1 //===- PHITransAddr.h - PHI Translation for Addresses -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the PHITransAddr class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_PHITRANSADDR_H
15 #define LLVM_ANALYSIS_PHITRANSADDR_H
16 
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/IR/Instruction.h"
19 
20 namespace llvm {
21   class AssumptionCache;
22   class DominatorTree;
23   class DataLayout;
24   class TargetLibraryInfo;
25 
26 /// PHITransAddr - An address value which tracks and handles phi translation.
27 /// As we walk "up" the CFG through predecessors, we need to ensure that the
28 /// address we're tracking is kept up to date.  For example, if we're analyzing
29 /// an address of "&A[i]" and walk through the definition of 'i' which is a PHI
30 /// node, we *must* phi translate i to get "&A[j]" or else we will analyze an
31 /// incorrect pointer in the predecessor block.
32 ///
33 /// This is designed to be a relatively small object that lives on the stack and
34 /// is copyable.
35 ///
36 class PHITransAddr {
37   /// Addr - The actual address we're analyzing.
38   Value *Addr;
39 
40   /// The DataLayout we are playing with.
41   const DataLayout &DL;
42 
43   /// TLI - The target library info if known, otherwise null.
44   const TargetLibraryInfo *TLI;
45 
46   /// A cache of @llvm.assume calls used by SimplifyInstruction.
47   AssumptionCache *AC;
48 
49   /// InstInputs - The inputs for our symbolic address.
50   SmallVector<Instruction*, 4> InstInputs;
51 
52 public:
PHITransAddr(Value * addr,const DataLayout & DL,AssumptionCache * AC)53   PHITransAddr(Value *addr, const DataLayout &DL, AssumptionCache *AC)
54       : Addr(addr), DL(DL), TLI(nullptr), AC(AC) {
55     // If the address is an instruction, the whole thing is considered an input.
56     if (Instruction *I = dyn_cast<Instruction>(Addr))
57       InstInputs.push_back(I);
58   }
59 
getAddr()60   Value *getAddr() const { return Addr; }
61 
62   /// NeedsPHITranslationFromBlock - Return true if moving from the specified
63   /// BasicBlock to its predecessors requires PHI translation.
NeedsPHITranslationFromBlock(BasicBlock * BB)64   bool NeedsPHITranslationFromBlock(BasicBlock *BB) const {
65     // We do need translation if one of our input instructions is defined in
66     // this block.
67     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
68       if (InstInputs[i]->getParent() == BB)
69         return true;
70     return false;
71   }
72 
73   /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
74   /// if we have some hope of doing it.  This should be used as a filter to
75   /// avoid calling PHITranslateValue in hopeless situations.
76   bool IsPotentiallyPHITranslatable() const;
77 
78   /// PHITranslateValue - PHI translate the current address up the CFG from
79   /// CurBB to Pred, updating our state to reflect any needed changes.  If
80   /// 'MustDominate' is true, the translated value must dominate
81   /// PredBB.  This returns true on failure and sets Addr to null.
82   bool PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
83                          const DominatorTree *DT, bool MustDominate);
84 
85   /// PHITranslateWithInsertion - PHI translate this value into the specified
86   /// predecessor block, inserting a computation of the value if it is
87   /// unavailable.
88   ///
89   /// All newly created instructions are added to the NewInsts list.  This
90   /// returns null on failure.
91   ///
92   Value *PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
93                                    const DominatorTree &DT,
94                                    SmallVectorImpl<Instruction *> &NewInsts);
95 
96   void dump() const;
97 
98   /// Verify - Check internal consistency of this data structure.  If the
99   /// structure is valid, it returns true.  If invalid, it prints errors and
100   /// returns false.
101   bool Verify() const;
102 
103 private:
104   Value *PHITranslateSubExpr(Value *V, BasicBlock *CurBB, BasicBlock *PredBB,
105                              const DominatorTree *DT);
106 
107   /// InsertPHITranslatedSubExpr - Insert a computation of the PHI translated
108   /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
109   /// block.  All newly created instructions are added to the NewInsts list.
110   /// This returns null on failure.
111   ///
112   Value *InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
113                                     BasicBlock *PredBB, const DominatorTree &DT,
114                                     SmallVectorImpl<Instruction *> &NewInsts);
115 
116   /// AddAsInput - If the specified value is an instruction, add it as an input.
AddAsInput(Value * V)117   Value *AddAsInput(Value *V) {
118     // If V is an instruction, it is now an input.
119     if (Instruction *VI = dyn_cast<Instruction>(V))
120       InstInputs.push_back(VI);
121     return V;
122   }
123 };
124 
125 } // end namespace llvm
126 
127 #endif
128