1 /***********************************************************************
2 * Software License Agreement (BSD License)
3 *
4 * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
5 * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
6 *
7 * THE BSD LICENSE
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *************************************************************************/
30
31 /***********************************************************************
32 * Author: Vincent Rabaud
33 *************************************************************************/
34
35 #ifndef OPENCV_FLANN_LSH_TABLE_H_
36 #define OPENCV_FLANN_LSH_TABLE_H_
37
38 #include <algorithm>
39 #include <iostream>
40 #include <iomanip>
41 #include <limits.h>
42 // TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP
43 #ifdef __GXX_EXPERIMENTAL_CXX0X__
44 # define USE_UNORDERED_MAP 1
45 #else
46 # define USE_UNORDERED_MAP 0
47 #endif
48 #if USE_UNORDERED_MAP
49 #include <unordered_map>
50 #else
51 #include <map>
52 #endif
53 #include <math.h>
54 #include <stddef.h>
55
56 #include "dynamic_bitset.h"
57 #include "matrix.h"
58
59 namespace cvflann
60 {
61
62 namespace lsh
63 {
64
65 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
66
67 /** What is stored in an LSH bucket
68 */
69 typedef uint32_t FeatureIndex;
70 /** The id from which we can get a bucket back in an LSH table
71 */
72 typedef unsigned int BucketKey;
73
74 /** A bucket in an LSH table
75 */
76 typedef std::vector<FeatureIndex> Bucket;
77
78 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
79
80 /** POD for stats about an LSH table
81 */
82 struct LshStats
83 {
84 std::vector<unsigned int> bucket_sizes_;
85 size_t n_buckets_;
86 size_t bucket_size_mean_;
87 size_t bucket_size_median_;
88 size_t bucket_size_min_;
89 size_t bucket_size_max_;
90 size_t bucket_size_std_dev;
91 /** Each contained vector contains three value: beginning/end for interval, number of elements in the bin
92 */
93 std::vector<std::vector<unsigned int> > size_histogram_;
94 };
95
96 /** Overload the << operator for LshStats
97 * @param out the streams
98 * @param stats the stats to display
99 * @return the streams
100 */
101 inline std::ostream& operator <<(std::ostream& out, const LshStats& stats)
102 {
103 int w = 20;
104 out << "Lsh Table Stats:\n" << std::setw(w) << std::setiosflags(std::ios::right) << "N buckets : "
105 << stats.n_buckets_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "mean size : "
106 << std::setiosflags(std::ios::left) << stats.bucket_size_mean_ << "\n" << std::setw(w)
107 << std::setiosflags(std::ios::right) << "median size : " << stats.bucket_size_median_ << "\n" << std::setw(w)
108 << std::setiosflags(std::ios::right) << "min size : " << std::setiosflags(std::ios::left)
109 << stats.bucket_size_min_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "max size : "
110 << std::setiosflags(std::ios::left) << stats.bucket_size_max_;
111
112 // Display the histogram
113 out << std::endl << std::setw(w) << std::setiosflags(std::ios::right) << "histogram : "
114 << std::setiosflags(std::ios::left);
115 for (std::vector<std::vector<unsigned int> >::const_iterator iterator = stats.size_histogram_.begin(), end =
116 stats.size_histogram_.end(); iterator != end; ++iterator) out << (*iterator)[0] << "-" << (*iterator)[1] << ": " << (*iterator)[2] << ", ";
117
118 return out;
119 }
120
121
122 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
123
124 /** Lsh hash table. As its key is a sub-feature, and as usually
125 * the size of it is pretty small, we keep it as a continuous memory array.
