1 /*
2  * Written by Doug Lea and Martin Buchholz with assistance from members of
3  * JCP JSR-166 Expert Group and released to the public domain, as explained
4  * at http://creativecommons.org/publicdomain/zero/1.0/
5  */
6 
7 package java.util.concurrent;
8 
9 import java.util.AbstractQueue;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Objects;
15 import java.util.Queue;
16 import java.util.Spliterator;
17 import java.util.Spliterators;
18 import java.util.function.Consumer;
19 
20 // BEGIN android-note
21 // removed link to collections framework docs
22 // END android-note
23 
24 /**
25  * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
26  * This queue orders elements FIFO (first-in-first-out).
27  * The <em>head</em> of the queue is that element that has been on the
28  * queue the longest time.
29  * The <em>tail</em> of the queue is that element that has been on the
30  * queue the shortest time. New elements
31  * are inserted at the tail of the queue, and the queue retrieval
32  * operations obtain elements at the head of the queue.
33  * A {@code ConcurrentLinkedQueue} is an appropriate choice when
34  * many threads will share access to a common collection.
35  * Like most other concurrent collection implementations, this class
36  * does not permit the use of {@code null} elements.
37  *
38  * <p>This implementation employs an efficient <em>non-blocking</em>
39  * algorithm based on one described in
40  * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
41  * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
42  * Algorithms</a> by Maged M. Michael and Michael L. Scott.
43  *
44  * <p>Iterators are <i>weakly consistent</i>, returning elements
45  * reflecting the state of the queue at some point at or since the
46  * creation of the iterator.  They do <em>not</em> throw {@link
47  * java.util.ConcurrentModificationException}, and may proceed concurrently
48  * with other operations.  Elements contained in the queue since the creation
49  * of the iterator will be returned exactly once.
50  *
51  * <p>Beware that, unlike in most collections, the {@code size} method
52  * is <em>NOT</em> a constant-time operation. Because of the
53  * asynchronous nature of these queues, determining the current number
54  * of elements requires a traversal of the elements, and so may report
55  * inaccurate results if this collection is modified during traversal.
56  * Additionally, the bulk operations {@code addAll},
57  * {@code removeAll}, {@code retainAll}, {@code containsAll},
58  * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
59  * to be performed atomically. For example, an iterator operating
60  * concurrently with an {@code addAll} operation might view only some
61  * of the added elements.
62  *
63  * <p>This class and its iterator implement all of the <em>optional</em>
64  * methods of the {@link Queue} and {@link Iterator} interfaces.
65  *
66  * <p>Memory consistency effects: As with other concurrent
67  * collections, actions in a thread prior to placing an object into a
68  * {@code ConcurrentLinkedQueue}
69  * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
70  * actions subsequent to the access or removal of that element from
71  * the {@code ConcurrentLinkedQueue} in another thread.
72  *
73  * @since 1.5
74  * @author Doug Lea
75  * @param <E> the type of elements held in this queue
76  */
77 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
78         implements Queue<E>, java.io.Serializable {
79     private static final long serialVersionUID = 196745693267521676L;
80 
81     /*
82      * This is a modification of the Michael & Scott algorithm,
83      * adapted for a garbage-collected environment, with support for
84      * interior node deletion (to support remove(Object)).  For
85      * explanation, read the paper.
86      *
87      * Note that like most non-blocking algorithms in this package,
88      * this implementation relies on the fact that in garbage
89      * collected systems, there is no possibility of ABA problems due
90      * to recycled nodes, so there is no need to use "counted
91      * pointers" or related techniques seen in versions used in
92      * non-GC'ed settings.
93      *
94      * The fundamental invariants are:
95      * - There is exactly one (last) Node with a null next reference,
96      *   which is CASed when enqueueing.  This last Node can be
97      *   reached in O(1) time from tail, but tail is merely an
98      *   optimization - it can always be reached in O(N) time from
99      *   head as well.
