1 /*
2  * Written by Doug Lea with assistance from members of JCP JSR-166
3  * Expert Group and released to the public domain, as explained at
4  * http://creativecommons.org/publicdomain/zero/1.0/
5  */
6 
7 package java.util.concurrent;
8 
9 import java.lang.ref.WeakReference;
10 import java.util.AbstractQueue;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.Objects;
16 import java.util.Spliterator;
17 import java.util.Spliterators;
18 import java.util.concurrent.locks.Condition;
19 import java.util.concurrent.locks.ReentrantLock;
20 
21 // BEGIN android-note
22 // removed link to collections framework docs
23 // END android-note
24 
25 /**
26  * A bounded {@linkplain BlockingQueue blocking queue} backed by an
27  * array.  This queue orders elements FIFO (first-in-first-out).  The
28  * <em>head</em> of the queue is that element that has been on the
29  * queue the longest time.  The <em>tail</em> of the queue is that
30  * element that has been on the queue the shortest time. New elements
31  * are inserted at the tail of the queue, and the queue retrieval
32  * operations obtain elements at the head of the queue.
33  *
34  * <p>This is a classic &quot;bounded buffer&quot;, in which a
35  * fixed-sized array holds elements inserted by producers and
36  * extracted by consumers.  Once created, the capacity cannot be
37  * changed.  Attempts to {@code put} an element into a full queue
38  * will result in the operation blocking; attempts to {@code take} an
39  * element from an empty queue will similarly block.
40  *
41  * <p>This class supports an optional fairness policy for ordering
42  * waiting producer and consumer threads.  By default, this ordering
43  * is not guaranteed. However, a queue constructed with fairness set
44  * to {@code true} grants threads access in FIFO order. Fairness
45  * generally decreases throughput but reduces variability and avoids
46  * starvation.
47  *
48  * <p>This class and its iterator implement all of the
49  * <em>optional</em> methods of the {@link Collection} and {@link
50  * Iterator} interfaces.
51  *
52  * @since 1.5
53  * @author Doug Lea
54  * @param <E> the type of elements held in this queue
55  */
56 public class ArrayBlockingQueue<E> extends AbstractQueue<E>
57         implements BlockingQueue<E>, java.io.Serializable {
58 
59     /**
60      * Serialization ID. This class relies on default serialization
61      * even for the items array, which is default-serialized, even if
62      * it is empty. Otherwise it could not be declared final, which is
63      * necessary here.
64      */
65     private static final long serialVersionUID = -817911632652898426L;
66 
67     /** The queued items */
68     final Object[] items;
69 
70     /** items index for next take, poll, peek or remove */
71     int takeIndex;
72 
73     /** items index for next put, offer, or add */
74     int putIndex;
75 
76     /** Number of elements in the queue */
77     int count;
78 
79     /*
80      * Concurrency control uses the classic two-condition algorithm
81      * found in any textbook.
82      */
83 
84     /** Main lock guarding all access */
85     final ReentrantLock lock;
86 
87     /** Condition for waiting takes */
88     private final Condition notEmpty;
89 
90     /** Condition for waiting puts */
91     private final Condition notFull;
92 
93     /**
94      * Shared state for currently active iterators, or null if there
95      * are known not to be any.  Allows queue operations to update
96      * iterator state.
97      */
98     transient Itrs itrs;
99 
100     // Internal helper methods
101 
102     /**
103      * Circularly decrements array index i.
104      */
dec(int i)105     final int dec(int i) {
106         return ((i == 0) ? items.length : i) - 1;
107     }
108 
109     /**
110      * Returns item at index i.
111      */
112     @SuppressWarnings("unchecked")
itemAt(int i)113     final E itemAt(int i) {
114         return (E) items[i];
115     }
116 
117     /**
118      * Inserts element at current put position, advances, and signals.
119      * Call only when holding lock.
120      */
enqueue(E x)121     private void enqueue(E x) {
122         // assert lock.getHoldCount() == 1;
123         // assert items[putIndex] == null;
124         final Object[] items = this.items;
125         items[putIndex] = x;
126         if (++putIndex == items.length) putIndex = 0;
127         count++;
128         notEmpty.signal();
129     }
130 
131     /**
132      * Extracts element at current take position, advances, and signals.
133      * Call only when holding lock.
134      */
dequeue()135     private E dequeue() {
136         // assert lock.getHoldCount() == 1;
137         // assert items[takeIndex] != null;
138         final Object[] items = this.items;
139         @SuppressWarnings("unchecked")
140         E x = (E) items[takeIndex];
141         items[takeIndex] = null;
142         if (++takeIndex == items.length) takeIndex = 0;
143         count--;
144         if (itrs != null)
145             itrs.elementDequeued();
146         notFull.signal();
147         return x;
148     }
149 
150     /**
151      * Deletes item at array index removeIndex.
152      * Utility for remove(Object) and iterator.remove.
153      * Call only when holding lock.
154      */
removeAt(final int removeIndex)155     void removeAt(final int removeIndex) {
156         // assert lock.getHoldCount() == 1;
157         // assert items[removeIndex] != null;
158         // assert removeIndex >= 0 && removeIndex < items.length;
159         final Object[] items = this.items;
160         if (removeIndex == takeIndex) {
161             // removing front item; just advance
162             items[takeIndex] = null;
163             if (++takeIndex == items.length) takeIndex = 0;
164             count--;
165             if (itrs != null)
166                 itrs.elementDequeued();
167         } else {
168             // an "interior" remove
169 
170             // slide over all others up through putIndex.
