1; 2; jfdctfst.asm - fast integer FDCT (64-bit SSE2) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright 2009 D. R. Commander 6; 7; Based on 8; x86 SIMD extension for IJG JPEG library 9; Copyright (C) 1999-2006, MIYASAKA Masaru. 10; For conditions of distribution and use, see copyright notice in jsimdext.inc 11; 12; This file should be assembled with NASM (Netwide Assembler), 13; can *not* be assembled with Microsoft's MASM or any compatible 14; assembler (including Borland's Turbo Assembler). 15; NASM is available from http://nasm.sourceforge.net/ or 16; http://sourceforge.net/project/showfiles.php?group_id=6208 17; 18; This file contains a fast, not so accurate integer implementation of 19; the forward DCT (Discrete Cosine Transform). The following code is 20; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c 21; for more details. 22; 23; [TAB8] 24 25%include "jsimdext.inc" 26%include "jdct.inc" 27 28; -------------------------------------------------------------------------- 29 30%define CONST_BITS 8 ; 14 is also OK. 31 32%if CONST_BITS == 8 33F_0_382 equ 98 ; FIX(0.382683433) 34F_0_541 equ 139 ; FIX(0.541196100) 35F_0_707 equ 181 ; FIX(0.707106781) 36F_1_306 equ 334 ; FIX(1.306562965) 37%else 38; NASM cannot do compile-time arithmetic on floating-point constants. 39%define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) 40F_0_382 equ DESCALE( 410903207,30-CONST_BITS) ; FIX(0.382683433) 41F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) 42F_0_707 equ DESCALE( 759250124,30-CONST_BITS) ; FIX(0.707106781) 43F_1_306 equ DESCALE(1402911301,30-CONST_BITS) ; FIX(1.306562965) 44%endif 45 46; -------------------------------------------------------------------------- 47 SECTION SEG_CONST 48 49; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) 50; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) 51 52%define PRE_MULTIPLY_SCALE_BITS 2 53%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) 54 55 alignz 16 56 global EXTN(jconst_fdct_ifast_sse2) 57 58EXTN(jconst_fdct_ifast_sse2): 59 60PW_F0707 times 8 dw F_0_707 << CONST_SHIFT 61PW_F0382 times 8 dw F_0_382 << CONST_SHIFT 62PW_F0541 times 8 dw F_0_541 << CONST_SHIFT 63PW_F1306 times 8 dw F_1_306 << CONST_SHIFT 64 65 alignz 16 66 67; -------------------------------------------------------------------------- 68 SECTION SEG_TEXT 69 BITS 64 70; 71; Perform the forward DCT on one block of samples. 72; 73; GLOBAL(void) 74; jsimd_fdct_ifast_sse2 (DCTELEM * data) 75; 76 77; r10 = DCTELEM * data 78 79%define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] 80%define WK_NUM 2 81 82 align 16 83 global EXTN(jsimd_fdct_ifast_sse2) 84 85EXTN(jsimd_fdct_ifast_sse2): 86 push rbp 87 mov rax,rsp ; rax = original rbp 88 sub rsp, byte 4 89 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits 90 mov [rsp],rax 91 mov rbp,rsp ; rbp = aligned rbp 92 lea rsp, [wk(0)] 93 collect_args 94 95 ; ---- Pass 1: process rows. 96 97 mov rdx, r10 ; (DCTELEM *) 98 99 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)] 100 movdqa xmm1, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)] 101 movdqa xmm2, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)] 102 movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)] 103 104 ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) 105 ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) 106 107 movdqa xmm4,xmm0 ; transpose coefficients(phase 1) 108 punpcklwd xmm0,xmm1 ; xmm0=(00 10 01 11 02 12 03 13) 109 punpckhwd xmm4,xmm1 ; xmm4=(04 14 05 15 06 16 07 17) 110 movdqa xmm5,xmm2 ; transpose coefficients(phase 1) 111 punpcklwd xmm2,xmm3 ; xmm2=(20 30 21 31 22 32 23 33) 112 punpckhwd