1 // gdb-index.cc -- generate .gdb_index section for fast debug lookup
2
3 // Copyright (C) 2012-2014 Free Software Foundation, Inc.
4 // Written by Cary Coutant <ccoutant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "gdb-index.h"
26 #include "dwarf_reader.h"
27 #include "dwarf.h"
28 #include "object.h"
29 #include "output.h"
30 #include "demangle.h"
31
32 namespace gold
33 {
34
35 const int gdb_index_version = 7;
36
37 // Sizes of various records in the .gdb_index section.
38 const int gdb_index_offset_size = 4;
39 const int gdb_index_hdr_size = 6 * gdb_index_offset_size;
40 const int gdb_index_cu_size = 16;
41 const int gdb_index_tu_size = 24;
42 const int gdb_index_addr_size = 16 + gdb_index_offset_size;
43 const int gdb_index_sym_size = 2 * gdb_index_offset_size;
44
45 // This class manages the hashed symbol table for the .gdb_index section.
46 // It is essentially equivalent to the hashtab implementation in libiberty,
47 // but is copied into gdb sources and here for compatibility because its
48 // data structure is exposed on disk.
49
50 template <typename T>
51 class Gdb_hashtab
52 {
53 public:
Gdb_hashtab()54 Gdb_hashtab()
55 : size_(0), capacity_(0), hashtab_(NULL)
56 { }
57
~Gdb_hashtab()58 ~Gdb_hashtab()
59 {
60 for (size_t i = 0; i < this->capacity_; ++i)
61 if (this->hashtab_[i] != NULL)
62 delete this->hashtab_[i];
63 delete[] this->hashtab_;
64 }
65
66 // Add a symbol.
67 T*
add(T * symbol)68 add(T* symbol)
69 {
70 // Resize the hash table if necessary.
71 if (4 * this->size_ / 3 >= this->capacity_)
72 this->expand();
73
74 T** slot = this->find_slot(symbol);
75 if (*slot == NULL)
76 {
77 ++this->size_;
78 *slot = symbol;
79 }
80
81 return *slot;
82 }
83
84 // Return the current size.
85 size_t
size() const86 size() const
87 { return this->size_; }
88
89 // Return the current capacity.
90 size_t
capacity() const91 capacity() const
92 { return this->capacity_; }
93
94 // Return the contents of slot N.
95 T*
operator [](size_t n)96 operator[](size_t n)
97 { return this->hashtab_[n]; }
98
99 private:
100 // Find a symbol in the hash table, or return an empty slot if
101 // the symbol is not in the table.
102 T**
find_slot(T * symbol)103 find_slot(T* symbol)
104 {
105 unsigned int index = symbol->hash() & (this->capacity_ - 1);
106 unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1;
107
108 for (;;)
109 {
110 if (this->hashtab_[index] == NULL
111 || this->hashtab_[index]->equal(symbol))
112 return &this->hashtab_[index];
113 index = (index + step) & (this->capacity_ - 1);
114 }
115 }
116
117 // Expand the hash table.
118 void
expand()119 expand()
120 {
121 if (this->capacity_ == 0)
122 {
123 // Allocate the hash table for the first time.
124 this->capacity_ = Gdb_hashtab::initial_size;
125 this->hashtab_ = new T*[this->capacity_];
126 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
127 }
128 else
129 {
130 // Expand and rehash.
131 unsigned int old_cap = this->capacity_;
132 T** old_hashtab = this->hashtab_;
133 this->capacity_ *= 2;
134 this->hashtab_ = new T*[this->capacity_];
135 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
136 for (size_t i = 0; i < old_cap; ++i)
137 {
138 if (old_hashtab[i] != NULL)
139 {
140 T** slot = this->find_slot(old_hashtab[i]);
141 *slot = old_hashtab[i];
142 }
143 }
144 delete[] old_hashtab;
145 }
146 }
147
148 // Initial size of the hash table; must be a power of 2.
149 static const int initial_size = 1024;
150 size_t size_;
151 size_t capacity_;
152 T** hashtab_;
153 };
154
155 // The hash function for strings in the mapped index. This is copied
156 // directly from gdb/dwarf2read.c.
157
158 static unsigned int
mapped_index_string_hash(const unsigned char * str)159 mapped_index_string_hash(const unsigned char* str)
160 {
161 unsigned int r = 0;
162 unsigned char c;
163
164 while ((c = *str++) != 0)
165 {
166 if (gdb_index_version >= 5)
167 c = tolower (c);
168 r = r * 67 + c - 113;
169 }
170
171 return r;
172 }
173
174 // A specialization of Dwarf_info_reader, for building the .gdb_index.
175
176 class Gdb_index_info_reader : public Dwarf_info_reader
177 {
178 public:
Gdb_index_info_reader(bool is_type_unit,Relobj * object,const unsigned char * symbols,off_t symbols_size,unsigned int shndx,unsigned int reloc_shndx,unsigned int reloc_type,Gdb_index * gdb_index)179 Gdb_index_info_reader(bool is_type_unit,
180 Relobj* object,
181 const unsigned char* symbols,
182 off_t symbols_size,
183 unsigned int shndx,
184 unsigned int reloc_shndx,
185 unsigned int reloc_type,
186 Gdb_index* gdb_index)
187 : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
188 reloc_shndx, reloc_type),
189 gdb_index_(gdb_index), cu_index_(0), cu_language_(0)
190 { }
191
~Gdb_index_info_reader()192 ~Gdb_index_info_reader()
193 { this->clear_declarations(); }
194
195 // Print usage statistics.
196 static void
197 print_stats();
198
199 protected:
200 // Visit a compilation unit.
201 virtual void
202 visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
203
204 // Visit a type unit.
205 virtual void
206 visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset,
207 uint64_t signature, Dwarf_die*);
208
209 private:
210 // A map for recording DIEs we've seen that may be referred to be
211 // later DIEs (via DW_AT_specification or DW_AT_abstract_origin).
