1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
name()108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
version()121 version() const
122 { return this->version_; }
123
124 void
clear_version()125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
is_default()132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
set_is_default()140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Return the symbol's name as name@version (or name@@version).
144 std::string
145 versioned_name() const;
146
147 // Return the symbol source.
148 Source
source()149 source() const
150 { return this->source_; }
151
152 // Return the object with which this symbol is associated.
153 Object*
object()154 object() const
155 {
156 gold_assert(this->source_ == FROM_OBJECT);
157 return this->u_.from_object.object;
158 }
159
160 // Return the index of the section in the input relocatable or
161 // dynamic object file.
162 unsigned int
shndx(bool * is_ordinary)163 shndx(bool* is_ordinary) const
164 {
165 gold_assert(this->source_ == FROM_OBJECT);
166 *is_ordinary = this->is_ordinary_shndx_;
167 return this->u_.from_object.shndx;
168 }
169
170 // Return the output data section with which this symbol is
171 // associated, if the symbol was specially defined with respect to
172 // an output data section.
173 Output_data*
output_data()174 output_data() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_DATA);
177 return this->u_.in_output_data.output_data;
178 }
179
180 // If this symbol was defined with respect to an output data
181 // section, return whether the value is an offset from end.
182 bool
offset_is_from_end()183 offset_is_from_end() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_DATA);
186 return this->u_.in_output_data.offset_is_from_end;
187 }
188
189 // Return the output segment with which this symbol is associated,
190 // if the symbol was specially defined with respect to an output
191 // segment.
192 Output_segment*
output_segment()193 output_segment() const
194 {
195 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
196 return this->u_.in_output_segment.output_segment;
197 }
198
199 // If this symbol was defined with respect to an output segment,
200 // return the offset base.
201 Segment_offset_base
offset_base()202 offset_base() const
203 {
204 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
205 return this->u_.in_output_segment.offset_base;
206 }
207
208 // Return the symbol binding.
209 elfcpp::STB
binding()210 binding() const
211 { return this->binding_; }
212
213 // Return the symbol type.
214 elfcpp::STT
type()215 type() const
216 { return this->type_; }
217
218 // Set the symbol type.
219 void
set_type(elfcpp::STT type)220 set_type(elfcpp::STT type)
221 { this->type_ = type; }
222
223 // Return true for function symbol.
224 bool
is_func()225 is_func() const
226 {
227 return (this->type_ == elfcpp::STT_FUNC
228 || this->type_ == elfcpp::STT_GNU_IFUNC);
229 }
230
231 // Return the symbol visibility.
232 elfcpp::STV
visibility()233 visibility() const
234 { return this->visibility_; }
235
236 // Set the visibility.
237 void
set_visibility(elfcpp::STV visibility)238 set_visibility(elfcpp::STV visibility)
239 { this->visibility_ = visibility; }
240
241 // Override symbol visibility.
242 void
243 override_visibility(elfcpp::STV);
244
245 // Set whether the symbol was originally a weak undef or a regular undef
246 // when resolved by a dynamic def or by a special symbol.
247 inline void
set_undef_binding(elfcpp::STB bind)248 set_undef_binding(elfcpp::STB bind)
249 {
250 if (!this->undef_binding_set_ || this->undef_binding_weak_)
251 {
252 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
253 this->undef_binding_set_ = true;
254 }
255 }
256
257 // Return TRUE if a weak undef was resolved by a dynamic def or
258 // by a special symbol.
259 inline bool
is_undef_binding_weak()260 is_undef_binding_weak() const
261 { return this->undef_binding_weak_; }
262
263 // Return the non-visibility part of the st_other field.
264 unsigned char
nonvis()265 nonvis() const
266 { return this->nonvis_; }
267
268 // Set the non-visibility part of the st_other field.
269 void
set_nonvis(unsigned int nonvis)270 set_nonvis(unsigned int nonvis)
271 { this->nonvis_ = nonvis; }
272
273 // Return whether this symbol is a forwarder. This will never be
274 // true of a symbol found in the hash table, but may be true of
275 // symbol pointers attached to object files.
276 bool
is_forwarder()277 is_forwarder() const
278 { return this->is_forwarder_; }
279
280 // Mark this symbol as a forwarder.
281 void
set_forwarder()282 set_forwarder()
283 { this->is_forwarder_ = true; }
284
285 // Return whether this symbol has an alias in the weak aliases table
286 // in Symbol_table.
287 bool
has_alias()288 has_alias() const
289 { return this->has_alias_; }
290
291 // Mark this symbol as having an alias.
292 void
set_has_alias()293 set_has_alias()
294 { this->has_alias_ = true; }
295
296 // Return whether this symbol needs an entry in the dynamic symbol
297 // table.
298 bool
needs_dynsym_entry()299 needs_dynsym_entry() const
300 {
301 return (this->needs_dynsym_entry_
302 || (this->in_reg()
303 && this->in_dyn()
304 && this->is_externally_visible()));
305 }
306
307 // Mark this symbol as needing an entry in the dynamic symbol table.
308 void
set_needs_dynsym_entry()309 set_needs_dynsym_entry()
310 { this->needs_dynsym_entry_ = true; }
311
312 // Return whether this symbol should be added to the dynamic symbol
313 // table.
314 bool
315 should_add_dynsym_entry(Symbol_table*) const;
316
317 // Return whether this symbol has been seen in a regular object.
318 bool
in_reg()319 in_reg() const
320 { return this->in_reg_; }
321
322 // Mark this symbol as having been seen in a regular object.
323 void
set_in_reg()324 set_in_reg()
325 { this->in_reg_ = true; }
326
327 // Return whether this symbol has been seen in a dynamic object.
328 bool
in_dyn()329 in_dyn() const
330 { return this->in_dyn_; }
331
332 // Mark this symbol as having been seen in a dynamic object.
333 void
set_in_dyn()334 set_in_dyn()
335 { this->in_dyn_ = true; }
336
337 // Return whether this symbol has been seen in a real ELF object.
338 // (IN_REG will return TRUE if the symbol has been seen in either
339 // a real ELF object or an object claimed by a plugin.)
340 bool
in_real_elf()341 in_real_elf() const
342 { return this->in_real_elf_; }
343
344 // Mark this symbol as having been seen in a real ELF object.
345 void
set_in_real_elf()346 set_in_real_elf()
347 { this->in_real_elf_ = true; }
348
349 // Return whether this symbol was defined in a section that was
350 // discarded from the link. This is used to control some error
351 // reporting.
352 bool
is_defined_in_discarded_section()353 is_defined_in_discarded_section() const
354 { return this->is_defined_in_discarded_section_; }
355
356 // Mark this symbol as having been defined in a discarded section.
357 void
set_is_defined_in_discarded_section()358 set_is_defined_in_discarded_section()
359 { this->is_defined_in_discarded_section_ = true; }
360
361 // Return the index of this symbol in the output file symbol table.
362 // A value of -1U means that this symbol is not going into the
363 // output file. This starts out as zero, and is set to a non-zero
364 // value by Symbol_table::finalize. It is an error to ask for the
365 // symbol table index before it has been set.
366 unsigned int
symtab_index()367 symtab_index() const
368 {
369 gold_assert(this->symtab_index_ != 0);
370 return this->symtab_index_;
371 }
372
373 // Set the index of the symbol in the output file symbol table.
374 void
set_symtab_index(unsigned int index)375 set_symtab_index(unsigned int index)
376 {
377 gold_assert(index != 0);
378 this->symtab_index_ = index;
379 }
380
381 // Return whether this symbol already has an index in the output
382 // file symbol table.
383 bool
has_symtab_index()384 has_symtab_index() const
385 { return this->symtab_index_ != 0; }
386
387 // Return the index of this symbol in the dynamic symbol table. A
388 // value of -1U means that this symbol is not going into the dynamic
389 // symbol table. This starts out as zero, and is set to a non-zero
390 // during Layout::finalize. It is an error to ask for the dynamic
391 // symbol table index before it has been set.
