1; 2; jquant.asm - sample data conversion and quantization (MMX) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; 6; Based on 7; x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; [TAB8] 18 19%include "jsimdext.inc" 20%include "jdct.inc" 21 22; -------------------------------------------------------------------------- 23 SECTION SEG_TEXT 24 BITS 32 25; 26; Load data into workspace, applying unsigned->signed conversion 27; 28; GLOBAL(void) 29; jsimd_convsamp_mmx (JSAMPARRAY sample_data, JDIMENSION start_col, 30; DCTELEM * workspace); 31; 32 33%define sample_data ebp+8 ; JSAMPARRAY sample_data 34%define start_col ebp+12 ; JDIMENSION start_col 35%define workspace ebp+16 ; DCTELEM * workspace 36 37 align 16 38 global EXTN(jsimd_convsamp_mmx) 39 40EXTN(jsimd_convsamp_mmx): 41 push ebp 42 mov ebp,esp 43 push ebx 44; push ecx ; need not be preserved 45; push edx ; need not be preserved 46 push esi 47 push edi 48 49 pxor mm6,mm6 ; mm6=(all 0's) 50 pcmpeqw mm7,mm7 51 psllw mm7,7 ; mm7={0xFF80 0xFF80 0xFF80 0xFF80} 52 53 mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) 54 mov eax, JDIMENSION [start_col] 55 mov edi, POINTER [workspace] ; (DCTELEM *) 56 mov ecx, DCTSIZE/4 57 alignx 16,7 58.convloop: 59 mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) 60 mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) 61 62 movq mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; mm0=(01234567) 63 movq mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE] ; mm1=(89ABCDEF) 64 65 mov ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) 66 mov edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) 67 68 movq mm2, MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; mm2=(GHIJKLMN) 69 movq mm3, MMWORD [edx+eax*SIZEOF_JSAMPLE] ; mm3=(OPQRSTUV) 70 71 movq mm4,mm0 72 punpcklbw mm0,mm6 ; mm0=(0123) 73 punpckhbw mm4,mm6 ; mm4=(4567) 74 movq mm5,mm1 75 punpcklbw mm1,mm6 ; mm1=(89AB) 76 punpckhbw mm5,mm6 ; mm5=(CDEF) 77 78 paddw mm0,mm7 79 paddw mm4,mm7 80 paddw mm1,mm7 81 paddw mm5,mm7 82 83 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0 84 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm4 85 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_DCTELEM)], mm1 86 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_DCTELEM)], mm5 87 88 movq mm0,mm2 89 punpcklbw mm2,mm6 ; mm2=(GHIJ) 90 punpckhbw mm0,mm6 ; mm0=(KLMN) 91 movq mm4,mm3 92 punpcklbw mm3,mm6 ; mm3=(OPQR) 93 punpckhbw mm4,mm6 ; mm4=(STUV) 94 95 paddw mm2,mm7 96 paddw mm0,mm7 97 paddw mm3,mm7 98 paddw mm4,mm7 99 100 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_DCTELEM)], mm2 101 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_DCTELEM)], mm0 102 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_DCTELEM)], mm3 103 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_DCTELEM)], mm4 104 105 add esi, byte 4*SIZEOF_JSAMPROW 106 add edi, byte 4*DCTSIZE*SIZEOF_DCTELEM 107 dec ecx 108 jnz short .convloop 109 110 emms ; empty MMX state 111 112 pop edi 113 pop esi 114; pop edx ; need not be preserved 115; pop ecx ; need not be preserved 116 pop ebx 117 pop ebp 118 ret 119 120; -------------------------------------------------------------------------- 121; 122; Quantize/descale the coefficients, and store into coef_block 123; 124; This implementation is based on an algorithm described in 125; "How to optimize for the Pentium family of microprocessors" 126; (http://www.agner.org/assem/). 