1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/IR/Use.h"
19 #include "llvm/Support/CBindingWrapping.h"
20 #include "llvm/Support/Casting.h"
21 #include "llvm/Support/Compiler.h"
22
23 namespace llvm {
24
25 class APInt;
26 class Argument;
27 class AssemblyAnnotationWriter;
28 class BasicBlock;
29 class Constant;
30 class DataLayout;
31 class Function;
32 class GlobalAlias;
33 class GlobalObject;
34 class GlobalValue;
35 class GlobalVariable;
36 class InlineAsm;
37 class Instruction;
38 class LLVMContext;
39 class Module;
40 class ModuleSlotTracker;
41 class StringRef;
42 class Twine;
43 class Type;
44 class ValueHandleBase;
45 class ValueSymbolTable;
46 class raw_ostream;
47
48 template<typename ValueTy> class StringMapEntry;
49 typedef StringMapEntry<Value*> ValueName;
50
51 //===----------------------------------------------------------------------===//
52 // Value Class
53 //===----------------------------------------------------------------------===//
54
55 /// \brief LLVM Value Representation
56 ///
57 /// This is a very important LLVM class. It is the base class of all values
58 /// computed by a program that may be used as operands to other values. Value is
59 /// the super class of other important classes such as Instruction and Function.
60 /// All Values have a Type. Type is not a subclass of Value. Some values can
61 /// have a name and they belong to some Module. Setting the name on the Value
62 /// automatically updates the module's symbol table.
63 ///
64 /// Every value has a "use list" that keeps track of which other Values are
65 /// using this Value. A Value can also have an arbitrary number of ValueHandle
66 /// objects that watch it and listen to RAUW and Destroy events. See
67 /// llvm/IR/ValueHandle.h for details.
68 class Value {
69 Type *VTy;
70 Use *UseList;
71
72 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
73 friend class ValueHandleBase;
74
75 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
76 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
77 protected:
78 /// \brief Hold subclass data that can be dropped.
79 ///
80 /// This member is similar to SubclassData, however it is for holding
81 /// information which may be used to aid optimization, but which may be
82 /// cleared to zero without affecting conservative interpretation.
83 unsigned char SubclassOptionalData : 7;
84
85 private:
86 /// \brief Hold arbitrary subclass data.
87 ///
88 /// This member is defined by this class, but is not used for anything.
89 /// Subclasses can use it to hold whatever state they find useful. This
90 /// field is initialized to zero by the ctor.
91 unsigned short SubclassData;
92
93 protected:
94 /// \brief The number of operands in the subclass.
95 ///
96 /// This member is defined by this class, but not used for anything.
97 /// Subclasses can use it to store their number of operands, if they have
98 /// any.
99 ///
100 /// This is stored here to save space in User on 64-bit hosts. Since most
101 /// instances of Value have operands, 32-bit hosts aren't significantly
102 /// affected.
103 ///
104 /// Note, this should *NOT* be used directly by any class other than User.
105 /// User uses this value to find the Use list.
106 enum : unsigned { NumUserOperandsBits = 28 };
107 unsigned NumUserOperands : NumUserOperandsBits;
108
109 bool IsUsedByMD : 1;
110 bool HasName : 1;
111 bool HasHungOffUses : 1;
112 bool HasDescriptor : 1;
113
114 private:
115 template <typename UseT> // UseT == 'Use' or 'const Use'
116 class use_iterator_impl
117 : public std::iterator<std::forward_iterator_tag, UseT *> {
118 UseT *U;
use_iterator_impl(UseT * u)119 explicit use_iterator_impl(UseT *u) : U(u) {}
120 friend class Value;
121
122 public:
use_iterator_impl()123 use_iterator_impl() : U() {}
124
125 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
126 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
127
128 use_iterator_impl &operator++() { // Preincrement
129 assert(U && "Cannot increment end iterator!");
130 U = U->getNext();
131 return *this;
132 }
133 use_iterator_impl operator++(int) { // Postincrement
134 auto tmp = *this;
135 ++*this;
136 return tmp;
137 }
138
139 UseT &operator*() const {
140 assert(U && "Cannot dereference end iterator!");
141 return *U;
142 }
143
144 UseT *operator->() const { return &operator*(); }
145
146 operator use_iterator_impl<const UseT>() const {
147 return use_iterator_impl<const UseT>(U);
148 }
149 };
150
151 template <typename UserTy> // UserTy == 'User' or 'const User'
152 class user_iterator_impl
153 : public std::iterator<std::forward_iterator_tag, UserTy *> {
154 use_iterator_impl<Use> UI;
user_iterator_impl(Use * U)155 explicit user_iterator_impl(Use *U) : UI(U) {}
156 friend class Value;
157
158 public:
user_iterator_impl()159 user_iterator_impl() {}
160
161 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
162 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
163
164 /// \brief Returns true if this iterator is equal to user_end() on the value.
