1 //===-- Type.cpp - Implement the Type class -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Type.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/IR/Module.h"
18 #include <algorithm>
19 #include <cstdarg>
20 using namespace llvm;
21
22 //===----------------------------------------------------------------------===//
23 // Type Class Implementation
24 //===----------------------------------------------------------------------===//
25
getPrimitiveType(LLVMContext & C,TypeID IDNumber)26 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
27 switch (IDNumber) {
28 case VoidTyID : return getVoidTy(C);
29 case HalfTyID : return getHalfTy(C);
30 case FloatTyID : return getFloatTy(C);
31 case DoubleTyID : return getDoubleTy(C);
32 case X86_FP80TyID : return getX86_FP80Ty(C);
33 case FP128TyID : return getFP128Ty(C);
34 case PPC_FP128TyID : return getPPC_FP128Ty(C);
35 case LabelTyID : return getLabelTy(C);
36 case MetadataTyID : return getMetadataTy(C);
37 case X86_MMXTyID : return getX86_MMXTy(C);
38 case TokenTyID : return getTokenTy(C);
39 default:
40 return nullptr;
41 }
42 }
43
44 /// getScalarType - If this is a vector type, return the element type,
45 /// otherwise return this.
getScalarType() const46 Type *Type::getScalarType() const {
47 if (auto *VTy = dyn_cast<VectorType>(this))
48 return VTy->getElementType();
49 return const_cast<Type*>(this);
50 }
51
52 /// isIntegerTy - Return true if this is an IntegerType of the specified width.
isIntegerTy(unsigned Bitwidth) const53 bool Type::isIntegerTy(unsigned Bitwidth) const {
54 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
55 }
56
57 // canLosslesslyBitCastTo - Return true if this type can be converted to
58 // 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
59 //
canLosslesslyBitCastTo(Type * Ty) const60 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
61 // Identity cast means no change so return true
62 if (this == Ty)
63 return true;
64
65 // They are not convertible unless they are at least first class types
66 if (!this->isFirstClassType() || !Ty->isFirstClassType())
67 return false;
68
69 // Vector -> Vector conversions are always lossless if the two vector types
70 // have the same size, otherwise not. Also, 64-bit vector types can be
71 // converted to x86mmx.
72 if (auto *thisPTy = dyn_cast<VectorType>(this)) {
73 if (auto *thatPTy = dyn_cast<VectorType>(Ty))
74 return thisPTy->getBitWidth() == thatPTy->getBitWidth();
75 if (Ty->getTypeID() == Type::X86_MMXTyID &&
76 thisPTy->getBitWidth() == 64)
77 return true;
78 }
79
80 if (this->getTypeID() == Type::X86_MMXTyID)
81 if (auto *thatPTy = dyn_cast<VectorType>(Ty))
82 if (thatPTy->getBitWidth() == 64)
83 return true;
84
85 // At this point we have only various mismatches of the first class types
86 // remaining and ptr->ptr. Just select the lossless conversions. Everything
87 // else is not lossless. Conservatively assume we can't losslessly convert
88 // between pointers with different address spaces.
89 if (auto *PTy = dyn_cast<PointerType>(this)) {
90 if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
91 return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
92 return false;
93 }
94 return false; // Other types have no identity values
95 }
96
isEmptyTy() const97 bool Type::isEmptyTy() const {
98 if (auto *ATy = dyn_cast<ArrayType>(this)) {
99 unsigned NumElements = ATy->getNumElements();
100 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
101 }
102
103 if (auto *STy = dyn_cast<StructType>(this)) {
104 unsigned NumElements = STy->getNumElements();
105 for (unsigned i = 0; i < NumElements; ++i)
106 if (!STy->getElementType(i)->isEmptyTy())
107 return false;
108 return true;
109 }
110
111 return false;
112 }
113
getPrimitiveSizeInBits() const114 unsigned Type::getPrimitiveSizeInBits() const {
115 switch (getTypeID()) {
116 case Type::HalfTyID: return 16;
117 case Type::FloatTyID: return 32;
118 case Type::DoubleTyID: return 64;
119 case Type::X86_FP80TyID: return 80;
120 case Type::FP128TyID: return 128;
121 case Type::PPC_FP128TyID: return 128;
122 case Type::X86_MMXTyID: return 64;
123 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
124 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
125 default: return 0;
126 }
127 }
128
129 /// getScalarSizeInBits - If this is a vector type, return the
130 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
131 /// getPrimitiveSizeInBits value for this type.