100      * - The elements contained in the queue are the non-null items in
101      *   Nodes that are reachable from head.  CASing the item
102      *   reference of a Node to null atomically removes it from the
103      *   queue.  Reachability of all elements from head must remain
104      *   true even in the case of concurrent modifications that cause
105      *   head to advance.  A dequeued Node may remain in use
106      *   indefinitely due to creation of an Iterator or simply a
107      *   poll() that has lost its time slice.
108      *
109      * The above might appear to imply that all Nodes are GC-reachable
110      * from a predecessor dequeued Node.  That would cause two problems:
111      * - allow a rogue Iterator to cause unbounded memory retention
112      * - cause cross-generational linking of old Nodes to new Nodes if
113      *   a Node was tenured while live, which generational GCs have a
114      *   hard time dealing with, causing repeated major collections.
115      * However, only non-deleted Nodes need to be reachable from
116      * dequeued Nodes, and reachability does not necessarily have to
117      * be of the kind understood by the GC.  We use the trick of
118      * linking a Node that has just been dequeued to itself.  Such a
119      * self-link implicitly means to advance to head.
120      *
121      * Both head and tail are permitted to lag.  In fact, failing to
122      * update them every time one could is a significant optimization
123      * (fewer CASes). As with LinkedTransferQueue (see the internal
124      * documentation for that class), we use a slack threshold of two;
125      * that is, we update head/tail when the current pointer appears
126      * to be two or more steps away from the first/last node.
127      *
128      * Since head and tail are updated concurrently and independently,
129      * it is possible for tail to lag behind head (why not)?
130      *
131      * CASing a Node's item reference to null atomically removes the
132      * element from the queue.  Iterators skip over Nodes with null
133      * items.  Prior implementations of this class had a race between
134      * poll() and remove(Object) where the same element would appear
135      * to be successfully removed by two concurrent operations.  The
136      * method remove(Object) also lazily unlinks deleted Nodes, but
137      * this is merely an optimization.
138      *
139      * When constructing a Node (before enqueuing it) we avoid paying
140      * for a volatile write to item by using Unsafe.putObject instead
141      * of a normal write.  This allows the cost of enqueue to be
142      * "one-and-a-half" CASes.
143      *
144      * Both head and tail may or may not point to a Node with a
145      * non-null item.  If the queue is empty, all items must of course
146      * be null.  Upon creation, both head and tail refer to a dummy
147      * Node with null item.  Both head and tail are only updated using
148      * CAS, so they never regress, although again this is merely an
149      * optimization.
150      */
151 
152     private static class Node<E> {
153         volatile E item;
154         volatile Node<E> next;
155     }
156 
157     /**
158      * Returns a new node holding item.  Uses relaxed write because item
159      * can only be seen after piggy-backing publication via casNext.
160      */
newNode(E item)161     static <E> Node<E> newNode(E item) {
162         Node<E> node = new Node<E>();
163         U.putObject(node, ITEM, item);
164         return node;
165     }
166 
casItem(Node<E> node, E cmp, E val)167     static <E> boolean casItem(Node<E> node, E cmp, E val) {
168         return U.compareAndSwapObject(node, ITEM, cmp, val);
169     }
170 
lazySetNext(Node<E> node, Node<E> val)171     static <E> void lazySetNext(Node<E> node, Node<E> val) {
172         U.putOrderedObject(node, NEXT, val);
173     }
174 
casNext(Node<E> node, Node<E> cmp, Node<E> val)175     static <E> boolean casNext(Node<E> node, Node<E> cmp, Node<E> val) {
176         return U.compareAndSwapObject(node, NEXT, cmp, val);
177     }
178 
179     /**
180      * A node from which the first live (non-deleted) node (if any)
181      * can be reached in O(1) time.
182      * Invariants:
183      * - all live nodes are reachable from head via succ()
184      * - head != null
185      * - (tmp = head).next != tmp || tmp != head
186      * Non-invariants:
187      * - head.item may or may not be null.
188      * - it is permitted for tail to lag behind head, that is, for tail
189      *   to not be reachable from head!