atEnd()165 bool atEnd() const { return *this == user_iterator_impl(); }
166
167 user_iterator_impl &operator++() { // Preincrement
168 ++UI;
169 return *this;
170 }
171 user_iterator_impl operator++(int) { // Postincrement
172 auto tmp = *this;
173 ++*this;
174 return tmp;
175 }
176
177 // Retrieve a pointer to the current User.
178 UserTy *operator*() const {
179 return UI->getUser();
180 }
181
182 UserTy *operator->() const { return operator*(); }
183
184 operator user_iterator_impl<const UserTy>() const {
185 return user_iterator_impl<const UserTy>(*UI);
186 }
187
getUse()188 Use &getUse() const { return *UI; }
189 };
190
191 void operator=(const Value &) = delete;
192 Value(const Value &) = delete;
193
194 protected:
195 Value(Type *Ty, unsigned scid);
196 public:
197 virtual ~Value();
198
199 /// \brief Support for debugging, callable in GDB: V->dump()
200 void dump() const;
201
202 /// \brief Implement operator<< on Value.
203 /// @{
204 void print(raw_ostream &O, bool IsForDebug = false) const;
205 void print(raw_ostream &O, ModuleSlotTracker &MST,
206 bool IsForDebug = false) const;
207 /// @}
208
209 /// \brief Print the name of this Value out to the specified raw_ostream.
210 ///
211 /// This is useful when you just want to print 'int %reg126', not the
212 /// instruction that generated it. If you specify a Module for context, then
213 /// even constanst get pretty-printed; for example, the type of a null
214 /// pointer is printed symbolically.
215 /// @{
216 void printAsOperand(raw_ostream &O, bool PrintType = true,
217 const Module *M = nullptr) const;
218 void printAsOperand(raw_ostream &O, bool PrintType,
219 ModuleSlotTracker &MST) const;
220 /// @}
221
222 /// \brief All values are typed, get the type of this value.
getType()223 Type *getType() const { return VTy; }
224
225 /// \brief All values hold a context through their type.
226 LLVMContext &getContext() const;
227
228 // \brief All values can potentially be named.
hasName()229 bool hasName() const { return HasName; }
230 ValueName *getValueName() const;
231 void setValueName(ValueName *VN);
232
233 private:
234 void destroyValueName();
235 void setNameImpl(const Twine &Name);
236
237 public:
238 /// \brief Return a constant reference to the value's name.
239 ///
240 /// This is cheap and guaranteed to return the same reference as long as the
241 /// value is not modified.
242 StringRef getName() const;
243
244 /// \brief Change the name of the value.
245 ///
246 /// Choose a new unique name if the provided name is taken.
247 ///
248 /// \param Name The new name; or "" if the value's name should be removed.
249 void setName(const Twine &Name);
250
251
252 /// \brief Transfer the name from V to this value.
253 ///
254 /// After taking V's name, sets V's name to empty.
255 ///
256 /// \note It is an error to call V->takeName(V).
257 void takeName(Value *V);
258
259 /// \brief Change all uses of this to point to a new Value.
260 ///
261 /// Go through the uses list for this definition and make each use point to
262 /// "V" instead of "this". After this completes, 'this's use list is
263 /// guaranteed to be empty.
264 void replaceAllUsesWith(Value *V);
265
266 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
267 /// make each use point to "V" instead of "this" when the use is outside the
268 /// block. 'This's use list is expected to have at least one element.
269 /// Unlike replaceAllUsesWith this function does not support basic block
270 /// values or constant users.
271 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
272
273 //----------------------------------------------------------------------
274 // Methods for handling the chain of uses of this Value.
