1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the target machine instruction set to the code generator. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H 15 #define LLVM_TARGET_TARGETINSTRINFO_H 16 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/CodeGen/MachineCombinerPattern.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/MC/MCInstrInfo.h" 22 #include "llvm/Support/BranchProbability.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 25 namespace llvm { 26 27 class InstrItineraryData; 28 class LiveVariables; 29 class MCAsmInfo; 30 class MachineMemOperand; 31 class MachineRegisterInfo; 32 class MDNode; 33 class MCInst; 34 struct MCSchedModel; 35 class MCSymbolRefExpr; 36 class SDNode; 37 class ScheduleHazardRecognizer; 38 class SelectionDAG; 39 class ScheduleDAG; 40 class TargetRegisterClass; 41 class TargetRegisterInfo; 42 class TargetSubtargetInfo; 43 class TargetSchedModel; 44 class DFAPacketizer; 45 46 template<class T> class SmallVectorImpl; 47 48 49 //--------------------------------------------------------------------------- 50 /// 51 /// TargetInstrInfo - Interface to description of machine instruction set 52 /// 53 class TargetInstrInfo : public MCInstrInfo { 54 TargetInstrInfo(const TargetInstrInfo &) = delete; 55 void operator=(const TargetInstrInfo &) = delete; 56 public: 57 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, 58 unsigned CatchRetOpcode = ~0u) CallFrameSetupOpcode(CFSetupOpcode)59 : CallFrameSetupOpcode(CFSetupOpcode), 60 CallFrameDestroyOpcode(CFDestroyOpcode), 61 CatchRetOpcode(CatchRetOpcode) {} 62 63 virtual ~TargetInstrInfo(); 64 isGenericOpcode(unsigned Opc)65 static bool isGenericOpcode(unsigned Opc) { 66 return Opc <= TargetOpcode::GENERIC_OP_END; 67 } 68 69 /// Given a machine instruction descriptor, returns the register 70 /// class constraint for OpNum, or NULL. 71 const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, 72 unsigned OpNum, 73 const TargetRegisterInfo *TRI, 74 const MachineFunction &MF) const; 75 76 /// Return true if the instruction is trivially rematerializable, meaning it 77 /// has no side effects and requires no operands that aren't always available. 78 /// This means the only allowed uses are constants and unallocatable physical 79 /// registers so that the instructions result is independent of the place 80 /// in the function. 81 bool isTriviallyReMaterializable(const MachineInstr *MI, 82 AliasAnalysis *AA = nullptr) const { 83 return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF || 84 (MI->getDesc().isRematerializable() && 85 (isReallyTriviallyReMaterializable(MI, AA) || 86 isReallyTriviallyReMaterializableGeneric(MI, AA))); 87 } 88 89 protected: 90 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 91 /// set, this hook lets the target specify whether the instruction is actually 92 /// trivially rematerializable, taking into consideration its operands. This 93 /// predicate must return false if the instruction has any side effects other 94 /// than producing a value, or if it requres any address registers that are 95 /// not always available. 96 /// Requirements must be check as stated in isTriviallyReMaterializable() . isReallyTriviallyReMaterializable(const MachineInstr * MI,AliasAnalysis * AA)97 virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI, 98 AliasAnalysis *AA) const { 99 return false; 100 } 101 102 /// This method commutes the operands of the given machine instruction MI. 103 /// The operands to be commuted are specified by their indices OpIdx1 and 104 /// OpIdx2. 105 /// 106 /// If a target has any instructions that are commutable but require 107 /// converting to different instructions or making non-trivial changes 108 /// to commute them, this method can be overloaded to do that. 109 /// The default implementation simply swaps the commutable operands. 110 /// 111 /// If NewMI is false, MI is modified in place and returned; otherwise, a 112 /// new machine instruction is created and returned. 113 /// 114 /// Do not call this method for a non-commutable instruction. 115 /// Even though the instruction is commutable, the method may still 116 /// fail to commute the operands, null pointer is returned in such cases. 117 virtual MachineInstr *commuteInstructionImpl(MachineInstr *MI, 118 bool NewMI, 119 unsigned OpIdx1, 120 unsigned OpIdx2) const; 121 122 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable 123 /// operand indices to (ResultIdx1, ResultIdx2). 124 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be 125 /// predefined to some indices or be undefined (designated by the special 126 /// value 'CommuteAnyOperandIndex'). 127 /// The predefined result indices cannot be re-defined. 128 /// The function returns true iff after the result pair redefinition 129 /// the fixed result pair is equal to or equivalent to the source pair of 130 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that 131 /// the pairs (x,y) and (y,x) are equivalent. 132 static bool fixCommutedOpIndices(unsigned &ResultIdx1, 133 unsigned &ResultIdx2, 134 unsigned CommutableOpIdx1, 135 unsigned CommutableOpIdx2); 136 137 private: 138 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 139 /// set and the target hook isReallyTriviallyReMaterializable returns false, 140 /// this function does target-independent tests to determine if the 141 /// instruction is really trivially rematerializable. 142 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 143 AliasAnalysis *AA) const; 144 145 public: 146 /// These methods return the opcode of the frame setup/destroy instructions 147 /// if they exist (-1 otherwise). Some targets use pseudo instructions in 148 /// order to abstract away the difference between operating with a frame 149 /// pointer and operating without, through the use of these two instructions. 150 /// getCallFrameSetupOpcode()151 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } getCallFrameDestroyOpcode()152 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } 153 getCatchReturnOpcode()154 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } 155 156 /// Returns the actual stack pointer adjustment made by an instruction 157 /// as part of a call sequence. By default, only call frame setup/destroy 158 /// instructions adjust the stack, but targets may want to override this 159 /// to enable more fine-grained adjustment, or adjust by a different value. 160 virtual int getSPAdjust(const MachineInstr *MI) const; 161 162 /// Return true if the instruction is a "coalescable" extension instruction. 163 /// That is, it's like a copy where it's legal for the source to overlap the 164 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's 165 /// expected the pre-extension value is available as a subreg of the result 166 /// register. This also returns the sub-register index in SubIdx. isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx)167 virtual bool isCoalescableExtInstr(const MachineInstr &MI, 168 unsigned &SrcReg, unsigned &DstReg, 169 unsigned &SubIdx) const { 170 return false; 171 } 172 173 /// If the specified machine instruction is a direct 174 /// load from a stack slot, return the virtual or physical register number of 175 /// the destination along with the FrameIndex of the loaded stack slot. If 176 /// not, return 0. This predicate must return 0 if the instruction has 177 /// any side effects other than loading from the stack slot. isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex)178 virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, 179 int &FrameIndex) const { 180 return 0; 181 } 182 183 /// Check for post-frame ptr elimination stack locations as well. 184 /// This uses a heuristic so it isn't reliable for correctness. isLoadFromStackSlotPostFE(const MachineInstr * MI,int & FrameIndex)185 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, 186 int &FrameIndex) const { 187 return 0; 188 } 189 190 /// If the specified machine instruction has a load from a stack slot, 191 /// return true along with the FrameIndex of the loaded stack slot and the 192 /// machine mem operand containing the reference. 193 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for 194 /// any instructions that loads from the stack. This is just a hint, as some 195 /// cases may be missed. 