171             for (int i = removeIndex, putIndex = this.putIndex;;) {
172                 int pred = i;
173                 if (++i == items.length) i = 0;
174                 if (i == putIndex) {
175                     items[pred] = null;
176                     this.putIndex = pred;
177                     break;
178                 }
179                 items[pred] = items[i];
180             }
181             count--;
182             if (itrs != null)
183                 itrs.removedAt(removeIndex);
184         }
185         notFull.signal();
186     }
187 
188     /**
189      * Creates an {@code ArrayBlockingQueue} with the given (fixed)
190      * capacity and default access policy.
191      *
192      * @param capacity the capacity of this queue
193      * @throws IllegalArgumentException if {@code capacity < 1}
194      */
ArrayBlockingQueue(int capacity)195     public ArrayBlockingQueue(int capacity) {
196         this(capacity, false);
197     }
198 
199     /**
200      * Creates an {@code ArrayBlockingQueue} with the given (fixed)
201      * capacity and the specified access policy.
202      *
203      * @param capacity the capacity of this queue
204      * @param fair if {@code true} then queue accesses for threads blocked
205      *        on insertion or removal, are processed in FIFO order;
206      *        if {@code false} the access order is unspecified.
207      * @throws IllegalArgumentException if {@code capacity < 1}
208      */
ArrayBlockingQueue(int capacity, boolean fair)209     public ArrayBlockingQueue(int capacity, boolean fair) {
210         if (capacity <= 0)
211             throw new IllegalArgumentException();
212         this.items = new Object[capacity];
213         lock = new ReentrantLock(fair);
214         notEmpty = lock.newCondition();
215         notFull =  lock.newCondition();
216     }
217 
218     /**
219      * Creates an {@code ArrayBlockingQueue} with the given (fixed)
220      * capacity, the specified access policy and initially containing the
221      * elements of the given collection,
222      * added in traversal order of the collection's iterator.
223      *
224      * @param capacity the capacity of this queue
225      * @param fair if {@code true} then queue accesses for threads blocked
226      *        on insertion or removal, are processed in FIFO order;
227      *        if {@code false} the access order is unspecified.
228      * @param c the collection of elements to initially contain
229      * @throws IllegalArgumentException if {@code capacity} is less than
230      *         {@code c.size()}, or less than 1.
231      * @throws NullPointerException if the specified collection or any
232      *         of its elements are null
233      */
ArrayBlockingQueue(int capacity, boolean fair, Collection<? extends E> c)234     public ArrayBlockingQueue(int capacity, boolean fair,
235                               Collection<? extends E> c) {
236         this(capacity, fair);
237 
238         final ReentrantLock lock = this.lock;
239         lock.lock(); // Lock only for visibility, not mutual exclusion
240         try {
241             int i = 0;
242             try {
243                 for (E e : c)
244                     items[i++] = Objects.requireNonNull(e);
245             } catch (ArrayIndexOutOfBoundsException ex) {
246                 throw new IllegalArgumentException();
247             }
248             count = i;
249             putIndex = (i == capacity) ? 0 : i;
250         } finally {
251             lock.unlock();
252         }
253     }
254 
255     /**
256      * Inserts the specified element at the tail of this queue if it is
257      * possible to do so immediately without exceeding the queue's capacity,
258      * returning {@code true} upon success and throwing an
259      * {@code IllegalStateException} if this queue is full.
260      *
261      * @param e the element to add
262      * @return {@code true} (as specified by {@link Collection#add})
263      * @throws IllegalStateException if this queue is full
264      * @throws NullPointerException if the specified element is null
265      */
add(E e)266     public boolean add(E e) {
267         return super.add(e);
268     }
269 
270     /**
271      * Inserts the specified element at the tail of this queue if it is
272      * possible to do so immediately without exceeding the queue's capacity,
273      * returning {@code true} upon success and {@code false} if this queue
274      * is full.  This method is generally preferable to method {@link #add},
275      * which can fail to insert an element only by throwing an exception.
276      *
277      * @throws NullPointerException if the specified element is null
278      */
offer(E e)279     public boolean offer(E e) {
280         Objects.requireNonNull(e);
281         final ReentrantLock lock = this.lock;
282         lock.lock();
283         try {
284             if (count == items.length)
285                 return false;
286             else {
287                 enqueue(e);
288                 return true;
289             }
290         } finally {
291             lock.unlock();
292         }
293     }
294 
295     /**
296      * Inserts the specified element at the tail of this queue, waiting
297      * for space to become available if the queue is full.
298      *
299      * @throws InterruptedException {@inheritDoc}
300      * @throws NullPointerException {@inheritDoc}
301      */
put(E e)302     public void put(E e) throws InterruptedException {
303         Objects.requireNonNull(e);
304         final ReentrantLock lock = this.lock;
305         lock.lockInterruptibly();
306         try {
307             while (count == items.length)
308                 notFull.await();
309             enqueue(e);
310         } finally {
311             lock.unlock();
312         }
313     }
314 
315     /**
316      * Inserts the specified element at the tail of this queue, waiting
317      * up to the specified wait time for space to become available if
318      * the queue is full.
