_index_reg isn't 0. */
9429   if (!allow_index_reg
9430       && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9431     return (const reg_entry *) NULL;
9432 
9433   /* Upper 16 vector register is only available with VREX in 64bit
9434      mode.  */
9435   if ((r->reg_flags & RegVRex))
9436     {
9437       if (!cpu_arch_flags.bitfield.cpuvrex
9438 	  || flag_code != CODE_64BIT)
9439 	return (const reg_entry *) NULL;
9440 
9441       i.need_vrex = 1;
9442     }
9443 
9444   if (((r->reg_flags & (RegRex64 | RegRex))
9445        || r->reg_type.bitfield.reg64)
9446       && (!cpu_arch_flags.bitfield.cpulm
9447 	  || !operand_type_equal (&r->reg_type, &control))
9448       && flag_code != CODE_64BIT)
9449     return (const reg_entry *) NULL;
9450 
9451   if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9452     return (const reg_entry *) NULL;
9453 
9454   return r;
9455 }
9456 
9457 /* REG_STRING starts *before* REGISTER_PREFIX.  */
9458 
9459 static const reg_entry *
parse_register(char * reg_string,char ** end_op)9460 parse_register (char *reg_string, char **end_op)
9461 {
9462   const reg_entry *r;
9463 
9464   if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9465     r = parse_real_register (reg_string, end_op);
9466   else
9467     r = NULL;
9468   if (!r)
9469     {
9470       char *save = input_line_pointer;
9471       char c;
9472       symbolS *symbolP;
9473 
9474       input_line_pointer = reg_string;
9475       c = get_symbol_end ();
9476       symbolP = symbol_find (reg_string);
9477       if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9478 	{
9479 	  const expressionS *e = symbol_get_value_expression (symbolP);
9480 
9481 	  know (e->X_op == O_register);
9482 	  know (e->X_add_number >= 0
9483 		&& (valueT) e->X_add_number < i386_regtab_size);
9484 	  r = i386_regtab + e->X_add_number;
9485 	  if ((r->reg_flags & RegVRex))
9486 	    i.need_vrex = 1;
9487 	  *end_op = input_line_pointer;
9488 	}
9489       *input_line_pointer = c;
9490       input_line_pointer = save;
9491     }
9492   return r;
9493 }
9494 
9495 int
i386_parse_name(char * name,expressionS * e,char * nextcharP)9496 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9497 {
9498   const reg_entry *r;
9499   char *end = input_line_pointer;
9500 
9501   *end = *nextcharP;
9502   r = parse_register (name, &input_line_pointer);
9503   if (r && end <= input_line_pointer)
9504     {
9505       *nextcharP = *input_line_pointer;
9506       *input_line_pointer = 0;
9507       e->X_op = O_register;
9508       e->X_add_number = r - i386_regtab;
9509       return 1;
9510     }
9511   input_line_pointer = end;
9512   *end = 0;
9513   return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9514 }
9515 
9516 void
md_operand(expressionS * e)9517 md_operand (expressionS *e)
9518 {
9519   char *end;
9520   const reg_entry *r;
9521 
9522   switch (*input_line_pointer)
9523     {
9524     case REGISTER_PREFIX:
9525       r = parse_real_register (input_line_pointer, &end);
9526       if (r)
9527 	{
9528 	  e->X_op = O_register;
9529 	  e->X_add_number = r - i386_regtab;
9530 	  input_line_pointer = end;
9531 	}
9532       break;
9533 
9534     case '[':
9535       gas_assert (intel_syntax);
9536       end = input_line_pointer++;
9537       expression (e);
9538       if (*input_line_pointer == ']')
9539 	{
9540 	  ++input_line_pointer;
9541 	  e->X_op_symbol = make_expr_symbol (e);
9542 	  e->X_add_symbol = NULL;
9543 	  e->X_add_number = 0;
9544 	  e->X_op = O_index;
9545 	}
9546       else
9547 	{
9548 	  e->X_op = O_absent;
9549 	  input_line_pointer = end;
9550 	}
9551       break;
9552     }
9553 }
9554 
9555 
9556 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9557 const char *md_shortopts = "kVQ:sqn";
9558 #else
9559 const char *md_shortopts = "qn";
9560 #endif
9561 
9562 #define OPTION_32 (OPTION_MD_BASE + 0)
9563 #define OPTION_64 (OPTION_MD_BASE + 1)
9564 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9565 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9566 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9567 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9568 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9569 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9570 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9571 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9572 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9573 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9574 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9575 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9576 #define OPTION_X32 (OPTION_MD_BASE + 14)
9577 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9578 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9579 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9580 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9581 #define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9582 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9583 
9584 struct option md_longopts[] =
9585 {
9586   {"32", no_argument, NULL, OPTION_32},
9587 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9588      || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9589   {"64", no_argument, NULL, OPTION_64},
9590 #endif
9591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9592   {"x32", no_argument, NULL, OPTION_X32},
9593 #endif
9594   {"divide", no_argument, NULL, OPTION_DIVIDE},
9595   {"march", required_argument, NULL, OPTION_MARCH},
9596   {"mtune", required_argument, NULL, OPTION_MTUNE},
