1 /*********************************************************************** 2 * Software License Agreement (BSD License) 3 * 4 * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. 5 * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. 6 * 7 * THE BSD LICENSE 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 *************************************************************************/ 30 31 #ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ 32 #define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ 33 34 #include <algorithm> 35 #include <map> 36 #include <cassert> 37 #include <limits> 38 #include <cmath> 39 40 #include "general.h" 41 #include "nn_index.h" 42 #include "dist.h" 43 #include "matrix.h" 44 #include "result_set.h" 45 #include "heap.h" 46 #include "allocator.h" 47 #include "random.h" 48 #include "saving.h" 49 50 51 namespace cvflann 52 { 53 54 struct HierarchicalClusteringIndexParams : public IndexParams 55 { 56 HierarchicalClusteringIndexParams(int branching = 32, 57 flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, 58 int trees = 4, int leaf_size = 100) 59 { 60 (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL; 61 // The branching factor used in the hierarchical clustering 62 (*this)["branching"] = branching; 63 // Algorithm used for picking the initial cluster centers 64 (*this)["centers_init"] = centers_init; 65 // number of parallel trees to build 66 (*this)["trees"] = trees; 67 // maximum leaf size 68 (*this)["leaf_size"] = leaf_size; 69 } 70 }; 71 72 73 /** 74 * Hierarchical index 75 * 76 * Contains a tree constructed through a hierarchical clustering 77 * and other information for indexing a set of points for nearest-neighbour matching. 78 */ 79 template <typename Distance> 80 class HierarchicalClusteringIndex : public NNIndex<Distance> 81 { 82 public: 83 typedef typename Distance::ElementType ElementType; 84 typedef typename Distance::ResultType DistanceType; 85 86 private: 87 88 89 typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&); 90 91 /** 92 * The function used for choosing the cluster centers. 93 */ 94 centersAlgFunction chooseCenters; 95 96 97 98 /** 99 * Chooses the initial centers in the k-means clustering in a random manner. 100 * 101 * Params: 102 * k = number of centers 103 * vecs = the dataset of points 104 * indices = indices in the dataset 105 * indices_length = length of indices vector 106 * 107 */ chooseCentersRandom(int k,int * dsindices,int indices_length,int * centers,int & centers_length)108 void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length) 109 { 110 UniqueRandom r(indices_length); 111 112 int index; 113 for (index=0; index<k; ++index) { 114 bool duplicate = true; 115 int rnd; 116 while (duplicate) { 117 duplicate = false; 118 rnd = r.next(); 119 if (rnd<0) { 120 centers_length = index; 121 return; 122 } 123 124 centers[index] = dsindices[rnd]; 125 126 for (int j=0; j<index; ++j) { 127 DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols); 128 if (sq<1e-16) { 129 duplicate = true; 130 } 131 } 132 } 133 } 134 135 centers_length = index; 136 } 137 138 139 /** 140 * Chooses the initial centers in the k-means using Gonzales' algorithm 141 * so that the centers are spaced apart from each other. 142 * 143 * Params: 144 * k = number of centers 145 * vecs = the dataset of points 146 * indices = indices in the dataset 147 * Returns: 148 */ chooseCentersGonzales(int k,int * dsindices,int indices_length,int * centers,int & centers_length)149 void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length) 150 { 151 int n = indices_length; 152 153 int rnd = rand_int(n); 154 assert(rnd >=0 && rnd < n); 155 156 centers[0] = dsindices[rnd]; 157 158 int index; 159 for (index=1; index<k; ++index) { 160 161 int best_index = -1; 162 DistanceType best_val = 0; 163 for (int j=0; j<n; ++j) { 164 DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols); 165 for (int i=1; i<index; ++i) { 166 DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols); 167 if (tmp_dist<dist) { 168 dist = tmp_dist; 169 } 170 } 171 if (dist>best_val) { 172 best_val = dist; 173 best_index = j; 174 } 175 } 176 if (best_index!