392 unsigned int
dynsym_index()393 dynsym_index() const
394 {
395 gold_assert(this->dynsym_index_ != 0);
396 return this->dynsym_index_;
397 }
398
399 // Set the index of the symbol in the dynamic symbol table.
400 void
set_dynsym_index(unsigned int index)401 set_dynsym_index(unsigned int index)
402 {
403 gold_assert(index != 0);
404 this->dynsym_index_ = index;
405 }
406
407 // Return whether this symbol already has an index in the dynamic
408 // symbol table.
409 bool
has_dynsym_index()410 has_dynsym_index() const
411 { return this->dynsym_index_ != 0; }
412
413 // Return whether this symbol has an entry in the GOT section.
414 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
415 bool
has_got_offset(unsigned int got_type)416 has_got_offset(unsigned int got_type) const
417 { return this->got_offsets_.get_offset(got_type) != -1U; }
418
419 // Return the offset into the GOT section of this symbol.
420 unsigned int
got_offset(unsigned int got_type)421 got_offset(unsigned int got_type) const
422 {
423 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
424 gold_assert(got_offset != -1U);
425 return got_offset;
426 }
427
428 // Set the GOT offset of this symbol.
429 void
set_got_offset(unsigned int got_type,unsigned int got_offset)430 set_got_offset(unsigned int got_type, unsigned int got_offset)
431 { this->got_offsets_.set_offset(got_type, got_offset); }
432
433 // Return the GOT offset list.
434 const Got_offset_list*
got_offset_list()435 got_offset_list() const
436 { return this->got_offsets_.get_list(); }
437
438 // Return whether this symbol has an entry in the PLT section.
439 bool
has_plt_offset()440 has_plt_offset() const
441 { return this->plt_offset_ != -1U; }
442
443 // Return the offset into the PLT section of this symbol.
444 unsigned int
plt_offset()445 plt_offset() const
446 {
447 gold_assert(this->has_plt_offset());
448 return this->plt_offset_;
449 }
450
451 // Set the PLT offset of this symbol.
452 void
set_plt_offset(unsigned int plt_offset)453 set_plt_offset(unsigned int plt_offset)
454 {
455 gold_assert(plt_offset != -1U);
456 this->plt_offset_ = plt_offset;
457 }
458
459 // Return whether this dynamic symbol needs a special value in the
460 // dynamic symbol table.
461 bool
needs_dynsym_value()462 needs_dynsym_value() const
463 { return this->needs_dynsym_value_; }
464
465 // Set that this dynamic symbol needs a special value in the dynamic
466 // symbol table.
467 void
set_needs_dynsym_value()468 set_needs_dynsym_value()
469 {
470 gold_assert(this->object()->is_dynamic());
471 this->needs_dynsym_value_ = true;
472 }
473
474 // Return true if the final value of this symbol is known at link
475 // time.
476 bool
477 final_value_is_known() const;
478
479 // Return true if SHNDX represents a common symbol. This depends on
480 // the target.
481 static bool
482 is_common_shndx(unsigned int shndx);
483
484 // Return whether this is a defined symbol (not undefined or
485 // common).
486 bool
is_defined()487 is_defined() const
488 {
489 bool is_ordinary;
490 if (this->source_ != FROM_OBJECT)
491 return this->source_ != IS_UNDEFINED;
492 unsigned int shndx = this->shndx(&is_ordinary);
493 return (is_ordinary
494 ? shndx != elfcpp::SHN_UNDEF
495 : !Symbol::is_common_shndx(shndx));
496 }
497
498 // Return true if this symbol is from a dynamic object.
499 bool
is_from_dynobj()500 is_from_dynobj() const
501 {
502 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
503 }
504
505 // Return whether this is a placeholder symbol from a plugin object.
506 bool
is_placeholder()507 is_placeholder() const
508 {
509 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
510 }
511
512 // Return whether this is an undefined symbol.
513 bool
is_undefined()514 is_undefined() const
515 {
516 bool is_ordinary;
517 return ((this->source_ == FROM_OBJECT
518 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
519 && is_ordinary)
520 || this->source_ == IS_UNDEFINED);
521 }
522
523 // Return whether this is a weak undefined symbol.
524 bool
is_weak_undefined()525 is_weak_undefined() const
526 {
527 return (this->is_undefined()
528 && (this->binding() == elfcpp::STB_WEAK
529 || this->is_undef_binding_weak()
530 || parameters->options().weak_unresolved_symbols()));
531 }
532
533 // Return whether this is a strong undefined symbol.
534 bool
is_strong_undefined()535 is_strong_undefined() const
536 {
537 return (this->is_undefined()
538 && this->binding() != elfcpp::STB_WEAK
539 && !this->is_undef_binding_weak()
540 && !parameters->options().weak_unresolved_symbols());
541 }
542
543 // Return whether this is an absolute symbol.
544 bool
is_absolute()545 is_absolute() const
546 {
547 bool is_ordinary;
548 return ((this->source_ == FROM_OBJECT
549 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
550 && !is_ordinary)
551 || this->source_ == IS_CONSTANT);
552 }
553
554 // Return whether this is a common symbol.
555 bool
is_common()556 is_common() const
557 {
558 if (this->source_ != FROM_OBJECT)
559 return false;
560 if (this->type_ == elfcpp::STT_COMMON)
561 return true;
562 bool is_ordinary;
563 unsigned int shndx = this->shndx(&is_ordinary);
564 return !is_ordinary && Symbol::is_common_shndx(shndx);
565 }
566
567 // Return whether this symbol can be seen outside this object.
568 bool
is_externally_visible()569 is_externally_visible() const
570 {
571 return ((this->visibility_ == elfcpp::STV_DEFAULT
572 || this->visibility_ == elfcpp::STV_PROTECTED)
573 && !this->is_forced_local_);
574 }
575
576 // Return true if this symbol can be preempted by a definition in
577 // another link unit.
578 bool
is_preemptible()579 is_preemptible() const
580 {
581 // It doesn't make sense to ask whether a symbol defined in
582 // another object is preemptible.
583 gold_assert(!this->is_from_dynobj());
584
585 // It doesn't make sense to ask whether an undefined symbol
586 // is preemptible.
587 gold_assert(!this->is_undefined());
588
589 // If a symbol does not have default visibility, it can not be
590 // seen outside this link unit and therefore is not preemptible.
591 if (this->visibility_ != elfcpp::STV_DEFAULT)
592 return false;
593
594 // If this symbol has been forced to be a local symbol by a
595 // version script, then it is not visible outside this link unit
596 // and is not preemptible.
597 if (this->is_forced_local_)
598 return false;
599
600 // If we are not producing a shared library, then nothing is
601 // preemptible.
602 if (!parameters->options().shared())
603 return false;
604
605 // If the symbol was named in a --dynamic-list script, it is preemptible.
606 if (parameters->options().in_dynamic_list(this->name()))
607 return true;
608
609 // If the user used -Bsymbolic, then nothing (else) is preemptible.
610 if (parameters->options().Bsymbolic())
611 return false;
612
613 // If the user used -Bsymbolic-functions, then functions are not
614 // preemptible. We explicitly check for not being STT_OBJECT,
615 // rather than for being STT_FUNC, because that is what the GNU
616 // linker does.
617 if (this->type() != elfcpp::STT_OBJECT
618 && parameters->options().Bsymbolic_functions())
619 return false;
620
621 // Otherwise the symbol is preemptible.
622 return true;
623 }
624
625 // Return true if this symbol is a function that needs a PLT entry.
626 bool
needs_plt_entry()627 needs_plt_entry() const
628 {
629 // An undefined symbol from an executable does not need a PLT entry.