9597   {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9598   {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9599   {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9600   {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9601   {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9602   {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9603   {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9604   {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9605   {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9606   {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9607   {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9608   {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9609 # if defined (TE_PE) || defined (TE_PEP)
9610   {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9611 #endif
9612   {"momit-lock-prefix", required_argument, NULL, OPTION_OMIT_LOCK_PREFIX},
9613   {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9614   {NULL, no_argument, NULL, 0}
9615 };
9616 size_t md_longopts_size = sizeof (md_longopts);
9617 
9618 int
md_parse_option(int c,char * arg)9619 md_parse_option (int c, char *arg)
9620 {
9621   unsigned int j;
9622   char *arch, *next;
9623 
9624   switch (c)
9625     {
9626     case 'n':
9627       optimize_align_code = 0;
9628       break;
9629 
9630     case 'q':
9631       quiet_warnings = 1;
9632       break;
9633 
9634 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9635       /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9636 	 should be emitted or not.  FIXME: Not implemented.  */
9637     case 'Q':
9638       break;
9639 
9640       /* -V: SVR4 argument to print version ID.  */
9641     case 'V':
9642       print_version_id ();
9643       break;
9644 
9645       /* -k: Ignore for FreeBSD compatibility.  */
9646     case 'k':
9647       break;
9648 
9649     case 's':
9650       /* -s: On i386 Solaris, this tells the native assembler to use
9651 	 .stab instead of .stab.excl.  We always use .stab anyhow.  */
9652       break;
9653 #endif
9654 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9655      || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9656     case OPTION_64:
9657       {
9658 	const char **list, **l;
9659 
9660 	list = bfd_target_list ();
9661 	for (l = list; *l != NULL; l++)
9662 	  if (CONST_STRNEQ (*l, "elf64-x86-64")
9663 	      || strcmp (*l, "coff-x86-64") == 0
9664 	      || strcmp (*l, "pe-x86-64") == 0
9665 	      || strcmp (*l, "pei-x86-64") == 0
9666 	      || strcmp (*l, "mach-o-x86-64") == 0)
9667 	    {
9668 	      default_arch = "x86_64";
9669 	      break;
9670 	    }
9671 	if (*l == NULL)
9672 	  as_fatal (_("no compiled in support for x86_64"));
9673 	free (list);
9674       }
9675       break;
9676 #endif
9677 
9678 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9679     case OPTION_X32:
9680       if (IS_ELF)
9681 	{
9682 	  const char **list, **l;
9683 
9684 	  list = bfd_target_list ();
9685 	  for (l = list; *l != NULL; l++)
9686 	    if (CONST_STRNEQ (*l, "elf32-x86-64"))
9687 	      {
9688 		default_arch = "x86_64:32";
9689 		break;
9690 	      }
9691 	  if (*l == NULL)
9692 	    as_fatal (_("no compiled in support for 32bit x86_64"));
9693 	  free (list);
9694 	}
9695       else
9696 	as_fatal (_("32bit x86_64 is only supported for ELF"));
9697       break;
9698 #endif
9699 
9700     case OPTION_32:
9701       default_arch = "i386";
9702       break;
9703 
9704     case OPTION_DIVIDE:
9705 #ifdef SVR4_COMMENT_CHARS
9706       {
9707 	char *n, *t;
9708 	const char *s;
9709 
9710 	n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9711 	t = n;
9712 	for (s = i386_comment_chars; *s != '\0'; s++)
9713 	  if (*s != '/')
9714 	    *t++ = *s;
9715 	*t = '\0';
9716 	i386_comment_chars = n;
9717       }
9718 #endif
9719       break;
9720 
9721     case OPTION_MARCH:
9722       arch = xstrdup (arg);
9723       do
9724 	{
9725 	  if (*arch == '.')
9726 	    as_fatal (_("invalid -march= option: `%s'"), arg);
9727 	  next = strchr (arch, '+');
9728 	  if (next)
9729 	    *next++ = '\0';
9730 	  for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9731 	    {
9732 	      if (strcmp (arch, cpu_arch [j].name) == 0)
9733 		{
9734 		  /* Processor.  */
9735 		  if (! cpu_arch[j].flags.bitfield.cpui386)
9736 		    continue;
9737 
9738 		  cpu_arch_name = cpu_arch[j].name;
9739 		  cpu_sub_arch_name = NULL;
9740 		  cpu_arch_flags = cpu_arch[j].flags;
9741 		  cpu_arch_isa = cpu_arch[j].type;
9742 		  cpu_arch_isa_flags = cpu_arch[j].flags;
9743 		  if (!cpu_arch_tune_set)
9744 		    {
9745 		      cpu_arch_tune = cpu_arch_isa;
9746 		      cpu_arch_tune_flags = cpu_arch_isa_flags;
9747 		    }
9748 		  break;
9749 		}
9750 	      else if (*cpu_arch [j].name == '.'
9751 		       && strcmp (arch, cpu_arch [j].name + 1) == 0)
9752 		{
9753 		  /* ISA entension.  */
9754 		  i386_cpu_flags flags;
9755 
9756 		  if (!cpu_arch[j].negated)
9757 		    flags = cpu_flags_or (cpu_arch_flags,
9758 					  cpu_arch[j].flags);
9759 		  else
9760 		    flags = cpu_flags_and_not (cpu_arch_flags,
9761 					       cpu_arch[j].flags);
9762 		  if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9763 		    {
9764 		      if (cpu_sub_arch_name)
9765 			{
9766 			  char *name = cpu_sub_arch_name;
9767 			  cpu_sub_arch_name = concat (name,
9768 						      cpu_arch[j].name,
9769 						      (const char *) NULL);
9770 			  free (name);
9771 			}
9772 		      else
9773 			cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9774 		      cpu_arch_flags = flags;
9775 		      cpu_arch_isa_flags = flags;
9776 		    }
9777 		  break;
9778 		}
9779 	    }
9780 
9781 	  if (j >= ARRAY_SIZE (cpu_arch))
9782 	    as_fatal (_("invalid -march= option: `%s'"), arg);
9783 
9784 	  arch = next;
9785 	}
9786       while (next != NULL );
9787       break;
9788 
9789     case OPTION_MTUNE:
9790       if (*arg == '.')