196 virtual bool hasLoadFromStackSlot(const MachineInstr *MI, 197 const MachineMemOperand *&MMO, 198 int &FrameIndex) const; 199 200 /// If the specified machine instruction is a direct 201 /// store to a stack slot, return the virtual or physical register number of 202 /// the source reg along with the FrameIndex of the loaded stack slot. If 203 /// not, return 0. This predicate must return 0 if the instruction has 204 /// any side effects other than storing to the stack slot. isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex)205 virtual unsigned isStoreToStackSlot(const MachineInstr *MI, 206 int &FrameIndex) const { 207 return 0; 208 } 209 210 /// Check for post-frame ptr elimination stack locations as well. 211 /// This uses a heuristic, so it isn't reliable for correctness. isStoreToStackSlotPostFE(const MachineInstr * MI,int & FrameIndex)212 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, 213 int &FrameIndex) const { 214 return 0; 215 } 216 217 /// If the specified machine instruction has a store to a stack slot, 218 /// return true along with the FrameIndex of the loaded stack slot and the 219 /// machine mem operand containing the reference. 220 /// If not, return false. Unlike isStoreToStackSlot, 221 /// this returns true for any instructions that stores to the 222 /// stack. This is just a hint, as some cases may be missed. 223 virtual bool hasStoreToStackSlot(const MachineInstr *MI, 224 const MachineMemOperand *&MMO, 225 int &FrameIndex) const; 226 227 /// Return true if the specified machine instruction 228 /// is a copy of one stack slot to another and has no other effect. 229 /// Provide the identity of the two frame indices. isStackSlotCopy(const MachineInstr * MI,int & DestFrameIndex,int & SrcFrameIndex)230 virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex, 231 int &SrcFrameIndex) const { 232 return false; 233 } 234 235 /// Compute the size in bytes and offset within a stack slot of a spilled 236 /// register or subregister. 237 /// 238 /// \param [out] Size in bytes of the spilled value. 239 /// \param [out] Offset in bytes within the stack slot. 240 /// \returns true if both Size and Offset are successfully computed. 241 /// 242 /// Not all subregisters have computable spill slots. For example, 243 /// subregisters registers may not be byte-sized, and a pair of discontiguous 244 /// subregisters has no single offset. 245 /// 246 /// Targets with nontrivial bigendian implementations may need to override 247 /// this, particularly to support spilled vector registers. 248 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, 249 unsigned &Size, unsigned &Offset, 250 const MachineFunction &MF) const; 251 252 /// Return true if the instruction is as cheap as a move instruction. 253 /// 254 /// Targets for different archs need to override this, and different 255 /// micro-architectures can also be finely tuned inside. isAsCheapAsAMove(const MachineInstr * MI)256 virtual bool isAsCheapAsAMove(const MachineInstr *MI) const { 257 return MI->isAsCheapAsAMove(); 258 } 259 260 /// Re-issue the specified 'original' instruction at the 261 /// specific location targeting a new destination register. 262 /// The register in Orig->getOperand(0).getReg() will be substituted by 263 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with 264 /// SubIdx. 265 virtual void reMaterialize(MachineBasicBlock &MBB, 266 MachineBasicBlock::iterator MI, 267 unsigned DestReg, unsigned SubIdx, 268 const MachineInstr *Orig, 269 const TargetRegisterInfo &TRI) const; 270 271 /// Create a duplicate of the Orig instruction in MF. This is like 272 /// MachineFunction::CloneMachineInstr(), but the target may update operands 273 /// that are required to be unique. 274 /// 275 /// The instruction must be duplicable as indicated by isNotDuplicable(). 276 virtual MachineInstr *duplicate(MachineInstr *Orig, 277 MachineFunction &MF) const; 278 279 /// This method must be implemented by targets that 280 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 281 /// may be able to convert a two-address instruction into one or more true 282 /// three-address instructions on demand. This allows the X86 target (for 283 /// example) to convert ADD and SHL instructions into LEA instructions if they 284 /// would require register copies due to two-addressness. 285 /// 286 /// This method returns a null pointer if the transformation cannot be 287 /// performed, otherwise it returns the last new instruction. 288 /// 289 virtual MachineInstr * convertToThreeAddress(MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV)290 convertToThreeAddress(MachineFunction::iterator &MFI, 291 MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { 292 return nullptr; 293 } 294 295 // This constant can be used as an input value of operand index passed to 296 // the method findCommutedOpIndices() to tell the method that the 297 // corresponding operand index is not pre-defined and that the method 298 // can pick any commutable operand. 299 static const unsigned CommuteAnyOperandIndex = ~0U; 300 301 /// This method commutes the operands of the given machine instruction MI. 302 /// 303 /// The operands to be commuted are specified by their indices OpIdx1 and 304 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value 305 /// 'CommuteAnyOperandIndex', which means that the method is free to choose 306 /// any arbitrarily chosen commutable operand. If both arguments are set to 307 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable 308 /// operands; then commutes them if such operands could be found. 309 /// 310 /// If NewMI is false, MI is modified in place and returned; otherwise, a 311 /// new machine instruction is created and returned. 312 /// 313 /// Do not call this method for a non-commutable instruction or 314 /// for non-commuable operands. 315 /// Even though the instruction is commutable, the method may still 316 /// fail to commute the operands, null pointer is returned in such cases. 317 MachineInstr * 318 commuteInstruction(MachineInstr *MI, 319 bool NewMI = false, 320 unsigned OpIdx1 = CommuteAnyOperandIndex, 321 unsigned OpIdx2 = CommuteAnyOperandIndex) const; 322 323 /// Returns true iff the routine could find two commutable operands in the 324 /// given machine instruction. 325 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. 326 /// If any of the INPUT values is set to the special value 327 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable 328 /// operand, then returns its index in the corresponding argument. 329 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method 330 /// looks for 2 commutable operands. 331 /// If INPUT values refer to some operands of MI, then the method simply 332 /// returns true if the corresponding operands are commutable and returns 333 /// false otherwise. 334 /// 335 /// For example, calling this method this way: 336 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; 337 /// findCommutedOpIndices(MI, Op1, Op2); 338 /// can be interpreted as a query asking to find an operand that would be 339 /// commutable with the operand#1. 340 virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 341 unsigned &SrcOpIdx2) const; 342 343 /// A pair composed of a register and a sub-register index. 344 /// Used to give some type checking when modeling Reg:SubReg. 345 struct RegSubRegPair { 346 unsigned Reg; 347 unsigned SubReg; 348 RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0) RegRegSubRegPair349 : Reg(Reg), SubReg(SubReg) {} 350 }; 351 /// A pair composed of a pair of a register and a sub-register index, 352 /// and another sub-register index. 353 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. 354 struct RegSubRegPairAndIdx : RegSubRegPair { 355 unsigned SubIdx; 356 RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0, 357 unsigned SubIdx = 0) RegSubRegPairRegSubRegPairAndIdx358 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} 359 }; 360 361 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI 362 /// and \p DefIdx. 363 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of 364 /// the list is modeled as <Reg:SubReg, SubIdx>. 365 /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce 366 /// two elements: 367 /// - vreg1:sub1, sub0 368 /// - vreg2<:0>, sub1 369 /// 370 /// \returns true if it is possible to build such an input sequence 371 /// with the pair \p MI, \p DefIdx. False otherwise. 