xmm5,xmm3 ; xmm5=(24 34 25 35 26 36 27 37) 113 114 movdqa xmm6, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)] 115 movdqa xmm7, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)] 116 movdqa xmm1, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)] 117 movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)] 118 119 ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) 120 ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) 121 122 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) 123 movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) 124 125 movdqa xmm2,xmm6 ; transpose coefficients(phase 1) 126 punpcklwd xmm6,xmm7 ; xmm6=(40 50 41 51 42 52 43 53) 127 punpckhwd xmm2,xmm7 ; xmm2=(44 54 45 55 46 56 47 57) 128 movdqa xmm5,xmm1 ; transpose coefficients(phase 1) 129 punpcklwd xmm1,xmm3 ; xmm1=(60 70 61 71 62 72 63 73) 130 punpckhwd xmm5,xmm3 ; xmm5=(64 74 65 75 66 76 67 77) 131 132 movdqa xmm7,xmm6 ; transpose coefficients(phase 2) 133 punpckldq xmm6,xmm1 ; xmm6=(40 50 60 70 41 51 61 71) 134 punpckhdq xmm7,xmm1 ; xmm7=(42 52 62 72 43 53 63 73) 135 movdqa xmm3,xmm2 ; transpose coefficients(phase 2) 136 punpckldq xmm2,xmm5 ; xmm2=(44 54 64 74 45 55 65 75) 137 punpckhdq xmm3,xmm5 ; xmm3=(46 56 66 76 47 57 67 77) 138 139 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) 140 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) 141 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73) 142 movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75) 143 144 movdqa xmm7,xmm0 ; transpose coefficients(phase 2) 145 punpckldq xmm0,xmm1 ; xmm0=(00 10 20 30 01 11 21 31) 146 punpckhdq xmm7,xmm1 ; xmm7=(02 12 22 32 03 13 23 33) 147 movdqa xmm2,xmm4 ; transpose coefficients(phase 2) 148 punpckldq xmm4,xmm5 ; xmm4=(04 14 24 34 05 15 25 35) 149 punpckhdq xmm2,xmm5 ; xmm2=(06 16 26 36 07 17 27 37) 150 151 movdqa xmm1,xmm0 ; transpose coefficients(phase 3) 152 punpcklqdq xmm0,xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 153 punpckhqdq xmm1,xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 154 movdqa xmm5,xmm2 ; transpose coefficients(phase 3) 155 punpcklqdq xmm2,xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 156 punpckhqdq xmm5,xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 157 158 movdqa xmm6,xmm1 159 movdqa xmm3,xmm0 160 psubw xmm1,xmm2 ; xmm1=data1-data6=tmp6 161 psubw xmm0,xmm5 ; xmm0=data0-data7=tmp7 162 paddw xmm6,xmm2 ; xmm6=data1+data6=tmp1 163 paddw xmm3,xmm5 ; xmm3=data0+data7=tmp0 164 165 movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73) 166 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75) 167 movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 168 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 169 170 movdqa xmm1,xmm7 ; transpose coefficients(phase 3) 171 punpcklqdq xmm7,xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 172 punpckhqdq xmm1,xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 173 movdqa xmm0,xmm4 ; transpose coefficients(phase 3) 174 punpcklqdq xmm4,xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 175 punpckhqdq xmm0,xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 176 177 movdqa xmm2,xmm1 178 movdqa xmm5,xmm7 179 paddw xmm1,xmm4 ; xmm1=data3+data4=tmp3 180 paddw xmm7,xmm0 ; xmm7=data2+data5=tmp2 181 psubw xmm2,xmm4 ; xmm2=data3-data4=tmp4 182 psubw xmm5,xmm0 ; xmm5=data2-data5=tmp5 183 184 ; -- Even part 185 186 movdqa xmm4,xmm3 187 movdqa xmm0,xmm6 188 psubw xmm3,xmm1 ; xmm3=tmp13 189 psubw xmm6,xmm7 ; xmm6=tmp12 190 paddw xmm4,xmm1 ; xmm4=tmp10 191 paddw xmm0,xmm7 ; xmm0=tmp11 192 193 paddw xmm6,xmm3 194 psllw xmm6,PRE_MULTIPLY_SCALE_BITS 195 pmulhw xmm6,[rel