212 // The map is indexed by a DIE offset within the compile unit.
213 // PARENT_OFFSET_ is the offset of the DIE that represents the
214 // outer context, and NAME_ is a pointer to a component of the
215 // fully-qualified name.
216 // Normally, the names we point to are in a string table, so we don't
217 // have to manage them, but when we have a fully-qualified name
218 // computed, we put it in the table, and set PARENT_OFFSET_ to -1
219 // indicate a string that we are managing.
220 struct Declaration_pair
221 {
Declaration_pairgold::Gdb_index_info_reader::Declaration_pair222 Declaration_pair(off_t parent_offset, const char* name)
223 : parent_offset_(parent_offset), name_(name)
224 { }
225
226 off_t parent_offset_;
227 const char* name_;
228 };
229 typedef Unordered_map<off_t, Declaration_pair> Declaration_map;
230
231 // Visit a top-level DIE.
232 void
233 visit_top_die(Dwarf_die* die);
234
235 // Visit the children of a DIE.
236 void
237 visit_children(Dwarf_die* die, Dwarf_die* context);
238
239 // Visit a DIE.
240 void
241 visit_die(Dwarf_die* die, Dwarf_die* context);
242
243 // Visit the children of a DIE.
244 void
245 visit_children_for_decls(Dwarf_die* die);
246
247 // Visit a DIE.
248 void
249 visit_die_for_decls(Dwarf_die* die, Dwarf_die* context);
250
251 // Guess a fully-qualified name for a class type, based on member function
252 // linkage names.
253 std::string
254 guess_full_class_name(Dwarf_die* die);
255
256 // Add a declaration DIE to the table of declarations.
257 void
258 add_declaration(Dwarf_die* die, Dwarf_die* context);
259
260 // Add a declaration whose fully-qualified name is already known.
261 void
262 add_declaration_with_full_name(Dwarf_die* die, const char* full_name);
263
264 // Return the context for a DIE whose parent is at DIE_OFFSET.
265 std::string
266 get_context(off_t die_offset);
267
268 // Construct a fully-qualified name for DIE.
269 std::string
270 get_qualified_name(Dwarf_die* die, Dwarf_die* context);
271
272 // Record the address ranges for a compilation unit.
273 void
274 record_cu_ranges(Dwarf_die* die);
275
276 // Wrapper for read_pubtable.
277 bool
278 read_pubnames_and_pubtypes(Dwarf_die* die);
279
280 // Read the .debug_pubnames and .debug_pubtypes tables.
281 bool
282 read_pubtable(Dwarf_pubnames_table* table, off_t offset);
283
284 // Clear the declarations map.
285 void
286 clear_declarations();
287
288 // The Gdb_index section.
289 Gdb_index* gdb_index_;
290 // The current CU index (negative for a TU).
291 int cu_index_;
292 // The language of the current CU or TU.
293 unsigned int cu_language_;
294 // Map from DIE offset to (parent offset, name) pair,
295 // for DW_AT_specification.
296 Declaration_map declarations_;
297
298 // Statistics.
299 // Total number of DWARF compilation units processed.
300 static unsigned int dwarf_cu_count;
301 // Number of DWARF compilation units with pubnames/pubtypes.
302 static unsigned int dwarf_cu_nopubnames_count;
303 // Total number of DWARF type units processed.
304 static unsigned int dwarf_tu_count;
305 // Number of DWARF type units with pubnames/pubtypes.
306 static unsigned int dwarf_tu_nopubnames_count;
307 };
308
309 // Total number of DWARF compilation units processed.
310 unsigned int Gdb_index_info_reader::dwarf_cu_count = 0;
311 // Number of DWARF compilation units without pubnames/pubtypes.
312 unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0;
313 // Total number of DWARF type units processed.
314 unsigned int Gdb_index_info_reader::dwarf_tu_count = 0;
315 // Number of DWARF type units without pubnames/pubtypes.
316 unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0;
317
318 // Process a compilation unit and parse its child DIE.
319
320 void
visit_compilation_unit(off_t cu_offset,off_t cu_length,Dwarf_die * root_die)321 Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length,
322 Dwarf_die* root_die)
323 {
324 ++Gdb_index_info_reader::dwarf_cu_count;
325 this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length);
326 this->visit_top_die(root_die);
327 }
328
329 // Process a type unit and parse its child DIE.
330
331 void
visit_type_unit(off_t tu_offset,off_t,off_t type_offset,uint64_t signature,Dwarf_die * root_die)332 Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t,
333 off_t type_offset, uint64_t signature,
334 Dwarf_die* root_die)
335 {
336 ++Gdb_index_info_reader::dwarf_tu_count;
337 // Use a negative index to flag this as a TU instead of a CU.
338 this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset,
339 signature);
340 this->visit_top_die(root_die);
341 }
342
343 // Process a top-level DIE.
344 // For compile_unit DIEs, record the address ranges. For all
345 // interesting tags, add qualified names to the symbol table
346 // and process interesting children. We may need to process
347 // certain children just for saving declarations that might be
348 // referenced by later DIEs with a DW_AT_specification attribute.
349
350 void
visit_top_die(Dwarf_die * die)351 Gdb_index_info_reader::visit_top_die(Dwarf_die* die)
352 {
353 this->clear_declarations();
354
355 switch (die->tag())
356 {
357 case elfcpp::DW_TAG_compile_unit:
358 case elfcpp::DW_TAG_type_unit:
359 this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language);
360 if (die->tag() == elfcpp::DW_TAG_compile_unit)
361 this->record_cu_ranges(die);
362 // If there is a pubnames and/or pubtypes section for this
363 // compilation unit, use those; otherwise, parse the DWARF
364 // info to extract the names.
365 if (!this->read_pubnames_and_pubtypes(die))
366 {
367 // Check for languages that require specialized knowledge to
368 // construct fully-qualified names, that we don't yet support.