=-1) { 177 centers[index] = dsindices[best_index]; 178 } 179 else { 180 break; 181 } 182 } 183 centers_length = index; 184 } 185 186 187 /** 188 * Chooses the initial centers in the k-means using the algorithm 189 * proposed in the KMeans++ paper: 190 * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding 191 * 192 * Implementation of this function was converted from the one provided in Arthur's code. 193 * 194 * Params: 195 * k = number of centers 196 * vecs = the dataset of points 197 * indices = indices in the dataset 198 * Returns: 199 */ chooseCentersKMeanspp(int k,int * dsindices,int indices_length,int * centers,int & centers_length)200 void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length) 201 { 202 int n = indices_length; 203 204 double currentPot = 0; 205 DistanceType* closestDistSq = new DistanceType[n]; 206 207 // Choose one random center and set the closestDistSq values 208 int index = rand_int(n); 209 assert(index >=0 && index < n); 210 centers[0] = dsindices[index]; 211 212 // Computing distance^2 will have the advantage of even higher probability further to pick new centers 213 // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article) 214 for (int i = 0; i < n; i++) { 215 closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); 216 closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] ); 217 currentPot += closestDistSq[i]; 218 } 219 220 221 const int numLocalTries = 1; 222 223 // Choose each center 224 int centerCount; 225 for (centerCount = 1; centerCount < k; centerCount++) { 226 227 // Repeat several trials 228 double bestNewPot = -1; 229 int bestNewIndex = 0; 230 for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { 231 232 // Choose our center - have to be slightly careful to return a valid answer even accounting 233 // for possible rounding errors 234 double randVal = rand_double(currentPot); 235 for (index = 0; index < n-1; index++) { 236 if (randVal <= closestDistSq[index]) break; 237 else randVal -= closestDistSq[index]; 238 } 239 240 // Compute the new potential 241 double newPot = 0; 242 for (int i = 0; i < n; i++) { 243 DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); 244 newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); 245 } 246 247 // Store the best result 248 if ((bestNewPot < 0)||(newPot < bestNewPot)) { 249 bestNewPot = newPot; 250 bestNewIndex = index; 251 } 252 } 253 254 // Add the appropriate center 255 centers[centerCount] = dsindices[bestNewIndex]; 256 currentPot = bestNewPot; 257 for (int i = 0; i < n; i++) { 258 DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols); 259 closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); 260 } 261 } 262 263 centers_length = centerCount; 264 265 delete[] closestDistSq; 266 } 267 268 269 /** 270 * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel): 271 * select the first point of the list as a candidate, then parse the points list. If another 272 * point is further than current candidate from the other centers, test if it is a good center 273 * of a local aggregation. If it is, replace current candidate by this point. And so on... 274 * 275 * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points, 276 * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex 277 * class that pick centers among existing points instead of computing the barycenters, there is a real 278 * improvement. 279 * 280 * Params: 281 * k = number of centers 282 * vecs = the dataset of points 283 * indices = indices in the dataset 284 * Returns: 285 */ GroupWiseCenterChooser(int k,int * dsindices,int indices_length,int * centers,int & centers_length)286 void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length) 287 { 288 const float kSpeedUpFactor = 1.3f; 289 290 int n = indices_length; 291 292 DistanceType* closestDistSq = new DistanceType[n]; 293 294 // Choose one random center and set the closestDistSq values 295 int index = rand_int(n); 296 assert(index >=0 && index < n); 297 centers[0] = dsindices[index]; 298 299 for (int i = 0; i < n; i++) { 300 closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); 301 } 302 303 304 // Choose each center 305 int centerCount; 306 for (centerCount = 1; centerCount < k; centerCount++) { 307 308 // Repeat several trials 309 double bestNewPot = -1; 310 int bestNewIndex = 0; 311 DistanceType furthest = 0; 312 for (index = 0; index < n; index++) { 313 314 // We will test only the potential of the points further than current candidate 315 if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) { 316 317 // Compute the