1 /***********************************************************************
2  * Software License Agreement (BSD License)
3  *
4  * Copyright 2008-2011  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
5  * Copyright 2008-2011  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
6  *
7  * THE BSD LICENSE
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *************************************************************************/
30 
31 #ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
32 #define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
33 
34 #include <algorithm>
35 #include <map>
36 #include <cassert>
37 #include <limits>
38 #include <cmath>
39 
40 #include "general.h"
41 #include "nn_index.h"
42 #include "dist.h"
43 #include "matrix.h"
44 #include "result_set.h"
45 #include "heap.h"
46 #include "allocator.h"
47 #include "random.h"
48 #include "saving.h"
49 
50 
51 namespace cvflann
52 {
53 
54 struct HierarchicalClusteringIndexParams : public IndexParams
55 {
56     HierarchicalClusteringIndexParams(int branching = 32,
57                                       flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
58                                       int trees = 4, int leaf_size = 100)
59     {
60         (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
61         // The branching factor used in the hierarchical clustering
62         (*this)["branching"] = branching;
63         // Algorithm used for picking the initial cluster centers
64         (*this)["centers_init"] = centers_init;
65         // number of parallel trees to build
66         (*this)["trees"] = trees;
67         // maximum leaf size
68         (*this)["leaf_size"] = leaf_size;
69     }
70 };
71 
72 
73 /**
74  * Hierarchical index
75  *
76  * Contains a tree constructed through a hierarchical clustering
77  * and other information for indexing a set of points for nearest-neighbour matching.
78  */
79 template <typename Distance>
80 class HierarchicalClusteringIndex : public NNIndex<Distance>
81 {
82 public:
83     typedef typename Distance::ElementType ElementType;
84     typedef typename Distance::ResultType DistanceType;
85 
86 private:
87 
88 
89     typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
90 
91     /**
92      * The function used for choosing the cluster centers.
93      */
94     centersAlgFunction chooseCenters;
95 
96 
97 
98     /**
99      * Chooses the initial centers in the k-means clustering in a random manner.
100      *
101      * Params:
102      *     k = number of centers
103      *     vecs = the dataset of points
104      *     indices = indices in the dataset
105      *     indices_length = length of indices vector
106      *
107      */
chooseCentersRandom(int k,int * dsindices,int indices_length,int * centers,int & centers_length)108     void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
109     {
110         UniqueRandom r(indices_length);
111 
112         int index;
113         for (index=0; index<k; ++index) {
114             bool duplicate = true;
115             int rnd;
116             while (duplicate) {
117                 duplicate = false;
118                 rnd = r.next();
119                 if (rnd<0) {
120                     centers_length = index;
121                     return;
122                 }
123 
124                 centers[index] = dsindices[rnd];
125 
126                 for (int j=0; j<index; ++j) {
127                     DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
128                     if (sq<1e-16) {
129                         duplicate = true;
130                     }
131                 }
132             }
133         }
134 
135         centers_length = index;
136     }
137 
138 
139     /**
140      * Chooses the initial centers in the k-means using Gonzales' algorithm
141      * so that the centers are spaced apart from each other.
142      *
143      * Params:
144      *     k = number of centers
145      *     vecs = the dataset of points
146      *     indices = indices in the dataset
147      * Returns:
148      */
chooseCentersGonzales(int k,int * dsindices,int indices_length,int * centers,int & centers_length)149     void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
150     {
151         int n = indices_length;
152 
153         int rnd = rand_int(n);
154         assert(rnd >=0 && rnd < n);
155 
156         centers[0] = dsindices[rnd];
157 
158         int index;
159         for (index=1; index<k; ++index) {
160 
161             int best_index = -1;
162             DistanceType best_val = 0;
163             for (int j=0; j<n; ++j) {
164                 DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
165                 for (int i=1; i<index; ++i) {
166                     DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
167                     if (tmp_dist<dist) {
168                         dist = tmp_dist;
169                     }
170                 }
171                 if (dist>best_val) {
172                     best_val = dist;
173                     best_index = j;
174                 }
175             }
176             if (best_index!=-1) {
177                 centers[index] = dsindices[best_index];
178             }
179             else {
180                 break;
181             }
182         }
183         centers_length = index;
184     }
185 
186 
187     /**
188      * Chooses the initial centers in the k-means using the algorithm
189      * proposed in the KMeans++ paper:
190      * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
191      *
192      * Implementation of this function was converted from the one provided in Arthur's code.