372 /// 373 /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). 374 /// 375 /// \note The generic implementation does not provide any support for 376 /// MI.isRegSequenceLike(). In other words, one has to override 377 /// getRegSequenceLikeInputs for target specific instructions. 378 bool 379 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, 380 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; 381 382 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI 383 /// and \p DefIdx. 384 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. 385 /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce: 386 /// - vreg1:sub1, sub0 387 /// 388 /// \returns true if it is possible to build such an input sequence 389 /// with the pair \p MI, \p DefIdx. False otherwise. 390 /// 391 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). 392 /// 393 /// \note The generic implementation does not provide any support for 394 /// MI.isExtractSubregLike(). In other words, one has to override 395 /// getExtractSubregLikeInputs for target specific instructions. 396 bool 397 getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, 398 RegSubRegPairAndIdx &InputReg) const; 399 400 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI 401 /// and \p DefIdx. 402 /// \p [out] BaseReg and \p [out] InsertedReg contain 403 /// the equivalent inputs of INSERT_SUBREG. 404 /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce: 405 /// - BaseReg: vreg0:sub0 406 /// - InsertedReg: vreg1:sub1, sub3 407 /// 408 /// \returns true if it is possible to build such an input sequence 409 /// with the pair \p MI, \p DefIdx. False otherwise. 410 /// 411 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). 412 /// 413 /// \note The generic implementation does not provide any support for 414 /// MI.isInsertSubregLike(). In other words, one has to override 415 /// getInsertSubregLikeInputs for target specific instructions. 416 bool 417 getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, 418 RegSubRegPair &BaseReg, 419 RegSubRegPairAndIdx &InsertedReg) const; 420 421 422 /// Return true if two machine instructions would produce identical values. 423 /// By default, this is only true when the two instructions 424 /// are deemed identical except for defs. If this function is called when the 425 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for 426 /// aggressive checks. 427 virtual bool produceSameValue(const MachineInstr *MI0, 428 const MachineInstr *MI1, 429 const MachineRegisterInfo *MRI = nullptr) const; 430 431 /// Analyze the branching code at the end of MBB, returning 432 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't 433 /// implemented for a target). Upon success, this returns false and returns 434 /// with the following information in various cases: 435 /// 436 /// 1. If this block ends with no branches (it just falls through to its succ) 437 /// just return false, leaving TBB/FBB null. 438 /// 2. If this block ends with only an unconditional branch, it sets TBB to be 439 /// the destination block. 440 /// 3. If this block ends with a conditional branch and it falls through to a 441 /// successor block, it sets TBB to be the branch destination block and a 442 /// list of operands that evaluate the condition. These operands can be 443 /// passed to other TargetInstrInfo methods to create new branches. 444 /// 4. If this block ends with a conditional branch followed by an 445 /// unconditional branch, it returns the 'true' destination in TBB, the 446 /// 'false' destination in FBB, and a list of operands that evaluate the 447 /// condition. These operands can be passed to other TargetInstrInfo 448 /// methods to create new branches. 449 /// 450 /// Note that RemoveBranch and InsertBranch must be implemented to support 451 /// cases where this method returns success. 452 /// 453 /// If AllowModify is true, then this routine is allowed to modify the basic 454 /// block (e.g. delete instructions after the unconditional branch). 455 /// 456 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 457 MachineBasicBlock *&FBB, 458 SmallVectorImpl<MachineOperand> &Cond, 459 bool AllowModify = false) const { 460 return true; 461 } 462 463 /// Represents a predicate at the MachineFunction level. The control flow a 464 /// MachineBranchPredicate represents is: 465 /// 466 /// Reg <def>= LHS `Predicate` RHS == ConditionDef 467 /// if Reg then goto TrueDest else goto FalseDest 468 /// 469 struct MachineBranchPredicate { 470 enum ComparePredicate { 471 PRED_EQ, // True if two values are equal 472 PRED_NE, // True if two values are not equal 473 PRED_INVALID // Sentinel value 474 }; 475 476 ComparePredicate Predicate; 477 MachineOperand LHS; 478 MachineOperand RHS; 479 MachineBasicBlock *TrueDest; 480 MachineBasicBlock *FalseDest; 481 MachineInstr *ConditionDef; 482 483 /// SingleUseCondition is true if ConditionDef is dead except for the 484 /// branch(es) at the end of the basic block. 485 /// 486 bool SingleUseCondition; 487 MachineBranchPredicateMachineBranchPredicate488 explicit MachineBranchPredicate() 489 : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)), 490 RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr), 491 FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) { 492 } 493 }; 494 495 /// Analyze the branching code at the end of MBB and parse it into the 496 /// MachineBranchPredicate structure if possible. Returns false on success 497 /// and true on failure. 498 /// 499 /// If AllowModify is true, then this routine is allowed to modify the basic 500 /// block (e.g. delete instructions after the unconditional branch). 501 /// 502 virtual bool AnalyzeBranchPredicate(MachineBasicBlock &MBB, 503 MachineBranchPredicate &MBP, 504 bool AllowModify = false) const { 505 return true; 506 } 507 508 /// Remove the branching code at the end of the specific MBB. 509 /// This is only invoked in cases where AnalyzeBranch returns success. It 510 /// returns the number of instructions that were removed. RemoveBranch(MachineBasicBlock & MBB)511 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const { 512 llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!"); 513 } 514 515 /// Insert branch code into the end of the specified MachineBasicBlock. 516 /// The operands to this method are the same as those 517 /// returned by AnalyzeBranch. This is only invoked in cases where 518 /// AnalyzeBranch returns success. It returns the number of instructions 519 /// inserted. 520 /// 521 /// It is also invoked by tail merging to add unconditional branches in 522 /// cases where AnalyzeBranch doesn't apply because there was no original 523 /// branch to analyze. At least this much must be implemented, else tail 524 /// merging needs to be disabled. InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,DebugLoc DL)525 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 526 MachineBasicBlock *FBB, 527 ArrayRef<MachineOperand> Cond, 528 DebugLoc DL) const { 529 llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!"); 530 } 531 532 /// Delete the instruction OldInst and everything after it, replacing it with 533 /// an unconditional branch to NewDest. This is used by the tail merging pass. 534 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 535 MachineBasicBlock *NewDest) const; 536 537 /// Get an instruction that performs an unconditional branch to the given 538 /// symbol. 539 virtual void getUnconditionalBranch(MCInst & MI,const MCSymbolRefExpr * BranchTarget)540 getUnconditionalBranch(MCInst &MI, 541 const MCSymbolRefExpr *BranchTarget) const { 542 llvm_unreachable("Target didn't implement " 543 "TargetInstrInfo::getUnconditionalBranch!"); 544 } 545 546 /// Get a machine trap instruction. getTrap(MCInst & MI)547 virtual void getTrap(MCInst &MI) const { 548 llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!"); 549 } 550 551 /// Get a number of bytes that suffices to hold 552 /// either the instruction returned by getUnconditionalBranch or the 553 /// instruction returned by getTrap. This only makes sense because 554 /// getUnconditionalBranch returns a single, specific instruction. This 555 /// information is needed by the jumptable construction code, since it must 556 /// decide how many bytes to use for a jumptable entry so it can generate the 557 /// right mask. 558 /// 559 /// Note that if the jumptable instruction requires alignment, then that 560 /// alignment should be factored into this required bound so that the 561 /// resulting bound gives the right alignment for the instruction. getJumpInstrTableEntryBound()562 virtual unsigned getJumpInstrTableEntryBound() const { 563 // This method gets called by LLVMTargetMachine always, so it can't fail 564 // just because there happens to be no implementation for this target. 