1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements Matcher<const string&>, Matcher<string>, and
35 // utilities for defining matchers.
36 
37 #include "gmock/gmock-matchers.h"
38 #include "gmock/gmock-generated-matchers.h"
39 
40 #include <string.h>
41 #include <sstream>
42 #include <string>
43 
44 namespace testing {
45 
46 // Constructs a matcher that matches a const string& whose value is
47 // equal to s.
Matcher(const internal::string & s)48 Matcher<const internal::string&>::Matcher(const internal::string& s) {
49   *this = Eq(s);
50 }
51 
52 // Constructs a matcher that matches a const string& whose value is
53 // equal to s.
Matcher(const char * s)54 Matcher<const internal::string&>::Matcher(const char* s) {
55   *this = Eq(internal::string(s));
56 }
57 
58 // Constructs a matcher that matches a string whose value is equal to s.
Matcher(const internal::string & s)59 Matcher<internal::string>::Matcher(const internal::string& s) { *this = Eq(s); }
60 
61 // Constructs a matcher that matches a string whose value is equal to s.
Matcher(const char * s)62 Matcher<internal::string>::Matcher(const char* s) {
63   *this = Eq(internal::string(s));
64 }
65 
66 #if GTEST_HAS_STRING_PIECE_
67 // Constructs a matcher that matches a const StringPiece& whose value is
68 // equal to s.
Matcher(const internal::string & s)69 Matcher<const StringPiece&>::Matcher(const internal::string& s) {
70   *this = Eq(s);
71 }
72 
73 // Constructs a matcher that matches a const StringPiece& whose value is
74 // equal to s.
Matcher(const char * s)75 Matcher<const StringPiece&>::Matcher(const char* s) {
76   *this = Eq(internal::string(s));
77 }
78 
79 // Constructs a matcher that matches a const StringPiece& whose value is
80 // equal to s.
Matcher(StringPiece s)81 Matcher<const StringPiece&>::Matcher(StringPiece s) {
82   *this = Eq(s.ToString());
83 }
84 
85 // Constructs a matcher that matches a StringPiece whose value is equal to s.
Matcher(const internal::string & s)86 Matcher<StringPiece>::Matcher(const internal::string& s) {
87   *this = Eq(s);
88 }
89 
90 // Constructs a matcher that matches a StringPiece whose value is equal to s.
Matcher(const char * s)91 Matcher<StringPiece>::Matcher(const char* s) {
92   *this = Eq(internal::string(s));
93 }
94 
95 // Constructs a matcher that matches a StringPiece whose value is equal to s.
Matcher(StringPiece s)96 Matcher<StringPiece>::Matcher(StringPiece s) {
97   *this = Eq(s.ToString());
98 }
99 #endif  // GTEST_HAS_STRING_PIECE_
100 
101 namespace internal {
102 
103 // Joins a vector of strings as if they are fields of a tuple; returns
104 // the joined string.
JoinAsTuple(const Strings & fields)105 GTEST_API_ string JoinAsTuple(const Strings& fields) {
106   switch (fields.size()) {
107     case 0:
108       return "";
109     case 1:
110       return fields[0];
111     default:
112       string result = "(" + fields[0];
113       for (size_t i = 1; i < fields.size(); i++) {
114         result += ", ";
115         result += fields[i];
116       }
117       result += ")";
118       return result;
119   }
120 }
121 
122 // Returns the description for a matcher defined using the MATCHER*()
123 // macro where the user-supplied description string is "", if
124 // 'negation' is false; otherwise returns the description of the
125 // negation of the matcher.  'param_values' contains a list of strings
126 // that are the print-out of the matcher's parameters.
FormatMatcherDescription(bool negation,const char * matcher_name,const Strings & param_values)127 GTEST_API_ string FormatMatcherDescription(bool negation,
128                                            const char* matcher_name,
129                                            const Strings& param_values) {
130   string result = ConvertIdentifierNameToWords(matcher_name);
131   if (param_values.size() >= 1)
132     result += " " + JoinAsTuple(param_values);
133   return negation ? "not (" + result + ")" : result;
134 }
135 
136 // FindMaxBipartiteMatching and its helper class.
137 //
138 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
139 // bipartite matching. Flow is considered to be from left to right.
140 // There is an implicit source node that is connected to all of the left
141 // nodes, and an implicit sink node that is connected to all of the
142 // right nodes. All edges have unit capacity.