275 //
276 // Materializing a function can introduce new uses, so these methods come in
277 // two variants:
278 // The methods that start with materialized_ check the uses that are
279 // currently known given which functions are materialized. Be very careful
280 // when using them since you might not get all uses.
281 // The methods that don't start with materialized_ assert that modules is
282 // fully materialized.
283 #ifdef NDEBUG
assertModuleIsMaterialized()284 void assertModuleIsMaterialized() const {}
285 #else
286 void assertModuleIsMaterialized() const;
287 #endif
288
use_empty()289 bool use_empty() const {
290 assertModuleIsMaterialized();
291 return UseList == nullptr;
292 }
293
294 typedef use_iterator_impl<Use> use_iterator;
295 typedef use_iterator_impl<const Use> const_use_iterator;
materialized_use_begin()296 use_iterator materialized_use_begin() { return use_iterator(UseList); }
materialized_use_begin()297 const_use_iterator materialized_use_begin() const {
298 return const_use_iterator(UseList);
299 }
use_begin()300 use_iterator use_begin() {
301 assertModuleIsMaterialized();
302 return materialized_use_begin();
303 }
use_begin()304 const_use_iterator use_begin() const {
305 assertModuleIsMaterialized();
306 return materialized_use_begin();
307 }
use_end()308 use_iterator use_end() { return use_iterator(); }
use_end()309 const_use_iterator use_end() const { return const_use_iterator(); }
materialized_uses()310 iterator_range<use_iterator> materialized_uses() {
311 return make_range(materialized_use_begin(), use_end());
312 }
materialized_uses()313 iterator_range<const_use_iterator> materialized_uses() const {
314 return make_range(materialized_use_begin(), use_end());
315 }
uses()316 iterator_range<use_iterator> uses() {
317 assertModuleIsMaterialized();
318 return materialized_uses();
319 }
uses()320 iterator_range<const_use_iterator> uses() const {
321 assertModuleIsMaterialized();
322 return materialized_uses();
323 }
324
user_empty()325 bool user_empty() const {
326 assertModuleIsMaterialized();
327 return UseList == nullptr;
328 }
329
330 typedef user_iterator_impl<User> user_iterator;
331 typedef user_iterator_impl<const User> const_user_iterator;
materialized_user_begin()332 user_iterator materialized_user_begin() { return user_iterator(UseList); }
materialized_user_begin()333 const_user_iterator materialized_user_begin() const {
334 return const_user_iterator(UseList);
335 }
user_begin()336 user_iterator user_begin() {
337 assertModuleIsMaterialized();
338 return materialized_user_begin();
339 }
user_begin()340 const_user_iterator user_begin() const {
341 assertModuleIsMaterialized();
342 return materialized_user_begin();
343 }
user_end()344 user_iterator user_end() { return user_iterator(); }
user_end()345 const_user_iterator user_end() const { return const_user_iterator(); }
user_back()346 User *user_back() {
347 assertModuleIsMaterialized();
348 return *materialized_user_begin();
349 }
user_back()350 const User *user_back() const {
351 assertModuleIsMaterialized();
352 return *materialized_user_begin();
353 }
users()354 iterator_range<user_iterator> users() {
355 assertModuleIsMaterialized();
356 return make_range(materialized_user_begin(), user_end());
357 }
users()358 iterator_range<const_user_iterator> users() const {
359 assertModuleIsMaterialized();
360 return make_range(materialized_user_begin(), user_end());
361 }
362
363 /// \brief Return true if there is exactly one user of this value.
364 ///
365 /// This is specialized because it is a common request and does not require
366 /// traversing the whole use list.
hasOneUse()367 bool hasOneUse() const {
368 const_use_iterator I = use_begin(), E = use_end();
369 if (I == E) return false;
370 return ++I == E;
371 }
372
373 /// \brief Return true if this Value has exactly N users.
374 bool hasNUses(unsigned N) const;
375
376 /// \brief Return true if this value has N users or more.
377 ///
378 /// This is logically equivalent to getNumUses() >= N.
379 bool hasNUsesOrMore(unsigned N) const;
380
381 /// \brief Check if this value is used in the specified basic block.
382 bool isUsedInBasicBlock(const BasicBlock *BB) const;
383
384 /// \brief This method computes the number of uses of this Value.