126 * The value is an index in the corpus of features (we keep it as an unsigned
127 * int for pure memory reasons, it could be a size_t)
128 */
129 template<typename ElementType>
130 class LshTable
131 {
132 public:
133 /** A container of all the feature indices. Optimized for space
134 */
135 #if USE_UNORDERED_MAP
136 typedef std::unordered_map<BucketKey, Bucket> BucketsSpace;
137 #else
138 typedef std::map<BucketKey, Bucket> BucketsSpace;
139 #endif
140
141 /** A container of all the feature indices. Optimized for speed
142 */
143 typedef std::vector<Bucket> BucketsSpeed;
144
145 /** Default constructor
146 */
LshTable()147 LshTable()
148 {
149 }
150
151 /** Default constructor
152 * Create the mask and allocate the memory
153 * @param feature_size is the size of the feature (considered as a ElementType[])
154 * @param key_size is the number of bits that are turned on in the feature
155 */
LshTable(unsigned int feature_size,unsigned int key_size)156 LshTable(unsigned int feature_size, unsigned int key_size)
157 {
158 (void)feature_size;
159 (void)key_size;
160 std::cerr << "LSH is not implemented for that type" << std::endl;
161 assert(0);
162 }
163
164 /** Add a feature to the table
165 * @param value the value to store for that feature
166 * @param feature the feature itself
167 */
add(unsigned int value,const ElementType * feature)168 void add(unsigned int value, const ElementType* feature)
169 {
170 // Add the value to the corresponding bucket
171 BucketKey key = (lsh::BucketKey)getKey(feature);
172
173 switch (speed_level_) {
174 case kArray:
175 // That means we get the buckets from an array
176 buckets_speed_[key].push_back(value);
177 break;
178 case kBitsetHash:
179 // That means we can check the bitset for the presence of a key
180 key_bitset_.set(key);
181 buckets_space_[key].push_back(value);
182 break;
183 case kHash:
184 {
185 // That means we have to check for the hash table for the presence of a key
186 buckets_space_[key].push_back(value);
187 break;
188 }
189 }
190 }
191
192 /** Add a set of features to the table
193 * @param dataset the values to store
194 */
add(Matrix<ElementType> dataset)195 void add(Matrix<ElementType> dataset)
196 {
197 #if USE_UNORDERED_MAP
198 buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2);
199 #endif
200 // Add the features to the table
201 for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]);
202 // Now that the table is full, optimize it for speed/space
203 optimize();
204 }
205
206 /** Get a bucket given the key
207 * @param key
208 * @return
209 */
getBucketFromKey(BucketKey key)210 inline const Bucket* getBucketFromKey(BucketKey key) const
211 {
212 // Generate other buckets
213 switch (speed_level_) {
214 case kArray:
215 // That means we get the buckets from an array
216 return &buckets_speed_[key];
217 break;
218 case kBitsetHash:
219 // That means we can check the bitset for the presence of a key
220 if (key_bitset_.test(key)) return &buckets_space_.find(key)->second;
221 else return 0;
222 break;
223 case kHash:
224 {
225 // That means we have to check for the hash table for the presence of a key
226 BucketsSpace::const_iterator bucket_it, bucket_end = buckets_space_.end();
227 bucket_it = buckets_space_.find(key);
228 // Stop here if that bucket does not exist
229 if (bucket_it == bucket_end) return 0;
230 else return &bucket_it->second;
231 break;
232 }
233 }
234 return 0;
235 }
236
237 /** Compute the sub-signature of a feature
238 */
getKey(const ElementType *)239 size_t getKey(const ElementType* /*feature*/) const
240 {
241 std::cerr << "LSH is not implemented for that type" << std::endl;
242 assert(0);
243 return 1;
244 }
245
246 /** Get statistics about the table
247 * @return
248 */
249 LshStats getStats() const;
250
251 private:
252 /** defines the speed fo the implementation
253 * kArray uses a vector for storing data
254 * kBitsetHash uses a hash map but checks for the validity of a key with a bitset
255 * kHash uses a hash map only
256 */
257 enum SpeedLevel
258 {
259 kArray, kBitsetHash, kHash
260 };
261
262 /** Initialize some variables
263 */