193      *
194      * Params:
195      *     k = number of centers
196      *     vecs = the dataset of points
197      *     indices = indices in the dataset
198      * Returns:
199      */
chooseCentersKMeanspp(int k,int * dsindices,int indices_length,int * centers,int & centers_length)200     void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
201     {
202         int n = indices_length;
203 
204         double currentPot = 0;
205         DistanceType* closestDistSq = new DistanceType[n];
206 
207         // Choose one random center and set the closestDistSq values
208         int index = rand_int(n);
209         assert(index >=0 && index < n);
210         centers[0] = dsindices[index];
211 
212         // Computing distance^2 will have the advantage of even higher probability further to pick new centers
213         // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
214         for (int i = 0; i < n; i++) {
215             closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
216             closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
217             currentPot += closestDistSq[i];
218         }
219 
220 
221         const int numLocalTries = 1;
222 
223         // Choose each center
224         int centerCount;
225         for (centerCount = 1; centerCount < k; centerCount++) {
226 
227             // Repeat several trials
228             double bestNewPot = -1;
229             int bestNewIndex = 0;
230             for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
231 
232                 // Choose our center - have to be slightly careful to return a valid answer even accounting
233                 // for possible rounding errors
234                 double randVal = rand_double(currentPot);
235                 for (index = 0; index < n-1; index++) {
236                     if (randVal <= closestDistSq[index]) break;
237                     else randVal -= closestDistSq[index];
238                 }
239 
240                 // Compute the new potential
241                 double newPot = 0;
242                 for (int i = 0; i < n; i++) {
243                     DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
244                     newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
245                 }
246 
247                 // Store the best result
248                 if ((bestNewPot < 0)||(newPot < bestNewPot)) {
249                     bestNewPot = newPot;
250                     bestNewIndex = index;
251                 }
252             }
253 
254             // Add the appropriate center
255             centers[centerCount] = dsindices[bestNewIndex];
256             currentPot = bestNewPot;
257             for (int i = 0; i < n; i++) {
258                 DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
259                 closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
260             }
261         }
262 
263         centers_length = centerCount;
264 
265         delete[] closestDistSq;
266     }
267 
268 
269     /**
270      * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
271      * select the first point of the list as a candidate, then parse the points list. If another
272      * point is further than current candidate from the other centers, test if it is a good center
273      * of a local aggregation. If it is, replace current candidate by this point. And so on...
274      *
275      * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
276      * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
277      * class that pick centers among existing points instead of computing the barycenters, there is a real
278      * improvement.
279      *
280      * Params:
281      *     k = number of centers
282      *     vecs = the dataset of points
283      *     indices = indices in the dataset
284      * Returns:
285      */
GroupWiseCenterChooser(int k,int * dsindices,int indices_length,int * centers,int & centers_length)286     void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
287     {
288         const float kSpeedUpFactor = 1.3f;
289 
290         int n = indices_length;
291 
292         DistanceType* closestDistSq = new DistanceType[n];
293 
294         // Choose one random center and set the closestDistSq values
295         int index = rand_int(n);
296         assert(index >=0 && index < n);
297         centers[0] = dsindices[index];
298 
299         for (int i = 0; i < n; i++) {
300             closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
301         }
302 
303 
304         // Choose each center
305         int centerCount;
306         for (centerCount = 1; centerCount < k; centerCount++) {
307 
308             // Repeat several trials
309             double bestNewPot = -1;
310             int bestNewIndex = 0;
311             DistanceType furthest = 0;
312             for (index = 0; index < n; index++) {
313 
314                 // We will test only the potential of the points further than current candidate
315                 if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
316 
317                     // Compute the new potential
318                     double newPot = 0;
319                     for (int i = 0; i < n; i++) {
320                         newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
321                                             , closestDistSq[i] );
322                     }
323 
324                     // Store the best result
325                     if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
326                         bestNewPot = newPot;
327                         bestNewIndex = index;
328                         furthest = closestDistSq[index];
329                     }
330                 }
331             }
332 
333             // Add the appropriate center
334             centers[centerCount] = dsindices[bestNewIndex];
335             for (int i = 0; i < n; i++) {
336                 closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
337                                              , closestDistSq[i] );
338             }
339         }
340 
341         centers_length = centerCount;
342 
343         delete[] closestDistSq;
344     }
345 
346 
347 public:
348 
349 
350     /**
351      * Index constructor
352      *
353      * Params:
354      *          inputData = dataset with the input features
355      *          params = parameters passed to the hierarchical k-means algorithm
356      */
357     HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
358                                 Distance d = Distance())
dataset(inputData)359         : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
360     {
361         memoryCounter = 0;
362 
363         size_ = dataset.rows;
364         veclen_ = dataset.cols;
365 
366         branching_ = get_param(params,"branching",32);
367         centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
368         trees_ = get_param(params,"trees",4);
369         leaf_size_ = get_param(params,"leaf_size",100);
370 
371         if (centers_init_==FLANN_CENTERS_RANDOM) {
372             chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
373         }
374         else if (centers_init_==FLANN_CENTERS_GONZALES) {
375             chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
376         }
377         else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
378             chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
379         }
380         else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
381             chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
382         }
383         else {
384             throw FLANNException("Unknown algorithm for choosing initial centers.");
385         }
386 
387         trees_ = get_param(params,"trees",4);
388         root = new NodePtr[trees_];
389         indices = new int*[trees_];
390 
391         for (int i=0; i<trees_; ++i) {
392             root[i] = NULL;
393             indices[i] = NULL;
394         }
395     }
396 
397     HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
398     HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
399 
400     /**
401      * Index destructor.