369 if (this->cu_language_ == elfcpp::DW_LANG_Ada83
370 || this->cu_language_ == elfcpp::DW_LANG_Fortran77
371 || this->cu_language_ == elfcpp::DW_LANG_Fortran90
372 || this->cu_language_ == elfcpp::DW_LANG_Java
373 || this->cu_language_ == elfcpp::DW_LANG_Ada95
374 || this->cu_language_ == elfcpp::DW_LANG_Fortran95
375 || this->cu_language_ == elfcpp::DW_LANG_Fortran03
376 || this->cu_language_ == elfcpp::DW_LANG_Fortran08)
377 {
378 gold_warning(_("%s: --gdb-index currently supports "
379 "only C and C++ languages"),
380 this->object()->name().c_str());
381 return;
382 }
383 if (die->tag() == elfcpp::DW_TAG_compile_unit)
384 ++Gdb_index_info_reader::dwarf_cu_nopubnames_count;
385 else
386 ++Gdb_index_info_reader::dwarf_tu_nopubnames_count;
387 this->visit_children(die, NULL);
388 }
389 break;
390 default:
391 // The top level DIE should be one of the above.
392 gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit "
393 "or DW_TAG_type_unit"),
394 this->object()->name().c_str());
395 return;
396 }
397 }
398
399 // Visit the children of PARENT, looking for symbols to add to the index.
400 // CONTEXT points to the DIE to use for constructing the qualified name --
401 // NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT.
402
403 void
visit_children(Dwarf_die * parent,Dwarf_die * context)404 Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context)
405 {
406 off_t next_offset = 0;
407 for (off_t die_offset = parent->child_offset();
408 die_offset != 0;
409 die_offset = next_offset)
410 {
411 Dwarf_die die(this, die_offset, parent);
412 if (die.tag() == 0)
413 break;
414 this->visit_die(&die, context);
415 next_offset = die.sibling_offset();
416 }
417 }
418
419 // Visit a child DIE, looking for symbols to add to the index.
420 // CONTEXT is the parent DIE, used for constructing the qualified name;
421 // it is NULL if the parent DIE is the top-level DIE.
422
423 void
visit_die(Dwarf_die * die,Dwarf_die * context)424 Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context)
425 {
426 switch (die->tag())
427 {
428 case elfcpp::DW_TAG_subprogram:
429 case elfcpp::DW_TAG_constant:
430 case elfcpp::DW_TAG_variable:
431 case elfcpp::DW_TAG_enumerator:
432 case elfcpp::DW_TAG_base_type:
433 if (die->is_declaration())
434 this->add_declaration(die, context);
435 else
436 {
437 // If the DIE is not a declaration, add it to the index.
438 std::string full_name = this->get_qualified_name(die, context);
439 if (!full_name.empty())
440 this->gdb_index_->add_symbol(this->cu_index_,
441 full_name.c_str(), 0);
442 }
443 break;
444 case elfcpp::DW_TAG_typedef:
445 case elfcpp::DW_TAG_union_type:
446 case elfcpp::DW_TAG_class_type:
447 case elfcpp::DW_TAG_interface_type:
448 case elfcpp::DW_TAG_structure_type:
449 case elfcpp::DW_TAG_enumeration_type:
450 case elfcpp::DW_TAG_subrange_type:
451 case elfcpp::DW_TAG_namespace:
452 {
453 std::string full_name;
454
455 // For classes at the top level, we need to look for a
456 // member function with a linkage name in order to get
457 // the properly-canonicalized name.
458 if (context == NULL
459 && (die->tag() == elfcpp::DW_TAG_class_type
460 || die->tag() == elfcpp::DW_TAG_structure_type
461 || die->tag() == elfcpp::DW_TAG_union_type))
462 full_name.assign(this->guess_full_class_name(die));
463
464 // Because we will visit the children, we need to add this DIE
465 // to the declarations table.
466 if (full_name.empty())
467 this->add_declaration(die, context);
468 else
469 this->add_declaration_with_full_name(die, full_name.c_str());
470
471 // If the DIE is not a declaration, add it to the index.
472 // Gdb stores a namespace in the index even when it is
473 // a declaration.
474 if (die->tag() == elfcpp::DW_TAG_namespace
475 || !die->is_declaration())
476 {
477 if (full_name.empty())
478 full_name = this->get_qualified_name(die, context);
479 if (!full_name.empty())
480 this->gdb_index_->add_symbol(this->cu_index_,
481 full_name.c_str(), 0);
482 }
483
484 // We're interested in the children only for namespaces and
485 // enumeration types. For enumeration types, we do not include
486 // the enumeration tag as part of the full name. For other tags,
487 // visit the children only to collect declarations.
488 if (die->tag() == elfcpp::DW_TAG_namespace
489 || die->tag() == elfcpp::DW_TAG_enumeration_type)
490 this->visit_children(die, die);
491 else
492 this->visit_children_for_decls(die);
493 }
494 break;
495 default:
496 break;
497 }
498 }
499
500 // Visit the children of PARENT, looking only for declarations that
501 // may be referenced by later specification DIEs.
502
503 void
visit_children_for_decls(Dwarf_die * parent)504 Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent)
505 {
506 off_t next_offset = 0;
507 for (off_t die_offset = parent->child_offset();
508 die_offset != 0;
509 die_offset = next_offset)
510 {
511 Dwarf_die die(this, die_offset, parent);
512 if (die.tag() == 0)
513 break;
514 this->visit_die_for_decls(&die, parent);
515 next_offset = die.sibling_offset();
516 }
517 }
518
519 // Visit a child DIE, looking only for declarations that
520 // may be referenced by later specification DIEs.
