1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/Passes.h"
17 #include "PHIEliminationUtils.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Compiler.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <algorithm>
36 using namespace llvm;
37
38 #define DEBUG_TYPE "phielim"
39
40 static cl::opt<bool>
41 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
42 cl::Hidden, cl::desc("Disable critical edge splitting "
43 "during PHI elimination"));
44
45 static cl::opt<bool>
46 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
47 cl::Hidden, cl::desc("Split all critical edges during "
48 "PHI elimination"));
49
50 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
51 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
52 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
53
54 namespace {
55 class PHIElimination : public MachineFunctionPass {
56 MachineRegisterInfo *MRI; // Machine register information
57 LiveVariables *LV;
58 LiveIntervals *LIS;
59
60 public:
61 static char ID; // Pass identification, replacement for typeid
PHIElimination()62 PHIElimination() : MachineFunctionPass(ID) {
63 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
64 }
65
66 bool runOnMachineFunction(MachineFunction &Fn) override;
67 void getAnalysisUsage(AnalysisUsage &AU) const override;
68
69 private:
70 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
71 /// in predecessor basic blocks.
72 ///
73 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
74 void LowerPHINode(MachineBasicBlock &MBB,
75 MachineBasicBlock::iterator LastPHIIt);
76
77 /// analyzePHINodes - Gather information about the PHI nodes in
78 /// here. In particular, we want to map the number of uses of a virtual
79 /// register which is used in a PHI node. We map that to the BB the
80 /// vreg is coming from. This is used later to determine when the vreg
81 /// is killed in the BB.
82 ///
83 void analyzePHINodes(const MachineFunction& Fn);
84
85 /// Split critical edges where necessary for good coalescer performance.
86 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
87 MachineLoopInfo *MLI);
88
89 // These functions are temporary abstractions around LiveVariables and
90 // LiveIntervals, so they can go away when LiveVariables does.
91 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
92 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
93
94 typedef std::pair<unsigned, unsigned> BBVRegPair;
95 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
96
97 VRegPHIUse VRegPHIUseCount;
98
99 // Defs of PHI sources which are implicit_def.
100 SmallPtrSet<MachineInstr*, 4> ImpDefs;
101
102 // Map reusable lowered PHI node -> incoming join register.
103 typedef DenseMap<MachineInstr*, unsigned,
104 MachineInstrExpressionTrait> LoweredPHIMap;
105 LoweredPHIMap LoweredPHIs;
106 };
107 }
108
109 STATISTIC(NumLowered, "Number of phis lowered");
110 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
111 STATISTIC(NumReused, "Number of reused lowered phis");
112
113 char PHIElimination::ID = 0;
114 char& llvm::PHIEliminationID = PHIElimination::ID;
115
116 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
117 "Eliminate PHI nodes for register allocation",
118 false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)119 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
120 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
121 "Eliminate PHI nodes for register allocation", false, false)
122
123 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
124 AU.addPreserved<LiveVariables>();
125 AU.addPreserved<SlotIndexes>();
126 AU.addPreserved<LiveIntervals>();
127 AU.addPreserved<MachineDominatorTree>();
128 AU.addPreserved<MachineLoopInfo>();
129 MachineFunctionPass::getAnalysisUsage(AU);
130 }
131
runOnMachineFunction(MachineFunction & MF)132 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
133 MRI = &MF.getRegInfo();
134 LV = getAnalysisIfAvailable<LiveVariables>();
135 LIS = getAnalysisIfAvailable<LiveIntervals>();
136
137 bool Changed = false;
138
139 // This pass takes the function out of SSA form.
140 MRI->leaveSSA();
141
142 // Split critical edges to help the coalescer. This does not yet support
143 // updating LiveIntervals, so we disable it.
144 if (!DisableEdgeSplitting && (LV || LIS)) {
145 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
146 for (auto &MBB : MF)
147 Changed |= SplitPHIEdges(MF, MBB, MLI);
148 }
149
150 // Populate VRegPHIUseCount
151 analyzePHINodes(MF);
152
153 // Eliminate PHI instructions by inserting copies into predecessor blocks.