402      *
403      * Release the memory used by the index.
404      */
~HierarchicalClusteringIndex()405     virtual ~HierarchicalClusteringIndex()
406     {
407         free_elements();
408 
409         if (root!=NULL) {
410             delete[] root;
411         }
412 
413         if (indices!=NULL) {
414             delete[] indices;
415         }
416     }
417 
418 
419     /**
420      * Release the inner elements of indices[]
421      */
free_elements()422     void free_elements()
423     {
424         if (indices!=NULL) {
425             for(int i=0; i<trees_; ++i) {
426                 if (indices[i]!=NULL) {
427                     delete[] indices[i];
428                     indices[i] = NULL;
429                 }
430             }
431         }
432     }
433 
434 
435     /**
436      *  Returns size of index.
437      */
size()438     size_t size() const
439     {
440         return size_;
441     }
442 
443     /**
444      * Returns the length of an index feature.
445      */
veclen()446     size_t veclen() const
447     {
448         return veclen_;
449     }
450 
451 
452     /**
453      * Computes the inde memory usage
454      * Returns: memory used by the index
455      */
usedMemory()456     int usedMemory() const
457     {
458         return pool.usedMemory+pool.wastedMemory+memoryCounter;
459     }
460 
461     /**
462      * Builds the index
463      */
buildIndex()464     void buildIndex()
465     {
466         if (branching_<2) {
467             throw FLANNException("Branching factor must be at least 2");
468         }
469 
470         free_elements();
471 
472         for (int i=0; i<trees_; ++i) {
473             indices[i] = new int[size_];
474             for (size_t j=0; j<size_; ++j) {
475                 indices[i][j] = (int)j;
476             }
477             root[i] = pool.allocate<Node>();
478             computeClustering(root[i], indices[i], (int)size_, branching_,0);
479         }
480     }
481 
482 
getType()483     flann_algorithm_t getType() const
484     {
485         return FLANN_INDEX_HIERARCHICAL;
486     }
487 
488 
saveIndex(FILE * stream)489     void saveIndex(FILE* stream)
490     {
491         save_value(stream, branching_);
492         save_value(stream, trees_);
493         save_value(stream, centers_init_);
494         save_value(stream, leaf_size_);
495         save_value(stream, memoryCounter);
496         for (int i=0; i<trees_; ++i) {
497             save_value(stream, *indices[i], size_);
498             save_tree(stream, root[i], i);
499         }
500 
501     }
502 
503 
loadIndex(FILE * stream)504     void loadIndex(FILE* stream)
505     {
506         free_elements();
507 
508         if (root!=NULL) {
509             delete[] root;
510         }
511 
512         if (indices!=NULL) {
513             delete[] indices;
514         }
515 
516         load_value(stream, branching_);
517         load_value(stream, trees_);
518         load_value(stream, centers_init_);
519         load_value(stream, leaf_size_);
520         load_value(stream, memoryCounter);
521 
522         indices = new int*[trees_];
523         root = new NodePtr[trees_];
524         for (int i=0; i<trees_; ++i) {
525             indices[i] = new int[size_];
526             load_value(stream, *indices[i], size_);
527             load_tree(stream, root[i], i);
528         }
529 
530         params["algorithm"] = getType();
531         params["branching"] = branching_;
532         params["trees"] = trees_;
533         params["centers_init"] = centers_init_;
534         params["leaf_size"] = leaf_size_;
535     }
536 
537 
538     /**
539      * Find set of nearest neighbors to vec. Their indices are stored inside
540      * the result object.