521
522 void
visit_die_for_decls(Dwarf_die * die,Dwarf_die * context)523 Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context)
524 {
525 switch (die->tag())
526 {
527 case elfcpp::DW_TAG_subprogram:
528 case elfcpp::DW_TAG_constant:
529 case elfcpp::DW_TAG_variable:
530 case elfcpp::DW_TAG_enumerator:
531 case elfcpp::DW_TAG_base_type:
532 {
533 if (die->is_declaration())
534 this->add_declaration(die, context);
535 }
536 break;
537 case elfcpp::DW_TAG_typedef:
538 case elfcpp::DW_TAG_union_type:
539 case elfcpp::DW_TAG_class_type:
540 case elfcpp::DW_TAG_interface_type:
541 case elfcpp::DW_TAG_structure_type:
542 case elfcpp::DW_TAG_enumeration_type:
543 case elfcpp::DW_TAG_subrange_type:
544 case elfcpp::DW_TAG_namespace:
545 {
546 if (die->is_declaration())
547 this->add_declaration(die, context);
548 this->visit_children_for_decls(die);
549 }
550 break;
551 default:
552 break;
553 }
554 }
555
556 // Extract the class name from the linkage name of a member function.
557 // This code is adapted from ../gdb/cp-support.c.
558
559 #define d_left(dc) (dc)->u.s_binary.left
560 #define d_right(dc) (dc)->u.s_binary.right
561
562 static char*
class_name_from_linkage_name(const char * linkage_name)563 class_name_from_linkage_name(const char* linkage_name)
564 {
565 void* storage;
566 struct demangle_component* tree =
567 cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage);
568 if (tree == NULL)
569 return NULL;
570
571 int done = 0;
572
573 // First strip off any qualifiers, if we have a function or
574 // method.
575 while (!done)
576 switch (tree->type)
577 {
578 case DEMANGLE_COMPONENT_CONST:
579 case DEMANGLE_COMPONENT_RESTRICT:
580 case DEMANGLE_COMPONENT_VOLATILE:
581 case DEMANGLE_COMPONENT_CONST_THIS:
582 case DEMANGLE_COMPONENT_RESTRICT_THIS:
583 case DEMANGLE_COMPONENT_VOLATILE_THIS:
584 case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL:
585 tree = d_left(tree);
586 break;
587 default:
588 done = 1;
589 break;
590 }
591
592 // If what we have now is a function, discard the argument list.
593 if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME)
594 tree = d_left(tree);
595
596 // If what we have now is a template, strip off the template
597 // arguments. The left subtree may be a qualified name.
598 if (tree->type == DEMANGLE_COMPONENT_TEMPLATE)
599 tree = d_left(tree);
600
601 // What we have now should be a name, possibly qualified.
602 // Additional qualifiers could live in the left subtree or the right
603 // subtree. Find the last piece.
604 done = 0;
605 struct demangle_component* prev_comp = NULL;
606 struct demangle_component* cur_comp = tree;
607 while (!done)
608 switch (cur_comp->type)
609 {
610 case DEMANGLE_COMPONENT_QUAL_NAME:
611 case DEMANGLE_COMPONENT_LOCAL_NAME:
612 prev_comp = cur_comp;
613 cur_comp = d_right(cur_comp);
614 break;
615 case DEMANGLE_COMPONENT_TEMPLATE:
616 case DEMANGLE_COMPONENT_NAME:
617 case DEMANGLE_COMPONENT_CTOR:
618 case DEMANGLE_COMPONENT_DTOR:
619 case DEMANGLE_COMPONENT_OPERATOR:
620 case DEMANGLE_COMPONENT_EXTENDED_OPERATOR:
621 done = 1;
622 break;
623 default:
624 done = 1;
625 cur_comp = NULL;
626 break;
627 }
628
629 char* ret = NULL;
630 if (cur_comp != NULL && prev_comp != NULL)
631 {
632 // We want to discard the rightmost child of PREV_COMP.
633 *prev_comp = *d_left(prev_comp);
634 size_t allocated_size;
635 ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size);
636 }
637
638 free(storage);
639 return ret;
640 }
641
642 // Guess a fully-qualified name for a class type, based on member function
643 // linkage names. This is needed for class/struct/union types at the
644 // top level, because GCC does not always properly embed them within
645 // the namespace. As in gdb, we look for a member function with a linkage
646 // name and extract the qualified name from the demangled name.
647
648 std::string
guess_full_class_name(Dwarf_die * die)649 Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die)
650 {
651 std::string full_name;
652 off_t next_offset = 0;
653
654 // This routine scans ahead in the DIE structure, possibly advancing
655 // the relocation tracker beyond the current DIE. We need to checkpoint
656 // the tracker and reset it when we're done.
657 uint64_t checkpoint = this->get_reloc_checkpoint();
658
659 for (off_t child_offset = die->child_offset();
660 child_offset != 0;
661 child_offset = next_offset)
662 {
663 Dwarf_die child(this, child_offset, die);
664 if (child.tag() == 0)
665 break;
666 if (child.tag() == elfcpp::DW_TAG_subprogram)
667 {
668 const char* linkage_name = child.linkage_name();
669 if (linkage_name != NULL)
670 {
671 char* guess = class_name_from_linkage_name(linkage_name);
672 if (guess != NULL)
673 {
674 full_name.assign(guess);
675 free(guess);
676 break;
677 }
678 }
679 }
680 next_offset = child.sibling_offset();
681 }
682
683 this->reset_relocs(checkpoint);
684 return full_name;
685 }
686
687 // Add a declaration DIE to the table of declarations.
688
689 void
add_declaration(Dwarf_die * die,Dwarf_die * context)690 Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context)
691 {
692 const char* name = die->name();
693
694 off_t parent_offset = context != NULL ? context->offset() : 0;
695
696 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
697 // attribute, use the parent and name from the earlier declaration.