9791 	as_fatal (_("invalid -mtune= option: `%s'"), arg);
9792       for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9793 	{
9794 	  if (strcmp (arg, cpu_arch [j].name) == 0)
9795 	    {
9796 	      cpu_arch_tune_set = 1;
9797 	      cpu_arch_tune = cpu_arch [j].type;
9798 	      cpu_arch_tune_flags = cpu_arch[j].flags;
9799 	      break;
9800 	    }
9801 	}
9802       if (j >= ARRAY_SIZE (cpu_arch))
9803 	as_fatal (_("invalid -mtune= option: `%s'"), arg);
9804       break;
9805 
9806     case OPTION_MMNEMONIC:
9807       if (strcasecmp (arg, "att") == 0)
9808 	intel_mnemonic = 0;
9809       else if (strcasecmp (arg, "intel") == 0)
9810 	intel_mnemonic = 1;
9811       else
9812 	as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9813       break;
9814 
9815     case OPTION_MSYNTAX:
9816       if (strcasecmp (arg, "att") == 0)
9817 	intel_syntax = 0;
9818       else if (strcasecmp (arg, "intel") == 0)
9819 	intel_syntax = 1;
9820       else
9821 	as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9822       break;
9823 
9824     case OPTION_MINDEX_REG:
9825       allow_index_reg = 1;
9826       break;
9827 
9828     case OPTION_MNAKED_REG:
9829       allow_naked_reg = 1;
9830       break;
9831 
9832     case OPTION_MOLD_GCC:
9833       old_gcc = 1;
9834       break;
9835 
9836     case OPTION_MSSE2AVX:
9837       sse2avx = 1;
9838       break;
9839 
9840     case OPTION_MSSE_CHECK:
9841       if (strcasecmp (arg, "error") == 0)
9842 	sse_check = check_error;
9843       else if (strcasecmp (arg, "warning") == 0)
9844 	sse_check = check_warning;
9845       else if (strcasecmp (arg, "none") == 0)
9846 	sse_check = check_none;
9847       else
9848 	as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9849       break;
9850 
9851     case OPTION_MOPERAND_CHECK:
9852       if (strcasecmp (arg, "error") == 0)
9853 	operand_check = check_error;
9854       else if (strcasecmp (arg, "warning") == 0)
9855 	operand_check = check_warning;
9856       else if (strcasecmp (arg, "none") == 0)
9857 	operand_check = check_none;
9858       else
9859 	as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9860       break;
9861 
9862     case OPTION_MAVXSCALAR:
9863       if (strcasecmp (arg, "128") == 0)
9864 	avxscalar = vex128;
9865       else if (strcasecmp (arg, "256") == 0)
9866 	avxscalar = vex256;
9867       else
9868 	as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9869       break;
9870 
9871     case OPTION_MADD_BND_PREFIX:
9872       add_bnd_prefix = 1;
9873       break;
9874 
9875     case OPTION_MEVEXLIG:
9876       if (strcmp (arg, "128") == 0)
9877 	evexlig = evexl128;
9878       else if (strcmp (arg, "256") == 0)
9879 	evexlig = evexl256;
9880       else  if (strcmp (arg, "512") == 0)
9881 	evexlig = evexl512;
9882       else
9883 	as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9884       break;
9885 
9886     case OPTION_MEVEXRCIG:
9887       if (strcmp (arg, "rne") == 0)
9888 	evexrcig = rne;
9889       else if (strcmp (arg, "rd") == 0)
9890 	evexrcig = rd;
9891       else if (strcmp (arg, "ru") == 0)
9892 	evexrcig = ru;
9893       else if (strcmp (arg, "rz") == 0)
9894 	evexrcig = rz;
9895       else
9896 	as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
9897       break;
9898 
9899     case OPTION_MEVEXWIG:
9900       if (strcmp (arg, "0") == 0)
9901 	evexwig = evexw0;
9902       else if (strcmp (arg, "1") == 0)
9903 	evexwig = evexw1;
9904       else
9905 	as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9906       break;
9907 
9908 # if defined (TE_PE) || defined (TE_PEP)
9909     case OPTION_MBIG_OBJ:
9910       use_big_obj = 1;
9911       break;
9912 #endif
9913 
9914     case OPTION_OMIT_LOCK_PREFIX:
9915       if (strcasecmp (arg, "yes") == 0)
9916         omit_lock_prefix = 1;
9917       else if (strcasecmp (arg, "no") == 0)
9918         omit_lock_prefix = 0;
9919       else
9920         as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
9921       break;
9922 
9923     default:
9924       return 0;
9925     }
9926   return 1;
9927 }
9928 
9929 #define MESSAGE_TEMPLATE \
9930 "                                                                                "
9931 
9932 static void
show_arch(FILE * stream,int ext,int check)9933 show_arch (FILE *stream, int ext, int check)
9934 {
9935   static char message[] = MESSAGE_TEMPLATE;
9936   char *start = message + 27;
9937   char *p;
9938   int size = sizeof (MESSAGE_TEMPLATE);
9939   int left;
9940   const char *name;
9941   int len;
9942   unsigned int j;
9943 
9944   p = start;
9945   left = size - (start - message);
9946   for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9947     {
9948       /* Should it be skipped?  */
9949       if (cpu_arch [j].skip)
9950 	continue;
9951 
9952       name = cpu_arch [j].name;
9953       len = cpu_arch [j].len;
9954       if (*name == '.')