PW_F0707] ; xmm6=z1 196 197 movdqa xmm1,xmm4 198 movdqa xmm7,xmm3 199 psubw xmm4,xmm0 ; xmm4=data4 200 psubw xmm3,xmm6 ; xmm3=data6 201 paddw xmm1,xmm0 ; xmm1=data0 202 paddw xmm7,xmm6 ; xmm7=data2 203 204 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6 205 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7 206 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4 207 movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6 208 209 ; -- Odd part 210 211 paddw xmm2,xmm5 ; xmm2=tmp10 212 paddw xmm5,xmm0 ; xmm5=tmp11 213 paddw xmm0,xmm6 ; xmm0=tmp12, xmm6=tmp7 214 215 psllw xmm2,PRE_MULTIPLY_SCALE_BITS 216 psllw xmm0,PRE_MULTIPLY_SCALE_BITS 217 218 psllw xmm5,PRE_MULTIPLY_SCALE_BITS 219 pmulhw xmm5,[rel PW_F0707] ; xmm5=z3 220 221 movdqa xmm4,xmm2 ; xmm4=tmp10 222 psubw xmm2,xmm0 223 pmulhw xmm2,[rel PW_F0382] ; xmm2=z5 224 pmulhw xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) 225 pmulhw xmm0,[rel PW_F1306] ; xmm0=MULTIPLY(tmp12,FIX_1_306562) 226 paddw xmm4,xmm2 ; xmm4=z2 227 paddw xmm0,xmm2 ; xmm0=z4 228 229 movdqa xmm3,xmm6 230 psubw xmm6,xmm5 ; xmm6=z13 231 paddw xmm3,xmm5 ; xmm3=z11 232 233 movdqa xmm2,xmm6 234 movdqa xmm5,xmm3 235 psubw xmm6,xmm4 ; xmm6=data3 236 psubw xmm3,xmm0 ; xmm3=data7 237 paddw xmm2,xmm4 ; xmm2=data5 238 paddw xmm5,xmm0 ; xmm5=data1 239 240 ; ---- Pass 2: process columns. 241 242 ; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72) 243 ; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73) 244 245 movdqa xmm4,xmm1 ; transpose coefficients(phase 1) 246 punpcklwd xmm1,xmm5 ; xmm1=(00 01 10 11 20 21 30 31) 247 punpckhwd xmm4,xmm5 ; xmm4=(40 41 50 51 60 61 70 71) 248 movdqa xmm0,xmm7 ; transpose coefficients(phase 1) 249 punpcklwd xmm7,xmm6 ; xmm7=(02 03 12 13 22 23 32 33) 250 punpckhwd xmm0,xmm6 ; xmm0=(42 43 52 53 62 63 72 73) 251 252 movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4 253 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6 254 255 ; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76) 256 ; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77) 257 258 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33) 259 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73) 260 261 movdqa xmm7,xmm5 ; transpose coefficients(phase 1) 262 punpcklwd xmm5,xmm2 ; xmm5=(04 05 14 15 24 25 34 35) 263 punpckhwd xmm7,xmm2 ; xmm7=(44 45 54 55 64 65 74 75) 264 movdqa xmm0,xmm6 ; transpose coefficients(phase 1) 265 punpcklwd xmm6,xmm3 ; xmm6=(06 07 16 17 26 27 36 37) 266 punpckhwd xmm0,xmm3 ; xmm0=(46 47 56 57 66 67 76 77) 267 268 movdqa xmm2,xmm5 ; transpose coefficients(phase 2) 269 punpckldq xmm5,xmm6 ; xmm5=(04 05 06 07 14 15 16 17) 270 punpckhdq xmm2,xmm6 ; xmm2=(24 25 26 27 34 35 36 37) 271 movdqa xmm3,xmm7 ; transpose coefficients(phase 2) 272 punpckldq xmm7,xmm0 ; xmm7=(44 45 46 47 54 55 56 57) 273 punpckhdq xmm3,xmm0 ; xmm3=(64 65 66 67 74 75 76 77) 274 275 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33) 276 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73) 277 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37) 278 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57) 279 280 movdqa xmm2,xmm1 ; transpose coefficients(phase 2) 281 punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 10 11 12 13) 282 punpckhdq xmm2,xmm6 ; xmm2=(20 21 22 23 30 31 32 33) 283 movdqa xmm7,xmm4 ; transpose coefficients(phase 2) 284 punpckldq xmm4,xmm0 ; xmm4=(40 41 42 43 50 51 52 53) 285 punpckhdq xmm7,xmm0 ; xmm7=(60 61 62 63 70 71 72 73) 286 287 movdqa xmm6,xmm1 ; transpose coefficients(phase 3) 288 punpcklqdq xmm1,xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0 289 punpckhqdq xmm6,xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1 