initialize(size_t key_size)264 void initialize(size_t key_size)
265 {
266 const size_t key_size_lower_bound = 1;
267 //a value (size_t(1) << key_size) must fit the size_t type so key_size has to be strictly less than size of size_t
268 const size_t key_size_upper_bound = std::min(sizeof(BucketKey) * CHAR_BIT + 1, sizeof(size_t) * CHAR_BIT);
269 if (key_size < key_size_lower_bound || key_size >= key_size_upper_bound)
270 {
271 CV_Error(cv::Error::StsBadArg, cv::format("Invalid key_size (=%d). Valid values for your system are %d <= key_size < %d.", (int)key_size, (int)key_size_lower_bound, (int)key_size_upper_bound));
272 }
273
274 speed_level_ = kHash;
275 key_size_ = (unsigned)key_size;
276 }
277
278 /** Optimize the table for speed/space
279 */
optimize()280 void optimize()
281 {
282 // If we are already using the fast storage, no need to do anything
283 if (speed_level_ == kArray) return;
284
285 // Use an array if it will be more than half full
286 if (buckets_space_.size() > ((size_t(1) << key_size_) / 2)) {
287 speed_level_ = kArray;
288 // Fill the array version of it
289 buckets_speed_.resize(size_t(1) << key_size_);
290 for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) buckets_speed_[key_bucket->first] = key_bucket->second;
291
292 // Empty the hash table
293 buckets_space_.clear();
294 return;
295 }
296
297 // If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two
298 // for the vector) or less than 512MB (key_size_ <= 30)
299 if (((std::max(buckets_space_.size(), buckets_speed_.size()) * CHAR_BIT * 3 * sizeof(BucketKey)) / 10
300 >= (size_t(1) << key_size_)) || (key_size_ <= 32)) {
301 speed_level_ = kBitsetHash;
302 key_bitset_.resize(size_t(1) << key_size_);
303 key_bitset_.reset();
304 // Try with the BucketsSpace
305 for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) key_bitset_.set(key_bucket->first);
306 }
307 else {
308 speed_level_ = kHash;
309 key_bitset_.clear();
310 }
311 }
312
313 /** The vector of all the buckets if they are held for speed
314 */
315 BucketsSpeed buckets_speed_;
316
317 /** The hash table of all the buckets in case we cannot use the speed version
318 */
319 BucketsSpace buckets_space_;
320
321 /** What is used to store the data */
322 SpeedLevel speed_level_;
323
324 /** If the subkey is small enough, it will keep track of which subkeys are set through that bitset
325 * That is just a speedup so that we don't look in the hash table (which can be mush slower that checking a bitset)
326 */
327 DynamicBitset key_bitset_;
328
329 /** The size of the sub-signature in bits
330 */
331 unsigned int key_size_;
332
333 // Members only used for the unsigned char specialization
334 /** The mask to apply to a feature to get the hash key
335 * Only used in the unsigned char case
336 */
337 std::vector<size_t> mask_;
338 };
339
340 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
341 // Specialization for unsigned char
342
343 template<>
LshTable(unsigned int feature_size,unsigned int subsignature_size)344 inline LshTable<unsigned char>::LshTable(unsigned int feature_size, unsigned int subsignature_size)
345 {
346 initialize(subsignature_size);
347 // Allocate the mask
348 mask_ = std::vector<size_t>((size_t)ceil((float)(feature_size * sizeof(char)) / (float)sizeof(size_t)), 0);
349
350 // A bit brutal but fast to code
351 std::vector<size_t> indices(feature_size * CHAR_BIT);
352 for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = i;
353 std::random_shuffle(indices.begin(), indices.end());
354
355 // Generate a random set of order of subsignature_size_ bits
356 for (unsigned int i = 0; i < key_size_; ++i) {
357 size_t index = indices[i];
358
359 // Set that bit in the mask
360 size_t divisor = CHAR_BIT * sizeof(size_t);
361 size_t idx = index / divisor; //pick the right size_t index
362 mask_[idx] |= size_t(1) << (index % divisor); //use modulo to find the bit offset
363 }
364
365 // Set to 1 if you want to display the mask for debug
366 #if 0
367 {
368 size_t bcount = 0;
369 BOOST_FOREACH(size_t mask_block, mask_){
370 out << std::setw(sizeof(size_t) * CHAR_BIT / 4) << std::setfill('0') << std::hex << mask_block