630 if (this->is_undefined() && !parameters->options().shared())
631 return false;
632
633 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
634 // doing a static link.
635 if (this->type() == elfcpp::STT_GNU_IFUNC)
636 return true;
637
638 // We only need a PLT entry for a function.
639 if (!this->is_func())
640 return false;
641
642 // If we're doing a static link or a -pie link, we don't create
643 // PLT entries.
644 if (parameters->doing_static_link()
645 || parameters->options().pie())
646 return false;
647
648 // We need a PLT entry if the function is defined in a dynamic
649 // object, or is undefined when building a shared object, or if it
650 // is subject to pre-emption.
651 return (this->is_from_dynobj()
652 || this->is_undefined()
653 || this->is_preemptible());
654 }
655
656 // When determining whether a reference to a symbol needs a dynamic
657 // relocation, we need to know several things about the reference.
658 // These flags may be or'ed together. 0 means that the symbol
659 // isn't referenced at all.
660 enum Reference_flags
661 {
662 // A reference to the symbol's absolute address. This includes
663 // references that cause an absolute address to be stored in the GOT.
664 ABSOLUTE_REF = 1,
665 // A reference that calculates the offset of the symbol from some
666 // anchor point, such as the PC or GOT.
667 RELATIVE_REF = 2,
668 // A TLS-related reference.
669 TLS_REF = 4,
670 // A reference that can always be treated as a function call.
671 FUNCTION_CALL = 8,
672 // When set, says that dynamic relocations are needed even if a
673 // symbol has a plt entry.
674 FUNC_DESC_ABI = 16,
675 };
676
677 // Given a direct absolute or pc-relative static relocation against
678 // the global symbol, this function returns whether a dynamic relocation
679 // is needed.
680
681 bool
needs_dynamic_reloc(int flags)682 needs_dynamic_reloc(int flags) const
683 {
684 // No dynamic relocations in a static link!
685 if (parameters->doing_static_link())
686 return false;
687
688 // A reference to an undefined symbol from an executable should be
689 // statically resolved to 0, and does not need a dynamic relocation.
690 // This matches gnu ld behavior.
691 if (this->is_undefined() && !parameters->options().shared())
692 return false;
693
694 // A reference to an absolute symbol does not need a dynamic relocation.
695 if (this->is_absolute())
696 return false;
697
698 // An absolute reference within a position-independent output file
699 // will need a dynamic relocation.
700 if ((flags & ABSOLUTE_REF)
701 && parameters->options().output_is_position_independent())
702 return true;
703
704 // A function call that can branch to a local PLT entry does not need
705 // a dynamic relocation.
706 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
707 return false;
708
709 // A reference to any PLT entry in a non-position-independent executable
710 // does not need a dynamic relocation.
711 if (!(flags & FUNC_DESC_ABI)
712 && !parameters->options().output_is_position_independent()
713 && this->has_plt_offset())
714 return false;
715
716 // A reference to a symbol defined in a dynamic object or to a
717 // symbol that is preemptible will need a dynamic relocation.
718 if (this->is_from_dynobj()
719 || this->is_undefined()
720 || this->is_preemptible())
721 return true;
722
723 // For all other cases, return FALSE.
724 return false;
725 }
726
727 // Whether we should use the PLT offset associated with a symbol for
728 // a relocation. FLAGS is a set of Reference_flags.
729
730 bool
use_plt_offset(int flags)731 use_plt_offset(int flags) const
732 {
733 // If the symbol doesn't have a PLT offset, then naturally we
734 // don't want to use it.
735 if (!this->has_plt_offset())
736 return false;
737
738 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
739 if (this->type() == elfcpp::STT_GNU_IFUNC)
740 return true;
741
742 // If we are going to generate a dynamic relocation, then we will
743 // wind up using that, so no need to use the PLT entry.
744 if (this->needs_dynamic_reloc(flags))
745 return false;
746
747 // If the symbol is from a dynamic object, we need to use the PLT
748 // entry.
749 if (this->is_from_dynobj())
750 return true;
751
752 // If we are generating a shared object, and this symbol is
753 // undefined or preemptible, we need to use the PLT entry.
754 if (parameters->options().shared()
755 && (this->is_undefined() || this->is_preemptible()))
756 return true;
757
758 // If this is a call to a weak undefined symbol, we need to use
759 // the PLT entry; the symbol may be defined by a library loaded
760 // at runtime.
761 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
762 return true;
763
764 // Otherwise we can use the regular definition.
765 return false;
766 }
767
768 // Given a direct absolute static relocation against
769 // the global symbol, where a dynamic relocation is needed, this
770 // function returns whether a relative dynamic relocation can be used.
771 // The caller must determine separately whether the static relocation
772 // is compatible with a relative relocation.
773
774 bool
can_use_relative_reloc(bool is_function_call)775 can_use_relative_reloc(bool is_function_call) const
776 {
777 // A function call that can branch to a local PLT entry can
778 // use a RELATIVE relocation.
779 if (is_function_call && this->has_plt_offset())
780 return true;
781
782 // A reference to a symbol defined in a dynamic object or to a
783 // symbol that is preemptible can not use a RELATIVE relocation.
784 if (this->is_from_dynobj()
785 || this->is_undefined()
786 || this->is_preemptible())
787 return false;
788
789 // For all other cases, return TRUE.
790 return true;
791 }
792
793 // Return the output section where this symbol is defined. Return
794 // NULL if the symbol has an absolute value.
795 Output_section*
796 output_section() const;
797
798 // Set the symbol's output section. This is used for symbols
799 // defined in scripts. This should only be called after the symbol
800 // table has been finalized.
801 void
802 set_output_section(Output_section*);
803
804 // Set the symbol's output segment. This is used for pre-defined
805 // symbols whose segments aren't known until after layout is done
806 // (e.g., __ehdr_start).
807 void
808 set_output_segment(Output_segment*, Segment_offset_base);
809
810 // Set the symbol to undefined. This is used for pre-defined
811 // symbols whose segments aren't known until after layout is done
812 // (e.g., __ehdr_start).
813 void
814 set_undefined();
815
816 // Return whether there should be a warning for references to this
817 // symbol.
818 bool
has_warning()819 has_warning() const
820 { return this->has_warning_; }
821
822 // Mark this symbol as having a warning.
823 void
set_has_warning()824 set_has_warning()
825 { this->has_warning_ = true; }
826
827 // Return whether this symbol is defined by a COPY reloc from a
828 // dynamic object.
829 bool
is_copied_from_dynobj()830 is_copied_from_dynobj() const
831 { return this->is_copied_from_dynobj_; }
832
833 // Mark this symbol as defined by a COPY reloc.
834 void
set_is_copied_from_dynobj()835 set_is_copied_from_dynobj()
836 { this->is_copied_from_dynobj_ = true; }
837
838 // Return whether this symbol is forced to visibility STB_LOCAL
839 // by a "local:" entry in a version script.
840 bool
is_forced_local()841 is_forced_local() const
842 { return this->is_forced_local_; }
843
844 // Mark this symbol as forced to STB_LOCAL visibility.
845 void
set_is_forced_local()846 set_is_forced_local()
847 { this->is_forced_local_ = true; }
848
849 // Return true if this may need a COPY relocation.
850 // References from an executable object to non-function symbols
851 // defined in a dynamic object may need a COPY relocation.
852 bool
may_need_copy_reloc()853 may_need_copy_reloc() const
854 {
855 return (parameters->options().copyreloc()
856 && this->is_from_dynobj()
857 && !this->is_func());
858 }
859
860 // Return true if this symbol was predefined by the linker.
861 bool
is_predefined()862 is_predefined() const
863 { return this->is_predefined_; }
864
865 // Return true if this is a C++ vtable symbol.