319      *
320      * @throws InterruptedException {@inheritDoc}
321      * @throws NullPointerException {@inheritDoc}
322      */
offer(E e, long timeout, TimeUnit unit)323     public boolean offer(E e, long timeout, TimeUnit unit)
324         throws InterruptedException {
325 
326         Objects.requireNonNull(e);
327         long nanos = unit.toNanos(timeout);
328         final ReentrantLock lock = this.lock;
329         lock.lockInterruptibly();
330         try {
331             while (count == items.length) {
332                 if (nanos <= 0L)
333                     return false;
334                 nanos = notFull.awaitNanos(nanos);
335             }
336             enqueue(e);
337             return true;
338         } finally {
339             lock.unlock();
340         }
341     }
342 
poll()343     public E poll() {
344         final ReentrantLock lock = this.lock;
345         lock.lock();
346         try {
347             return (count == 0) ? null : dequeue();
348         } finally {
349             lock.unlock();
350         }
351     }
352 
take()353     public E take() throws InterruptedException {
354         final ReentrantLock lock = this.lock;
355         lock.lockInterruptibly();
356         try {
357             while (count == 0)
358                 notEmpty.await();
359             return dequeue();
360         } finally {
361             lock.unlock();
362         }
363     }
364 
poll(long timeout, TimeUnit unit)365     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
366         long nanos = unit.toNanos(timeout);
367         final ReentrantLock lock = this.lock;
368         lock.lockInterruptibly();
369         try {
370             while (count == 0) {
371                 if (nanos <= 0L)
372                     return null;
373                 nanos = notEmpty.awaitNanos(nanos);
374             }
375             return dequeue();
376         } finally {
377             lock.unlock();
378         }
379     }
380 
peek()381     public E peek() {
382         final ReentrantLock lock = this.lock;
383         lock.lock();
384         try {
385             return itemAt(takeIndex); // null when queue is empty
386         } finally {
387             lock.unlock();
388         }
389     }
390 
391     // this doc comment is overridden to remove the reference to collections
392     // greater in size than Integer.MAX_VALUE
393     /**
394      * Returns the number of elements in this queue.
395      *
396      * @return the number of elements in this queue
397      */
size()398     public int size() {
399         final ReentrantLock lock = this.lock;
400         lock.lock();
401         try {
402             return count;
403         } finally {
404             lock.unlock();
405         }
406     }
407 
408     // this doc comment is a modified copy of the inherited doc comment,
409     // without the reference to unlimited queues.
410     /**
411      * Returns the number of additional elements that this queue can ideally
412      * (in the absence of memory or resource constraints) accept without
413      * blocking. This is always equal to the initial capacity of this queue
414      * less the current {@code size} of this queue.
415      *
416      * <p>Note that you <em>cannot</em> always tell if an attempt to insert
417      * an element will succeed by inspecting {@code remainingCapacity}
418      * because it may be the case that another thread is about to
419      * insert or remove an element.
420      */
remainingCapacity()421     public int remainingCapacity() {
422         final ReentrantLock lock = this.lock;
423         lock.lock();
424         try {
425             return items.length - count;
426         } finally {
427             lock.unlock();
428         }
429     }
430 
431     /**
432      * Removes a single instance of the specified element from this queue,
433      * if it is present.  More formally, removes an element {@code e} such
434      * that {@code o.equals(e)}, if this queue contains one or more such
435      * elements.
436      * Returns {@code true} if this queue contained the specified element
437      * (or equivalently, if this queue changed as a result of the call).
438      *
439      * <p>Removal of interior elements in circular array based queues
440      * is an intrinsically slow and disruptive operation, so should
441      * be undertaken only in exceptional circumstances, ideally
442      * only when the queue is known not to be accessible by other
443      * threads.
444      *
445      * @param o element to be removed from this queue, if present
446      * @return {@code true} if this queue changed as a result of the call
447      */
remove(Object o)448     public boolean remove(Object o) {
449         if (o == null) return false;
450         final ReentrantLock lock = this.lock;
451         lock.lock();
452         try {
453             if (count > 0) {
454                 final Object[] items = this.items;
455                 final int putIndex = this.putIndex;
456                 int i = takeIndex;
457                 do {
458                     if (o.equals(items[i])) {
459                         removeAt(i);
460                         return true;
461                     }
462                     if (++i == items.length) i = 0;
463                 } while (i != putIndex);
464             }
465             return false;
466         } finally {
467             lock.unlock();
468         }
469     }
470 
471     /**
472      * Returns {@code true} if this queue contains the specified element.
473      * More formally, returns {@code true} if and only if this queue contains
474      * at least one element {@code e} such that {@code o.equals(e)}.
475      *
476      * @param o object to be checked for containment in this queue
477      * @return {@code true} if this queue contains the specified element
478      */
contains(Object o)479     public boolean contains(Object o) {
480         if (o == null) return false;
481         final ReentrantLock lock = this.lock;
482         lock.lock();
483         try {
484             if (count > 0) {
485                 final Object[] items = this.items;
486                 final int putIndex = this.putIndex;
487                 int i = takeIndex;
488                 do {
489                     if (o.equals(items[i]))
490                         return true;
491                     if (++i == items.length) i = 0;
492                 } while (i != putIndex);
493             }
494             return false;
495         } finally {
496             lock.unlock();
497         }
498     }
499 
500     /**
501      * Returns an array containing all of the elements in this queue, in
502      * proper sequence.
503      *
504      * <p>The returned array will be "safe" in that no references to it are
505      * maintained by this queue.  (In other words, this method must allocate
506      * a new array).  The caller is thus free to modify the returned array.
507      *
508      * <p>This method acts as bridge between array-based and collection-based
509      * APIs.
510      *
511      * @return an array containing all of the elements in this queue
512      */
toArray()513     public Object[] toArray() {
514         final ReentrantLock lock = this.lock;
515         lock.lock();
516         try {
517             final Object[] items = this.items;
518             final int end = takeIndex + count;
519             final Object[] a = Arrays.copyOfRange(items, takeIndex, end);
520             if (end != putIndex)
521                 System.arraycopy(items, 0, a, items.length - takeIndex, putIndex);
522             return a;
523         } finally {
524             lock.unlock();
525         }
526     }
527 
528     /**
529      * Returns an array containing all of the elements in this queue, in
530      * proper sequence; the runtime type of the returned array is that of
531      * the specified array.  If the queue fits in the specified array, it
532      * is returned therein.  Otherwise, a new array is allocated with the
533      * runtime type of the specified array and the size of this queue.