154 for (auto &MBB : MF)
155 Changed |= EliminatePHINodes(MF, MBB);
156
157 // Remove dead IMPLICIT_DEF instructions.
158 for (MachineInstr *DefMI : ImpDefs) {
159 unsigned DefReg = DefMI->getOperand(0).getReg();
160 if (MRI->use_nodbg_empty(DefReg)) {
161 if (LIS)
162 LIS->RemoveMachineInstrFromMaps(DefMI);
163 DefMI->eraseFromParent();
164 }
165 }
166
167 // Clean up the lowered PHI instructions.
168 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
169 I != E; ++I) {
170 if (LIS)
171 LIS->RemoveMachineInstrFromMaps(I->first);
172 MF.DeleteMachineInstr(I->first);
173 }
174
175 LoweredPHIs.clear();
176 ImpDefs.clear();
177 VRegPHIUseCount.clear();
178
179 return Changed;
180 }
181
182 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
183 /// predecessor basic blocks.
184 ///
EliminatePHINodes(MachineFunction & MF,MachineBasicBlock & MBB)185 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
186 MachineBasicBlock &MBB) {
187 if (MBB.empty() || !MBB.front().isPHI())
188 return false; // Quick exit for basic blocks without PHIs.
189
190 // Get an iterator to the first instruction after the last PHI node (this may
191 // also be the end of the basic block).
192 MachineBasicBlock::iterator LastPHIIt =
193 std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
194
195 while (MBB.front().isPHI())
196 LowerPHINode(MBB, LastPHIIt);
197
198 return true;
199 }
200
201 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
202 /// This includes registers with no defs.
isImplicitlyDefined(unsigned VirtReg,const MachineRegisterInfo * MRI)203 static bool isImplicitlyDefined(unsigned VirtReg,
204 const MachineRegisterInfo *MRI) {
205 for (MachineInstr &DI : MRI->def_instructions(VirtReg))
206 if (!DI.isImplicitDef())
207 return false;
208 return true;
209 }
210
211 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
212 /// are implicit_def's.
isSourceDefinedByImplicitDef(const MachineInstr * MPhi,const MachineRegisterInfo * MRI)213 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
214 const MachineRegisterInfo *MRI) {
215 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
216 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
217 return false;
218 return true;
219 }
220
221
222 /// LowerPHINode - Lower the PHI node at the top of the specified block,
223 ///
LowerPHINode(MachineBasicBlock & MBB,MachineBasicBlock::iterator LastPHIIt)224 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
225 MachineBasicBlock::iterator LastPHIIt) {
226 ++NumLowered;
227
228 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
229
230 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
231 MachineInstr *MPhi = MBB.remove(MBB.begin());
232
233 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
234 unsigned DestReg = MPhi->getOperand(0).getReg();
235 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
236 bool isDead = MPhi->getOperand(0).isDead();
237
238 // Create a new register for the incoming PHI arguments.
239 MachineFunction &MF = *MBB.getParent();
240 unsigned IncomingReg = 0;
241 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
242
243 // Insert a register to register copy at the top of the current block (but
244 // after any remaining phi nodes) which copies the new incoming register
245 // into the phi node destination.
246 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
247 if (isSourceDefinedByImplicitDef(MPhi, MRI))
248 // If all sources of a PHI node are implicit_def, just emit an
249 // implicit_def instead of a copy.
250 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
251 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
252 else {
253 // Can we reuse an earlier PHI node? This only happens for critical edges,
254 // typically those created by tail duplication.
255 unsigned &entry = LoweredPHIs[MPhi];
256 if (entry) {
257 // An identical PHI node was already lowered. Reuse the incoming register.
258 IncomingReg = entry;
259 reusedIncoming = true;
260 ++NumReused;
261 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
262 } else {
263 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
264 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
265 }
266 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
267 TII->get(TargetOpcode::COPY), DestReg)
268 .addReg(IncomingReg);
269 }
270
271 // Update live variable information if there is any.
272 if (LV) {
273 MachineInstr *PHICopy = std::prev(AfterPHIsIt);
274
275 if (IncomingReg) {
276 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
277
278 // Increment use count of the newly created virtual register.