565 // Any code that tries to use a jumptable annotation without defining 566 // getUnconditionalBranch on the appropriate Target will fail anyway, and 567 // the value returned here won't matter in that case. 568 return 0; 569 } 570 571 /// Return true if it's legal to split the given basic 572 /// block at the specified instruction (i.e. instruction would be the start 573 /// of a new basic block). isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)574 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, 575 MachineBasicBlock::iterator MBBI) const { 576 return true; 577 } 578 579 /// Return true if it's profitable to predicate 580 /// instructions with accumulated instruction latency of "NumCycles" 581 /// of the specified basic block, where the probability of the instructions 582 /// being executed is given by Probability, and Confidence is a measure 583 /// of our confidence that it will be properly predicted. 584 virtual isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)585 bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 586 unsigned ExtraPredCycles, 587 BranchProbability Probability) const { 588 return false; 589 } 590 591 /// Second variant of isProfitableToIfCvt. This one 592 /// checks for the case where two basic blocks from true and false path 593 /// of a if-then-else (diamond) are predicated on mutally exclusive 594 /// predicates, where the probability of the true path being taken is given 595 /// by Probability, and Confidence is a measure of our confidence that it 596 /// will be properly predicted. 597 virtual bool isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability)598 isProfitableToIfCvt(MachineBasicBlock &TMBB, 599 unsigned NumTCycles, unsigned ExtraTCycles, 600 MachineBasicBlock &FMBB, 601 unsigned NumFCycles, unsigned ExtraFCycles, 602 BranchProbability Probability) const { 603 return false; 604 } 605 606 /// Return true if it's profitable for if-converter to duplicate instructions 607 /// of specified accumulated instruction latencies in the specified MBB to 608 /// enable if-conversion. 609 /// The probability of the instructions being executed is given by 610 /// Probability, and Confidence is a measure of our confidence that it 611 /// will be properly predicted. 612 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)613 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 614 BranchProbability Probability) const { 615 return false; 616 } 617 618 /// Return true if it's profitable to unpredicate 619 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually 620 /// exclusive predicates. 621 /// e.g. 622 /// subeq r0, r1, #1 623 /// addne r0, r1, #1 624 /// => 625 /// sub r0, r1, #1 626 /// addne r0, r1, #1 627 /// 628 /// This may be profitable is conditional instructions are always executed. isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)629 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, 630 MachineBasicBlock &FMBB) const { 631 return false; 632 } 633 634 /// Return true if it is possible to insert a select 635 /// instruction that chooses between TrueReg and FalseReg based on the 636 /// condition code in Cond. 637 /// 638 /// When successful, also return the latency in cycles from TrueReg, 639 /// FalseReg, and Cond to the destination register. In most cases, a select 640 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 641 /// 642 /// Some x86 implementations have 2-cycle cmov instructions. 643 /// 644 /// @param MBB Block where select instruction would be inserted. 645 /// @param Cond Condition returned by AnalyzeBranch. 646 /// @param TrueReg Virtual register to select when Cond is true. 647 /// @param FalseReg Virtual register to select when Cond is false. 648 /// @param CondCycles Latency from Cond+Branch to select output. 649 /// @param TrueCycles Latency from TrueReg to select output. 650 /// @param FalseCycles Latency from FalseReg to select output. canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)651 virtual bool canInsertSelect(const MachineBasicBlock &MBB, 652 ArrayRef<MachineOperand> Cond, 653 unsigned TrueReg, unsigned FalseReg, 654 int &CondCycles, 655 int &TrueCycles, int &FalseCycles) const { 656 return false; 657 } 658 659 /// Insert a select instruction into MBB before I that will copy TrueReg to 660 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. 661 /// 662 /// This function can only be called after canInsertSelect() returned true. 663 /// The condition in Cond comes from AnalyzeBranch, and it can be assumed 664 /// that the same flags or registers required by Cond are available at the 665 /// insertion point. 666 /// 667 /// @param MBB Block where select instruction should be inserted. 668 /// @param I Insertion point. 669 /// @param DL Source location for debugging. 670 /// @param DstReg Virtual register to be defined by select instruction. 671 /// @param Cond Condition as computed by AnalyzeBranch. 672 /// @param TrueReg Virtual register to copy when Cond is true. 673 /// @param FalseReg Virtual register to copy when Cons is false. insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DstReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg)674 virtual void insertSelect(MachineBasicBlock &MBB, 675 MachineBasicBlock::iterator I, DebugLoc DL, 676 unsigned DstReg, ArrayRef<MachineOperand> Cond, 677 unsigned TrueReg, unsigned FalseReg) const { 678 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); 679 } 680 681 /// Analyze the given select instruction, returning true if 682 /// it cannot be understood. It is assumed that MI->isSelect() is true. 683 /// 684 /// When successful, return the controlling condition and the operands that 685 /// determine the true and false result values. 686 /// 687 /// Result = SELECT Cond, TrueOp, FalseOp 688 /// 689 /// Some targets can optimize select instructions, for example by predicating 690 /// the instruction defining one of the operands. Such targets should set 691 /// Optimizable. 692 /// 693 /// @param MI Select instruction to analyze. 694 /// @param Cond Condition controlling the select. 695 /// @param TrueOp Operand number of the value selected when Cond is true. 696 /// @param FalseOp Operand number of the value selected when Cond is false. 697 /// @param Optimizable Returned as true if MI is optimizable. 698 /// @returns False on success. analyzeSelect(const MachineInstr * MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)699 virtual bool analyzeSelect(const MachineInstr *MI, 700 SmallVectorImpl<MachineOperand> &Cond, 701 unsigned &TrueOp, unsigned &FalseOp, 702 bool &Optimizable) const { 703 assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction"); 704 return true; 705 } 706 707 /// Given a select instruction that was understood by 708 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by 709 /// merging it with one of its operands. Returns NULL on failure. 710 /// 711 /// When successful, returns the new select instruction. The client is 712 /// responsible for deleting MI. 713 /// 714 /// If both sides of the select can be optimized, PreferFalse is used to pick 715 /// a side. 716 /// 717 /// @param MI Optimizable select instruction. 718 /// @param NewMIs Set that record all MIs in the basic block up to \p 719 /// MI. Has to be updated with any newly created MI or deleted ones. 720 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. 721 /// @returns Optimized instruction or NULL. 722 virtual MachineInstr *optimizeSelect(MachineInstr *MI, 723 SmallPtrSetImpl<MachineInstr *> &NewMIs, 724 bool PreferFalse = false) const { 725 // This function must be implemented if Optimizable is ever set. 726 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); 727 } 728 729 /// Emit instructions to copy a pair of physical registers. 