534      *
535      * <p>If this queue fits in the specified array with room to spare
536      * (i.e., the array has more elements than this queue), the element in
537      * the array immediately following the end of the queue is set to
538      * {@code null}.
539      *
540      * <p>Like the {@link #toArray()} method, this method acts as bridge between
541      * array-based and collection-based APIs.  Further, this method allows
542      * precise control over the runtime type of the output array, and may,
543      * under certain circumstances, be used to save allocation costs.
544      *
545      * <p>Suppose {@code x} is a queue known to contain only strings.
546      * The following code can be used to dump the queue into a newly
547      * allocated array of {@code String}:
548      *
549      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
550      *
551      * Note that {@code toArray(new Object[0])} is identical in function to
552      * {@code toArray()}.
553      *
554      * @param a the array into which the elements of the queue are to
555      *          be stored, if it is big enough; otherwise, a new array of the
556      *          same runtime type is allocated for this purpose
557      * @return an array containing all of the elements in this queue
558      * @throws ArrayStoreException if the runtime type of the specified array
559      *         is not a supertype of the runtime type of every element in
560      *         this queue
561      * @throws NullPointerException if the specified array is null
562      */
563     @SuppressWarnings("unchecked")
toArray(T[] a)564     public <T> T[] toArray(T[] a) {
565         final ReentrantLock lock = this.lock;
566         lock.lock();
567         try {
568             final Object[] items = this.items;
569             final int count = this.count;
570             final int firstLeg = Math.min(items.length - takeIndex, count);
571             if (a.length < count) {
572                 a = (T[]) Arrays.copyOfRange(items, takeIndex, takeIndex + count,
573                                              a.getClass());
574             } else {
575                 System.arraycopy(items, takeIndex, a, 0, firstLeg);
576                 if (a.length > count)
577                     a[count] = null;
578             }
579             if (firstLeg < count)
580                 System.arraycopy(items, 0, a, firstLeg, putIndex);
581             return a;
582         } finally {
583             lock.unlock();
584         }
585     }
586 
toString()587     public String toString() {
588         return Helpers.collectionToString(this);
589     }
590 
591     /**
592      * Atomically removes all of the elements from this queue.
593      * The queue will be empty after this call returns.
594      */
clear()595     public void clear() {
596         final ReentrantLock lock = this.lock;
597         lock.lock();
598         try {
599             int k = count;
600             if (k > 0) {
601                 final Object[] items = this.items;
602                 final int putIndex = this.putIndex;
603                 int i = takeIndex;
604                 do {
605                     items[i] = null;
606                     if (++i == items.length) i = 0;
607                 } while (i != putIndex);
608                 takeIndex = putIndex;
609                 count = 0;
610                 if (itrs != null)
611                     itrs.queueIsEmpty();
612                 for (; k > 0 && lock.hasWaiters(notFull); k--)
613                     notFull.signal();
614             }
615         } finally {
616             lock.unlock();
617         }
618     }
619 
620     /**
621      * @throws UnsupportedOperationException {@inheritDoc}
622      * @throws ClassCastException            {@inheritDoc}
623      * @throws NullPointerException          {@inheritDoc}
624      * @throws IllegalArgumentException      {@inheritDoc}
625      */
drainTo(Collection<? super E> c)626     public int drainTo(Collection<? super E> c) {
627         return drainTo(c, Integer.MAX_VALUE);
628     }
629 
630     /**
631      * @throws UnsupportedOperationException {@inheritDoc}
632      * @throws ClassCastException            {@inheritDoc}
633      * @throws NullPointerException          {@inheritDoc}
634      * @throws IllegalArgumentException      {@inheritDoc}
635      */
drainTo(Collection<? super E> c, int maxElements)636     public int drainTo(Collection<? super E> c, int maxElements) {
637         Objects.requireNonNull(c);
638         if (c == this)
639             throw new IllegalArgumentException();
640         if (maxElements <= 0)
641             return 0;
642         final Object[] items = this.items;
643         final ReentrantLock lock = this.lock;
644         lock.lock();
645         try {
646             int n = Math.min(maxElements, count);
647             int take = takeIndex;
648             int i = 0;
649             try {
650                 while (i < n) {
651                     @SuppressWarnings("unchecked")
652                     E x = (E) items[take];
653                     c.add(x);
654                     items[take] = null;
655                     if (++take == items.length) take = 0;
656                     i++;
657                 }
658                 return n;
659             } finally {
660                 // Restore invariants even if c.add() threw
661                 if (i > 0) {
662                     count -= i;
663                     takeIndex = take;
664                     if (itrs != null) {
665                         if (count == 0)
666                             itrs.queueIsEmpty();
667                         else if (i > take)
668                             itrs.takeIndexWrapped();
669                     }
670                     for (; i > 0 && lock.hasWaiters(notFull); i--)
671                         notFull.signal();
672                 }
673             }
674         } finally {
675             lock.unlock();
676         }
677     }
678 
679     /**
680      * Returns an iterator over the elements in this queue in proper sequence.
681      * The elements will be returned in order from first (head) to last (tail).
682      *
683      * <p>The returned iterator is
684      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
685      *
686      * @return an iterator over the elements in this queue in proper sequence
687      */
iterator()688     public Iterator<E> iterator() {
689         return new Itr();
690     }
691 
692     /**
693      * Shared data between iterators and their queue, allowing queue
694      * modifications to update iterators when elements are removed.