9955 	{
9956 	  /* It is an extension.  Skip if we aren't asked to show it.  */
9957 	  if (ext)
9958 	    {
9959 	      name++;
9960 	      len--;
9961 	    }
9962 	  else
9963 	    continue;
9964 	}
9965       else if (ext)
9966 	{
9967 	  /* It is an processor.  Skip if we show only extension.  */
9968 	  continue;
9969 	}
9970       else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9971 	{
9972 	  /* It is an impossible processor - skip.  */
9973 	  continue;
9974 	}
9975 
9976       /* Reserve 2 spaces for ", " or ",\0" */
9977       left -= len + 2;
9978 
9979       /* Check if there is any room.  */
9980       if (left >= 0)
9981 	{
9982 	  if (p != start)
9983 	    {
9984 	      *p++ = ',';
9985 	      *p++ = ' ';
9986 	    }
9987 	  p = mempcpy (p, name, len);
9988 	}
9989       else
9990 	{
9991 	  /* Output the current message now and start a new one.  */
9992 	  *p++ = ',';
9993 	  *p = '\0';
9994 	  fprintf (stream, "%s\n", message);
9995 	  p = start;
9996 	  left = size - (start - message) - len - 2;
9997 
9998 	  gas_assert (left >= 0);
9999 
10000 	  p = mempcpy (p, name, len);
10001 	}
10002     }
10003 
10004   *p = '\0';
10005   fprintf (stream, "%s\n", message);
10006 }
10007 
10008 void
md_show_usage(FILE * stream)10009 md_show_usage (FILE *stream)
10010 {
10011 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10012   fprintf (stream, _("\
10013   -Q                      ignored\n\
10014   -V                      print assembler version number\n\
10015   -k                      ignored\n"));
10016 #endif
10017   fprintf (stream, _("\
10018   -n                      Do not optimize code alignment\n\
10019   -q                      quieten some warnings\n"));
10020 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10021   fprintf (stream, _("\
10022   -s                      ignored\n"));
10023 #endif
10024 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10025      || defined (TE_PE) || defined (TE_PEP))
10026   fprintf (stream, _("\
10027   --32/--64/--x32         generate 32bit/64bit/x32 code\n"));
10028 #endif
10029 #ifdef SVR4_COMMENT_CHARS
10030   fprintf (stream, _("\
10031   --divide                do not treat `/' as a comment character\n"));
10032 #else
10033   fprintf (stream, _("\
10034   --divide                ignored\n"));
10035 #endif
10036   fprintf (stream, _("\
10037   -march=CPU[,+EXTENSION...]\n\
10038                           generate code for CPU and EXTENSION, CPU is one of:\n"));
10039   show_arch (stream, 0, 1);
10040   fprintf (stream, _("\
10041                           EXTENSION is combination of:\n"));
10042   show_arch (stream, 1, 0);
10043   fprintf (stream, _("\
10044   -mtune=CPU              optimize for CPU, CPU is one of:\n"));
10045   show_arch (stream, 0, 0);
10046   fprintf (stream, _("\
10047   -msse2avx               encode SSE instructions with VEX prefix\n"));
10048   fprintf (stream, _("\
10049   -msse-check=[none|error|warning]\n\
10050                           check SSE instructions\n"));
10051   fprintf (stream, _("\
10052   -moperand-check=[none|error|warning]\n\
10053                           check operand combinations for validity\n"));
10054   fprintf (stream, _("\
10055   -mavxscalar=[128|256]   encode scalar AVX instructions with specific vector\n\
10056                            length\n"));
10057   fprintf (stream, _("\
10058   -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10059                            length\n"));
10060   fprintf (stream, _("\
10061   -mevexwig=[0|1]         encode EVEX instructions with specific EVEX.W value\n\
10062                            for EVEX.W bit ignored instructions\n"));
10063   fprintf (stream, _("\
10064   -mevexrcig=[rne|rd|ru|rz]\n\
10065                           encode EVEX instructions with specific EVEX.RC value\n\
10066                            for SAE-only ignored instructions\n"));
10067   fprintf (stream, _("\
10068   -mmnemonic=[att|intel]  use AT&T/Intel mnemonic\n"));
10069   fprintf (stream, _("\
10070   -msyntax=[att|intel]    use AT&T/Intel syntax\n"));
10071   fprintf (stream, _("\
10072   -mindex-reg             support pseudo index registers\n"));
10073   fprintf (stream, _("\
10074   -mnaked-reg             don't require `%%' prefix for registers\n"));
10075   fprintf (stream, _("\
10076   -mold-gcc               support old (<= 2.8.1) versions of gcc\n"));
10077   fprintf (stream, _("\
10078   -madd-bnd-prefix        add BND prefix for all valid branches\n"));
10079 # if defined (TE_PE) || defined (TE_PEP)
10080   fprintf (stream, _("\
10081   -mbig-obj               generate big object files\n"));
10082 #endif
10083   fprintf (stream, _("\
10084   -momit-lock-prefix=[no|yes]\n\
10085                           strip all lock prefixes\n"));
10086 }
10087 
10088 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10089      || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10090      || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10091 