698 off_t spec = die->specification();
699 if (spec == 0)
700 spec = die->abstract_origin();
701 if (spec > 0)
702 {
703 Declaration_map::iterator it = this->declarations_.find(spec);
704 if (it != this->declarations_.end())
705 {
706 parent_offset = it->second.parent_offset_;
707 name = it->second.name_;
708 }
709 }
710
711 if (name == NULL)
712 {
713 if (die->tag() == elfcpp::DW_TAG_namespace)
714 name = "(anonymous namespace)";
715 else if (die->tag() == elfcpp::DW_TAG_union_type)
716 name = "(anonymous union)";
717 else
718 name = "(unknown)";
719 }
720
721 Declaration_pair decl(parent_offset, name);
722 this->declarations_.insert(std::make_pair(die->offset(), decl));
723 }
724
725 // Add a declaration whose fully-qualified name is already known.
726 // In the case where we had to get the canonical name by demangling
727 // a linkage name, this ensures we use that name instead of the one
728 // provided in DW_AT_name.
729
730 void
add_declaration_with_full_name(Dwarf_die * die,const char * full_name)731 Gdb_index_info_reader::add_declaration_with_full_name(
732 Dwarf_die* die,
733 const char* full_name)
734 {
735 // We need to copy the name.
736 int len = strlen(full_name);
737 char* copy = new char[len + 1];
738 memcpy(copy, full_name, len + 1);
739
740 // Flag that we now manage the memory this points to.
741 Declaration_pair decl(-1, copy);
742 this->declarations_.insert(std::make_pair(die->offset(), decl));
743 }
744
745 // Return the context for a DIE whose parent is at DIE_OFFSET.
746
747 std::string
get_context(off_t die_offset)748 Gdb_index_info_reader::get_context(off_t die_offset)
749 {
750 std::string context;
751 Declaration_map::iterator it = this->declarations_.find(die_offset);
752 if (it != this->declarations_.end())
753 {
754 off_t parent_offset = it->second.parent_offset_;
755 if (parent_offset > 0)
756 {
757 context = get_context(parent_offset);
758 context.append("::");
759 }
760 if (it->second.name_ != NULL)
761 context.append(it->second.name_);
762 }
763 return context;
764 }
765
766 // Construct the fully-qualified name for DIE.
767
768 std::string
get_qualified_name(Dwarf_die * die,Dwarf_die * context)769 Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context)
770 {
771 std::string full_name;
772 const char* name = die->name();
773
774 off_t parent_offset = context != NULL ? context->offset() : 0;
775
776 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
777 // attribute, use the parent and name from the earlier declaration.
778 off_t spec = die->specification();
779 if (spec == 0)
780 spec = die->abstract_origin();
781 if (spec > 0)
782 {
783 Declaration_map::iterator it = this->declarations_.find(spec);
784 if (it != this->declarations_.end())
785 {
786 parent_offset = it->second.parent_offset_;
787 name = it->second.name_;
788 }
789 }
790
791 if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace)
792 name = "(anonymous namespace)";
793 else if (name == NULL)
794 return full_name;
795
796 // If this is an enumerator constant, skip the immediate parent,
797 // which is the enumeration tag.
798 if (die->tag() == elfcpp::DW_TAG_enumerator)
799 {
800 Declaration_map::iterator it = this->declarations_.find(parent_offset);
801 if (it != this->declarations_.end())
802 parent_offset = it->second.parent_offset_;
803 }
804
805 if (parent_offset > 0)
806 {
807 full_name.assign(this->get_context(parent_offset));
808 full_name.append("::");
809 }
810 full_name.append(name);
811
812 return full_name;
813 }
814
815 // Record the address ranges for a compilation unit.
816
817 void
record_cu_ranges(Dwarf_die * die)818 Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die)
819 {
820 unsigned int shndx;
821 unsigned int shndx2;
822
823 off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx);
824 if (ranges_offset != -1)
825 {
826 Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset);
827 if (ranges != NULL)
828 this->gdb_index_->add_address_range_list(this->object(),
829 this->cu_index_, ranges);
830 return;
831 }
832
833 off_t low_pc = die->address_attribute(elfcpp::DW_AT_low_pc, &shndx);
834 off_t high_pc = die->address_attribute(elfcpp::DW_AT_high_pc, &shndx2);
835 if (high_pc == -1)
836 {
837 high_pc = die->uint_attribute(elfcpp::DW_AT_high_pc);
838 high_pc += low_pc;
839 shndx2 = shndx;
840 }
841 if ((low_pc != 0 || high_pc != 0) && low_pc != -1)
842 {
843 if (shndx != shndx2)
844 {
845 gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc "
846 "are in different sections"),
847 this->object()->name().c_str());
848 return;
849 }
850 if (shndx == 0 || this->object()->is_section_included(shndx))
851 {
852 Dwarf_range_list* ranges = new Dwarf_range_list();
853 ranges->add(shndx, low_pc, high_pc);
854 this->gdb_index_->add_address_range_list(this->object(),
855 this->cu_index_, ranges);
856 }
857 }
858 }
859
860 // Read table and add the relevant names to the index. Returns true
861 // if any names were added.
862
863 bool
read_pubtable(Dwarf_pubnames_table * table,off_t offset)864 Gdb_index_info_reader::read_pubtable(Dwarf_pubnames_table* table, off_t offset)
865 {
866 // If we couldn't read the section when building the cu_pubname_map,
867 // then we won't find any pubnames now.
868 if (table == NULL)
869 return false;
870
871 if (!table->read_header(offset))
872 return false;
873 while (true)
874 {
875 uint8_t flag_byte;
876 const char* name = table->next_name(&flag_byte);
877 if (name == NULL)
878 break;
879
880 this->gdb_index_->add_symbol(this->cu_index_, name, flag_byte);
881 }
882 return true;
883 }
884
885 // Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU.
886 // Returns TRUE if either a pubnames or pubtypes section was found.
887
888 bool
read_pubnames_and_pubtypes(Dwarf_die * die)889 Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die)
890 {
891 // If this is a skeleton debug-type die (generated via
892 // -gsplit-dwarf), then the associated pubnames should have been
893 // read along with the corresponding CU. In any case, there isn't
894 // enough info inside to build a gdb index entry.