730 /// 731 /// This function should support copies within any legal register class as 732 /// well as any cross-class copies created during instruction selection. 733 /// 734 /// The source and destination registers may overlap, which may require a 735 /// careful implementation when multiple copy instructions are required for 736 /// large registers. See for example the ARM target. copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc)737 virtual void copyPhysReg(MachineBasicBlock &MBB, 738 MachineBasicBlock::iterator MI, DebugLoc DL, 739 unsigned DestReg, unsigned SrcReg, 740 bool KillSrc) const { 741 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); 742 } 743 744 /// Store the specified register of the given register class to the specified 745 /// stack frame index. The store instruction is to be added to the given 746 /// machine basic block before the specified machine instruction. If isKill 747 /// is true, the register operand is the last use and must be marked kill. storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)748 virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 749 MachineBasicBlock::iterator MI, 750 unsigned SrcReg, bool isKill, int FrameIndex, 751 const TargetRegisterClass *RC, 752 const TargetRegisterInfo *TRI) const { 753 llvm_unreachable("Target didn't implement " 754 "TargetInstrInfo::storeRegToStackSlot!"); 755 } 756 757 /// Load the specified register of the given register class from the specified 758 /// stack frame index. The load instruction is to be added to the given 759 /// machine basic block before the specified machine instruction. loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)760 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 761 MachineBasicBlock::iterator MI, 762 unsigned DestReg, int FrameIndex, 763 const TargetRegisterClass *RC, 764 const TargetRegisterInfo *TRI) const { 765 llvm_unreachable("Target didn't implement " 766 "TargetInstrInfo::loadRegFromStackSlot!"); 767 } 768 769 /// This function is called for all pseudo instructions 770 /// that remain after register allocation. Many pseudo instructions are 771 /// created to help register allocation. This is the place to convert them 772 /// into real instructions. The target can edit MI in place, or it can insert 773 /// new instructions and erase MI. The function should return true if 774 /// anything was changed. expandPostRAPseudo(MachineBasicBlock::iterator MI)775 virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 776 return false; 777 } 778 779 /// Attempt to fold a load or store of the specified stack 780 /// slot into the specified machine instruction for the specified operand(s). 781 /// If this is possible, a new instruction is returned with the specified 782 /// operand folded, otherwise NULL is returned. 783 /// The new instruction is inserted before MI, and the client is responsible 784 /// for removing the old instruction. 785 MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI, 786 ArrayRef<unsigned> Ops, int FrameIndex) const; 787 788 /// Same as the previous version except it allows folding of any load and 789 /// store from / to any address, not just from a specific stack slot. 790 MachineInstr *foldMemoryOperand(MachineBasicBlock::iterator MI, 791 ArrayRef<unsigned> Ops, 792 MachineInstr *LoadMI) const; 793 794 /// Return true when there is potentially a faster code sequence 795 /// for an instruction chain ending in \p Root. All potential patterns are 796 /// returned in the \p Pattern vector. Pattern should be sorted in priority 797 /// order since the pattern evaluator stops checking as soon as it finds a 798 /// faster sequence. 799 /// \param Root - Instruction that could be combined with one of its operands 800 /// \param Patterns - Vector of possible combination patterns 801 virtual bool getMachineCombinerPatterns( 802 MachineInstr &Root, 803 SmallVectorImpl<MachineCombinerPattern> &Patterns) const; 804 805 /// Return true if the input \P Inst is part of a chain of dependent ops 806 /// that are suitable for reassociation, otherwise return false. 807 /// If the instruction's operands must be commuted to have a previous 808 /// instruction of the same type define the first source operand, \P Commuted 809 /// will be set to true. 810 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; 811 812 /// Return true when \P Inst is both associative and commutative. isAssociativeAndCommutative(const MachineInstr & Inst)813 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const { 814 return false; 815 } 816 817 /// Return true when \P Inst has reassociable operands in the same \P MBB. 818 virtual bool hasReassociableOperands(const MachineInstr &Inst, 819 const MachineBasicBlock *MBB) const; 820 821 /// Return true when \P Inst has reassociable sibling. 822 bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const; 823 824 /// When getMachineCombinerPatterns() finds patterns, this function generates 825 /// the instructions that could replace the original code sequence. The client 826 /// has to decide whether the actual replacement is beneficial or not. 827 /// \param Root - Instruction that could be combined with one of its operands 828 /// \param Pattern - Combination pattern for Root 829 /// \param InsInstrs - Vector of new instructions that implement P 830 /// \param DelInstrs - Old instructions, including Root, that could be 831 /// replaced by InsInstr 832 /// \param InstrIdxForVirtReg - map of virtual register to instruction in 833 /// InsInstr that defines it 834 virtual void genAlternativeCodeSequence( 835 MachineInstr &Root, MachineCombinerPattern Pattern, 836 SmallVectorImpl<MachineInstr *> &InsInstrs, 837 SmallVectorImpl<MachineInstr *> &DelInstrs, 838 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; 839 840 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to 841 /// reduce critical path length. 842 void reassociateOps(MachineInstr &Root, MachineInstr &Prev, 843 MachineCombinerPattern Pattern, 844 SmallVectorImpl<MachineInstr *> &InsInstrs, 845 SmallVectorImpl<MachineInstr *> &DelInstrs, 846 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; 847 848 /// This is an architecture-specific helper function of reassociateOps. 849 /// Set special operand attributes for new instructions after reassociation. setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2)850 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, 851 MachineInstr &NewMI1, 852 MachineInstr &NewMI2) const { 853 return; 854 }; 855 856 /// Return true when a target supports MachineCombiner. useMachineCombiner()857 virtual bool useMachineCombiner() const { return false; } 858 859 protected: 860 /// Target-dependent implementation for foldMemoryOperand. 861 /// Target-independent code in foldMemoryOperand will 862 /// take care of adding a MachineMemOperand to the newly created instruction. 863 /// The instruction and any auxiliary instructions necessary will be inserted 864 /// at InsertPt. foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex)865 virtual MachineInstr *foldMemoryOperandImpl( 866 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 867 MachineBasicBlock::iterator InsertPt, int FrameIndex) const { 868 return nullptr; 869 } 870 871 /// Target-dependent implementation for foldMemoryOperand. 872 /// Target-independent code in foldMemoryOperand will 873 /// take care of adding a MachineMemOperand to the newly created instruction. 874 /// The instruction and any auxiliary instructions necessary will be inserted 875 /// at InsertPt. foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr * LoadMI)876 virtual MachineInstr *foldMemoryOperandImpl( 877 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 878 MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const { 879 return nullptr; 880 } 881 882 /// \brief Target-dependent implementation of getRegSequenceInputs. 883 /// 884 /// \returns true if it is possible to build the equivalent 885 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. 886 /// 887 /// \pre MI.isRegSequenceLike(). 