190      */
191     transient volatile Node<E> head;
192 
193     /**
194      * A node from which the last node on list (that is, the unique
195      * node with node.next == null) can be reached in O(1) time.
196      * Invariants:
197      * - the last node is always reachable from tail via succ()
198      * - tail != null
199      * Non-invariants:
200      * - tail.item may or may not be null.
201      * - it is permitted for tail to lag behind head, that is, for tail
202      *   to not be reachable from head!
203      * - tail.next may or may not be self-pointing to tail.
204      */
205     private transient volatile Node<E> tail;
206 
207     /**
208      * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
209      */
ConcurrentLinkedQueue()210     public ConcurrentLinkedQueue() {
211         head = tail = newNode(null);
212     }
213 
214     /**
215      * Creates a {@code ConcurrentLinkedQueue}
216      * initially containing the elements of the given collection,
217      * added in traversal order of the collection's iterator.
218      *
219      * @param c the collection of elements to initially contain
220      * @throws NullPointerException if the specified collection or any
221      *         of its elements are null
222      */
ConcurrentLinkedQueue(Collection<? extends E> c)223     public ConcurrentLinkedQueue(Collection<? extends E> c) {
224         Node<E> h = null, t = null;
225         for (E e : c) {
226             Node<E> newNode = newNode(Objects.requireNonNull(e));
227             if (h == null)
228                 h = t = newNode;
229             else {
230                 lazySetNext(t, newNode);
231                 t = newNode;
232             }
233         }
234         if (h == null)
235             h = t = newNode(null);
236         head = h;
237         tail = t;
238     }
239 
240     // Have to override just to update the javadoc
241 
242     /**
243      * Inserts the specified element at the tail of this queue.
244      * As the queue is unbounded, this method will never throw
245      * {@link IllegalStateException} or return {@code false}.
246      *
247      * @return {@code true} (as specified by {@link Collection#add})
248      * @throws NullPointerException if the specified element is null
249      */
add(E e)250     public boolean add(E e) {
251         return offer(e);
252     }
253 
254     /**
255      * Tries to CAS head to p. If successful, repoint old head to itself
256      * as sentinel for succ(), below.
257      */
updateHead(Node<E> h, Node<E> p)258     final void updateHead(Node<E> h, Node<E> p) {
259         // assert h != null && p != null && (h == p || h.item == null);
260         if (h != p && casHead(h, p))
261             lazySetNext(h, h);
262     }
263 
264     /**
265      * Returns the successor of p, or the head node if p.next has been
266      * linked to self, which will only be true if traversing with a
267      * stale pointer that is now off the list.
268      */
succ(Node<E> p)269     final Node<E> succ(Node<E> p) {
270         Node<E> next = p.next;
271         return (p == next) ? head : next;
272     }
273 
274     /**
275      * Inserts the specified element at the tail of this queue.
276      * As the queue is unbounded, this method will never return {@code false}.
277      *
278      * @return {@code true} (as specified by {@link Queue#offer})
279      * @throws NullPointerException if the specified element is null
280      */
offer(E e)281     public boolean offer(E e) {
282         final Node<E> newNode = newNode(Objects.requireNonNull(e));
283 
284         for (Node<E> t = tail, p = t;;) {
285             Node<E> q = p.next;
286             if (q == null) {
287                 // p is last node
288                 if (casNext(p, null, newNode)) {
289                     // Successful CAS is the linearization point
290                     // for e to become an element of this queue,
291                     // and for newNode to become "live".
292                     if (p != t) // hop two nodes at a time
293                         casTail(t, newNode);  // Failure is OK.
294                     return true;
295                 }
296                 // Lost CAS race to another thread; re-read next
297             }
298             else if (p == q)
299                 // We have fallen off list.  If tail is unchanged, it
300                 // will also be off-list, in which case we need to
301                 // jump to head, from which all live nodes are always
302                 // reachable.  Else the new tail is a better bet.
303                 p = (t != (t = tail)) ? t : head;
304             else
305                 // Check for tail updates after two hops.