371 << std::endl;
372 bcount += __builtin_popcountll(mask_block);
373 }
374 out << "bit count : " << std::dec << bcount << std::endl;
375 out << "mask size : " << mask_.size() << std::endl;
376 return out;
377 }
378 #endif
379 }
380
381 /** Return the Subsignature of a feature
382 * @param feature the feature to analyze
383 */
384 template<>
getKey(const unsigned char * feature)385 inline size_t LshTable<unsigned char>::getKey(const unsigned char* feature) const
386 {
387 // no need to check if T is dividable by sizeof(size_t) like in the Hamming
388 // distance computation as we have a mask
389 const size_t* feature_block_ptr = reinterpret_cast<const size_t*> ((const void*)feature);
390
391 // Figure out the subsignature of the feature
392 // Given the feature ABCDEF, and the mask 001011, the output will be
393 // 000CEF
394 size_t subsignature = 0;
395 size_t bit_index = 1;
396
397 for (std::vector<size_t>::const_iterator pmask_block = mask_.begin(); pmask_block != mask_.end(); ++pmask_block) {
398 // get the mask and signature blocks
399 size_t feature_block = *feature_block_ptr;
400 size_t mask_block = *pmask_block;
401 while (mask_block) {
402 // Get the lowest set bit in the mask block
403 size_t lowest_bit = mask_block & (-(ptrdiff_t)mask_block);
404 // Add it to the current subsignature if necessary
405 subsignature += (feature_block & lowest_bit) ? bit_index : 0;
406 // Reset the bit in the mask block
407 mask_block ^= lowest_bit;
408 // increment the bit index for the subsignature
409 bit_index <<= 1;
410 }
411 // Check the next feature block
412 ++feature_block_ptr;
413 }
414 return subsignature;
415 }
416
417 template<>
getStats()418 inline LshStats LshTable<unsigned char>::getStats() const
419 {
420 LshStats stats;
421 stats.bucket_size_mean_ = 0;
422 if ((buckets_speed_.empty()) && (buckets_space_.empty())) {
423 stats.n_buckets_ = 0;
424 stats.bucket_size_median_ = 0;
425 stats.bucket_size_min_ = 0;
426 stats.bucket_size_max_ = 0;
427 return stats;
428 }
429
430 if (!buckets_speed_.empty()) {
431 for (BucketsSpeed::const_iterator pbucket = buckets_speed_.begin(); pbucket != buckets_speed_.end(); ++pbucket) {
432 stats.bucket_sizes_.push_back((lsh::FeatureIndex)pbucket->size());
433 stats.bucket_size_mean_ += pbucket->size();
434 }
435 stats.bucket_size_mean_ /= buckets_speed_.size();
436 stats.n_buckets_ = buckets_speed_.size();
437 }
438 else {
439 for (BucketsSpace::const_iterator x = buckets_space_.begin(); x != buckets_space_.end(); ++x) {
440 stats.bucket_sizes_.push_back((lsh::FeatureIndex)x->second.size());
441 stats.bucket_size_mean_ += x->second.size();
442 }
443 stats.bucket_size_mean_ /= buckets_space_.size();
444 stats.n_buckets_ = buckets_space_.size();
445 }
446
447 std::sort(stats.bucket_sizes_.begin(), stats.bucket_sizes_.end());
448
449 // BOOST_FOREACH(int size, stats.bucket_sizes_)
450 // std::cout << size << " ";
451 // std::cout << std::endl;
452 stats.bucket_size_median_ = stats.bucket_sizes_[stats.bucket_sizes_.size() / 2];
453 stats.bucket_size_min_ = stats.bucket_sizes_.front();
454 stats.bucket_size_max_ = stats.bucket_sizes_.back();
455
456 // TODO compute mean and std
457 /*float mean, stddev;
458 stats.bucket_size_mean_ = mean;
459 stats.bucket_size_std_dev = stddev;*/
460
461 // Include a histogram of the buckets
462 unsigned int bin_start = 0;
463 unsigned int bin_end = 20;
464 bool is_new_bin = true;
465 for (std::vector<unsigned int>::iterator iterator = stats.bucket_sizes_.begin(), end = stats.bucket_sizes_.end(); iterator
466 != end; )
467 if (*iterator < bin_end) {
468 if (is_new_bin) {
469 stats.size_histogram_.push_back(std::vector<unsigned int>(3, 0));
470 stats.size_histogram_.back()[0] = bin_start;
471 stats.size_histogram_.back()[1] = bin_end - 1;
472 is_new_bin = false;
473 }
474 ++stats.size_histogram_.back()[2];
475 ++iterator;
476 }
477 else {
478 bin_start += 20;
479 bin_end += 20;
480 is_new_bin = true;
481 }
482
483 return stats;
484 }
485
486 // End the two namespaces
487 }
488 }
489
490 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
491
492 #endif /* OPENCV_FLANN_LSH_TABLE_H_ */
493