385 ///
386 /// This is a linear time operation. Use hasOneUse, hasNUses, or
387 /// hasNUsesOrMore to check for specific values.
388 unsigned getNumUses() const;
389
390 /// \brief This method should only be used by the Use class.
addUse(Use & U)391 void addUse(Use &U) { U.addToList(&UseList); }
392
393 /// \brief Concrete subclass of this.
394 ///
395 /// An enumeration for keeping track of the concrete subclass of Value that
396 /// is actually instantiated. Values of this enumeration are kept in the
397 /// Value classes SubclassID field. They are used for concrete type
398 /// identification.
399 enum ValueTy {
400 #define HANDLE_VALUE(Name) Name##Val,
401 #include "llvm/IR/Value.def"
402
403 // Markers:
404 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
405 #include "llvm/IR/Value.def"
406 };
407
408 /// \brief Return an ID for the concrete type of this object.
409 ///
410 /// This is used to implement the classof checks. This should not be used
411 /// for any other purpose, as the values may change as LLVM evolves. Also,
412 /// note that for instructions, the Instruction's opcode is added to
413 /// InstructionVal. So this means three things:
414 /// # there is no value with code InstructionVal (no opcode==0).
415 /// # there are more possible values for the value type than in ValueTy enum.
416 /// # the InstructionVal enumerator must be the highest valued enumerator in
417 /// the ValueTy enum.
getValueID()418 unsigned getValueID() const {
419 return SubclassID;
420 }
421
422 /// \brief Return the raw optional flags value contained in this value.
423 ///
424 /// This should only be used when testing two Values for equivalence.
getRawSubclassOptionalData()425 unsigned getRawSubclassOptionalData() const {
426 return SubclassOptionalData;
427 }
428
429 /// \brief Clear the optional flags contained in this value.
clearSubclassOptionalData()430 void clearSubclassOptionalData() {
431 SubclassOptionalData = 0;
432 }
433
434 /// \brief Check the optional flags for equality.
hasSameSubclassOptionalData(const Value * V)435 bool hasSameSubclassOptionalData(const Value *V) const {
436 return SubclassOptionalData == V->SubclassOptionalData;
437 }
438
439 /// \brief Clear any optional flags not set in the given Value.
intersectOptionalDataWith(const Value * V)440 void intersectOptionalDataWith(const Value *V) {
441 SubclassOptionalData &= V->SubclassOptionalData;
442 }
443
444 /// \brief Return true if there is a value handle associated with this value.
hasValueHandle()445 bool hasValueHandle() const { return HasValueHandle; }
446
447 /// \brief Return true if there is metadata referencing this value.
isUsedByMetadata()448 bool isUsedByMetadata() const { return IsUsedByMD; }
449
450 /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
451 ///
452 /// Returns the original uncasted value. If this is called on a non-pointer
453 /// value, it returns 'this'.
454 Value *stripPointerCasts();
stripPointerCasts()455 const Value *stripPointerCasts() const {
456 return const_cast<Value*>(this)->stripPointerCasts();
457 }
458
459 /// \brief Strip off pointer casts and all-zero GEPs.
460 ///
461 /// Returns the original uncasted value. If this is called on a non-pointer
462 /// value, it returns 'this'.
463 Value *stripPointerCastsNoFollowAliases();
stripPointerCastsNoFollowAliases()464 const Value *stripPointerCastsNoFollowAliases() const {
465 return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
466 }
467
468 /// \brief Strip off pointer casts and all-constant inbounds GEPs.
469 ///
470 /// Returns the original pointer value. If this is called on a non-pointer
471 /// value, it returns 'this'.
472 Value *stripInBoundsConstantOffsets();
stripInBoundsConstantOffsets()473 const Value *stripInBoundsConstantOffsets() const {
474 return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
475 }
476
477 /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
478 ///
479 /// Stores the resulting constant offset stripped into the APInt provided.
480 /// The provided APInt will be extended or truncated as needed to be the
481 /// correct bitwidth for an offset of this pointer type.
482 ///
483 /// If this is called on a non-pointer value, it returns 'this'.
484 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
485 APInt &Offset);
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)486 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
487 APInt &Offset) const {
488 return const_cast<Value *>(this)
489 ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
490 }
491
492 /// \brief Strip off pointer casts and inbounds GEPs.