695      *
696      * This adds a lot of complexity for the sake of correctly
697      * handling some uncommon operations, but the combination of
698      * circular-arrays and supporting interior removes (i.e., those
699      * not at head) would cause iterators to sometimes lose their
700      * places and/or (re)report elements they shouldn't.  To avoid
701      * this, when a queue has one or more iterators, it keeps iterator
702      * state consistent by:
703      *
704      * (1) keeping track of the number of "cycles", that is, the
705      *     number of times takeIndex has wrapped around to 0.
706      * (2) notifying all iterators via the callback removedAt whenever
707      *     an interior element is removed (and thus other elements may
708      *     be shifted).
709      *
710      * These suffice to eliminate iterator inconsistencies, but
711      * unfortunately add the secondary responsibility of maintaining
712      * the list of iterators.  We track all active iterators in a
713      * simple linked list (accessed only when the queue's lock is
714      * held) of weak references to Itr.  The list is cleaned up using
715      * 3 different mechanisms:
716      *
717      * (1) Whenever a new iterator is created, do some O(1) checking for
718      *     stale list elements.
719      *
720      * (2) Whenever takeIndex wraps around to 0, check for iterators
721      *     that have been unused for more than one wrap-around cycle.
722      *
723      * (3) Whenever the queue becomes empty, all iterators are notified
724      *     and this entire data structure is discarded.
725      *
726      * So in addition to the removedAt callback that is necessary for
727      * correctness, iterators have the shutdown and takeIndexWrapped
728      * callbacks that help remove stale iterators from the list.
729      *
730      * Whenever a list element is examined, it is expunged if either
731      * the GC has determined that the iterator is discarded, or if the
732      * iterator reports that it is "detached" (does not need any
733      * further state updates).  Overhead is maximal when takeIndex
734      * never advances, iterators are discarded before they are
735      * exhausted, and all removals are interior removes, in which case
736      * all stale iterators are discovered by the GC.  But even in this
737      * case we don't increase the amortized complexity.
738      *
739      * Care must be taken to keep list sweeping methods from
740      * reentrantly invoking another such method, causing subtle
741      * corruption bugs.
742      */
743     class Itrs {
744 
745         /**
746          * Node in a linked list of weak iterator references.
747          */
748         private class Node extends WeakReference<Itr> {
749             Node next;
750 
Node(Itr iterator, Node next)751             Node(Itr iterator, Node next) {
752                 super(iterator);
753                 this.next = next;
754             }
755         }
756 
757         /** Incremented whenever takeIndex wraps around to 0 */
758         int cycles;
759 
760         /** Linked list of weak iterator references */
761         private Node head;
762 
763         /** Used to expunge stale iterators */
764         private Node sweeper;
765 
766         private static final int SHORT_SWEEP_PROBES = 4;
767         private static final int LONG_SWEEP_PROBES = 16;
768 
Itrs(Itr initial)769         Itrs(Itr initial) {
770             register(initial);
771         }
772 
773         /**
774          * Sweeps itrs, looking for and expunging stale iterators.
775          * If at least one was found, tries harder to find more.
776          * Called only from iterating thread.
777          *
778          * @param tryHarder whether to start in try-harder mode, because
779          * there is known to be at least one iterator to collect
780          */
doSomeSweeping(boolean tryHarder)781         void doSomeSweeping(boolean tryHarder) {
782             // assert lock.getHoldCount() == 1;
783             // assert head != null;
784             int probes = tryHarder ? LONG_SWEEP_PROBES : SHORT_SWEEP_PROBES;
785             Node o, p;
786             final Node sweeper = this.sweeper;
787             boolean passedGo;   // to limit search to one full sweep
788 
789             if (sweeper == null) {
790                 o = null;
791                 p = head;
792                 passedGo = true;
793             } else {
794                 o = sweeper;
795                 p = o.next;
796                 passedGo = false;
797             }
798 
799             for (; probes > 0; probes--) {
800                 if (p == null) {
801                     if (passedGo)
802                         break;
803                     o = null;
804                     p = head;
805                     passedGo = true;
806                 }
807                 final Itr it = p.get();
808                 final Node next = p.next;
809                 if (it == null || it.isDetached()) {
810                     // found a discarded/exhausted iterator
811                     probes = LONG_SWEEP_PROBES; // "try harder"
812                     // unlink p
813                     p.clear();
814                     p.next = null;
815                     if (o == null) {
816                         head = next;
817                         if (next == null) {
818                             // We've run out of iterators to track; retire
819                             itrs = null;
820                             return;
821                         }
822                     }
823                     else
824                         o.next = next;
825                 } else {
826                     o = p;
827                 }
828                 p = next;
829             }
830 
831             this.sweeper = (p == null) ? null : o;
832         }
833 
834         /**
835          * Adds a new iterator to the linked list of tracked iterators.
836          */
register(Itr itr)837         void register(Itr itr) {
838             // assert lock.getHoldCount() == 1;
839             head = new Node(itr, head);
840         }
841 
842         /**
843          * Called whenever takeIndex wraps around to 0.
844          *
845          * Notifies all iterators, and expunges any that are now stale.
846          */
takeIndexWrapped()847         void takeIndexWrapped() {
848             // assert lock.getHoldCount() == 1;
849             cycles++;
850             for (Node o = null, p = head; p != null;) {
851                 final Itr it = p.get();
852                 final Node next = p.next;
853                 if (it == null || it.takeIndexWrapped()) {
854                     // unlink p
855                     // assert it == null || it.isDetached();
856                     p.clear();
857                     p.next = null;
858                     if (o == null)
859                         head = next;
860                     else
861                         o.next = next;
862                 } else {
863                     o = p;
864                 }
865                 p = next;
866             }
867             if (head == null)   // no more iterators to track
868                 itrs = null;
869         }
870 
871         /**
872          * Called whenever an interior remove (not at takeIndex) occurred.