866 bool
is_cxx_vtable()867 is_cxx_vtable() const
868 { return is_prefix_of("_ZTV", this->name_); }
869
870 protected:
871 // Instances of this class should always be created at a specific
872 // size.
Symbol()873 Symbol()
874 { memset(this, 0, sizeof *this); }
875
876 // Initialize the general fields.
877 void
878 init_fields(const char* name, const char* version,
879 elfcpp::STT type, elfcpp::STB binding,
880 elfcpp::STV visibility, unsigned char nonvis);
881
882 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
883 // section index, IS_ORDINARY is whether it is a normal section
884 // index rather than a special code.
885 template<int size, bool big_endian>
886 void
887 init_base_object(const char* name, const char* version, Object* object,
888 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
889 bool is_ordinary);
890
891 // Initialize fields for an Output_data.
892 void
893 init_base_output_data(const char* name, const char* version, Output_data*,
894 elfcpp::STT, elfcpp::STB, elfcpp::STV,
895 unsigned char nonvis, bool offset_is_from_end,
896 bool is_predefined);
897
898 // Initialize fields for an Output_segment.
899 void
900 init_base_output_segment(const char* name, const char* version,
901 Output_segment* os, elfcpp::STT type,
902 elfcpp::STB binding, elfcpp::STV visibility,
903 unsigned char nonvis,
904 Segment_offset_base offset_base,
905 bool is_predefined);
906
907 // Initialize fields for a constant.
908 void
909 init_base_constant(const char* name, const char* version, elfcpp::STT type,
910 elfcpp::STB binding, elfcpp::STV visibility,
911 unsigned char nonvis, bool is_predefined);
912
913 // Initialize fields for an undefined symbol.
914 void
915 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
916 elfcpp::STB binding, elfcpp::STV visibility,
917 unsigned char nonvis);
918
919 // Override existing symbol.
920 template<int size, bool big_endian>
921 void
922 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
923 bool is_ordinary, Object* object, const char* version);
924
925 // Override existing symbol with a special symbol.
926 void
927 override_base_with_special(const Symbol* from);
928
929 // Override symbol version.
930 void
931 override_version(const char* version);
932
933 // Allocate a common symbol by giving it a location in the output
934 // file.
935 void
936 allocate_base_common(Output_data*);
937
938 private:
939 Symbol(const Symbol&);
940 Symbol& operator=(const Symbol&);
941
942 // Symbol name (expected to point into a Stringpool).
943 const char* name_;
944 // Symbol version (expected to point into a Stringpool). This may
945 // be NULL.
946 const char* version_;
947
948 union
949 {
950 // This struct is used if SOURCE_ == FROM_OBJECT.
951 struct
952 {
953 // Object in which symbol is defined, or in which it was first
954 // seen.
955 Object* object;
956 // Section number in object_ in which symbol is defined.
957 unsigned int shndx;
958 } from_object;
959
960 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
961 struct
962 {
963 // Output_data in which symbol is defined. Before
964 // Layout::finalize the symbol's value is an offset within the
965 // Output_data.
966 Output_data* output_data;
967 // True if the offset is from the end, false if the offset is
968 // from the beginning.
969 bool offset_is_from_end;
970 } in_output_data;
971
972 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
973 struct
974 {
975 // Output_segment in which the symbol is defined. Before
976 // Layout::finalize the symbol's value is an offset.
977 Output_segment* output_segment;
978 // The base to use for the offset before Layout::finalize.
979 Segment_offset_base offset_base;
980 } in_output_segment;
981 } u_;
982
983 // The index of this symbol in the output file. If the symbol is
984 // not going into the output file, this value is -1U. This field
985 // starts as always holding zero. It is set to a non-zero value by
986 // Symbol_table::finalize.
987 unsigned int symtab_index_;
988
989 // The index of this symbol in the dynamic symbol table. If the
990 // symbol is not going into the dynamic symbol table, this value is
991 // -1U. This field starts as always holding zero. It is set to a
992 // non-zero value during Layout::finalize.
993 unsigned int dynsym_index_;
994
995 // The GOT section entries for this symbol. A symbol may have more
996 // than one GOT offset (e.g., when mixing modules compiled with two
997 // different TLS models), but will usually have at most one.
998 Got_offset_list got_offsets_;
999
1000 // If this symbol has an entry in the PLT section, then this is the
1001 // offset from the start of the PLT section. This is -1U if there
1002 // is no PLT entry.
1003 unsigned int plt_offset_;
1004
1005 // Symbol type (bits 0 to 3).
1006 elfcpp::STT type_ : 4;
1007 // Symbol binding (bits 4 to 7).
1008 elfcpp::STB binding_ : 4;
1009 // Symbol visibility (bits 8 to 9).
1010 elfcpp::STV visibility_ : 2;
1011 // Rest of symbol st_other field (bits 10 to 15).
1012 unsigned int nonvis_ : 6;
1013 // The type of symbol (bits 16 to 18).
1014 Source source_ : 3;
1015 // True if this is the default version of the symbol (bit 19).
1016 bool is_def_ : 1;
1017 // True if this symbol really forwards to another symbol. This is
1018 // used when we discover after the fact that two different entries
1019 // in the hash table really refer to the same symbol. This will
1020 // never be set for a symbol found in the hash table, but may be set
1021 // for a symbol found in the list of symbols attached to an Object.
1022 // It forwards to the symbol found in the forwarders_ map of
1023 // Symbol_table (bit 20).
1024 bool is_forwarder_ : 1;
1025 // True if the symbol has an alias in the weak_aliases table in
1026 // Symbol_table (bit 21).
1027 bool has_alias_ : 1;
1028 // True if this symbol needs to be in the dynamic symbol table (bit
1029 // 22).
1030 bool needs_dynsym_entry_ : 1;
1031 // True if we've seen this symbol in a regular object (bit 23).
1032 bool in_reg_ : 1;
1033 // True if we've seen this symbol in a dynamic object (bit 24).
1034 bool in_dyn_ : 1;
1035 // True if this is a dynamic symbol which needs a special value in
1036 // the dynamic symbol table (bit 25).
1037 bool needs_dynsym_value_ : 1;
1038 // True if there is a warning for this symbol (bit 26).
1039 bool has_warning_ : 1;
1040 // True if we are using a COPY reloc for this symbol, so that the
1041 // real definition lives in a dynamic object (bit 27).
1042 bool is_copied_from_dynobj_ : 1;
1043 // True if this symbol was forced to local visibility by a version
1044 // script (bit 28).
1045 bool is_forced_local_ : 1;
1046 // True if the field u_.from_object.shndx is an ordinary section
1047 // index, not one of the special codes from SHN_LORESERVE to
1048 // SHN_HIRESERVE (bit 29).
1049 bool is_ordinary_shndx_ : 1;
1050 // True if we've seen this symbol in a "real" ELF object (bit 30).
1051 // If the symbol has been seen in a relocatable, non-IR, object file,
1052 // it's known to be referenced from outside the IR. A reference from
1053 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1054 // mark the symbol as "visible" from outside the IR. The compiler
1055 // can use this distinction to guide its handling of COMDAT symbols.
1056 bool in_real_elf_ : 1;
1057 // True if this symbol is defined in a section which was discarded
1058 // (bit 31).
1059 bool is_defined_in_discarded_section_ : 1;
1060 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1061 bool undef_binding_set_ : 1;
1062 // True if this symbol was a weak undef resolved by a dynamic def
1063 // or by a special symbol (bit 33).
1064 bool undef_binding_weak_ : 1;
1065 // True if this symbol is a predefined linker symbol (bit 34).
1066 bool is_predefined_ : 1;
1067 };
1068
1069 // The parts of a symbol which are size specific. Using a template
1070 // derived class like this helps us use less space on a 32-bit system.