new potential 318 double newPot = 0; 319 for (int i = 0; i < n; i++) { 320 newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols) 321 , closestDistSq[i] ); 322 } 323 324 // Store the best result 325 if ((bestNewPot < 0)||(newPot <= bestNewPot)) { 326 bestNewPot = newPot; 327 bestNewIndex = index; 328 furthest = closestDistSq[index]; 329 } 330 } 331 } 332 333 // Add the appropriate center 334 centers[centerCount] = dsindices[bestNewIndex]; 335 for (int i = 0; i < n; i++) { 336 closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols) 337 , closestDistSq[i] ); 338 } 339 } 340 341 centers_length = centerCount; 342 343 delete[] closestDistSq; 344 } 345 346 347 public: 348 349 350 /** 351 * Index constructor 352 * 353 * Params: 354 * inputData = dataset with the input features 355 * params = parameters passed to the hierarchical k-means algorithm 356 */ 357 HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(), 358 Distance d = Distance()) dataset(inputData)359 : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d) 360 { 361 memoryCounter = 0; 362 363 size_ = dataset.rows; 364 veclen_ = dataset.cols; 365 366 branching_ = get_param(params,"branching",32); 367 centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM); 368 trees_ = get_param(params,"trees",4); 369 leaf_size_ = get_param(params,"leaf_size",100); 370 371 if (centers_init_==FLANN_CENTERS_RANDOM) { 372 chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom; 373 } 374 else if (centers_init_==FLANN_CENTERS_GONZALES) { 375 chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales; 376 } 377 else if (centers_init_==FLANN_CENTERS_KMEANSPP) { 378 chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp; 379 } 380 else if (centers_init_==FLANN_CENTERS_GROUPWISE) { 381 chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser; 382 } 383 else { 384 throw FLANNException("Unknown algorithm for choosing initial centers."); 385 } 386 387 trees_ = get_param(params,"trees",4); 388 root = new NodePtr[trees_]; 389 indices = new int*[trees_]; 390 391 for (int i=0; i<trees_; ++i) { 392 root[i] = NULL; 393 indices[i] = NULL; 394 } 395 } 396 397 HierarchicalClusteringIndex(const HierarchicalClusteringIndex&); 398 HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&); 399 400 /** 401 * Index destructor. 402 * 403 * Release the memory used by the index. 404 */ ~HierarchicalClusteringIndex()405 virtual ~HierarchicalClusteringIndex() 406 { 407 free_elements(); 408 409 if (root!=NULL) { 410 delete[] root; 411 } 412 413 if (indices!=NULL) { 414 delete[] indices; 415 } 416 } 417 418 419 /** 420 * Release the inner elements of indices[] 421 */ free_elements()422 void free_elements() 423 { 424 if (indices!=NULL) { 425 for(int i=0; i<trees_; ++i) { 426 if (indices[i]!=NULL) { 427 delete[] indices[i]; 428 indices[i] = NULL; 429 } 430 } 431 } 432 } 433 434 435 /** 436 * Returns size of index. 437 */ size()438 size_t size() const 439 { 440 return size_; 441 } 442 443 /** 444 * Returns the length of an index feature. 445 */ veclen()446 size_t veclen() const 447 { 448 return veclen_; 449 } 450 451 452 /** 453 * Computes the inde memory usage 454 * Returns: memory used by the index 455 */ usedMemory()456 int usedMemory() const 457 { 458 return pool.usedMemory+pool.wastedMemory+memoryCounter; 459 } 460 461 /** 462 * Builds the index 463 */ buildIndex()464 void buildIndex() 465 { 466 if (branching_<2) { 467 throw FLANNException("Branching factor must be at least 2"); 468 } 469 470 free_elements(); 471 472 for (int i=0; i<trees_; ++i) { 473 indices[i] = new int[size_]; 474 for (size_t j=0; j<size_; ++j) { 475 indices[i][j] = (int)j; 476 } 477 root[i] = pool.allocate<Node>(); 478 computeClustering(root[i], indices[i], (int)size_, branching_,0); 479 } 480 } 481 482 getType()483 flann_algorithm_t getType() const 484 { 485 return FLANN_INDEX_HIERARCHICAL; 486 } 487 488 saveIndex(FILE * stream)489 void saveIndex(FILE* stream) 490 { 491 save_value(stream, branching_); 492 save_value(stream, trees_); 493 save_value(stream, centers_init_); 494 save_value(stream, leaf_size_); 495 save_value(stream, memoryCounter); 496 for (int i=0; i<trees_; ++i) { 497 save_value(stream, *indices[i], size_); 498 save_tree(stream, root[i], i); 499 } 500 501 } 502 503 loadIndex(FILE * stream)504 void loadIndex(FILE* stream) 505 { 506 free_elements(); 507 508 if (root!