306                 p = (p != t && t != (t = tail)) ? t : q;
307         }
308     }
309 
poll()310     public E poll() {
311         restartFromHead:
312         for (;;) {
313             for (Node<E> h = head, p = h, q;;) {
314                 E item = p.item;
315 
316                 if (item != null && casItem(p, item, null)) {
317                     // Successful CAS is the linearization point
318                     // for item to be removed from this queue.
319                     if (p != h) // hop two nodes at a time
320                         updateHead(h, ((q = p.next) != null) ? q : p);
321                     return item;
322                 }
323                 else if ((q = p.next) == null) {
324                     updateHead(h, p);
325                     return null;
326                 }
327                 else if (p == q)
328                     continue restartFromHead;
329                 else
330                     p = q;
331             }
332         }
333     }
334 
peek()335     public E peek() {
336         restartFromHead:
337         for (;;) {
338             for (Node<E> h = head, p = h, q;;) {
339                 E item = p.item;
340                 if (item != null || (q = p.next) == null) {
341                     updateHead(h, p);
342                     return item;
343                 }
344                 else if (p == q)
345                     continue restartFromHead;
346                 else
347                     p = q;
348             }
349         }
350     }
351 
352     /**
353      * Returns the first live (non-deleted) node on list, or null if none.
354      * This is yet another variant of poll/peek; here returning the
355      * first node, not element.  We could make peek() a wrapper around
356      * first(), but that would cost an extra volatile read of item,
357      * and the need to add a retry loop to deal with the possibility
358      * of losing a race to a concurrent poll().
359      */
first()360     Node<E> first() {
361         restartFromHead:
362         for (;;) {
363             for (Node<E> h = head, p = h, q;;) {
364                 boolean hasItem = (p.item != null);
365                 if (hasItem || (q = p.next) == null) {
366                     updateHead(h, p);
367                     return hasItem ? p : null;
368                 }
369                 else if (p == q)
370                     continue restartFromHead;
371                 else
372                     p = q;
373             }
374         }
375     }
376 
377     /**
378      * Returns {@code true} if this queue contains no elements.
379      *
380      * @return {@code true} if this queue contains no elements
381      */
isEmpty()382     public boolean isEmpty() {
383         return first() == null;
384     }
385 
386     /**
387      * Returns the number of elements in this queue.  If this queue
388      * contains more than {@code Integer.MAX_VALUE} elements, returns
389      * {@code Integer.MAX_VALUE}.
390      *
391      * <p>Beware that, unlike in most collections, this method is
392      * <em>NOT</em> a constant-time operation. Because of the
393      * asynchronous nature of these queues, determining the current
394      * number of elements requires an O(n) traversal.
395      * Additionally, if elements are added or removed during execution
396      * of this method, the returned result may be inaccurate.  Thus,
397      * this method is typically not very useful in concurrent
398      * applications.
399      *
400      * @return the number of elements in this queue
401      */
size()402     public int size() {
403         restartFromHead: for (;;) {
404             int count = 0;
405             for (Node<E> p = first(); p != null;) {
406                 if (p.item != null)
407                     if (++count == Integer.MAX_VALUE)
408                         break;  // @see Collection.size()
409                 if (p == (p = p.next))
410                     continue restartFromHead;
411             }
412             return count;
413         }
414     }
415 
416     /**
417      * Returns {@code true} if this queue contains the specified element.
418      * More formally, returns {@code true} if and only if this queue contains
419      * at least one element {@code e} such that {@code o.equals(e)}.
420      *
421      * @param o object to be checked for containment in this queue
422      * @return {@code true} if this queue contains the specified element
423      */
contains(Object o)424     public boolean contains(Object o) {
425         if (o != null) {
426             for (Node<E> p = first(); p != null; p = succ(p)) {
427                 E item = p.item;
428                 if (item != null && o.equals(item))
429                     return true;
430             }
431         }
432         return false;
433     }
434 
435     /**
436      * Removes a single instance of the specified element from this queue,
437      * if it is present.  More formally, removes an element {@code e} such
438      * that {@code o.equals(e)}, if this queue contains one or more such
439      * elements.