1071
1072 template<int size>
1073 class Sized_symbol : public Symbol
1074 {
1075 public:
1076 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1077 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1078
Sized_symbol()1079 Sized_symbol()
1080 { }
1081
1082 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1083 // section index, IS_ORDINARY is whether it is a normal section
1084 // index rather than a special code.
1085 template<bool big_endian>
1086 void
1087 init_object(const char* name, const char* version, Object* object,
1088 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1089 bool is_ordinary);
1090
1091 // Initialize fields for an Output_data.
1092 void
1093 init_output_data(const char* name, const char* version, Output_data*,
1094 Value_type value, Size_type symsize, elfcpp::STT,
1095 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1096 bool offset_is_from_end, bool is_predefined);
1097
1098 // Initialize fields for an Output_segment.
1099 void
1100 init_output_segment(const char* name, const char* version, Output_segment*,
1101 Value_type value, Size_type symsize, elfcpp::STT,
1102 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1103 Segment_offset_base offset_base, bool is_predefined);
1104
1105 // Initialize fields for a constant.
1106 void
1107 init_constant(const char* name, const char* version, Value_type value,
1108 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1109 unsigned char nonvis, bool is_predefined);
1110
1111 // Initialize fields for an undefined symbol.
1112 void
1113 init_undefined(const char* name, const char* version, elfcpp::STT,
1114 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1115
1116 // Override existing symbol.
1117 template<bool big_endian>
1118 void
1119 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1120 bool is_ordinary, Object* object, const char* version);
1121
1122 // Override existing symbol with a special symbol.
1123 void
1124 override_with_special(const Sized_symbol<size>*);
1125
1126 // Return the symbol's value.
1127 Value_type
value()1128 value() const
1129 { return this->value_; }
1130
1131 // Return the symbol's size (we can't call this 'size' because that
1132 // is a template parameter).
1133 Size_type
symsize()1134 symsize() const
1135 { return this->symsize_; }
1136
1137 // Set the symbol size. This is used when resolving common symbols.
1138 void
set_symsize(Size_type symsize)1139 set_symsize(Size_type symsize)
1140 { this->symsize_ = symsize; }
1141
1142 // Set the symbol value. This is called when we store the final
1143 // values of the symbols into the symbol table.
1144 void
set_value(Value_type value)1145 set_value(Value_type value)
1146 { this->value_ = value; }
1147
1148 // Allocate a common symbol by giving it a location in the output
1149 // file.
1150 void
1151 allocate_common(Output_data*, Value_type value);
1152
1153 private:
1154 Sized_symbol(const Sized_symbol&);
1155 Sized_symbol& operator=(const Sized_symbol&);
1156
1157 // Symbol value. Before Layout::finalize this is the offset in the
1158 // input section. This is set to the final value during
1159 // Layout::finalize.
1160 Value_type value_;
1161 // Symbol size.
1162 Size_type symsize_;
1163 };
1164
1165 // A struct describing a symbol defined by the linker, where the value
1166 // of the symbol is defined based on an output section. This is used
1167 // for symbols defined by the linker, like "_init_array_start".
1168
1169 struct Define_symbol_in_section
1170 {
1171 // The symbol name.
1172 const char* name;
1173 // The name of the output section with which this symbol should be
1174 // associated. If there is no output section with that name, the
1175 // symbol will be defined as zero.
1176 const char* output_section;
1177 // The offset of the symbol within the output section. This is an
1178 // offset from the start of the output section, unless start_at_end
1179 // is true, in which case this is an offset from the end of the
1180 // output section.
1181 uint64_t value;
1182 // The size of the symbol.
1183 uint64_t size;
1184 // The symbol type.
1185 elfcpp::STT type;
1186 // The symbol binding.
1187 elfcpp::STB binding;
1188 // The symbol visibility.
1189 elfcpp::STV visibility;
1190 // The rest of the st_other field.
1191 unsigned char nonvis;
1192 // If true, the value field is an offset from the end of the output
1193 // section.
1194 bool offset_is_from_end;
1195 // If true, this symbol is defined only if we see a reference to it.
1196 bool only_if_ref;
1197 };
1198
1199 // A struct describing a symbol defined by the linker, where the value
1200 // of the symbol is defined based on a segment. This is used for
1201 // symbols defined by the linker, like "_end". We describe the
1202 // segment with which the symbol should be associated by its
1203 // characteristics. If no segment meets these characteristics, the
1204 // symbol will be defined as zero. If there is more than one segment
1205 // which meets these characteristics, we will use the first one.
1206
1207 struct Define_symbol_in_segment
1208 {
1209 // The symbol name.
1210 const char* name;
1211 // The segment type where the symbol should be defined, typically
1212 // PT_LOAD.
1213 elfcpp::PT segment_type;
1214 // Bitmask of segment flags which must be set.
1215 elfcpp::PF segment_flags_set;
1216 // Bitmask of segment flags which must be clear.
1217 elfcpp::PF segment_flags_clear;
1218 // The offset of the symbol within the segment. The offset is
1219 // calculated from the position set by offset_base.
1220 uint64_t value;
1221 // The size of the symbol.
1222 uint64_t size;
1223 // The symbol type.
1224 elfcpp::STT type;
1225 // The symbol binding.
1226 elfcpp::STB binding;
1227 // The symbol visibility.
1228 elfcpp::STV visibility;
1229 // The rest of the st_other field.
1230 unsigned char nonvis;
1231 // The base from which we compute the offset.
1232 Symbol::Segment_offset_base offset_base;
1233 // If true, this symbol is defined only if we see a reference to it.
1234 bool only_if_ref;
1235 };
1236
1237 // Specify an object/section/offset location. Used by ODR code.
1238
1239 struct Symbol_location
1240 {
1241 // Object where the symbol is defined.
1242 Object* object;
1243 // Section-in-object where the symbol is defined.
1244 unsigned int shndx;
1245 // For relocatable objects, offset-in-section where the symbol is defined.
1246 // For dynamic objects, address where the symbol is defined.
1247 off_t offset;
1248 bool operator==(const Symbol_location& that) const
1249 {
1250 return (this->object == that.object
1251 && this->shndx == that.shndx
1252 && this->offset == that.offset);
1253 }
1254 };
1255
1256 // This class manages warnings. Warnings are a GNU extension. When
1257 // we see a section named .gnu.warning.SYM in an object file, and if
1258 // we wind using the definition of SYM from that object file, then we
1259 // will issue a warning for any relocation against SYM from a
1260 // different object file. The text of the warning is the contents of
1261 // the section. This is not precisely the definition used by the old
1262 // GNU linker; the old GNU linker treated an occurrence of
1263 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1264 // would trigger a warning on any reference. However, it was
1265 // inconsistent in that a warning in a dynamic object only triggered
1266 // if there was no definition in a regular object. This linker is
1267 // different in that we only issue a warning if we use the symbol
1268 // definition from the same object file as the warning section.
1269
1270 class Warnings
1271 {
1272 public:
Warnings()1273 Warnings()
1274 : warnings_()
1275 { }
1276
1277 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1278 // of the warning.
1279 void
1280 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1281 const std::string& warning);
1282
1283 // For each symbol for which we should give a warning, make a note
1284 // on the symbol.
1285 void
1286 note_warnings(Symbol_table* symtab);
1287
1288 // Issue a warning for a reference to SYM at RELINFO's location.
1289 template<int size, bool big_endian>
1290 void
1291 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1292 size_t relnum, off_t reloffset) const;
1293
1294 private:
1295 Warnings(const Warnings&);
1296 Warnings& operator=(const Warnings&);
1297
1298 // What we need to know to get the warning text.
1299 struct Warning_location
1300 {
1301 // The object the warning is in.
1302 Object* object;
1303 // The warning text.