10092 /* Pick the target format to use.  */
10093 
10094 const char *
i386_target_format(void)10095 i386_target_format (void)
10096 {
10097   if (!strncmp (default_arch, "x86_64", 6))
10098     {
10099       update_code_flag (CODE_64BIT, 1);
10100       if (default_arch[6] == '\0')
10101 	x86_elf_abi = X86_64_ABI;
10102       else
10103 	x86_elf_abi = X86_64_X32_ABI;
10104     }
10105   else if (!strcmp (default_arch, "i386"))
10106     update_code_flag (CODE_32BIT, 1);
10107   else
10108     as_fatal (_("unknown architecture"));
10109 
10110   if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10111     cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10112   if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10113     cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10114 
10115   switch (OUTPUT_FLAVOR)
10116     {
10117 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10118     case bfd_target_aout_flavour:
10119       return AOUT_TARGET_FORMAT;
10120 #endif
10121 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10122 # if defined (TE_PE) || defined (TE_PEP)
10123     case bfd_target_coff_flavour:
10124       if (flag_code == CODE_64BIT)
10125 	return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10126       else
10127 	return "pe-i386";
10128 # elif defined (TE_GO32)
10129     case bfd_target_coff_flavour:
10130       return "coff-go32";
10131 # else
10132     case bfd_target_coff_flavour:
10133       return "coff-i386";
10134 # endif
10135 #endif
10136 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10137     case bfd_target_elf_flavour:
10138       {
10139 	const char *format;
10140 
10141 	switch (x86_elf_abi)
10142 	  {
10143 	  default:
10144 	    format = ELF_TARGET_FORMAT;
10145 	    break;
10146 	  case X86_64_ABI:
10147 	    use_rela_relocations = 1;
10148 	    object_64bit = 1;
10149 	    format = ELF_TARGET_FORMAT64;
10150 	    break;
10151 	  case X86_64_X32_ABI:
10152 	    use_rela_relocations = 1;
10153 	    object_64bit = 1;
10154 	    disallow_64bit_reloc = 1;
10155 	    format = ELF_TARGET_FORMAT32;
10156 	    break;
10157 	  }
10158 	if (cpu_arch_isa == PROCESSOR_L1OM)
10159 	  {
10160 	    if (x86_elf_abi != X86_64_ABI)
10161 	      as_fatal (_("Intel L1OM is 64bit only"));
10162 	    return ELF_TARGET_L1OM_FORMAT;
10163 	  }
10164 	if (cpu_arch_isa == PROCESSOR_K1OM)
10165 	  {
10166 	    if (x86_elf_abi != X86_64_ABI)
10167 	      as_fatal (_("Intel K1OM is 64bit only"));
10168 	    return ELF_TARGET_K1OM_FORMAT;
10169 	  }
10170 	else
10171 	  return format;
10172       }
10173 #endif
10174 #if defined (OBJ_MACH_O)
10175     case bfd_target_mach_o_flavour:
10176       if (flag_code == CODE_64BIT)
10177 	{
10178 	  use_rela_relocations = 1;
10179 	  object_64bit = 1;
10180 	  return "mach-o-x86-64";
10181 	}
10182       else
10183 	return "mach-o-i386";
10184 #endif
10185     default:
10186       abort ();
10187       return NULL;
10188     }
10189 }
10190 
10191 #endif /* OBJ_MAYBE_ more than one  */
10192 
10193 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
10194 void
i386_elf_emit_arch_note(void)10195 i386_elf_emit_arch_note (void)
10196 {
10197   if (IS_ELF && cpu_arch_name != NULL)
10198     {
10199       char *p;
10200       asection *seg = now_seg;
10201       subsegT subseg = now_subseg;
10202       Elf_Internal_Note i_note;
10203       Elf_External_Note e_note;
10204       asection *note_secp;
10205       int len;
10206 
10207       /* Create the .note section.  */
10208       note_secp = subseg_new (".note", 0);
10209       bfd_set_section_flags (stdoutput,
10210 			     note_secp,
10211 			     SEC_HAS_CONTENTS | SEC_READONLY);
10212 
10213       /* Process the arch string.  */
10214       len = strlen (cpu_arch_name);
10215 
10216       i_note.namesz = len + 1;
10217       i_note.descsz = 0;
10218       i_note.type = NT_ARCH;
10219       p = frag_more (sizeof (e_note.namesz));
10220       md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10221       p = frag_more (sizeof (e_note.descsz));
10222       md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10223       p = frag_more (sizeof (e_note.type));
10224       md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10225       p = frag_more (len + 1);
10226       strcpy (p, cpu_arch_name);
10227 
10228       frag_align (2, 0, 0);
10229 
10230       subseg_set (seg, subseg);
10231     }
10232 }
10233 #endif
10234 
10235 symbolS *
md_undefined_symbol(char * name)10236 md_undefined_symbol (char *name)
10237 {
10238   if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10239       && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10240       && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10241       && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10242     {
10243       if (!GOT_symbol)
10244 	{
10245 	  if (symbol_find (name))
10246 	    as_bad (_("GOT already in symbol table"));
10247 	  GOT_symbol = symbol_new (name, undefined_section,
10248 				   (valueT) 0, &zero_address_frag);