127; 128; GLOBAL(void) 129; jsimd_quantize_mmx (JCOEFPTR coef_block, DCTELEM * divisors, 130; DCTELEM * workspace); 131; 132 133%define RECIPROCAL(m,n,b) MMBLOCK(DCTSIZE*0+(m),(n),(b),SIZEOF_DCTELEM) 134%define CORRECTION(m,n,b) MMBLOCK(DCTSIZE*1+(m),(n),(b),SIZEOF_DCTELEM) 135%define SCALE(m,n,b) MMBLOCK(DCTSIZE*2+(m),(n),(b),SIZEOF_DCTELEM) 136%define SHIFT(m,n,b) MMBLOCK(DCTSIZE*3+(m),(n),(b),SIZEOF_DCTELEM) 137 138%define coef_block ebp+8 ; JCOEFPTR coef_block 139%define divisors ebp+12 ; DCTELEM * divisors 140%define workspace ebp+16 ; DCTELEM * workspace 141 142 align 16 143 global EXTN(jsimd_quantize_mmx) 144 145EXTN(jsimd_quantize_mmx): 146 push ebp 147 mov ebp,esp 148; push ebx ; unused 149; push ecx ; unused 150; push edx ; need not be preserved 151 push esi 152 push edi 153 154 mov esi, POINTER [workspace] 155 mov edx, POINTER [divisors] 156 mov edi, JCOEFPTR [coef_block] 157 mov ah, 2 158 alignx 16,7 159.quantloop1: 160 mov al, DCTSIZE2/8/2 161 alignx 16,7 162.quantloop2: 163 movq mm2, MMWORD [MMBLOCK(0,0,esi,SIZEOF_DCTELEM)] 164 movq mm3, MMWORD [MMBLOCK(0,1,esi,SIZEOF_DCTELEM)] 165 166 movq mm0,mm2 167 movq mm1,mm3 168 169 psraw mm2,(WORD_BIT-1) ; -1 if value < 0, 0 otherwise 170 psraw mm3,(WORD_BIT-1) 171 172 pxor mm0,mm2 ; val = -val 173 pxor mm1,mm3 174 psubw mm0,mm2 175 psubw mm1,mm3 176 177 ; 178 ; MMX is an annoyingly crappy instruction set. It has two 179 ; misfeatures that are causing problems here: 180 ; 181 ; - All multiplications are signed. 182 ; 183 ; - The second operand for the shifts is not treated as packed. 184 ; 185 ; 186 ; We work around the first problem by implementing this algorithm: 187 ; 188 ; unsigned long unsigned_multiply(unsigned short x, unsigned short y) 189 ; { 190 ; enum { SHORT_BIT = 16 }; 191 ; signed short sx = (signed short) x; 192 ; signed short sy = (signed short) y; 193 ; signed long sz; 194 ; 195 ; sz = (long) sx * (long) sy; /* signed multiply */ 196 ; 197 ; if (sx < 0) sz += (long) sy << SHORT_BIT; 198 ; if (sy < 0) sz += (long) sx << SHORT_BIT; 199 ; 200 ; return (unsigned long) sz; 201 ; } 202 ; 203 ; (note that a negative sx adds _sy_ and vice versa) 204 ; 205 ; For the second problem, we replace the shift by a multiplication. 206 ; Unfortunately that means we have to deal with the signed issue again. 207 ; 208 209 paddw mm0, MMWORD [CORRECTION(0,0,edx)] ; correction + roundfactor 210 paddw mm1, MMWORD [CORRECTION(0,1,edx)] 211 212 movq mm4,mm0 ; store current value for later 213 movq mm5,mm1 214 pmulhw mm0, MMWORD [RECIPROCAL(0,0,edx)] ; reciprocal 215 pmulhw mm1, MMWORD [RECIPROCAL(0,1,edx)] 216 paddw mm0,mm4 ; reciprocal is always negative (MSB=1), 217 paddw mm1,mm5 ; so we always need to add the initial value 218 ; (input value is never negative as we 219 ; inverted it at the start of this routine) 220 221 ; here it gets a bit tricky as both scale 222 ; and mm0/mm1 can be negative 223 movq mm6, MMWORD [SCALE(0,0,edx)] ; scale 224 movq mm7, MMWORD [SCALE(0,1,edx)] 225 movq mm4,mm0 226 movq mm5,mm1 227 pmulhw mm0,mm6 228 pmulhw mm1,mm7 229 230 psraw mm6,(WORD_BIT-1) ; determine if scale is negative 231 psraw mm7,(WORD_BIT-1) 232 233 pand mm6,mm4 ; and add input if it is 234 pand mm7,mm5 235 paddw mm0,mm6 236 paddw mm1,mm7 237 238 psraw mm4,(WORD_BIT-1) ; then check if negative input 239 psraw mm5,(WORD_BIT-1) 240 241 pand mm4, MMWORD [SCALE(0,0,edx)] ; and add scale if it is 242 pand mm5, MMWORD [SCALE(0,1,edx)] 243 paddw mm0,mm4 244 paddw mm1,mm5 245 246 pxor mm0,mm2 ; val = -val 247 pxor mm1,mm3 248 psubw mm0,mm2 249 psubw mm1,mm3 250 251 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0 252 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm1 253 254 add esi, byte 8*SIZEOF_DCTELEM 255 add edx, byte 8*SIZEOF_DCTELEM 256 add edi, byte 8*SIZEOF_JCOEF 257 dec al 258 jnz near .quantloop2 259 dec ah 260 jnz near .quantloop1 ; to avoid branch misprediction 261 262 emms ; empty MMX state 263 264 pop edi 265 pop esi 266; pop edx ; need not be preserved 267; pop ecx ; unused 268; pop ebx ; unused 269 pop ebp 270 ret 271 272; For some reason, the OS X linker does not honor the request to align the 273; segment unless we do this. 274 align 16 275