1304 std::string text;
1305
Warning_locationWarning_location1306 Warning_location()
1307 : object(NULL), text()
1308 { }
1309
1310 void
setWarning_location1311 set(Object* o, const std::string& t)
1312 {
1313 this->object = o;
1314 this->text = t;
1315 }
1316 };
1317
1318 // A mapping from warning symbol names (canonicalized in
1319 // Symbol_table's namepool_ field) to warning information.
1320 typedef Unordered_map<const char*, Warning_location> Warning_table;
1321
1322 Warning_table warnings_;
1323 };
1324
1325 // The main linker symbol table.
1326
1327 class Symbol_table
1328 {
1329 public:
1330 // The different places where a symbol definition can come from.
1331 enum Defined
1332 {
1333 // Defined in an object file--the normal case.
1334 OBJECT,
1335 // Defined for a COPY reloc.
1336 COPY,
1337 // Defined on the command line using --defsym.
1338 DEFSYM,
1339 // Defined (so to speak) on the command line using -u.
1340 UNDEFINED,
1341 // Defined in a linker script.
1342 SCRIPT,
1343 // Predefined by the linker.
1344 PREDEFINED,
1345 // Defined by the linker during an incremental base link, but not
1346 // a predefined symbol (e.g., common, defined in script).
1347 INCREMENTAL_BASE,
1348 };
1349
1350 // The order in which we sort common symbols.
1351 enum Sort_commons_order
1352 {
1353 SORT_COMMONS_BY_SIZE_DESCENDING,
1354 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1355 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1356 };
1357
1358 // COUNT is an estimate of how many symbols will be inserted in the
1359 // symbol table. It's ok to put 0 if you don't know; a correct
1360 // guess will just save some CPU by reducing hashtable resizes.
1361 Symbol_table(unsigned int count, const Version_script_info& version_script);
1362
1363 ~Symbol_table();
1364
1365 void
set_icf(Icf * icf)1366 set_icf(Icf* icf)
1367 { this->icf_ = icf;}
1368
1369 Icf*
icf()1370 icf() const
1371 { return this->icf_; }
1372
1373 // Returns true if ICF determined that this is a duplicate section.
1374 bool
1375 is_section_folded(Object* obj, unsigned int shndx) const;
1376
1377 void
set_gc(Garbage_collection * gc)1378 set_gc(Garbage_collection* gc)
1379 { this->gc_ = gc; }
1380
1381 Garbage_collection*
gc()1382 gc() const
1383 { return this->gc_; }
1384
1385 // During garbage collection, this keeps undefined symbols.
1386 void
1387 gc_mark_undef_symbols(Layout*);
1388
1389 // This tells garbage collection that this symbol is referenced.
1390 void
1391 gc_mark_symbol(Symbol* sym);
1392
1393 // During garbage collection, this keeps sections that correspond to
1394 // symbols seen in dynamic objects.
1395 inline void
1396 gc_mark_dyn_syms(Symbol* sym);
1397
1398 // Add COUNT external symbols from the relocatable object RELOBJ to
1399 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1400 // offset in the symbol table of the first symbol, SYM_NAMES is
1401 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1402 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1403 // *DEFINED to the number of defined symbols.
1404 template<int size, bool big_endian>
1405 void
1406 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1407 const unsigned char* syms, size_t count,
1408 size_t symndx_offset, const char* sym_names,
1409 size_t sym_name_size,
1410 typename Sized_relobj_file<size, big_endian>::Symbols*,
1411 size_t* defined);
1412
1413 // Add one external symbol from the plugin object OBJ to the symbol table.
1414 // Returns a pointer to the resolved symbol in the symbol table.
1415 template<int size, bool big_endian>
1416 Symbol*
1417 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1418 const char* name, const char* ver,
1419 elfcpp::Sym<size, big_endian>* sym);
1420
1421 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1422 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1423 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1424 // symbol version data.
1425 template<int size, bool big_endian>
1426 void
1427 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1428 const unsigned char* syms, size_t count,
1429 const char* sym_names, size_t sym_name_size,
1430 const unsigned char* versym, size_t versym_size,
1431 const std::vector<const char*>*,
1432 typename Sized_relobj_file<size, big_endian>::Symbols*,
1433 size_t* defined);
1434
1435 // Add one external symbol from the incremental object OBJ to the symbol
1436 // table. Returns a pointer to the resolved symbol in the symbol table.
1437 template<int size, bool big_endian>
1438 Sized_symbol<size>*
1439 add_from_incrobj(Object* obj, const char* name,
1440 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1441
1442 // Define a special symbol based on an Output_data. It is a
1443 // multiple definition error if this symbol is already defined.
1444 Symbol*
1445 define_in_output_data(const char* name, const char* version, Defined,
1446 Output_data*, uint64_t value, uint64_t symsize,
1447 elfcpp::STT type, elfcpp::STB binding,
1448 elfcpp::STV visibility, unsigned char nonvis,
1449 bool offset_is_from_end, bool only_if_ref);
1450
1451 // Define a special symbol based on an Output_segment. It is a
1452 // multiple definition error if this symbol is already defined.
1453 Symbol*
1454 define_in_output_segment(const char* name, const char* version, Defined,
1455 Output_segment*, uint64_t value, uint64_t symsize,
1456 elfcpp::STT type, elfcpp::STB binding,
1457 elfcpp::STV visibility, unsigned char nonvis,
1458 Symbol::Segment_offset_base, bool only_if_ref);
1459
1460 // Define a special symbol with a constant value. It is a multiple
1461 // definition error if this symbol is already defined.
1462 Symbol*
1463 define_as_constant(const char* name, const char* version, Defined,
1464 uint64_t value, uint64_t symsize, elfcpp::STT type,
1465 elfcpp::STB binding, elfcpp::STV visibility,
1466 unsigned char nonvis, bool only_if_ref,
1467 bool force_override);
1468
1469 // Define a set of symbols in output sections. If ONLY_IF_REF is
1470 // true, only define them if they are referenced.
1471 void
1472 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1473 bool only_if_ref);
1474
1475 // Define a set of symbols in output segments. If ONLY_IF_REF is
1476 // true, only defined them if they are referenced.
1477 void
1478 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1479 bool only_if_ref);
1480
1481 // Define SYM using a COPY reloc. POSD is the Output_data where the
1482 // symbol should be defined--typically a .dyn.bss section. VALUE is
1483 // the offset within POSD.
1484 template<int size>
1485 void
1486 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1487 typename elfcpp::Elf_types<size>::Elf_Addr);
1488
1489 // Look up a symbol.
1490 Symbol*
1491 lookup(const char*, const char* version = NULL) const;
1492
1493 // Return the real symbol associated with the forwarder symbol FROM.
1494 Symbol*
1495 resolve_forwards(const Symbol* from) const;
1496
1497 // Return the sized version of a symbol in this table.
1498 template<int size>
1499 Sized_symbol<size>*
1500 get_sized_symbol(Symbol*) const;
1501
1502 template<int size>
1503 const Sized_symbol<size>*
1504 get_sized_symbol(const Symbol*) const;
1505
1506 // Return the count of undefined symbols seen.
1507 size_t
saw_undefined()1508 saw_undefined() const
1509 { return this->saw_undefined_; }
1510
1511 // Allocate the common symbols
1512 void
1513 allocate_commons(Layout*, Mapfile*);
1514
1515 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1516 // of the warning.
1517 void
add_warning(const char * name,Object * obj,const std::string & warning)1518 add_warning(const char* name, Object* obj, const std::string& warning)
1519 { this->warnings_.add_warning(this, name, obj, warning); }
1520
1521 // Canonicalize a symbol name for use in the hash table.
1522 const char*
canonicalize_name(const char * name)1523 canonicalize_name(const char* name)
1524 { return this->namepool_.add(name, true, NULL); }
1525
1526 // Possibly issue a warning for a reference to SYM at LOCATION which
1527 // is in OBJ.