873          *
874          * Notifies all iterators, and expunges any that are now stale.
875          */
removedAt(int removedIndex)876         void removedAt(int removedIndex) {
877             for (Node o = null, p = head; p != null;) {
878                 final Itr it = p.get();
879                 final Node next = p.next;
880                 if (it == null || it.removedAt(removedIndex)) {
881                     // unlink p
882                     // assert it == null || it.isDetached();
883                     p.clear();
884                     p.next = null;
885                     if (o == null)
886                         head = next;
887                     else
888                         o.next = next;
889                 } else {
890                     o = p;
891                 }
892                 p = next;
893             }
894             if (head == null)   // no more iterators to track
895                 itrs = null;
896         }
897 
898         /**
899          * Called whenever the queue becomes empty.
900          *
901          * Notifies all active iterators that the queue is empty,
902          * clears all weak refs, and unlinks the itrs datastructure.
903          */
queueIsEmpty()904         void queueIsEmpty() {
905             // assert lock.getHoldCount() == 1;
906             for (Node p = head; p != null; p = p.next) {
907                 Itr it = p.get();
908                 if (it != null) {
909                     p.clear();
910                     it.shutdown();
911                 }
912             }
913             head = null;
914             itrs = null;
915         }
916 
917         /**
918          * Called whenever an element has been dequeued (at takeIndex).
919          */
elementDequeued()920         void elementDequeued() {
921             // assert lock.getHoldCount() == 1;
922             if (count == 0)
923                 queueIsEmpty();
924             else if (takeIndex == 0)
925                 takeIndexWrapped();
926         }
927     }
928 
929     /**
930      * Iterator for ArrayBlockingQueue.
931      *
932      * To maintain weak consistency with respect to puts and takes, we
933      * read ahead one slot, so as to not report hasNext true but then
934      * not have an element to return.
935      *
936      * We switch into "detached" mode (allowing prompt unlinking from
937      * itrs without help from the GC) when all indices are negative, or
938      * when hasNext returns false for the first time.  This allows the
939      * iterator to track concurrent updates completely accurately,
940      * except for the corner case of the user calling Iterator.remove()
941      * after hasNext() returned false.  Even in this case, we ensure
942      * that we don't remove the wrong element by keeping track of the
943      * expected element to remove, in lastItem.  Yes, we may fail to
944      * remove lastItem from the queue if it moved due to an interleaved
945      * interior remove while in detached mode.
946      */
947     private class Itr implements Iterator<E> {
948         /** Index to look for new nextItem; NONE at end */
949         private int cursor;
950 
951         /** Element to be returned by next call to next(); null if none */
952         private E nextItem;
953 
954         /** Index of nextItem; NONE if none, REMOVED if removed elsewhere */
955         private int nextIndex;
956 
957         /** Last element returned; null if none or not detached. */
958         private E lastItem;
959 
960         /** Index of lastItem, NONE if none, REMOVED if removed elsewhere */
961         private int lastRet;
962 
963         /** Previous value of takeIndex, or DETACHED when detached */
964         private int prevTakeIndex;
965 
966         /** Previous value of iters.cycles */
967         private int prevCycles;
968 
969         /** Special index value indicating "not available" or "undefined" */
970         private static final int NONE = -1;
971 
972         /**
973          * Special index value indicating "removed elsewhere", that is,
974          * removed by some operation other than a call to this.remove().
975          */
976         private static final int REMOVED = -2;
977 
978         /** Special value for prevTakeIndex indicating "detached mode" */
979         private static final int DETACHED = -3;
980 
Itr()981         Itr() {
982             // assert lock.getHoldCount() == 0;
983             lastRet = NONE;
984             final ReentrantLock lock = ArrayBlockingQueue.this.lock;
985             lock.lock();
986             try {
987                 if (count == 0) {
988                     // assert itrs == null;
989                     cursor = NONE;
990                     nextIndex = NONE;
991                     prevTakeIndex = DETACHED;
992                 } else {
993                     final int takeIndex = ArrayBlockingQueue.this.takeIndex;
994                     prevTakeIndex = takeIndex;
995                     nextItem = itemAt(nextIndex = takeIndex);
996                     cursor = incCursor(takeIndex);
997                     if (itrs == null) {
998                         itrs = new Itrs(this);
999                     } else {
1000                         itrs.register(this); // in this order
1001                         itrs.doSomeSweeping(false);
1002                     }
1003                     prevCycles = itrs.cycles;
1004                     // assert takeIndex >= 0;
1005                     // assert prevTakeIndex == takeIndex;
1006                     // assert nextIndex >= 0;
1007                     // assert nextItem != null;
1008                 }
1009             } finally {
1010                 lock.unlock();
1011             }
1012         }
1013 
isDetached()1014         boolean isDetached() {
1015             // assert lock.getHoldCount() == 1;
1016             return prevTakeIndex < 0;
1017         }
1018 
incCursor(int index)1019         private int incCursor(int index) {
1020             // assert lock.getHoldCount() == 1;
1021             if (++index == items.length) index = 0;
1022             if (index == putIndex) index = NONE;
1023             return index;
1024         }
1025 
1026         /**
1027          * Returns true if index is invalidated by the given number of
1028          * dequeues, starting from prevTakeIndex.