getScalarSizeInBits() const132 unsigned Type::getScalarSizeInBits() const {
133 return getScalarType()->getPrimitiveSizeInBits();
134 }
135
136 /// getFPMantissaWidth - Return the width of the mantissa of this type. This
137 /// is only valid on floating point types. If the FP type does not
138 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
getFPMantissaWidth() const139 int Type::getFPMantissaWidth() const {
140 if (auto *VTy = dyn_cast<VectorType>(this))
141 return VTy->getElementType()->getFPMantissaWidth();
142 assert(isFloatingPointTy() && "Not a floating point type!");
143 if (getTypeID() == HalfTyID) return 11;
144 if (getTypeID() == FloatTyID) return 24;
145 if (getTypeID() == DoubleTyID) return 53;
146 if (getTypeID() == X86_FP80TyID) return 64;
147 if (getTypeID() == FP128TyID) return 113;
148 assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
149 return -1;
150 }
151
152 /// isSizedDerivedType - Derived types like structures and arrays are sized
153 /// iff all of the members of the type are sized as well. Since asking for
154 /// their size is relatively uncommon, move this operation out of line.
isSizedDerivedType(SmallPtrSetImpl<Type * > * Visited) const155 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
156 if (auto *ATy = dyn_cast<ArrayType>(this))
157 return ATy->getElementType()->isSized(Visited);
158
159 if (auto *VTy = dyn_cast<VectorType>(this))
160 return VTy->getElementType()->isSized(Visited);
161
162 return cast<StructType>(this)->isSized(Visited);
163 }
164
165 //===----------------------------------------------------------------------===//
166 // Subclass Helper Methods
167 //===----------------------------------------------------------------------===//
168
getIntegerBitWidth() const169 unsigned Type::getIntegerBitWidth() const {
170 return cast<IntegerType>(this)->getBitWidth();
171 }
172
isFunctionVarArg() const173 bool Type::isFunctionVarArg() const {
174 return cast<FunctionType>(this)->isVarArg();
175 }
176
getFunctionParamType(unsigned i) const177 Type *Type::getFunctionParamType(unsigned i) const {
178 return cast<FunctionType>(this)->getParamType(i);
179 }
180
getFunctionNumParams() const181 unsigned Type::getFunctionNumParams() const {
182 return cast<FunctionType>(this)->getNumParams();
183 }
184
getStructName() const185 StringRef Type::getStructName() const {
186 return cast<StructType>(this)->getName();
187 }
188
getStructNumElements() const189 unsigned Type::getStructNumElements() const {
190 return cast<StructType>(this)->getNumElements();
191 }
192
getStructElementType(unsigned N) const193 Type *Type::getStructElementType(unsigned N) const {
194 return cast<StructType>(this)->getElementType(N);
195 }
196
getSequentialElementType() const197 Type *Type::getSequentialElementType() const {
198 return cast<SequentialType>(this)->getElementType();
199 }
200
getArrayNumElements() const201 uint64_t Type::getArrayNumElements() const {
202 return cast<ArrayType>(this)->getNumElements();
203 }
204
getVectorNumElements() const205 unsigned Type::getVectorNumElements() const {
206 return cast<VectorType>(this)->getNumElements();
207 }
208
getPointerAddressSpace() const209 unsigned Type::getPointerAddressSpace() const {
210 return cast<PointerType>(getScalarType())->getAddressSpace();
211 }
212
213
214 //===----------------------------------------------------------------------===//
215 // Primitive 'Type' data
216 //===----------------------------------------------------------------------===//
217
getVoidTy(LLVMContext & C)218 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
getLabelTy(LLVMContext & C)219 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
getHalfTy(LLVMContext & C)220 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
getFloatTy(LLVMContext & C)221 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