493 ///
494 /// Returns the original pointer value. If this is called on a non-pointer
495 /// value, it returns 'this'.
496 Value *stripInBoundsOffsets();
stripInBoundsOffsets()497 const Value *stripInBoundsOffsets() const {
498 return const_cast<Value*>(this)->stripInBoundsOffsets();
499 }
500
501 /// \brief Translate PHI node to its predecessor from the given basic block.
502 ///
503 /// If this value is a PHI node with CurBB as its parent, return the value in
504 /// the PHI node corresponding to PredBB. If not, return ourself. This is
505 /// useful if you want to know the value something has in a predecessor
506 /// block.
507 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
508
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)509 const Value *DoPHITranslation(const BasicBlock *CurBB,
510 const BasicBlock *PredBB) const{
511 return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
512 }
513
514 /// \brief The maximum alignment for instructions.
515 ///
516 /// This is the greatest alignment value supported by load, store, and alloca
517 /// instructions, and global values.
518 static const unsigned MaxAlignmentExponent = 29;
519 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
520
521 /// \brief Mutate the type of this Value to be of the specified type.
522 ///
523 /// Note that this is an extremely dangerous operation which can create
524 /// completely invalid IR very easily. It is strongly recommended that you
525 /// recreate IR objects with the right types instead of mutating them in
526 /// place.
mutateType(Type * Ty)527 void mutateType(Type *Ty) {
528 VTy = Ty;
529 }
530
531 /// \brief Sort the use-list.
532 ///
533 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
534 /// expected to compare two \a Use references.
535 template <class Compare> void sortUseList(Compare Cmp);
536
537 /// \brief Reverse the use-list.
538 void reverseUseList();
539
540 private:
541 /// \brief Merge two lists together.
542 ///
543 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
544 /// "equal" items from L before items from R.
545 ///
546 /// \return the first element in the list.
547 ///
548 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
549 template <class Compare>
mergeUseLists(Use * L,Use * R,Compare Cmp)550 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
551 Use *Merged;
552 Use **Next = &Merged;
553
554 for (;;) {
555 if (!L) {
556 *Next = R;
557 break;
558 }
559 if (!R) {
560 *Next = L;
561 break;
562 }
563 if (Cmp(*R, *L)) {
564 *Next = R;
565 Next = &R->Next;
566 R = R->Next;
567 } else {
568 *Next = L;
569 Next = &L->Next;
570 L = L->Next;
571 }
572 }
573
574 return Merged;
575 }
576
577 /// \brief Tail-recursive helper for \a mergeUseLists().
578 ///
579 /// \param[out] Next the first element in the list.
580 template <class Compare>
581 static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
582
583 protected:
getSubclassDataFromValue()584 unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)585 void setValueSubclassData(unsigned short D) { SubclassData = D; }
586 };
587
588 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
589 V.print(OS);
590 return OS;
591 }
592
set(Value * V)593 void Use::set(Value *V) {
594 if (Val) removeFromList();
595 Val = V;
596 if (V) V->addUse(*this);
597 }
598
sortUseList(Compare Cmp)599 template <class Compare> void Value::sortUseList(Compare Cmp) {
600 if (!UseList || !UseList->Next)
601 // No need to sort 0 or 1 uses.
602 return;
603
604 // Note: this function completely ignores Prev pointers until the end when
605 // they're fixed en masse.
606
607 // Create a binomial vector of sorted lists, visiting uses one at a time and
608 // merging lists as necessary.
609 const unsigned MaxSlots = 32;
610 Use *Slots[MaxSlots];
611
612 // Collect the first use, turning it into a single-item list.
613 Use *Next = UseList->Next;
614 UseList->Next = nullptr;
615 unsigned NumSlots = 1;
616 Slots[0] = UseList;
617
618 // Collect all but the last use.
619 while (Next->Next) {
620 Use *Current = Next;
621 Next = Current->Next;
622
623 // Turn Current into a single-item list.
624 Current->Next = nullptr;
625
626 // Save Current in the first available slot, merging on collisions.
627 unsigned I;
628 for (I = 0; I < NumSlots; ++I) {
629 if (!Slots[I])
630 break;
631
632 // Merge two lists, doubling the size of Current and emptying slot I.