895 if (die->tag() == elfcpp::DW_TAG_type_unit
896 && die->string_attribute(elfcpp::DW_AT_GNU_dwo_name))
897 return true;
898
899 // We use stmt_list_off as a unique identifier for the
900 // compilation unit and its associated type units.
901 unsigned int shndx;
902 off_t stmt_list_off = die->ref_attribute (elfcpp::DW_AT_stmt_list,
903 &shndx);
904 // Look for the attr as either a flag or a ref.
905 off_t offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames, &shndx);
906
907 // Newer versions of GCC generate CUs, but not TUs, with
908 // DW_AT_FORM_flag_present.
909 unsigned int flag = die->uint_attribute(elfcpp::DW_AT_GNU_pubnames);
910 if (offset == -1 && flag == 0)
911 {
912 // Didn't find the attribute.
913 if (die->tag() == elfcpp::DW_TAG_type_unit)
914 {
915 // If die is a TU, then it might correspond to a CU which we
916 // have read. If it does, then no need to read the pubnames.
917 // If it doesn't, then the caller will have to parse the
918 // dies manually to find the names.
919 return this->gdb_index_->pubnames_read(this->object(),
920 stmt_list_off);
921 }
922 else
923 {
924 // No attribute on the CU means that no pubnames were read.
925 return false;
926 }
927 }
928
929 // We found the attribute, so we can check if the corresponding
930 // pubnames have been read.
931 if (this->gdb_index_->pubnames_read(this->object(), stmt_list_off))
932 return true;
933
934 this->gdb_index_->set_pubnames_read(this->object(), stmt_list_off);
935
936 // We have an attribute, and the pubnames haven't been read, so read
937 // them.
938 bool names = false;
939 // In some of the cases, we could rely on the previous value of
940 // offset here, but sorting out which cases complicates the logic
941 // enough that it isn't worth it. So just look up the offset again.
942 offset = this->gdb_index_->find_pubname_offset(this->cu_offset());
943 names = this->read_pubtable(this->gdb_index_->pubnames_table(), offset);
944
945 bool types = false;
946 offset = this->gdb_index_->find_pubtype_offset(this->cu_offset());
947 types = this->read_pubtable(this->gdb_index_->pubtypes_table(), offset);
948 return names || types;
949 }
950
951 // Clear the declarations map.
952 void
clear_declarations()953 Gdb_index_info_reader::clear_declarations()
954 {
955 // Free strings in memory we manage.
956 for (Declaration_map::iterator it = this->declarations_.begin();
957 it != this->declarations_.end();
958 ++it)
959 {
960 if (it->second.parent_offset_ == -1)
961 delete[] it->second.name_;
962 }
963
964 this->declarations_.clear();
965 }
966
967 // Print usage statistics.
968 void
print_stats()969 Gdb_index_info_reader::print_stats()
970 {
971 fprintf(stderr, _("%s: DWARF CUs: %u\n"),
972 program_name, Gdb_index_info_reader::dwarf_cu_count);
973 fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"),
974 program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count);
975 fprintf(stderr, _("%s: DWARF TUs: %u\n"),
976 program_name, Gdb_index_info_reader::dwarf_tu_count);
977 fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"),
978 program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count);
979 }
980
981 // Class Gdb_index.
982
983 // Construct the .gdb_index section.
984
Gdb_index(Output_section * gdb_index_section)985 Gdb_index::Gdb_index(Output_section* gdb_index_section)
986 : Output_section_data(4),
987 pubnames_table_(NULL),
988 pubtypes_table_(NULL),
989 gdb_index_section_(gdb_index_section),
990 comp_units_(),
991 type_units_(),
992 ranges_(),
993 cu_vector_list_(),
994 cu_vector_offsets_(NULL),
995 stringpool_(),
996 tu_offset_(0),
997 addr_offset_(0),
998 symtab_offset_(0),
999 cu_pool_offset_(0),
1000 stringpool_offset_(0),
1001 pubnames_object_(NULL),
1002 stmt_list_offset_(-1)
1003 {
1004 this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>();
1005 }
1006
~Gdb_index()1007 Gdb_index::~Gdb_index()
1008 {
1009 // Free the memory used by the symbol table.
1010 delete this->gdb_symtab_;
1011 // Free the memory used by the CU vectors.
1012 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1013 delete this->cu_vector_list_[i];
1014 }
1015
1016
1017 // Scan the pubnames and pubtypes sections and build a map of the
1018 // various cus and tus they refer to, so we can process the entries
1019 // when we encounter the die for that cu or tu.
1020 // Return the just-read table so it can be cached.
1021
1022 Dwarf_pubnames_table*
map_pubtable_to_dies(unsigned int attr,Gdb_index_info_reader * dwinfo,Relobj * object,const unsigned char * symbols,off_t symbols_size)1023 Gdb_index::map_pubtable_to_dies(unsigned int attr,
1024 Gdb_index_info_reader* dwinfo,
1025 Relobj* object,
1026 const unsigned char* symbols,
1027 off_t symbols_size)
1028 {
1029 uint64_t section_offset = 0;
1030 Dwarf_pubnames_table* table;
1031 Pubname_offset_map* map;
1032
1033 if (attr == elfcpp::DW_AT_GNU_pubnames)
1034 {
1035 table = new Dwarf_pubnames_table(dwinfo, false);
1036 map = &this->cu_pubname_map_;
1037 }
1038 else
1039 {
1040 table = new Dwarf_pubnames_table(dwinfo, true);
1041 map = &this->cu_pubtype_map_;
1042 }
1043
1044 map->clear();
1045 if (!table->read_section(object, symbols, symbols_size))
1046 return NULL;
1047
1048 while (table->read_header(section_offset))
1049 {
1050 map->insert(std::make_pair(table->cu_offset(), section_offset));
1051 section_offset += table->subsection_size();
1052 }
1053
1054 return table;
1055 }
1056
1057 // Wrapper for map_pubtable_to_dies
1058
1059 void
map_pubnames_and_types_to_dies(Gdb_index_info_reader * dwinfo,Relobj * object,const unsigned char * symbols,off_t symbols_size)1060 Gdb_index::map_pubnames_and_types_to_dies(Gdb_index_info_reader* dwinfo,
1061 Relobj* object,
1062 const unsigned char* symbols,
1063 off_t symbols_size)
1064 {
1065 // This is a new object, so reset the relevant variables.