888 /// 889 /// \see TargetInstrInfo::getRegSequenceInputs. getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs)890 virtual bool getRegSequenceLikeInputs( 891 const MachineInstr &MI, unsigned DefIdx, 892 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 893 return false; 894 } 895 896 /// \brief Target-dependent implementation of getExtractSubregInputs. 897 /// 898 /// \returns true if it is possible to build the equivalent 899 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 900 /// 901 /// \pre MI.isExtractSubregLike(). 902 /// 903 /// \see TargetInstrInfo::getExtractSubregInputs. getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg)904 virtual bool getExtractSubregLikeInputs( 905 const MachineInstr &MI, unsigned DefIdx, 906 RegSubRegPairAndIdx &InputReg) const { 907 return false; 908 } 909 910 /// \brief Target-dependent implementation of getInsertSubregInputs. 911 /// 912 /// \returns true if it is possible to build the equivalent 913 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 914 /// 915 /// \pre MI.isInsertSubregLike(). 916 /// 917 /// \see TargetInstrInfo::getInsertSubregInputs. 918 virtual bool getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg)919 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, 920 RegSubRegPair &BaseReg, 921 RegSubRegPairAndIdx &InsertedReg) const { 922 return false; 923 } 924 925 public: 926 /// unfoldMemoryOperand - Separate a single instruction which folded a load or 927 /// a store or a load and a store into two or more instruction. If this is 928 /// possible, returns true as well as the new instructions by reference. unfoldMemoryOperand(MachineFunction & MF,MachineInstr * MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)929 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 930 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 931 SmallVectorImpl<MachineInstr*> &NewMIs) const{ 932 return false; 933 } 934 unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)935 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 936 SmallVectorImpl<SDNode*> &NewNodes) const { 937 return false; 938 } 939 940 /// Returns the opcode of the would be new 941 /// instruction after load / store are unfolded from an instruction of the 942 /// specified opcode. It returns zero if the specified unfolding is not 943 /// possible. If LoadRegIndex is non-null, it is filled in with the operand 944 /// index of the operand which will hold the register holding the loaded 945 /// value. 946 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, 947 bool UnfoldLoad, bool UnfoldStore, 948 unsigned *LoadRegIndex = nullptr) const { 949 return 0; 950 } 951 952 /// This is used by the pre-regalloc scheduler to determine if two loads are 953 /// loading from the same base address. It should only return true if the base 954 /// pointers are the same and the only differences between the two addresses 955 /// are the offset. It also returns the offsets by reference. areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)956 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 957 int64_t &Offset1, int64_t &Offset2) const { 958 return false; 959 } 960 961 /// This is a used by the pre-regalloc scheduler to determine (in conjunction 962 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. 963 /// On some targets if two loads are loading from 964 /// addresses in the same cache line, it's better if they are scheduled 965 /// together. This function takes two integers that represent the load offsets 966 /// from the common base address. It returns true if it decides it's desirable 967 /// to schedule the two loads together. "NumLoads" is the number of loads that 968 /// have already been scheduled after Load1. shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)969 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 970 int64_t Offset1, int64_t Offset2, 971 unsigned NumLoads) const { 972 return false; 973 } 974 975 /// Get the base register and byte offset of an instruction that reads/writes 976 /// memory. getMemOpBaseRegImmOfs(MachineInstr * MemOp,unsigned & BaseReg,unsigned & Offset,const TargetRegisterInfo * TRI)977 virtual bool getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg, 978 unsigned &Offset, 979 const TargetRegisterInfo *TRI) const { 980 return false; 981 } 982 enableClusterLoads()983 virtual bool enableClusterLoads() const { return false; } 984 shouldClusterLoads(MachineInstr * FirstLdSt,MachineInstr * SecondLdSt,unsigned NumLoads)985 virtual bool shouldClusterLoads(MachineInstr *FirstLdSt, 986 MachineInstr *SecondLdSt, 987 unsigned NumLoads) const { 988 return false; 989 } 990 991 /// Can this target fuse the given instructions if they are scheduled 992 /// adjacent. shouldScheduleAdjacent(MachineInstr * First,MachineInstr * Second)993 virtual bool shouldScheduleAdjacent(MachineInstr* First, 994 MachineInstr *Second) const { 995 return false; 996 } 997 998 /// Reverses the branch condition of the specified condition list, 999 /// returning false on success and true if it cannot be reversed. 1000 virtual ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)1001 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1002 return true; 1003 } 1004 1005 /// Insert a noop into the instruction stream at the specified point. 1006 virtual void insertNoop(MachineBasicBlock &MBB, 1007 MachineBasicBlock::iterator MI) const; 1008 1009 1010 /// Return the noop instruction to use for a noop. 1011 virtual void getNoopForMachoTarget(MCInst &NopInst) const; 1012 1013 1014 /// Returns true if the instruction is already predicated. isPredicated(const MachineInstr * MI)1015 virtual bool isPredicated(const MachineInstr *MI) const { 1016 return false; 1017 } 1018 1019 /// Returns true if the instruction is a 1020 /// terminator instruction that has not been predicated. 1021 virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const; 1022 1023 /// Convert the instruction into a predicated instruction. 1024 /// It returns true if the operation was successful. 1025 virtual 1026 bool PredicateInstruction(MachineInstr *MI, 1027 ArrayRef<MachineOperand> Pred) const; 1028 1029 /// Returns true if the first specified predicate 1030 /// subsumes the second, e.g. GE subsumes GT. 1031 virtual SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2)1032 bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1033 ArrayRef<MachineOperand> Pred2) const { 1034 return false; 1035 } 1036 1037 /// If the specified instruction defines any predicate 1038 /// or condition code register(s) used for predication, returns true as well 1039 /// as the definition predicate(s) by reference. DefinesPredicate(MachineInstr * MI,std::vector<MachineOperand> & Pred)1040 virtual bool DefinesPredicate(MachineInstr *MI, 1041 std::vector<MachineOperand> &Pred) const { 1042 return false; 1043 } 1044 1045 /// Return true if the specified instruction can be predicated. 1046 /// By default, this returns true for every instruction with a 1047 /// PredicateOperand. isPredicable(MachineInstr * MI)1048 virtual bool isPredicable(MachineInstr *MI) const { 1049 return MI->getDesc().isPredicable(); 1050 } 1051 1052 /// Return true if it's safe to move a machine 1053 /// instruction that defines the specified register class. isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)1054 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 1055 return true; 1056 } 1057 1058 /// Test if the given instruction should be considered a scheduling boundary. 1059 /// This primarily includes labels and terminators. 1060 virtual bool isSchedulingBoundary(const MachineInstr *MI, 1061 const MachineBasicBlock *MBB, 1062 const MachineFunction &MF) const; 1063 1064 /// Measure the specified inline asm to determine an approximation of its 1065 /// length. 1066 virtual unsigned getInlineAsmLength(const char *Str, 1067 const MCAsmInfo &MAI) const; 1068 1069 /// Allocate and return a hazard recognizer to use for this target when 1070 /// scheduling the machine instructions before register allocation. 1071 virtual ScheduleHazardRecognizer* 1072 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1073 const ScheduleDAG *DAG) const; 1074 1075 /// Allocate and return a hazard recognizer to use for this target when 1076 /// scheduling the machine instructions before register allocation. 