10249 	};
10250       return GOT_symbol;
10251     }
10252   return 0;
10253 }
10254 
10255 /* Round up a section size to the appropriate boundary.  */
10256 
10257 valueT
md_section_align(segT segment ATTRIBUTE_UNUSED,valueT size)10258 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10259 {
10260 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10261   if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10262     {
10263       /* For a.out, force the section size to be aligned.  If we don't do
10264 	 this, BFD will align it for us, but it will not write out the
10265 	 final bytes of the section.  This may be a bug in BFD, but it is
10266 	 easier to fix it here since that is how the other a.out targets
10267 	 work.  */
10268       int align;
10269 
10270       align = bfd_get_section_alignment (stdoutput, segment);
10271       size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10272     }
10273 #endif
10274 
10275   return size;
10276 }
10277 
10278 /* On the i386, PC-relative offsets are relative to the start of the
10279    next instruction.  That is, the address of the offset, plus its
10280    size, since the offset is always the last part of the insn.  */
10281 
10282 long
md_pcrel_from(fixS * fixP)10283 md_pcrel_from (fixS *fixP)
10284 {
10285   return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10286 }
10287 
10288 #ifndef I386COFF
10289 
10290 static void
s_bss(int ignore ATTRIBUTE_UNUSED)10291 s_bss (int ignore ATTRIBUTE_UNUSED)
10292 {
10293   int temp;
10294 
10295 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10296   if (IS_ELF)
10297     obj_elf_section_change_hook ();
10298 #endif
10299   temp = get_absolute_expression ();
10300   subseg_set (bss_section, (subsegT) temp);
10301   demand_empty_rest_of_line ();
10302 }
10303 
10304 #endif
10305 
10306 void
i386_validate_fix(fixS * fixp)10307 i386_validate_fix (fixS *fixp)
10308 {
10309   if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10310     {
10311       if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10312 	{
10313 	  if (!object_64bit)
10314 	    abort ();
10315 	  fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10316 	}
10317       else
10318 	{
10319 	  if (!object_64bit)
10320 	    fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10321 	  else
10322 	    fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10323 	}
10324       fixp->fx_subsy = 0;
10325     }
10326 }
10327 
10328 arelent *
tc_gen_reloc(asection * section ATTRIBUTE_UNUSED,fixS * fixp)10329 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10330 {
10331   arelent *rel;
10332   bfd_reloc_code_real_type code;
10333 
10334   switch (fixp->fx_r_type)
10335     {
10336 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10337     case BFD_RELOC_SIZE32:
10338     case BFD_RELOC_SIZE64:
10339       if (S_IS_DEFINED (fixp->fx_addsy)
10340 	  && !S_IS_EXTERNAL (fixp->fx_addsy))
10341 	{
10342 	  /* Resolve size relocation against local symbol to size of
10343 	     the symbol plus addend.  */
10344 	  valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10345 	  if (fixp->fx_r_type == BFD_RELOC_SIZE32
10346 	      && !fits_in_unsigned_long (value))
10347 	    as_bad_where (fixp->fx_file, fixp->fx_line,
10348 			  _("symbol size computation overflow"));
10349 	  fixp->fx_addsy = NULL;
10350 	  fixp->fx_subsy = NULL;
10351 	  md_apply_fix (fixp, (valueT *) &value, NULL);
10352 	  return NULL;
10353 	}
10354 #endif
10355 
10356     case BFD_RELOC_X86_64_PLT32:
10357     case BFD_RELOC_X86_64_PLT32_BND:
10358     case BFD_RELOC_X86_64_GOT32:
10359     case BFD_RELOC_X86_64_GOTPCREL:
10360     case BFD_RELOC_386_PLT32:
10361     case BFD_RELOC_386_GOT32:
10362     case BFD_RELOC_386_GOTOFF:
10363     case BFD_RELOC_386_GOTPC:
10364     case BFD_RELOC_386_TLS_GD:
10365     case BFD_RELOC_386_TLS_LDM:
10366     case BFD_RELOC_386_TLS_LDO_32:
10367     case BFD_RELOC_386_TLS_IE_32:
10368     case BFD_RELOC_386_TLS_IE:
10369     case BFD_RELOC_386_TLS_GOTIE:
10370     case BFD_RELOC_386_TLS_LE_32:
10371     case BFD_RELOC_386_TLS_LE:
10372     case BFD_RELOC_386_TLS_GOTDESC:
10373     case BFD_RELOC_386_TLS_DESC_CALL:
10374     case BFD_RELOC_X86_64_TLSGD:
10375     case BFD_RELOC_X86_64_TLSLD:
10376     case BFD_RELOC_X86_64_DTPOFF32:
10377     case BFD_RELOC_X86_64_DTPOFF64:
10378     case BFD_RELOC_X86_64_GOTTPOFF:
10379     case BFD_RELOC_X86_64_TPOFF32:
10380     case BFD_RELOC_X86_64_TPOFF64:
10381     case BFD_RELOC_X86_64_GOTOFF64:
10382     case BFD_RELOC_X86_64_GOTPC32:
10383     case BFD_RELOC_X86_64_GOT64:
10384     case BFD_RELOC_X86_64_GOTPCREL64:
10385     case BFD_RELOC_X86_64_GOTPC64:
10386     case BFD_RELOC_X86_64_GOTPLT64:
10387     case BFD_RELOC_X86_64_PLTOFF64:
10388     case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10389     case BFD_RELOC_X86_64_TLSDESC_CALL:
10390     case BFD_RELOC_RVA:
10391     case BFD_RELOC_VTABLE_ENTRY:
10392     case BFD_RELOC_VTABLE_INHERIT:
10393 #ifdef TE_PE