440      * Returns {@code true} if this queue contained the specified element
441      * (or equivalently, if this queue changed as a result of the call).
442      *
443      * @param o element to be removed from this queue, if present
444      * @return {@code true} if this queue changed as a result of the call
445      */
remove(Object o)446     public boolean remove(Object o) {
447         if (o != null) {
448             Node<E> next, pred = null;
449             for (Node<E> p = first(); p != null; pred = p, p = next) {
450                 boolean removed = false;
451                 E item = p.item;
452                 if (item != null) {
453                     if (!o.equals(item)) {
454                         next = succ(p);
455                         continue;
456                     }
457                     removed = casItem(p, item, null);
458                 }
459 
460                 next = succ(p);
461                 if (pred != null && next != null) // unlink
462                     casNext(pred, p, next);
463                 if (removed)
464                     return true;
465             }
466         }
467         return false;
468     }
469 
470     /**
471      * Appends all of the elements in the specified collection to the end of
472      * this queue, in the order that they are returned by the specified
473      * collection's iterator.  Attempts to {@code addAll} of a queue to
474      * itself result in {@code IllegalArgumentException}.
475      *
476      * @param c the elements to be inserted into this queue
477      * @return {@code true} if this queue changed as a result of the call
478      * @throws NullPointerException if the specified collection or any
479      *         of its elements are null
480      * @throws IllegalArgumentException if the collection is this queue
481      */
addAll(Collection<? extends E> c)482     public boolean addAll(Collection<? extends E> c) {
483         if (c == this)
484             // As historically specified in AbstractQueue#addAll
485             throw new IllegalArgumentException();
486 
487         // Copy c into a private chain of Nodes
488         Node<E> beginningOfTheEnd = null, last = null;
489         for (E e : c) {
490             Node<E> newNode = newNode(Objects.requireNonNull(e));
491             if (beginningOfTheEnd == null)
492                 beginningOfTheEnd = last = newNode;
493             else {
494                 lazySetNext(last, newNode);
495                 last = newNode;
496             }
497         }
498         if (beginningOfTheEnd == null)
499             return false;
500 
501         // Atomically append the chain at the tail of this collection
502         for (Node<E> t = tail, p = t;;) {
503             Node<E> q = p.next;
504             if (q == null) {
505                 // p is last node
506                 if (casNext(p, null, beginningOfTheEnd)) {
507                     // Successful CAS is the linearization point
508                     // for all elements to be added to this queue.
509                     if (!casTail(t, last)) {
510                         // Try a little harder to update tail,
511                         // since we may be adding many elements.
512                         t = tail;
513                         if (last.next == null)
514                             casTail(t, last);
515                     }
516                     return true;
517                 }
518                 // Lost CAS race to another thread; re-read next
519             }
520             else if (p == q)
521                 // We have fallen off list.  If tail is unchanged, it
522                 // will also be off-list, in which case we need to
523                 // jump to head, from which all live nodes are always
524                 // reachable.  Else the new tail is a better bet.
525                 p = (t != (t = tail)) ? t : head;
526             else
527                 // Check for tail updates after two hops.