1077 virtual ScheduleHazardRecognizer* 1078 CreateTargetMIHazardRecognizer(const InstrItineraryData*, 1079 const ScheduleDAG *DAG) const; 1080 1081 /// Allocate and return a hazard recognizer to use for this target when 1082 /// scheduling the machine instructions after register allocation. 1083 virtual ScheduleHazardRecognizer* 1084 CreateTargetPostRAHazardRecognizer(const InstrItineraryData*, 1085 const ScheduleDAG *DAG) const; 1086 1087 /// Provide a global flag for disabling the PreRA hazard recognizer that 1088 /// targets may choose to honor. 1089 bool usePreRAHazardRecognizer() const; 1090 1091 /// For a comparison instruction, return the source registers 1092 /// in SrcReg and SrcReg2 if having two register operands, and the value it 1093 /// compares against in CmpValue. Return true if the comparison instruction 1094 /// can be analyzed. analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value)1095 virtual bool analyzeCompare(const MachineInstr *MI, 1096 unsigned &SrcReg, unsigned &SrcReg2, 1097 int &Mask, int &Value) const { 1098 return false; 1099 } 1100 1101 /// See if the comparison instruction can be converted 1102 /// into something more efficient. E.g., on ARM most instructions can set the 1103 /// flags register, obviating the need for a separate CMP. optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI)1104 virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, 1105 unsigned SrcReg, unsigned SrcReg2, 1106 int Mask, int Value, 1107 const MachineRegisterInfo *MRI) const { 1108 return false; 1109 } optimizeCondBranch(MachineInstr * MI)1110 virtual bool optimizeCondBranch(MachineInstr *MI) const { return false; } 1111 1112 /// Try to remove the load by folding it to a register operand at the use. 1113 /// We fold the load instructions if and only if the 1114 /// def and use are in the same BB. We only look at one load and see 1115 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register 1116 /// defined by the load we are trying to fold. DefMI returns the machine 1117 /// instruction that defines FoldAsLoadDefReg, and the function returns 1118 /// the machine instruction generated due to folding. optimizeLoadInstr(MachineInstr * MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI)1119 virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI, 1120 const MachineRegisterInfo *MRI, 1121 unsigned &FoldAsLoadDefReg, 1122 MachineInstr *&DefMI) const { 1123 return nullptr; 1124 } 1125 1126 /// 'Reg' is known to be defined by a move immediate instruction, 1127 /// try to fold the immediate into the use instruction. 1128 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, 1129 /// then the caller may assume that DefMI has been erased from its parent 1130 /// block. The caller may assume that it will not be erased by this 1131 /// function otherwise. FoldImmediate(MachineInstr * UseMI,MachineInstr * DefMI,unsigned Reg,MachineRegisterInfo * MRI)1132 virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 1133 unsigned Reg, MachineRegisterInfo *MRI) const { 1134 return false; 1135 } 1136 1137 /// Return the number of u-operations the given machine 1138 /// instruction will be decoded to on the target cpu. The itinerary's 1139 /// IssueWidth is the number of microops that can be dispatched each 1140 /// cycle. An instruction with zero microops takes no dispatch resources. 1141 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, 1142 const MachineInstr *MI) const; 1143 1144 /// Return true for pseudo instructions that don't consume any 1145 /// machine resources in their current form. These are common cases that the 1146 /// scheduler should consider free, rather than conservatively handling them 1147 /// as instructions with no itinerary. isZeroCost(unsigned Opcode)1148 bool isZeroCost(unsigned Opcode) const { 1149 return Opcode <= TargetOpcode::COPY; 1150 } 1151 1152 virtual int getOperandLatency(const InstrItineraryData *ItinData, 1153 SDNode *DefNode, unsigned DefIdx, 1154 SDNode *UseNode, unsigned UseIdx) const; 1155 1156 /// Compute and return the use operand latency of a given pair of def and use. 1157 /// In most cases, the static scheduling itinerary was enough to determine the 1158 /// operand latency. But it may not be possible for instructions with variable 1159 /// number of defs / uses. 1160 /// 1161 /// This is a raw interface to the itinerary that may be directly overridden 1162 /// by a target. Use computeOperandLatency to get the best estimate of 1163 /// latency. 1164 virtual int getOperandLatency(const InstrItineraryData *ItinData, 1165 const MachineInstr *DefMI, unsigned DefIdx, 1166 const MachineInstr *UseMI, 1167 unsigned UseIdx) const; 1168 1169 /// Compute and return the latency of the given data 1170 /// dependent def and use when the operand indices are already known. 1171 unsigned computeOperandLatency(const InstrItineraryData *ItinData, 1172 const MachineInstr *DefMI, unsigned DefIdx, 1173 const MachineInstr *UseMI, unsigned UseIdx) 1174 const; 1175 1176 /// Compute the instruction latency of a given instruction. 1177 /// If the instruction has higher cost when predicated, it's returned via 1178 /// PredCost. 1179 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, 1180 const MachineInstr *MI, 1181 unsigned *PredCost = nullptr) const; 1182 1183 virtual unsigned getPredicationCost(const MachineInstr *MI) const; 1184 1185 virtual int getInstrLatency(const InstrItineraryData *ItinData, 1186 SDNode *Node) const; 1187 1188 /// Return the default expected latency for a def based on it's opcode. 1189 unsigned defaultDefLatency(const MCSchedModel &SchedModel, 1190 const MachineInstr *DefMI) const; 1191 1192 int computeDefOperandLatency(const InstrItineraryData *ItinData, 1193 const MachineInstr *DefMI) const; 1194 1195 /// Return true if this opcode has high latency to its result. isHighLatencyDef(int opc)1196 virtual bool isHighLatencyDef(int opc) const { return false; } 1197 1198 /// Compute operand latency between a def of 'Reg' 1199 /// and a use in the current loop. Return true if the target considered 1200 /// it 'high'. This is used by optimization passes such as machine LICM to 1201 /// determine whether it makes sense to hoist an instruction out even in a 1202 /// high register pressure situation. 1203 virtual hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx)1204 bool hasHighOperandLatency(const TargetSchedModel &SchedModel, 1205 const MachineRegisterInfo *MRI, 1206 const MachineInstr *DefMI, unsigned DefIdx, 1207 const MachineInstr *UseMI, unsigned UseIdx) const { 1208 return false; 1209 } 1210 1211 /// Compute operand latency of a def of 'Reg'. Return true 1212 /// if the target considered it 'low'. 1213 virtual 1214 bool hasLowDefLatency(const TargetSchedModel &SchedModel, 1215 const MachineInstr *DefMI, unsigned DefIdx) const; 1216 1217 /// Perform target-specific instruction verification. 1218 virtual verifyInstruction(const MachineInstr * MI,StringRef & ErrInfo)1219 bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const { 1220 return true; 1221 } 1222 1223 /// Return the current execution domain and bit mask of 1224 /// possible domains for instruction. 1225 /// 1226 /// Some micro-architectures have multiple execution domains, and multiple 1227 /// opcodes that perform the same operation in different domains. For 1228 /// example, the x86 architecture provides the por, orps, and orpd 1229 /// instructions that all do the same thing. There is a latency penalty if a 1230 /// register is written in one domain and read in another. 1231 /// 1232 /// This function returns a pair (domain, mask) containing the execution 1233 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain 1234 /// function can be used to change the opcode to one of the domains in the 1235 /// bit mask. Instructions whose execution domain can't be changed should 1236 /// return a 0 mask. 1237 /// 1238 /// The execution domain numbers don't have any special meaning except domain 1239 /// 0 is used for instructions that are not associated with any interesting 1240 /// execution domain. 1241 /// 1242 virtual std::pair<uint16_t, uint16_t> getExecutionDomain(const MachineInstr * MI)1243 getExecutionDomain(const MachineInstr *MI) const { 1244 return std::make_pair(0, 0); 1245 } 1246 1247 /// Change the opcode of MI to execute in Domain. 