279 LV->setPHIJoin(IncomingReg);
280
281 // When we are reusing the incoming register, it may already have been
282 // killed in this block. The old kill will also have been inserted at
283 // AfterPHIsIt, so it appears before the current PHICopy.
284 if (reusedIncoming)
285 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
286 DEBUG(dbgs() << "Remove old kill from " << *OldKill);
287 LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
288 DEBUG(MBB.dump());
289 }
290
291 // Add information to LiveVariables to know that the incoming value is
292 // killed. Note that because the value is defined in several places (once
293 // each for each incoming block), the "def" block and instruction fields
294 // for the VarInfo is not filled in.
295 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
296 }
297
298 // Since we are going to be deleting the PHI node, if it is the last use of
299 // any registers, or if the value itself is dead, we need to move this
300 // information over to the new copy we just inserted.
301 LV->removeVirtualRegistersKilled(MPhi);
302
303 // If the result is dead, update LV.
304 if (isDead) {
305 LV->addVirtualRegisterDead(DestReg, PHICopy);
306 LV->removeVirtualRegisterDead(DestReg, MPhi);
307 }
308 }
309
310 // Update LiveIntervals for the new copy or implicit def.
311 if (LIS) {
312 MachineInstr *NewInstr = std::prev(AfterPHIsIt);
313 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
314
315 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
316 if (IncomingReg) {
317 // Add the region from the beginning of MBB to the copy instruction to
318 // IncomingReg's live interval.
319 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
320 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
321 if (!IncomingVNI)
322 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
323 LIS->getVNInfoAllocator());
324 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
325 DestCopyIndex.getRegSlot(),
326 IncomingVNI));
327 }
328
329 LiveInterval &DestLI = LIS->getInterval(DestReg);
330 assert(DestLI.begin() != DestLI.end() &&
331 "PHIs should have nonempty LiveIntervals.");
332 if (DestLI.endIndex().isDead()) {
333 // A dead PHI's live range begins and ends at the start of the MBB, but
334 // the lowered copy, which will still be dead, needs to begin and end at
335 // the copy instruction.
336 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
337 assert(OrigDestVNI && "PHI destination should be live at block entry.");
338 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
339 DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
340 LIS->getVNInfoAllocator());
341 DestLI.removeValNo(OrigDestVNI);
342 } else {
343 // Otherwise, remove the region from the beginning of MBB to the copy
344 // instruction from DestReg's live interval.
345 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
346 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
347 assert(DestVNI && "PHI destination should be live at its definition.");
348 DestVNI->def = DestCopyIndex.getRegSlot();
349 }
350 }
351
352 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
353 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
354 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
355 MPhi->getOperand(i).getReg())];
356
357 // Now loop over all of the incoming arguments, changing them to copy into the
358 // IncomingReg register in the corresponding predecessor basic block.
359 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
360 for (int i = NumSrcs - 1; i >= 0; --i) {
361 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
362 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
363 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
364 isImplicitlyDefined(SrcReg, MRI);
365 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
366 "Machine PHI Operands must all be virtual registers!");
367
368 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
369 // path the PHI.
370 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
371
372 // Check to make sure we haven't already emitted the copy for this block.
373 // This can happen because PHI nodes may have multiple entries for the same
374 // basic block.
375 if (!MBBsInsertedInto.insert(&opBlock).second)
376 continue; // If the copy has already been emitted, we're done.
377
378 // Find a safe location to insert the copy, this may be the first terminator
379 // in the block (or end()).
380 MachineBasicBlock::iterator InsertPos =
381 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
382
383 // Insert the copy.
384 MachineInstr *NewSrcInstr = nullptr;
385 if (!reusedIncoming && IncomingReg) {
386 if (SrcUndef) {
387 // The source register is undefined, so there is no need for a real
388 // COPY, but we still need to ensure joint dominance by defs.
389 // Insert an IMPLICIT_DEF instruction.
390 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
391 TII->get(TargetOpcode::IMPLICIT_DEF),
392 IncomingReg);
393
394 // Clean up the old implicit-def, if there even was one.