getDoubleTy(LLVMContext & C)222 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
getMetadataTy(LLVMContext & C)223 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
getTokenTy(LLVMContext & C)224 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
getX86_FP80Ty(LLVMContext & C)225 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
getFP128Ty(LLVMContext & C)226 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
getPPC_FP128Ty(LLVMContext & C)227 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
getX86_MMXTy(LLVMContext & C)228 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
229
getInt1Ty(LLVMContext & C)230 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
getInt8Ty(LLVMContext & C)231 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
getInt16Ty(LLVMContext & C)232 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
getInt32Ty(LLVMContext & C)233 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
getInt64Ty(LLVMContext & C)234 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
getInt128Ty(LLVMContext & C)235 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
236
getIntNTy(LLVMContext & C,unsigned N)237 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
238 return IntegerType::get(C, N);
239 }
240
getHalfPtrTy(LLVMContext & C,unsigned AS)241 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
242 return getHalfTy(C)->getPointerTo(AS);
243 }
244
getFloatPtrTy(LLVMContext & C,unsigned AS)245 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
246 return getFloatTy(C)->getPointerTo(AS);
247 }
248
getDoublePtrTy(LLVMContext & C,unsigned AS)249 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
250 return getDoubleTy(C)->getPointerTo(AS);
251 }
252
getX86_FP80PtrTy(LLVMContext & C,unsigned AS)253 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
254 return getX86_FP80Ty(C)->getPointerTo(AS);
255 }
256
getFP128PtrTy(LLVMContext & C,unsigned AS)257 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
258 return getFP128Ty(C)->getPointerTo(AS);
259 }
260
getPPC_FP128PtrTy(LLVMContext & C,unsigned AS)261 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
262 return getPPC_FP128Ty(C)->getPointerTo(AS);
263 }
264
getX86_MMXPtrTy(LLVMContext & C,unsigned AS)265 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
266 return getX86_MMXTy(C)->getPointerTo(AS);
267 }
268
getIntNPtrTy(LLVMContext & C,unsigned N,unsigned AS)269 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
270 return getIntNTy(C, N)->getPointerTo(AS);
271 }
272
getInt1PtrTy(LLVMContext & C,unsigned AS)273 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
274 return getInt1Ty(C)->getPointerTo(AS);
275 }
276
getInt8PtrTy(LLVMContext & C,unsigned AS)277 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
278 return getInt8Ty(C)->getPointerTo(AS);
279 }
280
getInt16PtrTy(LLVMContext & C,unsigned AS)281 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
282 return getInt16Ty(C)->getPointerTo(AS);
283 }
284
getInt32PtrTy(LLVMContext & C,unsigned AS)285 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
286 return getInt32Ty(C)->getPointerTo(AS);
287 }
288
getInt64PtrTy(LLVMContext & C,unsigned AS)289 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
290 return getInt64Ty(C)->getPointerTo(AS);
291 }
292
293
294 //===----------------------------------------------------------------------===//
295 // IntegerType Implementation
296 //===----------------------------------------------------------------------===//
297
get(LLVMContext & C,unsigned NumBits)298 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
299 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
300 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
301
302 // Check for the built-in integer types
303 switch (NumBits) {