1248 /// 1249 /// The bit (1 << Domain) must be set in the mask returned from 1250 /// getExecutionDomain(MI). setExecutionDomain(MachineInstr * MI,unsigned Domain)1251 virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {} 1252 1253 1254 /// Returns the preferred minimum clearance 1255 /// before an instruction with an unwanted partial register update. 1256 /// 1257 /// Some instructions only write part of a register, and implicitly need to 1258 /// read the other parts of the register. This may cause unwanted stalls 1259 /// preventing otherwise unrelated instructions from executing in parallel in 1260 /// an out-of-order CPU. 1261 /// 1262 /// For example, the x86 instruction cvtsi2ss writes its result to bits 1263 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so 1264 /// the instruction needs to wait for the old value of the register to become 1265 /// available: 1266 /// 1267 /// addps %xmm1, %xmm0 1268 /// movaps %xmm0, (%rax) 1269 /// cvtsi2ss %rbx, %xmm0 1270 /// 1271 /// In the code above, the cvtsi2ss instruction needs to wait for the addps 1272 /// instruction before it can issue, even though the high bits of %xmm0 1273 /// probably aren't needed. 1274 /// 1275 /// This hook returns the preferred clearance before MI, measured in 1276 /// instructions. Other defs of MI's operand OpNum are avoided in the last N 1277 /// instructions before MI. It should only return a positive value for 1278 /// unwanted dependencies. If the old bits of the defined register have 1279 /// useful values, or if MI is determined to otherwise read the dependency, 1280 /// the hook should return 0. 1281 /// 1282 /// The unwanted dependency may be handled by: 1283 /// 1284 /// 1. Allocating the same register for an MI def and use. That makes the 1285 /// unwanted dependency identical to a required dependency. 1286 /// 1287 /// 2. Allocating a register for the def that has no defs in the previous N 1288 /// instructions. 1289 /// 1290 /// 3. Calling breakPartialRegDependency() with the same arguments. This 1291 /// allows the target to insert a dependency breaking instruction. 1292 /// 1293 virtual unsigned getPartialRegUpdateClearance(const MachineInstr * MI,unsigned OpNum,const TargetRegisterInfo * TRI)1294 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, 1295 const TargetRegisterInfo *TRI) const { 1296 // The default implementation returns 0 for no partial register dependency. 1297 return 0; 1298 } 1299 1300 /// \brief Return the minimum clearance before an instruction that reads an 1301 /// unused register. 1302 /// 1303 /// For example, AVX instructions may copy part of a register operand into 1304 /// the unused high bits of the destination register. 1305 /// 1306 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14 1307 /// 1308 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a 1309 /// false dependence on any previous write to %xmm0. 1310 /// 1311 /// This hook works similarly to getPartialRegUpdateClearance, except that it 1312 /// does not take an operand index. Instead sets \p OpNum to the index of the 1313 /// unused register. getUndefRegClearance(const MachineInstr * MI,unsigned & OpNum,const TargetRegisterInfo * TRI)1314 virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum, 1315 const TargetRegisterInfo *TRI) const { 1316 // The default implementation returns 0 for no undef register dependency. 1317 return 0; 1318 } 1319 1320 /// Insert a dependency-breaking instruction 1321 /// before MI to eliminate an unwanted dependency on OpNum. 1322 /// 1323 /// If it wasn't possible to avoid a def in the last N instructions before MI 1324 /// (see getPartialRegUpdateClearance), this hook will be called to break the 1325 /// unwanted dependency. 1326 /// 1327 /// On x86, an xorps instruction can be used as a dependency breaker: 1328 /// 1329 /// addps %xmm1, %xmm0 1330 /// movaps %xmm0, (%rax) 1331 /// xorps %xmm0, %xmm0 1332 /// cvtsi2ss %rbx, %xmm0 1333 /// 1334 /// An <imp-kill> operand should be added to MI if an instruction was 1335 /// inserted. This ties the instructions together in the post-ra scheduler. 1336 /// 1337 virtual void breakPartialRegDependency(MachineBasicBlock::iterator MI,unsigned OpNum,const TargetRegisterInfo * TRI)1338 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, 1339 const TargetRegisterInfo *TRI) const {} 1340 1341 /// Create machine specific model for scheduling. 1342 virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &)1343 CreateTargetScheduleState(const TargetSubtargetInfo &) const { 1344 return nullptr; 1345 } 1346 1347 // Sometimes, it is possible for the target 1348 // to tell, even without aliasing information, that two MIs access different 1349 // memory addresses. This function returns true if two MIs access different 1350 // memory addresses and false otherwise. 1351 virtual bool 1352 areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb, 1353 AliasAnalysis *AA = nullptr) const { 1354 assert(MIa && (MIa->mayLoad() || MIa->mayStore()) && 1355 "MIa must load from or modify a memory location"); 1356 assert(MIb && (MIb->mayLoad() || MIb->mayStore()) && 1357 "MIb must load from or modify a memory location"); 1358 return false; 1359 } 1360 1361 /// \brief Return the value to use for the MachineCSE's LookAheadLimit, 1362 /// which is a heuristic used for CSE'ing phys reg defs. getMachineCSELookAheadLimit()1363 virtual unsigned getMachineCSELookAheadLimit () const { 1364 // The default lookahead is small to prevent unprofitable quadratic 1365 // behavior. 1366 return 5; 1367 } 1368 1369 /// Return an array that contains the ids of the target indices (used for the 1370 /// TargetIndex machine operand) and their names. 1371 /// 1372 /// MIR Serialization is able to serialize only the target indices that are 1373 /// defined by this method. 1374 virtual ArrayRef<std::pair<int, const char *>> getSerializableTargetIndices()1375 getSerializableTargetIndices() const { 1376 return None; 1377 } 1378 1379 /// Decompose the machine operand's target flags into two values - the direct 1380 /// target flag value and any of bit flags that are applied. 1381 virtual std::pair<unsigned, unsigned> decomposeMachineOperandsTargetFlags(unsigned)1382 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { 1383 return std::make_pair(0u, 0u); 1384 } 1385 1386 /// Return an array that contains the direct target flag values and their 1387 /// names. 1388 /// 1389 /// MIR Serialization is able to serialize only the target flags that are 1390 /// defined by this method. 1391 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableDirectMachineOperandTargetFlags()1392 getSerializableDirectMachineOperandTargetFlags() const { 1393 return None; 1394 } 1395 1396 /// Return an array that contains the bitmask target flag values and their 1397 /// names. 1398 /// 1399 /// MIR Serialization is able to serialize only the target flags that are 1400 /// defined by this method. 1401 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableBitmaskMachineOperandTargetFlags()1402 getSerializableBitmaskMachineOperandTargetFlags() const { 1403 return None; 1404 } 1405 1406 private: 1407 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; 1408 unsigned CatchRetOpcode; 1409 }; 1410 1411 /// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. 1412 template<> 1413 struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { 1414 typedef DenseMapInfo<unsigned> RegInfo; 1415 1416 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { 1417 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), 1418 RegInfo::getEmptyKey()); 1419 } 1420 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { 1421 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), 1422 RegInfo::getTombstoneKey()); 1423 } 1424 /// \brief Reuse getHashValue implementation from 1425 /// std::pair<unsigned, unsigned>. 1426 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { 1427 std::pair<unsigned, unsigned> PairVal = 1428 std::make_pair(Val.Reg, Val.SubReg); 1429 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); 1430 } 1431 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, 1432 const TargetInstrInfo::RegSubRegPair &RHS) { 1433 return RegInfo::isEqual(LHS.Reg, RHS.Reg) && 1434 RegInfo::isEqual(LHS.SubReg, RHS.SubReg); 1435 } 1436 }; 1437 1438 } // End llvm namespace 1439 1440 #endif 1441