1528 template<int size, bool big_endian>
1529 void
issue_warning(const Symbol * sym,const Relocate_info<size,big_endian> * relinfo,size_t relnum,off_t reloffset)1530 issue_warning(const Symbol* sym,
1531 const Relocate_info<size, big_endian>* relinfo,
1532 size_t relnum, off_t reloffset) const
1533 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1534
1535 // Check candidate_odr_violations_ to find symbols with the same name
1536 // but apparently different definitions (different source-file/line-no).
1537 void
1538 detect_odr_violations(const Task*, const char* output_file_name) const;
1539
1540 // Add any undefined symbols named on the command line to the symbol
1541 // table.
1542 void
1543 add_undefined_symbols_from_command_line(Layout*);
1544
1545 // SYM is defined using a COPY reloc. Return the dynamic object
1546 // where the original definition was found.
1547 Dynobj*
1548 get_copy_source(const Symbol* sym) const;
1549
1550 // Set the dynamic symbol indexes. INDEX is the index of the first
1551 // global dynamic symbol. Pointers to the symbols are stored into
1552 // the vector. The names are stored into the Stringpool. This
1553 // returns an updated dynamic symbol index.
1554 unsigned int
1555 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1556 Stringpool*, Versions*);
1557
1558 // Finalize the symbol table after we have set the final addresses
1559 // of all the input sections. This sets the final symbol indexes,
1560 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1561 // index of the first global symbol. OFF is the file offset of the
1562 // global symbol table, DYNOFF is the offset of the globals in the
1563 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1564 // global dynamic symbol, and DYNCOUNT is the number of global
1565 // dynamic symbols. This records the parameters, and returns the
1566 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1567 // local symbols.
1568 off_t
1569 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1570 Stringpool* pool, unsigned int* plocal_symcount);
1571
1572 // Set the final file offset of the symbol table.
1573 void
set_file_offset(off_t off)1574 set_file_offset(off_t off)
1575 { this->offset_ = off; }
1576
1577 // Status code of Symbol_table::compute_final_value.
1578 enum Compute_final_value_status
1579 {
1580 // No error.
1581 CFVS_OK,
1582 // Unsupported symbol section.
1583 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1584 // No output section.
1585 CFVS_NO_OUTPUT_SECTION
1586 };
1587
1588 // Compute the final value of SYM and store status in location PSTATUS.
1589 // During relaxation, this may be called multiple times for a symbol to
1590 // compute its would-be final value in each relaxation pass.
1591
1592 template<int size>
1593 typename Sized_symbol<size>::Value_type
1594 compute_final_value(const Sized_symbol<size>* sym,
1595 Compute_final_value_status* pstatus) const;
1596
1597 // Return the index of the first global symbol.
1598 unsigned int
first_global_index()1599 first_global_index() const
1600 { return this->first_global_index_; }
1601
1602 // Return the total number of symbols in the symbol table.
1603 unsigned int
output_count()1604 output_count() const
1605 { return this->output_count_; }
1606
1607 // Write out the global symbols.
1608 void
1609 write_globals(const Stringpool*, const Stringpool*,
1610 Output_symtab_xindex*, Output_symtab_xindex*,
1611 Output_file*) const;
1612
1613 // Write out a section symbol. Return the updated offset.
1614 void
1615 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1616 Output_file*, off_t) const;
1617
1618 // Loop over all symbols, applying the function F to each.
1619 template<int size, typename F>
1620 void
for_all_symbols(F f)1621 for_all_symbols(F f) const
1622 {
1623 for (Symbol_table_type::const_iterator p = this->table_.begin();
1624 p != this->table_.end();
1625 ++p)
1626 {
1627 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1628 f(sym);
1629 }
1630 }
1631
1632 // Dump statistical information to stderr.
1633 void
1634 print_stats() const;
1635
1636 // Return the version script information.
1637 const Version_script_info&
version_script()1638 version_script() const
1639 { return version_script_; }
1640
1641 private:
1642 Symbol_table(const Symbol_table&);
1643 Symbol_table& operator=(const Symbol_table&);
1644
1645 // The type of the list of common symbols.
1646 typedef std::vector<Symbol*> Commons_type;
1647
1648 // The type of the symbol hash table.
1649
1650 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1651
1652 // The hash function. The key values are Stringpool keys.
1653 struct Symbol_table_hash
1654 {
1655 inline size_t
operatorSymbol_table_hash1656 operator()(const Symbol_table_key& key) const
1657 {
1658 return key.first ^ key.second;
1659 }
1660 };
1661
1662 struct Symbol_table_eq
1663 {
1664 bool
1665 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1666 };
1667
1668 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1669 Symbol_table_eq> Symbol_table_type;
1670
1671 // A map from symbol name (as a pointer into the namepool) to all
1672 // the locations the symbols is (weakly) defined (and certain other
1673 // conditions are met). This map will be used later to detect
1674 // possible One Definition Rule (ODR) violations.
1675 struct Symbol_location_hash
1676 {
operatorSymbol_location_hash1677 size_t operator()(const Symbol_location& loc) const
1678 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1679 };
1680
1681 typedef Unordered_map<const char*,
1682 Unordered_set<Symbol_location, Symbol_location_hash> >
1683 Odr_map;
1684
1685 // Make FROM a forwarder symbol to TO.
1686 void
1687 make_forwarder(Symbol* from, Symbol* to);
1688
1689 // Add a symbol.
1690 template<int size, bool big_endian>
1691 Sized_symbol<size>*
1692 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1693 const char* version, Stringpool::Key version_key,
1694 bool def, const elfcpp::Sym<size, big_endian>& sym,
1695 unsigned int st_shndx, bool is_ordinary,
1696 unsigned int orig_st_shndx);
1697
1698 // Define a default symbol.
1699 template<int size, bool big_endian>
1700 void
1701 define_default_version(Sized_symbol<size>*, bool,
1702 Symbol_table_type::iterator);
1703
1704 // Resolve symbols.
1705 template<int size, bool big_endian>
1706 void
1707 resolve(Sized_symbol<size>* to,
1708 const elfcpp::Sym<size, big_endian>& sym,
1709 unsigned int st_shndx, bool is_ordinary,
1710 unsigned int orig_st_shndx,
1711 Object*, const char* version);
1712
1713 template<int size, bool big_endian>
1714 void
1715 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1716
1717 // Record that a symbol is forced to be local by a version script or
1718 // by visibility.
1719 void
1720 force_local(Symbol*);
1721
1722 // Adjust NAME and *NAME_KEY for wrapping.
1723 const char*
1724 wrap_symbol(const char* name, Stringpool::Key* name_key);
1725
1726 // Whether we should override a symbol, based on flags in
1727 // resolve.cc.
1728 static bool
1729 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1730 Object*, bool*, bool*);
1731
1732 // Report a problem in symbol resolution.
1733 static void
1734 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1735 Defined, Object* object);
1736
1737 // Override a symbol.
1738 template<int size, bool big_endian>
1739 void
1740 override(Sized_symbol<size>* tosym,
1741 const elfcpp::Sym<size, big_endian>& fromsym,
1742 unsigned int st_shndx, bool is_ordinary,
1743 Object* object, const char* version);
1744
1745 // Whether we should override a symbol with a special symbol which
1746 // is automatically defined by the linker.
1747 static bool
1748 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1749
1750 // Override a symbol with a special symbol.
1751 template<int size>
1752 void
1753 override_with_special(Sized_symbol<size>* tosym,
1754 const Sized_symbol<size>* fromsym);
1755
1756 // Record all weak alias sets for a dynamic object.
1757 template<int size>
1758 void
1759 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1760
1761 // Define a special symbol.