633 //
634 // Since the uses in Slots[I] originally preceded those in Current, send
635 // Slots[I] in as the left parameter to maintain a stable sort.
636 Current = mergeUseLists(Slots[I], Current, Cmp);
637 Slots[I] = nullptr;
638 }
639 // Check if this is a new slot.
640 if (I == NumSlots) {
641 ++NumSlots;
642 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
643 }
644
645 // Found an open slot.
646 Slots[I] = Current;
647 }
648
649 // Merge all the lists together.
650 assert(Next && "Expected one more Use");
651 assert(!Next->Next && "Expected only one Use");
652 UseList = Next;
653 for (unsigned I = 0; I < NumSlots; ++I)
654 if (Slots[I])
655 // Since the uses in Slots[I] originally preceded those in UseList, send
656 // Slots[I] in as the left parameter to maintain a stable sort.
657 UseList = mergeUseLists(Slots[I], UseList, Cmp);
658
659 // Fix the Prev pointers.
660 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
661 I->setPrev(Prev);
662 Prev = &I->Next;
663 }
664 }
665
666 // isa - Provide some specializations of isa so that we don't have to include
667 // the subtype header files to test to see if the value is a subclass...
668 //
669 template <> struct isa_impl<Constant, Value> {
670 static inline bool doit(const Value &Val) {
671 return Val.getValueID() >= Value::ConstantFirstVal &&
672 Val.getValueID() <= Value::ConstantLastVal;
673 }
674 };
675
676 template <> struct isa_impl<Argument, Value> {
677 static inline bool doit (const Value &Val) {
678 return Val.getValueID() == Value::ArgumentVal;
679 }
680 };
681
682 template <> struct isa_impl<InlineAsm, Value> {
683 static inline bool doit(const Value &Val) {
684 return Val.getValueID() == Value::InlineAsmVal;
685 }
686 };
687
688 template <> struct isa_impl<Instruction, Value> {
689 static inline bool doit(const Value &Val) {
690 return Val.getValueID() >= Value::InstructionVal;
691 }
692 };
693
694 template <> struct isa_impl<BasicBlock, Value> {
695 static inline bool doit(const Value &Val) {
696 return Val.getValueID() == Value::BasicBlockVal;
697 }
698 };
699
700 template <> struct isa_impl<Function, Value> {
701 static inline bool doit(const Value &Val) {
702 return Val.getValueID() == Value::FunctionVal;
703 }
704 };
705
706 template <> struct isa_impl<GlobalVariable, Value> {
707 static inline bool doit(const Value &Val) {
708 return Val.getValueID() == Value::GlobalVariableVal;
709 }
710 };
711
712 template <> struct isa_impl<GlobalAlias, Value> {
713 static inline bool doit(const Value &Val) {
714 return Val.getValueID() == Value::GlobalAliasVal;
715 }
716 };
717
718 template <> struct isa_impl<GlobalValue, Value> {
719 static inline bool doit(const Value &Val) {
720 return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val);
721 }
722 };
723
724 template <> struct isa_impl<GlobalObject, Value> {
725 static inline bool doit(const Value &Val) {
726 return isa<GlobalVariable>(Val) || isa<Function>(Val);
727 }
728 };
729
730 // Value* is only 4-byte aligned.
731 template<>
732 class PointerLikeTypeTraits<Value*> {
733 typedef Value* PT;
734 public:
735 static inline void *getAsVoidPointer(PT P) { return P; }
736 static inline PT getFromVoidPointer(void *P) {
737 return static_cast<PT>(P);
738 }
739 enum { NumLowBitsAvailable = 2 };
740 };
741
742 // Create wrappers for C Binding types (see CBindingWrapping.h).
743 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
744
745 /* Specialized opaque value conversions.
746 */
747 inline Value **unwrap(LLVMValueRef *Vals) {
748 return reinterpret_cast<Value**>(Vals);
749 }
750
751 template<typename T>
752 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
753 #ifdef DEBUG
754 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
755 cast<T>(*I);
756 #endif
757 (void)Length;
758 return reinterpret_cast<T**>(Vals);
759 }
760
761 inline LLVMValueRef *wrap(const Value **Vals) {
762 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
763 }
764
765 } // End llvm namespace
766
767 #endif
768