10394     case BFD_RELOC_32_SECREL:
10395 #endif
10396       code = fixp->fx_r_type;
10397       break;
10398     case BFD_RELOC_X86_64_32S:
10399       if (!fixp->fx_pcrel)
10400 	{
10401 	  /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32.  */
10402 	  code = fixp->fx_r_type;
10403 	  break;
10404 	}
10405     default:
10406       if (fixp->fx_pcrel)
10407 	{
10408 	  switch (fixp->fx_size)
10409 	    {
10410 	    default:
10411 	      as_bad_where (fixp->fx_file, fixp->fx_line,
10412 			    _("can not do %d byte pc-relative relocation"),
10413 			    fixp->fx_size);
10414 	      code = BFD_RELOC_32_PCREL;
10415 	      break;
10416 	    case 1: code = BFD_RELOC_8_PCREL;  break;
10417 	    case 2: code = BFD_RELOC_16_PCREL; break;
10418 	    case 4:
10419 	      code = (fixp->fx_r_type == BFD_RELOC_X86_64_PC32_BND
10420 		      ? fixp-> fx_r_type : BFD_RELOC_32_PCREL);
10421 	      break;
10422 #ifdef BFD64
10423 	    case 8: code = BFD_RELOC_64_PCREL; break;
10424 #endif
10425 	    }
10426 	}
10427       else
10428 	{
10429 	  switch (fixp->fx_size)
10430 	    {
10431 	    default:
10432 	      as_bad_where (fixp->fx_file, fixp->fx_line,
10433 			    _("can not do %d byte relocation"),
10434 			    fixp->fx_size);
10435 	      code = BFD_RELOC_32;
10436 	      break;
10437 	    case 1: code = BFD_RELOC_8;  break;
10438 	    case 2: code = BFD_RELOC_16; break;
10439 	    case 4: code = BFD_RELOC_32; break;
10440 #ifdef BFD64
10441 	    case 8: code = BFD_RELOC_64; break;
10442 #endif
10443 	    }
10444 	}
10445       break;
10446     }
10447 
10448   if ((code == BFD_RELOC_32
10449        || code == BFD_RELOC_32_PCREL
10450        || code == BFD_RELOC_X86_64_32S)
10451       && GOT_symbol
10452       && fixp->fx_addsy == GOT_symbol)
10453     {
10454       if (!object_64bit)
10455 	code = BFD_RELOC_386_GOTPC;
10456       else
10457 	code = BFD_RELOC_X86_64_GOTPC32;
10458     }
10459   if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10460       && GOT_symbol
10461       && fixp->fx_addsy == GOT_symbol)
10462     {
10463       code = BFD_RELOC_X86_64_GOTPC64;
10464     }
10465 
10466   rel = (arelent *) xmalloc (sizeof (arelent));
10467   rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10468   *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10469 
10470   rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10471 
10472   if (!use_rela_relocations)
10473     {
10474       /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10475 	 vtable entry to be used in the relocation's section offset.  */
10476       if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10477 	rel->address = fixp->fx_offset;
10478 #if defined (OBJ_COFF) && defined (TE_PE)
10479       else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10480 	rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10481       else
10482 #endif
10483       rel->addend = 0;
10484     }
10485   /* Use the rela in 64bit mode.  */
10486   else
10487     {
10488       if (disallow_64bit_reloc)
10489 	switch (code)
10490 	  {
10491 	  case BFD_RELOC_X86_64_DTPOFF64:
10492 	  case BFD_RELOC_X86_64_TPOFF64:
10493 	  case BFD_RELOC_64_PCREL:
10494 	  case BFD_RELOC_X86_64_GOTOFF64:
10495 	  case BFD_RELOC_X86_64_GOT64:
10496 	  case BFD_RELOC_X86_64_GOTPCREL64:
10497 	  case BFD_RELOC_X86_64_GOTPC64:
10498 	  case BFD_RELOC_X86_64_GOTPLT64:
10499 	  case BFD_RELOC_X86_64_PLTOFF64:
10500 	    as_bad_where (fixp->fx_file, fixp->fx_line,
10501 			  _("cannot represent relocation type %s in x32 mode"),
10502 			  bfd_get_reloc_code_name (code));
10503 	    break;
10504 	  default:
10505 	    break;
10506 	  }
10507 
10508       if (!fixp->fx_pcrel)
10509 	rel->addend = fixp->fx_offset;
10510       else
10511 	switch (code)
10512 	  {
10513 	  case BFD_RELOC_X86_64_PLT32:
10514 	  case BFD_RELOC_X86_64_PLT32_BND:
10515 	  case BFD_RELOC_X86_64_GOT32:
10516 	  case BFD_RELOC_X86_64_GOTPCREL:
10517 	  case BFD_RELOC_X86_64_TLSGD:
10518 	  case BFD_RELOC_X86_64_TLSLD:
10519 	  case BFD_RELOC_X86_64_GOTTPOFF:
10520 	  case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10521 	  case BFD_RELOC_X86_64_TLSDESC_CALL:
10522 	    rel->addend = fixp->fx_offset - fixp->fx_size;
10523 	    break;
10524 	  default:
10525 	    rel->addend = (section->vma
10526 			   - fixp->fx_size
10527 			   + fixp->fx_addnumber
10528 			   + md_pcrel_from (fixp));
10529 	    break;
10530 	  }
10531     }
10532 
10533   rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10534   if (rel->howto == NULL)
10535     {
10536       as_bad_where (fixp->fx_file, fixp->fx_line,
10537 		    _("cannot represent relocation type %s"),
10538 		    bfd_get_reloc_code_name (code));
10539       /* Set howto to a garbage value so that we can keep going.  */
10540       rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10541       gas_assert (rel->howto != NULL);
10542     }
10543 
10544   return rel;
10545 }
10546 
10547 #include "tc-i386-intel.c"
10548 
10549 void