143 //
144 // Neither the flow graph nor the residual flow graph are represented
145 // explicitly. Instead, they are implied by the information in 'graph' and
146 // a vector<int> called 'left_' whose elements are initialized to the
147 // value kUnused. This represents the initial state of the algorithm,
148 // where the flow graph is empty, and the residual flow graph has the
149 // following edges:
150 //   - An edge from source to each left_ node
151 //   - An edge from each right_ node to sink
152 //   - An edge from each left_ node to each right_ node, if the
153 //     corresponding edge exists in 'graph'.
154 //
155 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
156 // nodes l and r. This induces the following changes:
157 //   - The edges (source, l), (l, r), and (r, sink) are added to the
158 //     flow graph.
159 //   - The same three edges are removed from the residual flow graph.
160 //   - The reverse edges (l, source), (r, l), and (sink, r) are added
161 //     to the residual flow graph, which is a directional graph
162 //     representing unused flow capacity.
163 //
164 // When the method augments a flow (moving left_[l] from some r1 to some
165 // other r2), this can be thought of as "undoing" the above steps with
166 // respect to r1 and "redoing" them with respect to r2.
167 //
168 // It bears repeating that the flow graph and residual flow graph are
169 // never represented explicitly, but can be derived by looking at the
170 // information in 'graph' and in left_.
171 //
172 // As an optimization, there is a second vector<int> called right_ which
173 // does not provide any new information. Instead, it enables more
174 // efficient queries about edges entering or leaving the right-side nodes
175 // of the flow or residual flow graphs. The following invariants are
176 // maintained:
177 //
178 // left[l] == kUnused or right[left[l]] == l
179 // right[r] == kUnused or left[right[r]] == r
180 //
181 // . [ source ]                                        .
182 // .   |||                                             .
183 // .   |||                                             .
184 // .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
185 // .   ||                   |                    |     .
186 // .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
187 // .   |                                        ||     .
188 // .   \----> left[2]=2  ------> right[2]=2  --\||     .
189 // .                                           |||     .
190 // .         elements           matchers       vvv     .
191 // .                                         [ sink ]  .
192 //
193 // See Also:
194 //   [1] Cormen, et al (2001). "Section 26.2: The Ford–Fulkerson method".
195 //       "Introduction to Algorithms (Second ed.)", pp. 651–664.
196 //   [2] "Ford–Fulkerson algorithm", Wikipedia,
197 //       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
198 class MaxBipartiteMatchState {
199  public:
MaxBipartiteMatchState(const MatchMatrix & graph)200   explicit MaxBipartiteMatchState(const MatchMatrix& graph)
201       : graph_(&graph),
202         left_(graph_->LhsSize(), kUnused),
203         right_(graph_->RhsSize(), kUnused) {
204   }
205 
206   // Returns the edges of a maximal match, each in the form {left, right}.
Compute()207   ElementMatcherPairs Compute() {
208     // 'seen' is used for path finding { 0: unseen, 1: seen }.
209     ::std::vector<char> seen;
210     // Searches the residual flow graph for a path from each left node to
211     // the sink in the residual flow graph, and if one is found, add flow
212     // to the graph. It's okay to search through the left nodes once. The
213     // edge from the implicit source node to each previously-visited left
214     // node will have flow if that left node has any path to the sink
215     // whatsoever. Subsequent augmentations can only add flow to the
216     // network, and cannot take away that previous flow unit from the source.
217     // Since the source-to-left edge can only carry one flow unit (or,
218     // each element can be matched to only one matcher), there is no need
219     // to visit the left nodes more than once looking for augmented paths.
220     // The flow is known to be possible or impossible by looking at the
221     // node once.
222     for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
223       // Reset the path-marking vector and try to find a path from
224       // source to sink starting at the left_[ilhs] node.
225       GTEST_CHECK_(left_[ilhs] == kUnused)
226           << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
227       // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
228       seen.assign(graph_->RhsSize(), 0);
229       TryAugment(ilhs, &seen);
230     }
231     ElementMatcherPairs result;
232     for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
233       size_t irhs = left_[ilhs];
234       if (irhs == kUnused) continue;
235       result.push_back(ElementMatcherPair(ilhs, irhs));
236     }
237     return result;
238   }
239 
240  private:
241   static const size_t kUnused = static_cast<size_t>(-1);
242 
243   // Perform a depth-first search from left node ilhs to the sink.  If a
244   // path is found, flow is added to the network by linking the left and
245   // right vector elements corresponding each segment of the path.