528                 p = (p != t && t != (t = tail)) ? t : q;
529         }
530     }
531 
toString()532     public String toString() {
533         String[] a = null;
534         restartFromHead: for (;;) {
535             int charLength = 0;
536             int size = 0;
537             for (Node<E> p = first(); p != null;) {
538                 E item = p.item;
539                 if (item != null) {
540                     if (a == null)
541                         a = new String[4];
542                     else if (size == a.length)
543                         a = Arrays.copyOf(a, 2 * size);
544                     String s = item.toString();
545                     a[size++] = s;
546                     charLength += s.length();
547                 }
548                 if (p == (p = p.next))
549                     continue restartFromHead;
550             }
551 
552             if (size == 0)
553                 return "[]";
554 
555             return Helpers.toString(a, size, charLength);
556         }
557     }
558 
toArrayInternal(Object[] a)559     private Object[] toArrayInternal(Object[] a) {
560         Object[] x = a;
561         restartFromHead: for (;;) {
562             int size = 0;
563             for (Node<E> p = first(); p != null;) {
564                 E item = p.item;
565                 if (item != null) {
566                     if (x == null)
567                         x = new Object[4];
568                     else if (size == x.length)
569                         x = Arrays.copyOf(x, 2 * (size + 4));
570                     x[size++] = item;
571                 }
572                 if (p == (p = p.next))
573                     continue restartFromHead;
574             }
575             if (x == null)
576                 return new Object[0];
577             else if (a != null && size <= a.length) {
578                 if (a != x)
579                     System.arraycopy(x, 0, a, 0, size);
580                 if (size < a.length)
581                     a[size] = null;
582                 return a;
583             }
584             return (size == x.length) ? x : Arrays.copyOf(x, size);
585         }
586     }
587 
588     /**
589      * Returns an array containing all of the elements in this queue, in
590      * proper sequence.
591      *
592      * <p>The returned array will be "safe" in that no references to it are
593      * maintained by this queue.  (In other words, this method must allocate
594      * a new array).  The caller is thus free to modify the returned array.
595      *
596      * <p>This method acts as bridge between array-based and collection-based
597      * APIs.
598      *
599      * @return an array containing all of the elements in this queue
600      */
toArray()601     public Object[] toArray() {
602         return toArrayInternal(null);
603     }
604 
605     /**
606      * Returns an array containing all of the elements in this queue, in
607      * proper sequence; the runtime type of the returned array is that of
608      * the specified array.  If the queue fits in the specified array, it
609      * is returned therein.  Otherwise, a new array is allocated with the
610      * runtime type of the specified array and the size of this queue.
611      *
612      * <p>If this queue fits in the specified array with room to spare
613      * (i.e., the array has more elements than this queue), the element in
614      * the array immediately following the end of the queue is set to
615      * {@code null}.
616      *
617      * <p>Like the {@link #toArray()} method, this method acts as bridge between
618      * array-based and collection-based APIs.  Further, this method allows
619      * precise control over the runtime type of the output array, and may,
620      * under certain circumstances, be used to save allocation costs.
621      *
622      * <p>Suppose {@code x} is a queue known to contain only strings.
623      * The following code can be used to dump the queue into a newly
624      * allocated array of {@code String}:
625      *
626      * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
627      *
628      * Note that {@code toArray(new Object[0])} is identical in function to
629      * {@code toArray()}.
630      *
631      * @param a the array into which the elements of the queue are to
632      *          be stored, if it is big enough; otherwise, a new array of the
633      *          same runtime type is allocated for this purpose
634      * @return an array containing all of the elements in this queue
635      * @throws ArrayStoreException if the runtime type of the specified array
636      *         is not a supertype of the runtime type of every element in
637      *         this queue
638      * @throws NullPointerException if the specified array is null
639      */
640     @SuppressWarnings("unchecked")
toArray(T[] a)641     public <T> T[] toArray(T[] a) {
642         if (a == null) throw new NullPointerException();
643         return (T[]) toArrayInternal(a);
644     }
645 
646     /**
647      * Returns an iterator over the elements in this queue in proper sequence.
648      * The elements will be returned in order from first (head) to last (tail).
649      *
650      * <p>The returned iterator is
651      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
652      *
653      * @return an iterator over the elements in this queue in proper sequence
654      */
iterator()655     public Iterator<E> iterator() {
656         return new Itr();
657     }
658 
659     private class Itr implements Iterator<E> {
660         /**
661          * Next node to return item for.
662          */
663         private Node<E> nextNode;
664 
665         /**
666          * nextItem holds on to item fields because once we claim
667          * that an element exists in hasNext(), we must return it in
668          * the following next() call even if it was in the process of
669          * being removed when hasNext() was called.
670          */
671         private E nextItem;
672 
673         /**
674          * Node of the last returned item, to support remove.