1762 template<int size, bool big_endian>
1763 Sized_symbol<size>*
1764 define_special_symbol(const char** pname, const char** pversion,
1765 bool only_if_ref, Sized_symbol<size>** poldsym,
1766 bool* resolve_oldsym);
1767
1768 // Define a symbol in an Output_data, sized version.
1769 template<int size>
1770 Sized_symbol<size>*
1771 do_define_in_output_data(const char* name, const char* version, Defined,
1772 Output_data*,
1773 typename elfcpp::Elf_types<size>::Elf_Addr value,
1774 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1775 elfcpp::STT type, elfcpp::STB binding,
1776 elfcpp::STV visibility, unsigned char nonvis,
1777 bool offset_is_from_end, bool only_if_ref);
1778
1779 // Define a symbol in an Output_segment, sized version.
1780 template<int size>
1781 Sized_symbol<size>*
1782 do_define_in_output_segment(
1783 const char* name, const char* version, Defined, Output_segment* os,
1784 typename elfcpp::Elf_types<size>::Elf_Addr value,
1785 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1786 elfcpp::STT type, elfcpp::STB binding,
1787 elfcpp::STV visibility, unsigned char nonvis,
1788 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1789
1790 // Define a symbol as a constant, sized version.
1791 template<int size>
1792 Sized_symbol<size>*
1793 do_define_as_constant(
1794 const char* name, const char* version, Defined,
1795 typename elfcpp::Elf_types<size>::Elf_Addr value,
1796 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1797 elfcpp::STT type, elfcpp::STB binding,
1798 elfcpp::STV visibility, unsigned char nonvis,
1799 bool only_if_ref, bool force_override);
1800
1801 // Add any undefined symbols named on the command line to the symbol
1802 // table, sized version.
1803 template<int size>
1804 void
1805 do_add_undefined_symbols_from_command_line(Layout*);
1806
1807 // Add one undefined symbol.
1808 template<int size>
1809 void
1810 add_undefined_symbol_from_command_line(const char* name);
1811
1812 // Types of common symbols.
1813
1814 enum Commons_section_type
1815 {
1816 COMMONS_NORMAL,
1817 COMMONS_TLS,
1818 COMMONS_SMALL,
1819 COMMONS_LARGE
1820 };
1821
1822 // Allocate the common symbols, sized version.
1823 template<int size>
1824 void
1825 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1826
1827 // Allocate the common symbols from one list.
1828 template<int size>
1829 void
1830 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1831 Mapfile*, Sort_commons_order);
1832
1833 // Returns all of the lines attached to LOC, not just the one the
1834 // instruction actually came from. This helps the ODR checker avoid
1835 // false positives.
1836 static std::vector<std::string>
1837 linenos_from_loc(const Task* task, const Symbol_location& loc);
1838
1839 // Implement detect_odr_violations.
1840 template<int size, bool big_endian>
1841 void
1842 sized_detect_odr_violations() const;
1843
1844 // Finalize symbols specialized for size.
1845 template<int size>
1846 off_t
1847 sized_finalize(off_t, Stringpool*, unsigned int*);
1848
1849 // Finalize a symbol. Return whether it should be added to the
1850 // symbol table.
1851 template<int size>
1852 bool
1853 sized_finalize_symbol(Symbol*);
1854
1855 // Add a symbol the final symtab by setting its index.
1856 template<int size>
1857 void
1858 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1859
1860 // Write globals specialized for size and endianness.
1861 template<int size, bool big_endian>
1862 void
1863 sized_write_globals(const Stringpool*, const Stringpool*,
1864 Output_symtab_xindex*, Output_symtab_xindex*,
1865 Output_file*) const;
1866
1867 // Write out a symbol to P.
1868 template<int size, bool big_endian>
1869 void
1870 sized_write_symbol(Sized_symbol<size>*,
1871 typename elfcpp::Elf_types<size>::Elf_Addr value,
1872 unsigned int shndx, elfcpp::STB,
1873 const Stringpool*, unsigned char* p) const;
1874
1875 // Possibly warn about an undefined symbol from a dynamic object.
1876 void
1877 warn_about_undefined_dynobj_symbol(Symbol*) const;
1878
1879 // Write out a section symbol, specialized for size and endianness.
1880 template<int size, bool big_endian>
1881 void
1882 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1883 Output_file*, off_t) const;
1884
1885 // The type of the list of symbols which have been forced local.
1886 typedef std::vector<Symbol*> Forced_locals;
1887
1888 // A map from symbols with COPY relocs to the dynamic objects where
1889 // they are defined.
1890 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1891
1892 // We increment this every time we see a new undefined symbol, for
1893 // use in archive groups.
1894 size_t saw_undefined_;
1895 // The index of the first global symbol in the output file.
1896 unsigned int first_global_index_;
1897 // The file offset within the output symtab section where we should
1898 // write the table.
1899 off_t offset_;
1900 // The number of global symbols we want to write out.
1901 unsigned int output_count_;
1902 // The file offset of the global dynamic symbols, or 0 if none.
1903 off_t dynamic_offset_;
1904 // The index of the first global dynamic symbol.
1905 unsigned int first_dynamic_global_index_;
1906 // The number of global dynamic symbols, or 0 if none.
1907 unsigned int dynamic_count_;
1908 // The symbol hash table.
1909 Symbol_table_type table_;
1910 // A pool of symbol names. This is used for all global symbols.
1911 // Entries in the hash table point into this pool.
1912 Stringpool namepool_;
1913 // Forwarding symbols.
1914 Unordered_map<const Symbol*, Symbol*> forwarders_;
1915 // Weak aliases. A symbol in this list points to the next alias.
1916 // The aliases point to each other in a circular list.
1917 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1918 // We don't expect there to be very many common symbols, so we keep
1919 // a list of them. When we find a common symbol we add it to this
1920 // list. It is possible that by the time we process the list the
1921 // symbol is no longer a common symbol. It may also have become a
1922 // forwarder.
1923 Commons_type commons_;
1924 // This is like the commons_ field, except that it holds TLS common
1925 // symbols.
1926 Commons_type tls_commons_;
1927 // This is for small common symbols.
1928 Commons_type small_commons_;
1929 // This is for large common symbols.
1930 Commons_type large_commons_;
1931 // A list of symbols which have been forced to be local. We don't
1932 // expect there to be very many of them, so we keep a list of them
1933 // rather than walking the whole table to find them.
1934 Forced_locals forced_locals_;
1935 // Manage symbol warnings.
1936 Warnings warnings_;
1937 // Manage potential One Definition Rule (ODR) violations.
1938 Odr_map candidate_odr_violations_;
1939
1940 // When we emit a COPY reloc for a symbol, we define it in an
1941 // Output_data. When it's time to emit version information for it,
1942 // we need to know the dynamic object in which we found the original
1943 // definition. This maps symbols with COPY relocs to the dynamic
1944 // object where they were defined.
1945 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1946 // Information parsed from the version script, if any.
1947 const Version_script_info& version_script_;
1948 Garbage_collection* gc_;
1949 Icf* icf_;
1950 };
1951
1952 // We inline get_sized_symbol for efficiency.
1953
1954 template<int size>
1955 Sized_symbol<size>*
get_sized_symbol(Symbol * sym)1956 Symbol_table::get_sized_symbol(Symbol* sym) const
1957 {
1958 gold_assert(size == parameters->target().get_size());
1959 return static_cast<Sized_symbol<size>*>(sym);
1960 }
1961
1962 template<int size>
1963 const Sized_symbol<size>*
get_sized_symbol(const Symbol * sym)1964 Symbol_table::get_sized_symbol(const Symbol* sym) const
1965 {
1966 gold_assert(size == parameters->target().get_size());
1967 return static_cast<const Sized_symbol<size>*>(sym);
1968 }
1969
1970 } // End namespace gold.
1971
1972 #endif // !defined(GOLD_SYMTAB_H)
1973