1066 this->pubnames_object_ = object;
1067 this->stmt_list_offset_ = -1;
1068
1069 delete this->pubnames_table_;
1070 this->pubnames_table_
1071 = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubnames, dwinfo,
1072 object, symbols, symbols_size);
1073 delete this->pubtypes_table_;
1074 this->pubtypes_table_
1075 = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubtypes, dwinfo,
1076 object, symbols, symbols_size);
1077 }
1078
1079 // Given a cu_offset, find the associated section of the pubnames
1080 // table.
1081
1082 off_t
find_pubname_offset(off_t cu_offset)1083 Gdb_index::find_pubname_offset(off_t cu_offset)
1084 {
1085 Pubname_offset_map::iterator it = this->cu_pubname_map_.find(cu_offset);
1086 if (it != this->cu_pubname_map_.end())
1087 return it->second;
1088 return -1;
1089 }
1090
1091 // Given a cu_offset, find the associated section of the pubnames
1092 // table.
1093
1094 off_t
find_pubtype_offset(off_t cu_offset)1095 Gdb_index::find_pubtype_offset(off_t cu_offset)
1096 {
1097 Pubname_offset_map::iterator it = this->cu_pubtype_map_.find(cu_offset);
1098 if (it != this->cu_pubtype_map_.end())
1099 return it->second;
1100 return -1;
1101 }
1102
1103 // Scan a .debug_info or .debug_types input section.
1104
1105 void
scan_debug_info(bool is_type_unit,Relobj * object,const unsigned char * symbols,off_t symbols_size,unsigned int shndx,unsigned int reloc_shndx,unsigned int reloc_type)1106 Gdb_index::scan_debug_info(bool is_type_unit,
1107 Relobj* object,
1108 const unsigned char* symbols,
1109 off_t symbols_size,
1110 unsigned int shndx,
1111 unsigned int reloc_shndx,
1112 unsigned int reloc_type)
1113 {
1114 Gdb_index_info_reader dwinfo(is_type_unit, object,
1115 symbols, symbols_size,
1116 shndx, reloc_shndx,
1117 reloc_type, this);
1118 if (object != this->pubnames_object_)
1119 map_pubnames_and_types_to_dies(&dwinfo, object, symbols, symbols_size);
1120 dwinfo.parse();
1121 }
1122
1123 // Add a symbol.
1124
1125 void
add_symbol(int cu_index,const char * sym_name,uint8_t flags)1126 Gdb_index::add_symbol(int cu_index, const char* sym_name, uint8_t flags)
1127 {
1128 unsigned int hash = mapped_index_string_hash(
1129 reinterpret_cast<const unsigned char*>(sym_name));
1130 Gdb_symbol* sym = new Gdb_symbol();
1131 this->stringpool_.add(sym_name, true, &sym->name_key);
1132 sym->hashval = hash;
1133 sym->cu_vector_index = 0;
1134
1135 Gdb_symbol* found = this->gdb_symtab_->add(sym);
1136 if (found == sym)
1137 {
1138 // New symbol -- allocate a new CU index vector.
1139 found->cu_vector_index = this->cu_vector_list_.size();
1140 this->cu_vector_list_.push_back(new Cu_vector());
1141 }
1142 else
1143 {
1144 // Found an existing symbol -- append to the existing
1145 // CU index vector.
1146 delete sym;
1147 }
1148
1149 // Add the CU index to the vector list for this symbol,
1150 // if it's not already on the list. We only need to
1151 // check the last added entry.
1152 Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index];
1153 if (cu_vec->size() == 0
1154 || cu_vec->back().first != cu_index
1155 || cu_vec->back().second != flags)
1156 cu_vec->push_back(std::make_pair(cu_index, flags));
1157 }
1158
1159 // Return TRUE if we have already processed the pubnames associated
1160 // with the statement list at the given OFFSET.
1161
1162 bool
pubnames_read(const Relobj * object,off_t offset)1163 Gdb_index::pubnames_read(const Relobj* object, off_t offset)
1164 {
1165 bool ret = (this->pubnames_object_ == object
1166 && this->stmt_list_offset_ == offset);
1167 return ret;
1168 }
1169
1170 // Record that we have processed the pubnames associated with the
1171 // statement list for OBJECT at the given OFFSET.
1172
1173 void
set_pubnames_read(const Relobj * object,off_t offset)1174 Gdb_index::set_pubnames_read(const Relobj* object, off_t offset)
1175 {
1176 this->pubnames_object_ = object;
1177 this->stmt_list_offset_ = offset;
1178 }
1179
1180 // Set the size of the .gdb_index section.
1181
1182 void
set_final_data_size()1183 Gdb_index::set_final_data_size()
1184 {
1185 // Finalize the string pool.
1186 this->stringpool_.set_string_offsets();
1187
1188 // Compute the total size of the CU vectors.
1189 // For each CU vector, include one entry for the count at the
1190 // beginning of the vector.
1191 unsigned int cu_vector_count = this->cu_vector_list_.size();
1192 unsigned int cu_vector_size = 0;
1193 this->cu_vector_offsets_ = new off_t[cu_vector_count];
1194 for (unsigned int i = 0; i < cu_vector_count; ++i)
1195 {
1196 Cu_vector* cu_vec = this->cu_vector_list_[i];
1197 cu_vector_offsets_[i] = cu_vector_size;
1198 cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1);
1199 }
1200
1201 // Assign relative offsets to each portion of the index,
1202 // and find the total size of the section.