541      *
542      * Params:
543      *     result = the result object in which the indices of the nearest-neighbors are stored
544      *     vec = the vector for which to search the nearest neighbors
545      *     searchParams = parameters that influence the search algorithm (checks)
546      */
findNeighbors(ResultSet<DistanceType> & result,const ElementType * vec,const SearchParams & searchParams)547     void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
548     {
549 
550         int maxChecks = get_param(searchParams,"checks",32);
551 
552         // Priority queue storing intermediate branches in the best-bin-first search
553         Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
554 
555         std::vector<bool> checked(size_,false);
556         int checks = 0;
557         for (int i=0; i<trees_; ++i) {
558             findNN(root[i], result, vec, checks, maxChecks, heap, checked);
559         }
560 
561         BranchSt branch;
562         while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
563             NodePtr node = branch.node;
564             findNN(node, result, vec, checks, maxChecks, heap, checked);
565         }
566         assert(result.full());
567 
568         delete heap;
569 
570     }
571 
getParameters()572     IndexParams getParameters() const
573     {
574         return params;
575     }
576 
577 
578 private:
579 
580     /**
581      * Struture representing a node in the hierarchical k-means tree.
582      */
583     struct Node
584     {
585         /**
586          * The cluster center index
587          */
588         int pivot;
589         /**
590          * The cluster size (number of points in the cluster)
591          */
592         int size;
593         /**
594          * Child nodes (only for non-terminal nodes)
595          */
596         Node** childs;
597         /**
598          * Node points (only for terminal nodes)
599          */
600         int* indices;
601         /**
602          * Level
603          */
604         int level;
605     };
606     typedef Node* NodePtr;
607 
608 
609 
610     /**
611      * Alias definition for a nicer syntax.
612      */
613     typedef BranchStruct<NodePtr, DistanceType> BranchSt;
614 
615 
616 
save_tree(FILE * stream,NodePtr node,int num)617     void save_tree(FILE* stream, NodePtr node, int num)
618     {
619         save_value(stream, *node);
620         if (node->childs==NULL) {
621             int indices_offset = (int)(node->indices - indices[num]);
622             save_value(stream, indices_offset);
623         }
624         else {
625             for(int i=0; i<branching_; ++i) {
626                 save_tree(stream, node->childs[i], num);
627             }
628         }
629     }
630 
631 
load_tree(FILE * stream,NodePtr & node,int num)632     void load_tree(FILE* stream, NodePtr& node, int num)
633     {
634         node = pool.allocate<Node>();
635         load_value(stream, *node);
636         if (node->childs==NULL) {
637             int indices_offset;
638             load_value(stream, indices_offset);
639             node->indices = indices[num] + indices_offset;
640         }
641         else {
642             node->childs = pool.allocate<NodePtr>(branching_);
643             for(int i=0; i<branching_; ++i) {
644                 load_tree(stream, node->childs[i], num);
645             }
646         }
647     }
648 
649 
650 
651 
computeLabels(int * dsindices,int indices_length,int * centers,int centers_length,int * labels,DistanceType & cost)652     void computeLabels(int* dsindices, int indices_length,  int* centers, int centers_length, int* labels, DistanceType& cost)
653     {
654         cost = 0;
655         for (int i=0; i<indices_length; ++i) {
656             ElementType* point = dataset[dsindices[i]];
657             DistanceType dist = distance(point, dataset[centers[0]], veclen_);
658             labels[i] = 0;
659             for (int j=1; j<centers_length; ++j) {
660                 DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
661                 if (dist>new_dist) {
662                     labels[i] = j;
663                     dist = new_dist;
664                 }
665             }
666             cost += dist;
667         }
668     }
669 
670     /**
671      * The method responsible with actually doing the recursive hierarchical
672      * clustering
673      *
674      * Params:
675      *     node = the node to cluster
676      *     indices = indices of the points belonging to the current node
677      *     branching = the branching factor to use in the clustering
678      *
679      * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
680      */
computeClustering(NodePtr node,int * dsindices,int indices_length,int branching,int level)681     void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
682     {
683         node->size = indices_length;
684         node->level = level;
685 
686         if (indices_length < leaf_size_) { // leaf node
687             node->indices = dsindices;