246   // Returns true if a path to sink was found, which means that a unit of
247   // flow was added to the network. The 'seen' vector elements correspond
248   // to right nodes and are marked to eliminate cycles from the search.
249   //
250   // Left nodes will only be explored at most once because they
251   // are accessible from at most one right node in the residual flow
252   // graph.
253   //
254   // Note that left_[ilhs] is the only element of left_ that TryAugment will
255   // potentially transition from kUnused to another value. Any other
256   // left_ element holding kUnused before TryAugment will be holding it
257   // when TryAugment returns.
258   //
TryAugment(size_t ilhs,::std::vector<char> * seen)259   bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
260     for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
261       if ((*seen)[irhs])
262         continue;
263       if (!graph_->HasEdge(ilhs, irhs))
264         continue;
265       // There's an available edge from ilhs to irhs.
266       (*seen)[irhs] = 1;
267       // Next a search is performed to determine whether
268       // this edge is a dead end or leads to the sink.
269       //
270       // right_[irhs] == kUnused means that there is residual flow from
271       // right node irhs to the sink, so we can use that to finish this
272       // flow path and return success.
273       //
274       // Otherwise there is residual flow to some ilhs. We push flow
275       // along that path and call ourselves recursively to see if this
276       // ultimately leads to sink.
277       if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
278         // Add flow from left_[ilhs] to right_[irhs].
279         left_[ilhs] = irhs;
280         right_[irhs] = ilhs;
281         return true;
282       }
283     }
284     return false;
285   }
286 
287   const MatchMatrix* graph_;  // not owned
288   // Each element of the left_ vector represents a left hand side node
289   // (i.e. an element) and each element of right_ is a right hand side
290   // node (i.e. a matcher). The values in the left_ vector indicate
291   // outflow from that node to a node on the the right_ side. The values
292   // in the right_ indicate inflow, and specify which left_ node is
293   // feeding that right_ node, if any. For example, left_[3] == 1 means
294   // there's a flow from element #3 to matcher #1. Such a flow would also
295   // be redundantly represented in the right_ vector as right_[1] == 3.
296   // Elements of left_ and right_ are either kUnused or mutually
297   // referent. Mutually referent means that left_[right_[i]] = i and
298   // right_[left_[i]] = i.
299   ::std::vector<size_t> left_;
300   ::std::vector<size_t> right_;
301 
302   GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
303 };
304 
305 const size_t MaxBipartiteMatchState::kUnused;
306 
307 GTEST_API_ ElementMatcherPairs
FindMaxBipartiteMatching(const MatchMatrix & g)308 FindMaxBipartiteMatching(const MatchMatrix& g) {
309   return MaxBipartiteMatchState(g).Compute();
310 }
311 
LogElementMatcherPairVec(const ElementMatcherPairs & pairs,::std::ostream * stream)312 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
313                                      ::std::ostream* stream) {
314   typedef ElementMatcherPairs::const_iterator Iter;
315   ::std::ostream& os = *stream;
316   os << "{";
317   const char *sep = "";
318   for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
319     os << sep << "\n  ("
320        << "element #" << it->first << ", "
321        << "matcher #" << it->second << ")";
322     sep = ",";
323   }
324   os << "\n}";
325 }
326 
327 // Tries to find a pairing, and explains the result.