395 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
396 if (DefMI->isImplicitDef())
397 ImpDefs.insert(DefMI);
398 } else {
399 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
400 TII->get(TargetOpcode::COPY), IncomingReg)
401 .addReg(SrcReg, 0, SrcSubReg);
402 }
403 }
404
405 // We only need to update the LiveVariables kill of SrcReg if this was the
406 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
407 // out of the predecessor. We can also ignore undef sources.
408 if (LV && !SrcUndef &&
409 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
410 !LV->isLiveOut(SrcReg, opBlock)) {
411 // We want to be able to insert a kill of the register if this PHI (aka,
412 // the copy we just inserted) is the last use of the source value. Live
413 // variable analysis conservatively handles this by saying that the value
414 // is live until the end of the block the PHI entry lives in. If the value
415 // really is dead at the PHI copy, there will be no successor blocks which
416 // have the value live-in.
417
418 // Okay, if we now know that the value is not live out of the block, we
419 // can add a kill marker in this block saying that it kills the incoming
420 // value!
421
422 // In our final twist, we have to decide which instruction kills the
423 // register. In most cases this is the copy, however, terminator
424 // instructions at the end of the block may also use the value. In this
425 // case, we should mark the last such terminator as being the killing
426 // block, not the copy.
427 MachineBasicBlock::iterator KillInst = opBlock.end();
428 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
429 for (MachineBasicBlock::iterator Term = FirstTerm;
430 Term != opBlock.end(); ++Term) {
431 if (Term->readsRegister(SrcReg))
432 KillInst = Term;
433 }
434
435 if (KillInst == opBlock.end()) {
436 // No terminator uses the register.
437
438 if (reusedIncoming || !IncomingReg) {
439 // We may have to rewind a bit if we didn't insert a copy this time.
440 KillInst = FirstTerm;
441 while (KillInst != opBlock.begin()) {
442 --KillInst;
443 if (KillInst->isDebugValue())
444 continue;
445 if (KillInst->readsRegister(SrcReg))
446 break;
447 }
448 } else {
449 // We just inserted this copy.
450 KillInst = std::prev(InsertPos);
451 }
452 }
453 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
454
455 // Finally, mark it killed.
456 LV->addVirtualRegisterKilled(SrcReg, KillInst);
457
458 // This vreg no longer lives all of the way through opBlock.
459 unsigned opBlockNum = opBlock.getNumber();
460 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
461 }
462
463 if (LIS) {
464 if (NewSrcInstr) {
465 LIS->InsertMachineInstrInMaps(NewSrcInstr);
466 LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
467 }
468
469 if (!SrcUndef &&
470 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
471 LiveInterval &SrcLI = LIS->getInterval(SrcReg);
472
473 bool isLiveOut = false;
474 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
475 SE = opBlock.succ_end(); SI != SE; ++SI) {
476 SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
477 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
478
479 // Definitions by other PHIs are not truly live-in for our purposes.
480 if (VNI && VNI->def != startIdx) {
481 isLiveOut = true;
482 break;
483 }
484 }
485
486 if (!isLiveOut) {
487 MachineBasicBlock::iterator KillInst = opBlock.end();
488 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
489 for (MachineBasicBlock::iterator Term = FirstTerm;
490 Term != opBlock.end(); ++Term) {
491 if (Term->readsRegister(SrcReg))
492 KillInst = Term;
493 }
494
495 if (KillInst == opBlock.end()) {
496 // No terminator uses the register.
497
498 if (reusedIncoming || !IncomingReg) {
499 // We may have to rewind a bit if we didn't just insert a copy.
500 KillInst = FirstTerm;
501 while (KillInst != opBlock.begin()) {
502 --KillInst;
503 if (KillInst->isDebugValue())
504 continue;
505 if (KillInst->readsRegister(SrcReg))
506 break;
507 }
508 } else {
509 // We just inserted this copy.