688             std::sort(node->indices,node->indices+indices_length);
689             node->childs = NULL;
690             return;
691         }
692 
693         std::vector<int> centers(branching);
694         std::vector<int> labels(indices_length);
695 
696         int centers_length;
697         (this->*chooseCenters)(branching, dsindices, indices_length, &centers[0], centers_length);
698 
699         if (centers_length<branching) {
700             node->indices = dsindices;
701             std::sort(node->indices,node->indices+indices_length);
702             node->childs = NULL;
703             return;
704         }
705 
706 
707         //	assign points to clusters
708         DistanceType cost;
709         computeLabels(dsindices, indices_length, &centers[0], centers_length, &labels[0], cost);
710 
711         node->childs = pool.allocate<NodePtr>(branching);
712         int start = 0;
713         int end = start;
714         for (int i=0; i<branching; ++i) {
715             for (int j=0; j<indices_length; ++j) {
716                 if (labels[j]==i) {
717                     std::swap(dsindices[j],dsindices[end]);
718                     std::swap(labels[j],labels[end]);
719                     end++;
720                 }
721             }
722 
723             node->childs[i] = pool.allocate<Node>();
724             node->childs[i]->pivot = centers[i];
725             node->childs[i]->indices = NULL;
726             computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
727             start=end;
728         }
729     }
730 
731 
732 
733     /**
734      * Performs one descent in the hierarchical k-means tree. The branches not
735      * visited are stored in a priority queue.
736      *
737      * Params:
738      *      node = node to explore
739      *      result = container for the k-nearest neighbors found
740      *      vec = query points
741      *      checks = how many points in the dataset have been checked so far
742      *      maxChecks = maximum dataset points to checks
743      */
744 
745 
findNN(NodePtr node,ResultSet<DistanceType> & result,const ElementType * vec,int & checks,int maxChecks,Heap<BranchSt> * heap,std::vector<bool> & checked)746     void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
747                 Heap<BranchSt>* heap, std::vector<bool>& checked)
748     {
749         if (node->childs==NULL) {
750             if (checks>=maxChecks) {
751                 if (result.full()) return;
752             }
753             for (int i=0; i<node->size; ++i) {
754                 int index = node->indices[i];
755                 if (!checked[index]) {
756                     DistanceType dist = distance(dataset[index], vec, veclen_);
757                     result.addPoint(dist, index);
758                     checked[index] = true;
759                     ++checks;
760                 }
761             }
762         }
763         else {
764             DistanceType* domain_distances = new DistanceType[branching_];
765             int best_index = 0;
766             domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
767             for (int i=1; i<branching_; ++i) {
768                 domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
769                 if (domain_distances[i]<domain_distances[best_index]) {
770                     best_index = i;
771                 }
772             }
773             for (int i=0; i<branching_; ++i) {
774                 if (i!=best_index) {
775                     heap->insert(BranchSt(node->childs[i],domain_distances[i]));
776                 }
777             }
778             delete[] domain_distances;
779             findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
780         }
781     }
782 
783 private:
784 
785 
786     /**
787      * The dataset used by this index
788      */
789     const Matrix<ElementType> dataset;
790 
791     /**
792      * Parameters used by this index
793      */
794     IndexParams params;
795 
796 
797     /**
798      * Number of features in the dataset.
799      */
800     size_t size_;
801 
802     /**
803      * Length of each feature.
804      */
805     size_t veclen_;
806 
807     /**
808      * The root node in the tree.
809      */
810     NodePtr* root;
811 
812     /**
813      *  Array of indices to vectors in the dataset.
814      */
815     int** indices;
816 
817 
818     /**
819      * The distance
820      */
821     Distance distance;
822 
823     /**
824      * Pooled memory allocator.
825      *
826      * Using a pooled memory allocator is more efficient
827      * than allocating memory directly when there is a large
828      * number small of memory allocations.
829      */
830     PooledAllocator pool;
831 
832     /**
833      * Memory occupied by the index.
834      */
835     int memoryCounter;
836 
837     /** index parameters */
838     int branching_;
839     int trees_;
840     flann_centers_init_t centers_init_;
841     int leaf_size_;
842 
843 
844 };
845 
846 }
847 
848 #endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
849