=NULL) { 509 delete[] root; 510 } 511 512 if (indices!=NULL) { 513 delete[] indices; 514 } 515 516 load_value(stream, branching_); 517 load_value(stream, trees_); 518 load_value(stream, centers_init_); 519 load_value(stream, leaf_size_); 520 load_value(stream, memoryCounter); 521 522 indices = new int*[trees_]; 523 root = new NodePtr[trees_]; 524 for (int i=0; i<trees_; ++i) { 525 indices[i] = new int[size_]; 526 load_value(stream, *indices[i], size_); 527 load_tree(stream, root[i], i); 528 } 529 530 params["algorithm"] = getType(); 531 params["branching"] = branching_; 532 params["trees"] = trees_; 533 params["centers_init"] = centers_init_; 534 params["leaf_size"] = leaf_size_; 535 } 536 537 538 /** 539 * Find set of nearest neighbors to vec. Their indices are stored inside 540 * the result object. 541 * 542 * Params: 543 * result = the result object in which the indices of the nearest-neighbors are stored 544 * vec = the vector for which to search the nearest neighbors 545 * searchParams = parameters that influence the search algorithm (checks) 546 */ findNeighbors(ResultSet<DistanceType> & result,const ElementType * vec,const SearchParams & searchParams)547 void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) 548 { 549 550 int maxChecks = get_param(searchParams,"checks",32); 551 552 // Priority queue storing intermediate branches in the best-bin-first search 553 Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); 554 555 std::vector<bool> checked(size_,false); 556 int checks = 0; 557 for (int i=0; i<trees_; ++i) { 558 findNN(root[i], result, vec, checks, maxChecks, heap, checked); 559 } 560 561 BranchSt branch; 562 while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { 563 NodePtr node = branch.node; 564 findNN(node, result, vec, checks, maxChecks, heap, checked); 565 } 566 assert(result.full()); 567 568 delete heap; 569 570 } 571 getParameters()572 IndexParams getParameters() const 573 { 574 return params; 575 } 576 577 578 private: 579 580 /** 581 * Struture representing a node in the hierarchical k-means tree. 582 */ 583 struct Node 584 { 585 /** 586 * The cluster center index 587 */ 588 int pivot; 589 /** 590 * The cluster size (number of points in the cluster) 591 */ 592 int size; 593 /** 594 * Child nodes (only for non-terminal nodes) 595 */ 596 Node** childs; 597 /** 598 * Node points (only for terminal nodes) 599 */ 600 int* indices; 601 /** 602 * Level 603 */ 604 int level; 605 }; 606 typedef Node* NodePtr; 607 608 609 610 /** 611 * Alias definition for a nicer syntax. 612 */ 613 typedef BranchStruct<NodePtr, DistanceType> BranchSt; 614 615 616 save_tree(FILE * stream,NodePtr node,int num)617 void save_tree(FILE* stream, NodePtr node, int num) 618 { 619 save_value(stream, *node); 620 if (node->childs==NULL) { 621 int indices_offset = (int)(node->indices - indices[num]); 622 save_value(stream, indices_offset); 623 } 624 else { 625 for(int i=0; i<branching_; ++i) { 626 save_tree(stream, node->childs[i], num); 627 } 628 } 629 } 630 631 load_tree(FILE * stream,NodePtr & node,int num)632 void load_tree(FILE* stream, NodePtr& node, int num) 633 { 634 node = pool.allocate<Node>(); 635 load_value(stream, *node); 636 if (node->childs==NULL) { 637 int indices_offset; 638 load_value(stream, indices_offset); 639 node->indices = indices[num] + indices_offset; 640 } 641 else { 642 node->childs = pool.allocate<NodePtr>(branching_); 643 for(int i=0; i<branching_; ++i) { 644 load_tree(stream, node->childs[i], num); 645 } 646 } 647 } 648 649 650 651 computeLabels(int * dsindices,int indices_length,int * centers,int centers_length,int * labels,DistanceType & cost)652 void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost) 653 { 654 cost = 0; 655 for (int i=0; i<indices_length; ++i) { 656 ElementType* point = dataset[dsindices[i]]; 657 DistanceType dist = distance(point, dataset[centers[0]], veclen_); 658 labels[i] = 0; 659 for (int j=1; j<centers_length; ++j) { 660 DistanceType new_dist = distance(point, dataset[centers[j]], veclen_); 661 if (dist>new_dist) { 662 labels[i] = j; 663 dist = new_dist; 664 } 665 } 666 cost += dist; 667 } 668 } 669 670 /** 671 * The method responsible with actually doing the recursive hierarchical 672 * clustering 673 * 674 * Params: 675 * node = the node to cluster 676 * indices = indices of the points belonging to the