tc_x86_parse_to_dw2regnum(expressionS * exp)10550 tc_x86_parse_to_dw2regnum (expressionS *exp)
10551 {
10552   int saved_naked_reg;
10553   char saved_register_dot;
10554 
10555   saved_naked_reg = allow_naked_reg;
10556   allow_naked_reg = 1;
10557   saved_register_dot = register_chars['.'];
10558   register_chars['.'] = '.';
10559   allow_pseudo_reg = 1;
10560   expression_and_evaluate (exp);
10561   allow_pseudo_reg = 0;
10562   register_chars['.'] = saved_register_dot;
10563   allow_naked_reg = saved_naked_reg;
10564 
10565   if (exp->X_op == O_register && exp->X_add_number >= 0)
10566     {
10567       if ((addressT) exp->X_add_number < i386_regtab_size)
10568 	{
10569 	  exp->X_op = O_constant;
10570 	  exp->X_add_number = i386_regtab[exp->X_add_number]
10571 			      .dw2_regnum[flag_code >> 1];
10572 	}
10573       else
10574 	exp->X_op = O_illegal;
10575     }
10576 }
10577 
10578 void
tc_x86_frame_initial_instructions(void)10579 tc_x86_frame_initial_instructions (void)
10580 {
10581   static unsigned int sp_regno[2];
10582 
10583   if (!sp_regno[flag_code >> 1])
10584     {
10585       char *saved_input = input_line_pointer;
10586       char sp[][4] = {"esp", "rsp"};
10587       expressionS exp;
10588 
10589       input_line_pointer = sp[flag_code >> 1];
10590       tc_x86_parse_to_dw2regnum (&exp);
10591       gas_assert (exp.X_op == O_constant);
10592       sp_regno[flag_code >> 1] = exp.X_add_number;
10593       input_line_pointer = saved_input;
10594     }
10595 
10596   cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10597   cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10598 }
10599 
10600 int
x86_dwarf2_addr_size(void)10601 x86_dwarf2_addr_size (void)
10602 {
10603 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10604   if (x86_elf_abi == X86_64_X32_ABI)
10605     return 4;
10606 #endif
10607   return bfd_arch_bits_per_address (stdoutput) / 8;
10608 }
10609 
10610 int
i386_elf_section_type(const char * str,size_t len)10611 i386_elf_section_type (const char *str, size_t len)
10612 {
10613   if (flag_code == CODE_64BIT
10614       && len == sizeof ("unwind") - 1
10615       && strncmp (str, "unwind", 6) == 0)
10616     return SHT_X86_64_UNWIND;
10617 
10618   return -1;
10619 }
10620 
10621 #ifdef TE_SOLARIS
10622 void
i386_solaris_fix_up_eh_frame(segT sec)10623 i386_solaris_fix_up_eh_frame (segT sec)
10624 {
10625   if (flag_code == CODE_64BIT)
10626     elf_section_type (sec) = SHT_X86_64_UNWIND;
10627 }
10628 #endif
10629 
10630 #ifdef TE_PE
10631 void
tc_pe_dwarf2_emit_offset(symbolS * symbol,unsigned int size)10632 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10633 {
10634   expressionS exp;
10635 
10636   exp.X_op = O_secrel;
10637   exp.X_add_symbol = symbol;
10638   exp.X_add_number = 0;
10639   emit_expr (&exp, size);
10640 }
10641 #endif
10642 
10643 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10644 /* For ELF on x86-64, add support for SHF_X86_64_LARGE.  */
10645 
10646 bfd_vma
x86_64_section_letter(int letter,char ** ptr_msg)10647 x86_64_section_letter (int letter, char **ptr_msg)
10648 {
10649   if (flag_code == CODE_64BIT)
10650     {
10651       if (letter == 'l')
10652 	return SHF_X86_64_LARGE;
10653 
10654       *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10655     }
10656   else
10657     *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10658   return -1;
10659 }
10660 
10661 bfd_vma
x86_64_section_word(char * str,size_t len)10662 x86_64_section_word (char *str, size_t len)
10663 {
10664   if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10665     return SHF_X86_64_LARGE;
10666 
10667   return -1;
10668 }
10669 
10670 static void
handle_large_common(int small ATTRIBUTE_UNUSED)10671 handle_large_common (int small ATTRIBUTE_UNUSED)
10672 {
10673   if (flag_code != CODE_64BIT)
10674     {
10675       s_comm_internal (0, elf_common_parse);
10676       as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10677     }
10678   else
10679     {
10680       static segT lbss_section;
10681       asection *saved_com_section_ptr = elf_com_section_ptr;
10682       asection *saved_bss_section = bss_section;
10683 
10684       if (lbss_section == NULL)
10685 	{
10686 	  flagword applicable;
10687 	  segT seg = now_seg;
10688 	  subsegT subseg = now_subseg;
10689 
10690 	  /* The .lbss section is for local .largecomm symbols.  */
10691 	  lbss_section = subseg_new (".lbss", 0);
10692 	  applicable = bfd_applicable_section_flags (stdoutput);
10693 	  bfd_set_section_flags (stdoutput, lbss_section,
10694 				 applicable & SEC_ALLOC);
10695 	  seg_info (lbss_section)->bss = 1;
10696 
10697 	  subseg_set (seg, subseg);
10698 	}
10699 
10700       elf_com_section_ptr = &_bfd_elf_large_com_section;
10701       bss_section = lbss_section;
10702 
10703       s_comm_internal (0, elf_common_parse);
10704 
10705       elf_com_section_ptr = saved_com_section_ptr;
10706       bss_section = saved_bss_section;
10707     }
10708 }
10709 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
10710