510 KillInst = std::prev(InsertPos);
511 }
512 }
513 assert(KillInst->readsRegister(SrcReg) &&
514 "Cannot find kill instruction");
515
516 SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
517 SrcLI.removeSegment(LastUseIndex.getRegSlot(),
518 LIS->getMBBEndIdx(&opBlock));
519 }
520 }
521 }
522 }
523
524 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
525 if (reusedIncoming || !IncomingReg) {
526 if (LIS)
527 LIS->RemoveMachineInstrFromMaps(MPhi);
528 MF.DeleteMachineInstr(MPhi);
529 }
530 }
531
532 /// analyzePHINodes - Gather information about the PHI nodes in here. In
533 /// particular, we want to map the number of uses of a virtual register which is
534 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
535 /// used later to determine when the vreg is killed in the BB.
536 ///
analyzePHINodes(const MachineFunction & MF)537 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
538 for (const auto &MBB : MF)
539 for (const auto &BBI : MBB) {
540 if (!BBI.isPHI())
541 break;
542 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
543 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
544 BBI.getOperand(i).getReg())];
545 }
546 }
547
SplitPHIEdges(MachineFunction & MF,MachineBasicBlock & MBB,MachineLoopInfo * MLI)548 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
549 MachineBasicBlock &MBB,
550 MachineLoopInfo *MLI) {
551 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
552 return false; // Quick exit for basic blocks without PHIs.
553
554 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
555 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
556
557 bool Changed = false;
558 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
559 BBI != BBE && BBI->isPHI(); ++BBI) {
560 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
561 unsigned Reg = BBI->getOperand(i).getReg();
562 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
563 // Is there a critical edge from PreMBB to MBB?
564 if (PreMBB->succ_size() == 1)
565 continue;
566
567 // Avoid splitting backedges of loops. It would introduce small
568 // out-of-line blocks into the loop which is very bad for code placement.
569 if (PreMBB == &MBB && !SplitAllCriticalEdges)
570 continue;
571 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
572 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
573 continue;
574
575 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
576 // when the source register is live-out for some other reason than a phi
577 // use. That means the copy we will insert in PreMBB won't be a kill, and
578 // there is a risk it may not be coalesced away.
579 //
580 // If the copy would be a kill, there is no need to split the edge.
581 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
582 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
583 continue;
584 if (ShouldSplit) {
585 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
586 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
587 << ": " << *BBI);
588 }
589
590 // If Reg is not live-in to MBB, it means it must be live-in to some
591 // other PreMBB successor, and we can avoid the interference by splitting
592 // the edge.
593 //
594 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
595 // is likely to be left after coalescing. If we are looking at a loop
596 // exiting edge, split it so we won't insert code in the loop, otherwise
597 // don't bother.
598 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
599
600 // Check for a loop exiting edge.
601 if (!ShouldSplit && CurLoop != PreLoop) {
602 DEBUG({
603 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
604 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
605 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
606 });
607 // This edge could be entering a loop, exiting a loop, or it could be
608 // both: Jumping directly form one loop to the header of a sibling
609 // loop.
610 // Split unless this edge is entering CurLoop from an outer loop.
611 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
612 }
613 if (!ShouldSplit && !SplitAllCriticalEdges)
614 continue;
615 if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
616 DEBUG(dbgs() << "Failed to split critical edge.\n");
617 continue;
618 }
619 Changed = true;
620 ++NumCriticalEdgesSplit;
621 }
622 }
623 return Changed;
624 }
625
isLiveIn(unsigned Reg,const MachineBasicBlock * MBB)626 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
627 assert((LV || LIS) &&
628 "isLiveIn() requires either LiveVariables or LiveIntervals");
629 if (LIS)
630 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
631 else
632 return LV->isLiveIn(Reg, *MBB);
633 }
634
isLiveOutPastPHIs(unsigned Reg,const MachineBasicBlock * MBB)635 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
636 const MachineBasicBlock *MBB) {
637 assert((LV || LIS) &&
638 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
639 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
640 // so that a register used only in a PHI is not live out of the block. In
641 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
642 // in the predecessor basic block, so that a register used only in a PHI is live
643 // out of the block.
644 if (LIS) {
645 const LiveInterval &LI = LIS->getInterval(Reg);
646 for (const MachineBasicBlock *SI : MBB->successors())
647 if (LI.liveAt(LIS->getMBBStartIdx(SI)))
648 return true;
649 return false;
650 } else {
651 return LV->isLiveOut(Reg, *MBB);
652 }
653 }
654