304 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
305 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
306 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
307 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
308 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
309 case 128: return cast<IntegerType>(Type::getInt128Ty(C));
310 default:
311 break;
312 }
313
314 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
315
316 if (!Entry)
317 Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
318
319 return Entry;
320 }
321
isPowerOf2ByteWidth() const322 bool IntegerType::isPowerOf2ByteWidth() const {
323 unsigned BitWidth = getBitWidth();
324 return (BitWidth > 7) && isPowerOf2_32(BitWidth);
325 }
326
getMask() const327 APInt IntegerType::getMask() const {
328 return APInt::getAllOnesValue(getBitWidth());
329 }
330
331 //===----------------------------------------------------------------------===//
332 // FunctionType Implementation
333 //===----------------------------------------------------------------------===//
334
FunctionType(Type * Result,ArrayRef<Type * > Params,bool IsVarArgs)335 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
336 bool IsVarArgs)
337 : Type(Result->getContext(), FunctionTyID) {
338 Type **SubTys = reinterpret_cast<Type**>(this+1);
339 assert(isValidReturnType(Result) && "invalid return type for function");
340 setSubclassData(IsVarArgs);
341
342 SubTys[0] = Result;
343
344 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
345 assert(isValidArgumentType(Params[i]) &&
346 "Not a valid type for function argument!");
347 SubTys[i+1] = Params[i];
348 }
349
350 ContainedTys = SubTys;
351 NumContainedTys = Params.size() + 1; // + 1 for result type
352 }
353
354 // FunctionType::get - The factory function for the FunctionType class.
get(Type * ReturnType,ArrayRef<Type * > Params,bool isVarArg)355 FunctionType *FunctionType::get(Type *ReturnType,
356 ArrayRef<Type*> Params, bool isVarArg) {
357 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
358 FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
359 auto I = pImpl->FunctionTypes.find_as(Key);
360 FunctionType *FT;
361
362 if (I == pImpl->FunctionTypes.end()) {
363 FT = (FunctionType*) pImpl->TypeAllocator.
364 Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
365 AlignOf<FunctionType>::Alignment);
366 new (FT) FunctionType(ReturnType, Params, isVarArg);
367 pImpl->FunctionTypes.insert(FT);
368 } else {
369 FT = *I;
370 }
371
372 return FT;
373 }
374
get(Type * Result,bool isVarArg)375 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
376 return get(Result, None, isVarArg);
377 }
378
379 /// isValidReturnType - Return true if the specified type is valid as a return
380 /// type.
isValidReturnType(Type * RetTy)381 bool FunctionType::isValidReturnType(Type *RetTy) {
382 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
383 !RetTy->isMetadataTy();
384 }
385
386 /// isValidArgumentType - Return true if the specified type is valid as an
387 /// argument type.
isValidArgumentType(Type * ArgTy)388 bool FunctionType::isValidArgumentType(Type *ArgTy) {
389 return ArgTy->isFirstClassType();
390 }
391
392 //===----------------------------------------------------------------------===//
393 // StructType Implementation
394 //===----------------------------------------------------------------------===//
395
396 // Primitive Constructors.
397
get(LLVMContext & Context,ArrayRef<Type * > ETypes,bool isPacked)398 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
399 bool isPacked) {
400 LLVMContextImpl *pImpl = Context.pImpl;
401 AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
402 auto I = pImpl->AnonStructTypes.find_as(Key);
403 StructType *ST;
404
405 if (I == pImpl->AnonStructTypes.end()) {
406 // Value not found. Create a new type!