290 movdqa xmm0,xmm7 ; transpose coefficients(phase 3) 291 punpcklqdq xmm7,xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6 292 punpckhqdq xmm0,xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7 293 294 movdqa xmm5,xmm6 295 movdqa xmm3,xmm1 296 psubw xmm6,xmm7 ; xmm6=data1-data6=tmp6 297 psubw xmm1,xmm0 ; xmm1=data0-data7=tmp7 298 paddw xmm5,xmm7 ; xmm5=data1+data6=tmp1 299 paddw xmm3,xmm0 ; xmm3=data0+data7=tmp0 300 301 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37) 302 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57) 303 movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6 304 movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7 305 306 movdqa xmm6,xmm2 ; transpose coefficients(phase 3) 307 punpcklqdq xmm2,xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2 308 punpckhqdq xmm6,xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3 309 movdqa xmm1,xmm4 ; transpose coefficients(phase 3) 310 punpcklqdq xmm4,xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4 311 punpckhqdq xmm1,xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5 312 313 movdqa xmm7,xmm6 314 movdqa xmm0,xmm2 315 paddw xmm6,xmm4 ; xmm6=data3+data4=tmp3 316 paddw xmm2,xmm1 ; xmm2=data2+data5=tmp2 317 psubw xmm7,xmm4 ; xmm7=data3-data4=tmp4 318 psubw xmm0,xmm1 ; xmm0=data2-data5=tmp5 319 320 ; -- Even part 321 322 movdqa xmm4,xmm3 323 movdqa xmm1,xmm5 324 psubw xmm3,xmm6 ; xmm3=tmp13 325 psubw xmm5,xmm2 ; xmm5=tmp12 326 paddw xmm4,xmm6 ; xmm4=tmp10 327 paddw xmm1,xmm2 ; xmm1=tmp11 328 329 paddw xmm5,xmm3 330 psllw xmm5,PRE_MULTIPLY_SCALE_BITS 331 pmulhw xmm5,[rel PW_F0707] ; xmm5=z1 332 333 movdqa xmm6,xmm4 334 movdqa xmm2,xmm3 335 psubw xmm4,xmm1 ; xmm4=data4 336 psubw xmm3,xmm5 ; xmm3=data6 337 paddw xmm6,xmm1 ; xmm6=data0 338 paddw xmm2,xmm5 ; xmm2=data2 339 340 movdqa XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)], xmm4 341 movdqa XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)], xmm3 342 movdqa XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)], xmm6 343 movdqa XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)], xmm2 344 345 ; -- Odd part 346 347 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6 348 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 349 350 paddw xmm7,xmm0 ; xmm7=tmp10 351 paddw xmm0,xmm1 ; xmm0=tmp11 352 paddw xmm1,xmm5 ; xmm1=tmp12, xmm5=tmp7 353 354 psllw xmm7,PRE_MULTIPLY_SCALE_BITS 355 psllw xmm1,PRE_MULTIPLY_SCALE_BITS 356 357 psllw xmm0,PRE_MULTIPLY_SCALE_BITS 358 pmulhw xmm0,[rel PW_F0707] ; xmm0=z3 359 360 movdqa xmm4,xmm7 ; xmm4=tmp10 361 psubw xmm7,xmm1 362 pmulhw xmm7,[rel PW_F0382] ; xmm7=z5 363 pmulhw xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) 364 pmulhw xmm1,[rel PW_F1306] ; xmm1=MULTIPLY(tmp12,FIX_1_306562) 365 paddw xmm4,xmm7 ; xmm4=z2 366 paddw xmm1,xmm7 ; xmm1=z4 367 368 movdqa xmm3,xmm5 369 psubw xmm5,xmm0 ; xmm5=z13 370 paddw xmm3,xmm0 ; xmm3=z11 371 372 movdqa xmm6,xmm5 373 movdqa xmm2,xmm3 374 psubw xmm5,xmm4 ; xmm5=data3 375 psubw xmm3,xmm1 ; xmm3=data7 376 paddw xmm6,xmm4 ; xmm6=data5 377 paddw xmm2,xmm1 ; xmm2=data1 378 379 movdqa XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)], xmm5 380 movdqa XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)], xmm3 381 movdqa XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)], xmm6 382 movdqa XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)], xmm2 383 384 uncollect_args 385 mov rsp,rbp ; rsp <- aligned rbp 386 pop rsp ; rsp <- original rbp 387 pop rbp 388 ret 389 390; For some reason, the OS X linker does not honor the request to align the 391; segment unless we do this. 392 align 16 393