1203 section_size_type data_size = gdb_index_hdr_size;
1204 data_size += this->comp_units_.size() * gdb_index_cu_size;
1205 this->tu_offset_ = data_size;
1206 data_size += this->type_units_.size() * gdb_index_tu_size;
1207 this->addr_offset_ = data_size;
1208 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1209 data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size;
1210 this->symtab_offset_ = data_size;
1211 data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size;
1212 this->cu_pool_offset_ = data_size;
1213 data_size += cu_vector_size;
1214 this->stringpool_offset_ = data_size;
1215 data_size += this->stringpool_.get_strtab_size();
1216
1217 this->set_data_size(data_size);
1218 }
1219
1220 // Write the data to the file.
1221
1222 void
do_write(Output_file * of)1223 Gdb_index::do_write(Output_file* of)
1224 {
1225 const off_t off = this->offset();
1226 const off_t oview_size = this->data_size();
1227 unsigned char* const oview = of->get_output_view(off, oview_size);
1228 unsigned char* pov = oview;
1229
1230 // Write the file header.
1231 // (1) Version number.
1232 elfcpp::Swap<32, false>::writeval(pov, gdb_index_version);
1233 pov += 4;
1234 // (2) Offset of the CU list.
1235 elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size);
1236 pov += 4;
1237 // (3) Offset of the types CU list.
1238 elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_);
1239 pov += 4;
1240 // (4) Offset of the address area.
1241 elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_);
1242 pov += 4;
1243 // (5) Offset of the symbol table.
1244 elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_);
1245 pov += 4;
1246 // (6) Offset of the constant pool.
1247 elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_);
1248 pov += 4;
1249
1250 gold_assert(pov - oview == gdb_index_hdr_size);
1251
1252 // Write the CU list.
1253 unsigned int comp_units_count = this->comp_units_.size();
1254 for (unsigned int i = 0; i < comp_units_count; ++i)
1255 {
1256 const Comp_unit& cu = this->comp_units_[i];
1257 elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset);
1258 elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length);
1259 pov += 16;
1260 }
1261
1262 gold_assert(pov - oview == this->tu_offset_);
1263
1264 // Write the types CU list.
1265 for (unsigned int i = 0; i < this->type_units_.size(); ++i)
1266 {
1267 const Type_unit& tu = this->type_units_[i];
1268 elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset);
1269 elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset);
1270 elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature);
1271 pov += 24;
1272 }
1273
1274 gold_assert(pov - oview == this->addr_offset_);
1275
1276 // Write the address area.
1277 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1278 {
1279 int cu_index = this->ranges_[i].cu_index;
1280 // Translate negative indexes, which refer to a TU, to a
1281 // logical index into a concatenated CU/TU list.
1282 if (cu_index < 0)
1283 cu_index = comp_units_count + (-1 - cu_index);
1284 Relobj* object = this->ranges_[i].object;
1285 const Dwarf_range_list& ranges = *this->ranges_[i].ranges;
1286 for (unsigned int j = 0; j < ranges.size(); ++j)
1287 {
1288 const Dwarf_range_list::Range& range = ranges[j];
1289 uint64_t base = 0;
1290 if (range.shndx > 0)
1291 {
1292 const Output_section* os = object->output_section(range.shndx);
1293 base = (os->address()
1294 + object->output_section_offset(range.shndx));
1295 }
1296 elfcpp::Swap_aligned32<64, false>::writeval(pov, base + range.start);
1297 elfcpp::Swap_aligned32<64, false>::writeval(pov + 8,
1298 base + range.end);
1299 elfcpp::Swap<32, false>::writeval(pov + 16, cu_index);
1300 pov += 20;
1301 }
1302 }
1303
1304 gold_assert(pov - oview == this->symtab_offset_);
1305
1306 // Write the symbol table.
1307 for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i)
1308 {
1309 const Gdb_symbol* sym = (*this->gdb_symtab_)[i];
1310 section_offset_type name_offset = 0;
1311 unsigned int cu_vector_offset = 0;
1312 if (sym != NULL)
1313 {
1314 name_offset = (this->stringpool_.get_offset_from_key(sym->name_key)
1315 + this->stringpool_offset_ - this->cu_pool_offset_);
1316 cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index];
1317 }
1318 elfcpp::Swap<32, false>::writeval(pov, name_offset);
1319 elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset);
1320 pov += 8;
1321 }
1322
1323 gold_assert(pov - oview == this->cu_pool_offset_);
1324
1325 // Write the CU vectors into the constant pool.
1326 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1327 {
1328 Cu_vector* cu_vec = this->cu_vector_list_[i];
1329 elfcpp::Swap<32, false>::writeval(pov, cu_vec->size());
1330 pov += 4;
1331 for (unsigned int j = 0; j < cu_vec->size(); ++j)
1332 {
1333 int cu_index = (*cu_vec)[j].first;
1334 uint8_t flags = (*cu_vec)[j].second;
1335 if (cu_index < 0)
1336 cu_index = comp_units_count + (-1 - cu_index);
1337 cu_index |= flags << 24;
1338 elfcpp::Swap<32, false>::writeval(pov, cu_index);
1339 pov += 4;
1340 }
1341 }
1342
1343 gold_assert(pov - oview == this->stringpool_offset_);
1344
1345 // Write the strings into the constant pool.
1346 this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_);
1347
1348 of->write_output_view(off, oview_size, oview);
1349 }
1350
1351 // Print usage statistics.
1352 void
print_stats()1353 Gdb_index::print_stats()
1354 {
1355 if (parameters->options().gdb_index())
1356 Gdb_index_info_reader::print_stats();
1357 }
1358
1359 } // End namespace gold.
1360