407 ST = new (Context.pImpl->TypeAllocator) StructType(Context);
408 ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
409 ST->setBody(ETypes, isPacked);
410 Context.pImpl->AnonStructTypes.insert(ST);
411 } else {
412 ST = *I;
413 }
414
415 return ST;
416 }
417
setBody(ArrayRef<Type * > Elements,bool isPacked)418 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
419 assert(isOpaque() && "Struct body already set!");
420
421 setSubclassData(getSubclassData() | SCDB_HasBody);
422 if (isPacked)
423 setSubclassData(getSubclassData() | SCDB_Packed);
424
425 NumContainedTys = Elements.size();
426
427 if (Elements.empty()) {
428 ContainedTys = nullptr;
429 return;
430 }
431
432 ContainedTys = Elements.copy(getContext().pImpl->TypeAllocator).data();
433 }
434
setName(StringRef Name)435 void StructType::setName(StringRef Name) {
436 if (Name == getName()) return;
437
438 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
439 typedef StringMap<StructType *>::MapEntryTy EntryTy;
440
441 // If this struct already had a name, remove its symbol table entry. Don't
442 // delete the data yet because it may be part of the new name.
443 if (SymbolTableEntry)
444 SymbolTable.remove((EntryTy *)SymbolTableEntry);
445
446 // If this is just removing the name, we're done.
447 if (Name.empty()) {
448 if (SymbolTableEntry) {
449 // Delete the old string data.
450 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
451 SymbolTableEntry = nullptr;
452 }
453 return;
454 }
455
456 // Look up the entry for the name.
457 auto IterBool =
458 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
459
460 // While we have a name collision, try a random rename.
461 if (!IterBool.second) {
462 SmallString<64> TempStr(Name);
463 TempStr.push_back('.');
464 raw_svector_ostream TmpStream(TempStr);
465 unsigned NameSize = Name.size();
466
467 do {
468 TempStr.resize(NameSize + 1);
469 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
470
471 IterBool = getContext().pImpl->NamedStructTypes.insert(
472 std::make_pair(TmpStream.str(), this));
473 } while (!IterBool.second);
474 }
475
476 // Delete the old string data.
477 if (SymbolTableEntry)
478 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
479 SymbolTableEntry = &*IterBool.first;
480 }
481
482 //===----------------------------------------------------------------------===//
483 // StructType Helper functions.
484
create(LLVMContext & Context,StringRef Name)485 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
486 StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
487 if (!Name.empty())
488 ST->setName(Name);
489 return ST;
490 }
491
get(LLVMContext & Context,bool isPacked)492 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
493 return get(Context, None, isPacked);
494 }
495
get(Type * type,...)496 StructType *StructType::get(Type *type, ...) {
497 assert(type && "Cannot create a struct type with no elements with this");
498 LLVMContext &Ctx = type->getContext();
499 va_list ap;
500 SmallVector<llvm::Type*, 8> StructFields;
501 va_start(ap, type);
502 while (type) {
503 StructFields.push_back(type);
504 type = va_arg(ap, llvm::Type*);
505 }
506 auto *Ret = llvm::StructType::get(Ctx, StructFields);
507 va_end(ap);
508 return Ret;
509 }
510
create(LLVMContext & Context,ArrayRef<Type * > Elements,StringRef Name,bool isPacked)511 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
512 StringRef Name, bool isPacked) {
513 StructType *ST = create(Context, Name);
514 ST->setBody(Elements, isPacked);
515 return ST;
516 }
517
create(LLVMContext & Context,ArrayRef<Type * > Elements)518 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
519 return create(Context, Elements, StringRef());
520 }
521
create(LLVMContext & Context)522 StructType *StructType::create(LLVMContext &Context) {
523 return create(Context, StringRef());
524 }
525
create(ArrayRef<Type * > Elements,StringRef Name,bool isPacked)526 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
527 bool isPacked) {
528 assert(!Elements.empty() &&
529 "This method may not be invoked with an empty list");
530 return create(Elements[0]->getContext(), Elements, Name, isPacked);
531 }
532
create(ArrayRef<Type * > Elements)533 StructType *StructType::create(ArrayRef<Type*> Elements) {
534 assert(!Elements.empty() &&
535 "This method may not be invoked with an empty list");
536 return create(Elements[0]->getContext(), Elements, StringRef());
537 }
538
create(StringRef Name,Type * type,...)539 StructType *StructType::create(StringRef Name, Type *type, ...) {
540 assert(type && "Cannot create a struct type with no elements with this");
541 LLVMContext &Ctx = type->getContext();
542 va_list ap;
543 SmallVector<llvm::Type*, 8> StructFields;
544 va_start(ap, type);
545 while (type) {
546 StructFields.push_back(type);
547 type = va_arg(ap, llvm::Type*);
548 }
549 auto *Ret = llvm::StructType::create(Ctx, StructFields, Name);
550 va_end(ap);
551 return Ret;
552 }
553
isSized(SmallPtrSetImpl<Type * > * Visited) const554 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
555 if ((getSubclassData() & SCDB_IsSized) != 0)
556 return true;
557 if (isOpaque())
558 return false;
559
560 if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
561 return false;
562
563 // Okay, our struct is sized if all of the elements are, but if one of the
564 // elements is opaque, the struct isn't sized *yet*, but may become sized in
565 // the future, so just bail out without caching.