1029          */
invalidated(int index, int prevTakeIndex, long dequeues, int length)1030         private boolean invalidated(int index, int prevTakeIndex,
1031                                     long dequeues, int length) {
1032             if (index < 0)
1033                 return false;
1034             int distance = index - prevTakeIndex;
1035             if (distance < 0)
1036                 distance += length;
1037             return dequeues > distance;
1038         }
1039 
1040         /**
1041          * Adjusts indices to incorporate all dequeues since the last
1042          * operation on this iterator.  Call only from iterating thread.
1043          */
incorporateDequeues()1044         private void incorporateDequeues() {
1045             // assert lock.getHoldCount() == 1;
1046             // assert itrs != null;
1047             // assert !isDetached();
1048             // assert count > 0;
1049 
1050             final int cycles = itrs.cycles;
1051             final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1052             final int prevCycles = this.prevCycles;
1053             final int prevTakeIndex = this.prevTakeIndex;
1054 
1055             if (cycles != prevCycles || takeIndex != prevTakeIndex) {
1056                 final int len = items.length;
1057                 // how far takeIndex has advanced since the previous
1058                 // operation of this iterator
1059                 long dequeues = (cycles - prevCycles) * len
1060                     + (takeIndex - prevTakeIndex);
1061 
1062                 // Check indices for invalidation
1063                 if (invalidated(lastRet, prevTakeIndex, dequeues, len))
1064                     lastRet = REMOVED;
1065                 if (invalidated(nextIndex, prevTakeIndex, dequeues, len))
1066                     nextIndex = REMOVED;
1067                 if (invalidated(cursor, prevTakeIndex, dequeues, len))
1068                     cursor = takeIndex;
1069 
1070                 if (cursor < 0 && nextIndex < 0 && lastRet < 0)
1071                     detach();
1072                 else {
1073                     this.prevCycles = cycles;
1074                     this.prevTakeIndex = takeIndex;
1075                 }
1076             }
1077         }
1078 
1079         /**
1080          * Called when itrs should stop tracking this iterator, either
1081          * because there are no more indices to update (cursor < 0 &&
1082          * nextIndex < 0 && lastRet < 0) or as a special exception, when
1083          * lastRet >= 0, because hasNext() is about to return false for the
1084          * first time.  Call only from iterating thread.
1085          */
detach()1086         private void detach() {
1087             // Switch to detached mode
1088             // assert lock.getHoldCount() == 1;
1089             // assert cursor == NONE;
1090             // assert nextIndex < 0;
1091             // assert lastRet < 0 || nextItem == null;
1092             // assert lastRet < 0 ^ lastItem != null;
1093             if (prevTakeIndex >= 0) {
1094                 // assert itrs != null;
1095                 prevTakeIndex = DETACHED;
1096                 // try to unlink from itrs (but not too hard)
1097                 itrs.doSomeSweeping(true);
1098             }
1099         }
1100 
1101         /**
1102          * For performance reasons, we would like not to acquire a lock in
1103          * hasNext in the common case.  To allow for this, we only access
1104          * fields (i.e. nextItem) that are not modified by update operations
1105          * triggered by queue modifications.
1106          */
hasNext()1107         public boolean hasNext() {
1108             // assert lock.getHoldCount() == 0;
1109             if (nextItem != null)
1110                 return true;
1111             noNext();
1112             return false;
1113         }
1114 
noNext()1115         private void noNext() {
1116             final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1117             lock.lock();
1118             try {
1119                 // assert cursor == NONE;
1120                 // assert nextIndex == NONE;
1121                 if (!isDetached()) {
1122                     // assert lastRet >= 0;
1123                     incorporateDequeues(); // might update lastRet
1124                     if (lastRet >= 0) {
1125                         lastItem = itemAt(lastRet);
1126                         // assert lastItem != null;
1127                         detach();
1128                     }
1129                 }
1130                 // assert isDetached();
1131                 // assert lastRet < 0 ^ lastItem != null;
1132             } finally {
1133                 lock.unlock();
1134             }
1135         }
1136 
next()1137         public E next() {
1138             // assert lock.getHoldCount() == 0;
1139             final E x = nextItem;
1140             if (x == null)
1141                 throw new NoSuchElementException();
1142             final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1143             lock.lock();
1144             try {
1145                 if (!isDetached())
1146                     incorporateDequeues();
1147                 // assert nextIndex != NONE;
1148                 // assert lastItem == null;
1149                 lastRet = nextIndex;
1150                 final int cursor = this.cursor;
1151                 if (cursor >= 0) {
1152                     nextItem = itemAt(nextIndex = cursor);
1153                     // assert nextItem != null;
1154                     this.cursor = incCursor(cursor);
1155                 } else {
1156                     nextIndex = NONE;
1157                     nextItem = null;
1158                 }
1159             } finally {
1160                 lock.unlock();
1161             }
1162             return x;
1163         }
1164 
remove()1165         public void remove() {
1166             // assert lock.getHoldCount() == 0;
1167             final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1168             lock.lock();
1169             try {
1170                 if (!isDetached())
1171                     incorporateDequeues(); // might update lastRet or detach
1172                 final int lastRet = this.lastRet;
1173                 this.lastRet = NONE;
1174                 if (lastRet >= 0) {
1175                     if (!isDetached())
1176                         removeAt(lastRet);
1177                     else {
1178                         final E lastItem = this.lastItem;
1179                         // assert lastItem != null;
1180                         this.lastItem = null;
1181                         if (itemAt(lastRet) == lastItem)
1182                             removeAt(lastRet);
1183                     }
1184                 } else if (lastRet == NONE)
1185                     throw new IllegalStateException();
1186                 // else lastRet == REMOVED and the last returned element was
1187                 // previously asynchronously removed via an operation other
1188                 // than this.remove(), so nothing to do.