FindPairing(const MatchMatrix & matrix,MatchResultListener * listener)328 GTEST_API_ bool FindPairing(const MatchMatrix& matrix,
329                             MatchResultListener* listener) {
330   ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
331 
332   size_t max_flow = matches.size();
333   bool result = (max_flow == matrix.RhsSize());
334 
335   if (!result) {
336     if (listener->IsInterested()) {
337       *listener << "where no permutation of the elements can "
338                    "satisfy all matchers, and the closest match is "
339                 << max_flow << " of " << matrix.RhsSize()
340                 << " matchers with the pairings:\n";
341       LogElementMatcherPairVec(matches, listener->stream());
342     }
343     return false;
344   }
345 
346   if (matches.size() > 1) {
347     if (listener->IsInterested()) {
348       const char *sep = "where:\n";
349       for (size_t mi = 0; mi < matches.size(); ++mi) {
350         *listener << sep << " - element #" << matches[mi].first
351                   << " is matched by matcher #" << matches[mi].second;
352         sep = ",\n";
353       }
354     }
355   }
356   return true;
357 }
358 
NextGraph()359 bool MatchMatrix::NextGraph() {
360   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
361     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
362       char& b = matched_[SpaceIndex(ilhs, irhs)];
363       if (!b) {
364         b = 1;
365         return true;
366       }
367       b = 0;
368     }
369   }
370   return false;
371 }
372 
Randomize()373 void MatchMatrix::Randomize() {
374   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
375     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
376       char& b = matched_[SpaceIndex(ilhs, irhs)];
377       b = static_cast<char>(rand() & 1);  // NOLINT
378     }
379   }
380 }
381 
DebugString() const382 string MatchMatrix::DebugString() const {
383   ::std::stringstream ss;
384   const char *sep = "";
385   for (size_t i = 0; i < LhsSize(); ++i) {
386     ss << sep;
387     for (size_t j = 0; j < RhsSize(); ++j) {
388       ss << HasEdge(i, j);
389     }
390     sep = ";";
391   }
392   return ss.str();
393 }
394 
DescribeToImpl(::std::ostream * os) const395 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
396     ::std::ostream* os) const {
397   if (matcher_describers_.empty()) {
398     *os << "is empty";
399     return;
400   }
401   if (matcher_describers_.size() == 1) {
402     *os << "has " << Elements(1) << " and that element ";
403     matcher_describers_[0]->DescribeTo(os);
404     return;
405   }
406   *os << "has " << Elements(matcher_describers_.size())
407       << " and there exists some permutation of elements such that:\n";
408   const char* sep = "";
409   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
410     *os << sep << " - element #" << i << " ";
411     matcher_describers_[i]->DescribeTo(os);
412     sep = ", and\n";
413   }
414 }
415 
DescribeNegationToImpl(::std::ostream * os) const416 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
417     ::std::ostream* os) const {
418   if (matcher_describers_.empty()) {
419     *os << "isn't empty";
420     return;
421   }
422   if (matcher_describers_.size() == 1) {
423     *os << "doesn't have " << Elements(1)
424         << ", or has " << Elements(1) << " that ";
425     matcher_describers_[0]->DescribeNegationTo(os);
426     return;
427   }
428   *os << "doesn't have " << Elements(matcher_describers_.size())
429       << ", or there exists no permutation of elements such that:\n";
430   const char* sep = "";
431   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
432     *os << sep << " - element #" << i << " ";
433     matcher_describers_[i]->DescribeTo(os);
434     sep = ", and\n";
435   }
436 }
437 
438 // Checks that all matchers match at least one element, and that all
439 // elements match at least one matcher. This enables faster matching
440 // and better error reporting.
441 // Returns false, writing an explanation to 'listener', if and only
442 // if the success criteria are not met.
443 bool UnorderedElementsAreMatcherImplBase::
VerifyAllElementsAndMatchersAreMatched(const::std::vector<string> & element_printouts,const MatchMatrix & matrix,MatchResultListener * listener) const444 VerifyAllElementsAndMatchersAreMatched(
445     const ::std::vector<string>& element_printouts,
446     const MatchMatrix& matrix,
447     MatchResultListener* listener) const {
448   bool result = true;
449   ::std::vector<char> element_matched(matrix.LhsSize(), 0);
450   ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
451 
452   for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
453     for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
454       char matched = matrix.HasEdge(ilhs, irhs);
455       element_matched[ilhs] |= matched;
456       matcher_matched[irhs] |= matched;
457     }
458   }
459 
460   {
461     const char* sep =
462         "where the following matchers don't match any elements:\n";
463     for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
464       if (matcher_matched[mi])
465         continue;
466       result = false;
467       if (listener->IsInterested()) {
468         *listener << sep << "matcher #" << mi << ": ";
469         matcher_describers_[mi]->DescribeTo(listener->stream());
470         sep = ",\n";
471       }
472     }
473   }
474 
475   {
476     const char* sep =
477         "where the following elements don't match any matchers:\n";
478     const char* outer_sep = "";
479     if (!result) {
480       outer_sep = "\nand ";
481     }
482     for (size_t ei = 0; ei < element_matched.size(); ++ei) {
483       if (element_matched[ei])
484         continue;
485       result = false;
486       if (listener->IsInterested()) {
487         *listener << outer_sep << sep << "element #" << ei << ": "
488                   << element_printouts[ei];
489         sep = ",\n";
490         outer_sep = "";
491       }
492     }
493   }
494   return result;
495 }
496 
497 }  // namespace internal
498 }  // namespace testing
499