566 for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
567 if (!(*I)->isSized(Visited))
568 return false;
569
570 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
571 // we find a sized type, as types can only move from opaque to sized, not the
572 // other way.
573 const_cast<StructType*>(this)->setSubclassData(
574 getSubclassData() | SCDB_IsSized);
575 return true;
576 }
577
getName() const578 StringRef StructType::getName() const {
579 assert(!isLiteral() && "Literal structs never have names");
580 if (!SymbolTableEntry) return StringRef();
581
582 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
583 }
584
setBody(Type * type,...)585 void StructType::setBody(Type *type, ...) {
586 assert(type && "Cannot create a struct type with no elements with this");
587 va_list ap;
588 SmallVector<llvm::Type*, 8> StructFields;
589 va_start(ap, type);
590 while (type) {
591 StructFields.push_back(type);
592 type = va_arg(ap, llvm::Type*);
593 }
594 setBody(StructFields);
595 va_end(ap);
596 }
597
isValidElementType(Type * ElemTy)598 bool StructType::isValidElementType(Type *ElemTy) {
599 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
600 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
601 !ElemTy->isTokenTy();
602 }
603
604 /// isLayoutIdentical - Return true if this is layout identical to the
605 /// specified struct.
isLayoutIdentical(StructType * Other) const606 bool StructType::isLayoutIdentical(StructType *Other) const {
607 if (this == Other) return true;
608
609 if (isPacked() != Other->isPacked())
610 return false;
611
612 return elements() == Other->elements();
613 }
614
615 /// getTypeByName - Return the type with the specified name, or null if there
616 /// is none by that name.
getTypeByName(StringRef Name) const617 StructType *Module::getTypeByName(StringRef Name) const {
618 return getContext().pImpl->NamedStructTypes.lookup(Name);
619 }
620
621
622 //===----------------------------------------------------------------------===//
623 // CompositeType Implementation
624 //===----------------------------------------------------------------------===//
625
getTypeAtIndex(const Value * V) const626 Type *CompositeType::getTypeAtIndex(const Value *V) const {
627 if (auto *STy = dyn_cast<StructType>(this)) {
628 unsigned Idx =
629 (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
630 assert(indexValid(Idx) && "Invalid structure index!");
631 return STy->getElementType(Idx);
632 }
633
634 return cast<SequentialType>(this)->getElementType();
635 }
636
getTypeAtIndex(unsigned Idx) const637 Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
638 if (auto *STy = dyn_cast<StructType>(this)) {
639 assert(indexValid(Idx) && "Invalid structure index!");
640 return STy->getElementType(Idx);
641 }
642
643 return cast<SequentialType>(this)->getElementType();
644 }
645
indexValid(const Value * V) const646 bool CompositeType::indexValid(const Value *V) const {
647 if (auto *STy = dyn_cast<StructType>(this)) {
648 // Structure indexes require (vectors of) 32-bit integer constants. In the
649 // vector case all of the indices must be equal.