675          */
676         private Node<E> lastRet;
677 
Itr()678         Itr() {
679             restartFromHead: for (;;) {
680                 Node<E> h, p, q;
681                 for (p = h = head;; p = q) {
682                     E item;
683                     if ((item = p.item) != null) {
684                         nextNode = p;
685                         nextItem = item;
686                         break;
687                     }
688                     else if ((q = p.next) == null)
689                         break;
690                     else if (p == q)
691                         continue restartFromHead;
692                 }
693                 updateHead(h, p);
694                 return;
695             }
696         }
697 
hasNext()698         public boolean hasNext() {
699             return nextItem != null;
700         }
701 
next()702         public E next() {
703             final Node<E> pred = nextNode;
704             if (pred == null) throw new NoSuchElementException();
705             // assert nextItem != null;
706             lastRet = pred;
707             E item = null;
708 
709             for (Node<E> p = succ(pred), q;; p = q) {
710                 if (p == null || (item = p.item) != null) {
711                     nextNode = p;
712                     E x = nextItem;
713                     nextItem = item;
714                     return x;
715                 }
716                 // unlink deleted nodes
717                 if ((q = succ(p)) != null)
718                     casNext(pred, p, q);
719             }
720         }
721 
remove()722         public void remove() {
723             Node<E> l = lastRet;
724             if (l == null) throw new IllegalStateException();
725             // rely on a future traversal to relink.
726             l.item = null;
727             lastRet = null;
728         }
729     }
730 
731     /**
732      * Saves this queue to a stream (that is, serializes it).
733      *
734      * @param s the stream
735      * @throws java.io.IOException if an I/O error occurs
736      * @serialData All of the elements (each an {@code E}) in
737      * the proper order, followed by a null
738      */
writeObject(java.io.ObjectOutputStream s)739     private void writeObject(java.io.ObjectOutputStream s)
740         throws java.io.IOException {
741 
742         // Write out any hidden stuff
743         s.defaultWriteObject();
744 
745         // Write out all elements in the proper order.
746         for (Node<E> p = first(); p != null; p = succ(p)) {
747             Object item = p.item;
748             if (item != null)
749                 s.writeObject(item);
750         }
751 
752         // Use trailing null as sentinel
753         s.writeObject(null);
754     }
755 
756     /**
757      * Reconstitutes this queue from a stream (that is, deserializes it).
758      * @param s the stream
759      * @throws ClassNotFoundException if the class of a serialized object
760      *         could not be found
761      * @throws java.io.IOException if an I/O error occurs
762      */
readObject(java.io.ObjectInputStream s)763     private void readObject(java.io.ObjectInputStream s)
764         throws java.io.IOException, ClassNotFoundException {
765         s.defaultReadObject();
766 
767         // Read in elements until trailing null sentinel found
768         Node<E> h = null, t = null;
769         for (Object item; (item = s.readObject()) != null; ) {
770             @SuppressWarnings("unchecked")
771             Node<E> newNode = newNode((E) item);
772             if (h == null)
773                 h = t = newNode;
774             else {
775                 lazySetNext(t, newNode);
776                 t = newNode;
777             }
778         }
779         if (h == null)
780             h = t = newNode(null);
781         head = h;
782         tail = t;
783     }
784 
785     /** A customized variant of Spliterators.IteratorSpliterator */
786     static final class CLQSpliterator<E> implements Spliterator<E> {
787         static final int MAX_BATCH = 1 << 25;  // max batch array size;
788         final ConcurrentLinkedQueue<E> queue;
789         Node<E> current;    // current node; null until initialized
790         int batch;          // batch size for splits
791         boolean exhausted;  // true when no more nodes
CLQSpliterator(ConcurrentLinkedQueue<E> queue)792         CLQSpliterator(ConcurrentLinkedQueue<E> queue) {
793             this.queue = queue;
794         }
795 
trySplit()796         public Spliterator<E> trySplit() {
797             Node<E> p;
798             final ConcurrentLinkedQueue<E> q = this.queue;
799             int b = batch;
800             int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
801             if (!exhausted &&