current node 677 * branching = the branching factor to use in the clustering 678 * 679 * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) 680 */ computeClustering(NodePtr node,int * dsindices,int indices_length,int branching,int level)681 void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level) 682 { 683 node->size = indices_length; 684 node->level = level; 685 686 if (indices_length < leaf_size_) { // leaf node 687 node->indices = dsindices; 688 std::sort(node->indices,node->indices+indices_length); 689 node->childs = NULL; 690 return; 691 } 692 693 std::vector<int> centers(branching); 694 std::vector<int> labels(indices_length); 695 696 int centers_length; 697 (this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length); 698 699 if (centers_length<branching) { 700 node->indices = dsindices; 701 std::sort(node->indices,node->indices+indices_length); 702 node->childs = NULL; 703 return; 704 } 705 706 707 // assign points to clusters 708 DistanceType cost; 709 computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost); 710 711 node->childs = pool.allocate<NodePtr>(branching); 712 int start = 0; 713 int end = start; 714 for (int i=0; i<branching; ++i) { 715 for (int j=0; j<indices_length; ++j) { 716 if (labels[j]==i) { 717 std::swap(dsindices[j],dsindices[end]); 718 std::swap(labels[j],labels[end]); 719 end++; 720 } 721 } 722 723 node->childs[i] = pool.allocate<Node>(); 724 node->childs[i]->pivot = centers[i]; 725 node->childs[i]->indices = NULL; 726 computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1); 727 start=end; 728 } 729 } 730 731 732 733 /** 734 * Performs one descent in the hierarchical k-means tree. The branches not 735 * visited are stored in a priority queue. 736 * 737 * Params: 738 * node = node to explore 739 * result = container for the k-nearest neighbors found 740 * vec = query points 741 * checks = how many points in the dataset have been checked so far 742 * maxChecks = maximum dataset points to checks 743 */ 744 745 findNN(NodePtr node,ResultSet<DistanceType> & result,const ElementType * vec,int & checks,int maxChecks,Heap<BranchSt> * heap,std::vector<bool> & checked)746 void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks, 747 Heap<BranchSt>* heap, std::vector<bool>& checked) 748 { 749 if (node->childs==NULL) { 750 if (checks>=maxChecks) { 751 if (result.full()) return; 752 } 753 for (int i=0; i<node->size; ++i) { 754 int index = node->indices[i]; 755 if (!checked[index]) { 756 DistanceType dist = distance(dataset[index], vec, veclen_); 757 result.addPoint(dist, index); 758 checked[index] = true; 759 ++checks; 760 } 761 } 762 } 763 else { 764 DistanceType* domain_distances = new DistanceType[branching_]; 765 int best_index = 0; 766 domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_); 767 for (int i=1; i<branching_; ++i) { 768 domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_); 769 if (domain_distances[i]<domain_distances[best_index]) { 770 best_index = i; 771 } 772 } 773 for (int i=0; i<branching_; ++i) { 774 if (i!=best_index) { 775 heap->insert(BranchSt(node->childs[i],domain_distances[i])); 776 } 777 } 778 delete[] domain_distances; 779 findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked); 780 } 781 } 782 783 private: 784 785 786 /** 787 * The dataset used by this index 788 */ 789 const Matrix<ElementType> dataset; 790 791 /** 792 * Parameters used by this index 793 */ 794 IndexParams params; 795 796 797 /** 798 * Number of features in the dataset. 799 */ 800 size_t size_; 801 802 /** 803 * Length of each feature. 804 */ 805 size_t veclen_; 806 807 /** 808 * The root node in the tree. 809 */ 810 NodePtr* root; 811 812 /** 813 * Array of indices to vectors in the dataset. 814 */ 815 int** indices; 816 817 818 /** 819 * The distance 820 */ 821 Distance distance; 822 823 /** 824 * Pooled memory allocator. 825 * 826 * Using a pooled memory allocator is more efficient 827 * than allocating memory directly when there is a large 828 * number small of memory allocations. 829 */ 830 PooledAllocator pool; 831 832 /** 833 * Memory occupied by the index. 834 */ 835 int memoryCounter; 836 837 /** index parameters */ 838 int branching_; 839 int trees_; 840 flann_centers_init_t centers_init_; 841 int leaf_size_; 842 843 844 }; 845 846 } 847 848 #endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */ 849