650 if (!V->getType()->getScalarType()->isIntegerTy(32))
651 return false;
652 const Constant *C = dyn_cast<Constant>(V);
653 if (C && V->getType()->isVectorTy())
654 C = C->getSplatValue();
655 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
656 return CU && CU->getZExtValue() < STy->getNumElements();
657 }
658
659 // Sequential types can be indexed by any integer.
660 return V->getType()->isIntOrIntVectorTy();
661 }
662
indexValid(unsigned Idx) const663 bool CompositeType::indexValid(unsigned Idx) const {
664 if (auto *STy = dyn_cast<StructType>(this))
665 return Idx < STy->getNumElements();
666 // Sequential types can be indexed by any integer.
667 return true;
668 }
669
670
671 //===----------------------------------------------------------------------===//
672 // ArrayType Implementation
673 //===----------------------------------------------------------------------===//
674
ArrayType(Type * ElType,uint64_t NumEl)675 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
676 : SequentialType(ArrayTyID, ElType) {
677 NumElements = NumEl;
678 }
679
get(Type * ElementType,uint64_t NumElements)680 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
681 assert(isValidElementType(ElementType) && "Invalid type for array element!");
682
683 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
684 ArrayType *&Entry =
685 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
686
687 if (!Entry)
688 Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
689 return Entry;
690 }
691
isValidElementType(Type * ElemTy)692 bool ArrayType::isValidElementType(Type *ElemTy) {
693 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
694 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
695 !ElemTy->isTokenTy();
696 }
697
698 //===----------------------------------------------------------------------===//
699 // VectorType Implementation
700 //===----------------------------------------------------------------------===//
701
VectorType(Type * ElType,unsigned NumEl)702 VectorType::VectorType(Type *ElType, unsigned NumEl)
703 : SequentialType(VectorTyID, ElType) {
704 NumElements = NumEl;
705 }
706
get(Type * ElementType,unsigned NumElements)707 VectorType *VectorType::get(Type *ElementType, unsigned NumElements) {
708 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
709 assert(isValidElementType(ElementType) && "Element type of a VectorType must "
710 "be an integer, floating point, or "
711 "pointer type.");
712
713 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
714 VectorType *&Entry = ElementType->getContext().pImpl
715 ->VectorTypes[std::make_pair(ElementType, NumElements)];
716
717 if (!Entry)
718 Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
719 return Entry;
720 }
721
isValidElementType(Type * ElemTy)722 bool VectorType::isValidElementType(Type *ElemTy) {
723 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
724 ElemTy->isPointerTy();
725 }
726
727 //===----------------------------------------------------------------------===//
728 // PointerType Implementation
729 //===----------------------------------------------------------------------===//
730
get(Type * EltTy,unsigned AddressSpace)731 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
732 assert(EltTy && "Can't get a pointer to <null> type!");
733 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
734
735 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
736
737 // Since AddressSpace #0 is the common case, we special case it.
738 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
739 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
740
741 if (!Entry)
742 Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
743 return Entry;
744 }
745
746
PointerType(Type * E,unsigned AddrSpace)747 PointerType::PointerType(Type *E, unsigned AddrSpace)
748 : SequentialType(PointerTyID, E) {
749 #ifndef NDEBUG
750 const unsigned oldNCT = NumContainedTys;
751 #endif
752 setSubclassData(AddrSpace);
753 // Check for miscompile. PR11652.
754 assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
755 }
756
getPointerTo(unsigned addrs) const757 PointerType *Type::getPointerTo(unsigned addrs) const {
758 return PointerType::get(const_cast<Type*>(this), addrs);
759 }
760
isValidElementType(Type * ElemTy)761 bool PointerType::isValidElementType(Type *ElemTy) {
762 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
763 !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
764 }
765
isLoadableOrStorableType(Type * ElemTy)766 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
767 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
768 }
769