802                 ((p = current) != null || (p = q.first()) != null) &&
803                 p.next != null) {
804                 Object[] a = new Object[n];
805                 int i = 0;
806                 do {
807                     if ((a[i] = p.item) != null)
808                         ++i;
809                     if (p == (p = p.next))
810                         p = q.first();
811                 } while (p != null && i < n);
812                 if ((current = p) == null)
813                     exhausted = true;
814                 if (i > 0) {
815                     batch = i;
816                     return Spliterators.spliterator
817                         (a, 0, i, (Spliterator.ORDERED |
818                                    Spliterator.NONNULL |
819                                    Spliterator.CONCURRENT));
820                 }
821             }
822             return null;
823         }
824 
forEachRemaining(Consumer<? super E> action)825         public void forEachRemaining(Consumer<? super E> action) {
826             Node<E> p;
827             if (action == null) throw new NullPointerException();
828             final ConcurrentLinkedQueue<E> q = this.queue;
829             if (!exhausted &&
830                 ((p = current) != null || (p = q.first()) != null)) {
831                 exhausted = true;
832                 do {
833                     E e = p.item;
834                     if (p == (p = p.next))
835                         p = q.first();
836                     if (e != null)
837                         action.accept(e);
838                 } while (p != null);
839             }
840         }
841 
tryAdvance(Consumer<? super E> action)842         public boolean tryAdvance(Consumer<? super E> action) {
843             Node<E> p;
844             if (action == null) throw new NullPointerException();
845             final ConcurrentLinkedQueue<E> q = this.queue;
846             if (!exhausted &&
847                 ((p = current) != null || (p = q.first()) != null)) {
848                 E e;
849                 do {
850                     e = p.item;
851                     if (p == (p = p.next))
852                         p = q.first();
853                 } while (e == null && p != null);
854                 if ((current = p) == null)
855                     exhausted = true;
856                 if (e != null) {
857                     action.accept(e);
858                     return true;
859                 }
860             }
861             return false;
862         }
863 
estimateSize()864         public long estimateSize() { return Long.MAX_VALUE; }
865 
characteristics()866         public int characteristics() {
867             return Spliterator.ORDERED | Spliterator.NONNULL |
868                 Spliterator.CONCURRENT;
869         }
870     }
871 
872     /**
873      * Returns a {@link Spliterator} over the elements in this queue.
874      *
875      * <p>The returned spliterator is
876      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
877      *
878      * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
879      * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
880      *
881      * @implNote
882      * The {@code Spliterator} implements {@code trySplit} to permit limited
883      * parallelism.
884      *
885      * @return a {@code Spliterator} over the elements in this queue
886      * @since 1.8
887      */
888     @Override
spliterator()889     public Spliterator<E> spliterator() {
890         return new CLQSpliterator<E>(this);
891     }
892 
casTail(Node<E> cmp, Node<E> val)893     private boolean casTail(Node<E> cmp, Node<E> val) {
894         return U.compareAndSwapObject(this, TAIL, cmp, val);
895     }
896 
casHead(Node<E> cmp, Node<E> val)897     private boolean casHead(Node<E> cmp, Node<E> val) {
898         return U.compareAndSwapObject(this, HEAD, cmp, val);
899     }
900 
901     // Unsafe mechanics
902 
903     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
904     private static final long HEAD;
905     private static final long TAIL;
906     private static final long ITEM;
907     private static final long NEXT;
908     static {
909         try {
910             HEAD = U.objectFieldOffset
911                 (ConcurrentLinkedQueue.class.getDeclaredField("head"));
912             TAIL = U.objectFieldOffset
913                 (ConcurrentLinkedQueue.class.getDeclaredField("tail"));
914             ITEM = U.objectFieldOffset
915                 (Node.class.getDeclaredField("item"));
916             NEXT = U.objectFieldOffset
917                 (Node.class.getDeclaredField("next"));
918         } catch (ReflectiveOperationException e) {
919             throw new Error(e);
920         }
921     }
922 }
923