1189 
1190                 if (cursor < 0 && nextIndex < 0)
1191                     detach();
1192             } finally {
1193                 lock.unlock();
1194                 // assert lastRet == NONE;
1195                 // assert lastItem == null;
1196             }
1197         }
1198 
1199         /**
1200          * Called to notify the iterator that the queue is empty, or that it
1201          * has fallen hopelessly behind, so that it should abandon any
1202          * further iteration, except possibly to return one more element
1203          * from next(), as promised by returning true from hasNext().
1204          */
shutdown()1205         void shutdown() {
1206             // assert lock.getHoldCount() == 1;
1207             cursor = NONE;
1208             if (nextIndex >= 0)
1209                 nextIndex = REMOVED;
1210             if (lastRet >= 0) {
1211                 lastRet = REMOVED;
1212                 lastItem = null;
1213             }
1214             prevTakeIndex = DETACHED;
1215             // Don't set nextItem to null because we must continue to be
1216             // able to return it on next().
1217             //
1218             // Caller will unlink from itrs when convenient.
1219         }
1220 
distance(int index, int prevTakeIndex, int length)1221         private int distance(int index, int prevTakeIndex, int length) {
1222             int distance = index - prevTakeIndex;
1223             if (distance < 0)
1224                 distance += length;
1225             return distance;
1226         }
1227 
1228         /**
1229          * Called whenever an interior remove (not at takeIndex) occurred.
1230          *
1231          * @return true if this iterator should be unlinked from itrs
1232          */
removedAt(int removedIndex)1233         boolean removedAt(int removedIndex) {
1234             // assert lock.getHoldCount() == 1;
1235             if (isDetached())
1236                 return true;
1237 
1238             final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1239             final int prevTakeIndex = this.prevTakeIndex;
1240             final int len = items.length;
1241             // distance from prevTakeIndex to removedIndex
1242             final int removedDistance =
1243                 len * (itrs.cycles - this.prevCycles
1244                        + ((removedIndex < takeIndex) ? 1 : 0))
1245                 + (removedIndex - prevTakeIndex);
1246             // assert itrs.cycles - this.prevCycles >= 0;
1247             // assert itrs.cycles - this.prevCycles <= 1;
1248             // assert removedDistance > 0;
1249             // assert removedIndex != takeIndex;
1250             int cursor = this.cursor;
1251             if (cursor >= 0) {
1252                 int x = distance(cursor, prevTakeIndex, len);
1253                 if (x == removedDistance) {
1254                     if (cursor == putIndex)
1255                         this.cursor = cursor = NONE;
1256                 }
1257                 else if (x > removedDistance) {
1258                     // assert cursor != prevTakeIndex;
1259                     this.cursor = cursor = dec(cursor);
1260                 }
1261             }
1262             int lastRet = this.lastRet;
1263             if (lastRet >= 0) {
1264                 int x = distance(lastRet, prevTakeIndex, len);
1265                 if (x == removedDistance)
1266                     this.lastRet = lastRet = REMOVED;
1267                 else if (x > removedDistance)
1268                     this.lastRet = lastRet = dec(lastRet);
1269             }
1270             int nextIndex = this.nextIndex;
1271             if (nextIndex >= 0) {
1272                 int x = distance(nextIndex, prevTakeIndex, len);
1273                 if (x == removedDistance)
1274                     this.nextIndex = nextIndex = REMOVED;
1275                 else if (x > removedDistance)
1276                     this.nextIndex = nextIndex = dec(nextIndex);
1277             }
1278             if (cursor < 0 && nextIndex < 0 && lastRet < 0) {
1279                 this.prevTakeIndex = DETACHED;
1280                 return true;
1281             }
1282             return false;
1283         }
1284 
1285         /**
1286          * Called whenever takeIndex wraps around to zero.
1287          *
1288          * @return true if this iterator should be unlinked from itrs
1289          */
takeIndexWrapped()1290         boolean takeIndexWrapped() {
1291             // assert lock.getHoldCount() == 1;
1292             if (isDetached())
1293                 return true;
1294             if (itrs.cycles - prevCycles > 1) {
1295                 // All the elements that existed at the time of the last
1296                 // operation are gone, so abandon further iteration.
1297                 shutdown();
1298                 return true;
1299             }
1300             return false;
1301         }
1302 
1303 //         /** Uncomment for debugging. */
1304 //         public String toString() {
1305 //             return ("cursor=" + cursor + " " +
1306 //                     "nextIndex=" + nextIndex + " " +
1307 //                     "lastRet=" + lastRet + " " +
1308 //                     "nextItem=" + nextItem + " " +
1309 //                     "lastItem=" + lastItem + " " +
1310 //                     "prevCycles=" + prevCycles + " " +
1311 //                     "prevTakeIndex=" + prevTakeIndex + " " +
1312 //                     "size()=" + size() + " " +
1313 //                     "remainingCapacity()=" + remainingCapacity());
1314 //         }
1315     }
1316 
1317     /**
1318      * Returns a {@link Spliterator} over the elements in this queue.
1319      *
1320      * <p>The returned spliterator is
1321      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1322      *
1323      * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1324      * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1325      *
1326      * @implNote
1327      * The {@code Spliterator} implements {@code trySplit} to permit limited
1328      * parallelism.
1329      *
1330      * @return a {@code Spliterator} over the elements in this queue
1331      * @since 1.8
1332      */
spliterator()1333     public Spliterator<E> spliterator() {
1334         return Spliterators.spliterator
1335             (this, (Spliterator.ORDERED |
1336                     Spliterator.NONNULL |
1337                     Spliterator.CONCURRENT));
1338     }
1339 
1340 }
1341