1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/message_loop/message_pump_glib.h"
6 
7 #include <fcntl.h>
8 #include <math.h>
9 
10 #include <glib.h>
11 
12 #include "base/lazy_instance.h"
13 #include "base/logging.h"
14 #include "base/posix/eintr_wrapper.h"
15 #include "base/synchronization/lock.h"
16 #include "base/threading/platform_thread.h"
17 
18 namespace base {
19 
20 namespace {
21 
22 // Return a timeout suitable for the glib loop, -1 to block forever,
23 // 0 to return right away, or a timeout in milliseconds from now.
GetTimeIntervalMilliseconds(const TimeTicks & from)24 int GetTimeIntervalMilliseconds(const TimeTicks& from) {
25   if (from.is_null())
26     return -1;
27 
28   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
29   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
30   // 6?  It should be 6 to avoid executing delayed work too early.
31   int delay = static_cast<int>(
32       ceil((from - TimeTicks::Now()).InMillisecondsF()));
33 
34   // If this value is negative, then we need to run delayed work soon.
35   return delay < 0 ? 0 : delay;
36 }
37 
38 // A brief refresher on GLib:
39 //     GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
40 // On each iteration of the GLib pump, it calls each source's Prepare function.
41 // This function should return TRUE if it wants GLib to call its Dispatch, and
42 // FALSE otherwise.  It can also set a timeout in this case for the next time
43 // Prepare should be called again (it may be called sooner).
44 //     After the Prepare calls, GLib does a poll to check for events from the
45 // system.  File descriptors can be attached to the sources.  The poll may block
46 // if none of the Prepare calls returned TRUE.  It will block indefinitely, or
47 // by the minimum time returned by a source in Prepare.
48 //     After the poll, GLib calls Check for each source that returned FALSE
49 // from Prepare.  The return value of Check has the same meaning as for Prepare,
50 // making Check a second chance to tell GLib we are ready for Dispatch.
51 //     Finally, GLib calls Dispatch for each source that is ready.  If Dispatch
52 // returns FALSE, GLib will destroy the source.  Dispatch calls may be recursive
53 // (i.e., you can call Run from them), but Prepare and Check cannot.
54 //     Finalize is called when the source is destroyed.
55 // NOTE: It is common for subsytems to want to process pending events while
56 // doing intensive work, for example the flash plugin. They usually use the
57 // following pattern (recommended by the GTK docs):
58 // while (gtk_events_pending()) {
59 //   gtk_main_iteration();
60 // }
61 //
62 // gtk_events_pending just calls g_main_context_pending, which does the
63 // following:
64 // - Call prepare on all the sources.
65 // - Do the poll with a timeout of 0 (not blocking).
66 // - Call check on all the sources.
67 // - *Does not* call dispatch on the sources.
68 // - Return true if any of prepare() or check() returned true.
69 //
70 // gtk_main_iteration just calls g_main_context_iteration, which does the whole
71 // thing, respecting the timeout for the poll (and block, although it is
72 // expected not to if gtk_events_pending returned true), and call dispatch.
73 //
74 // Thus it is important to only return true from prepare or check if we
75 // actually have events or work to do. We also need to make sure we keep
76 // internal state consistent so that if prepare/check return true when called
77 // from gtk_events_pending, they will still return true when called right
78 // after, from gtk_main_iteration.
79 //
80 // For the GLib pump we try to follow the Windows UI pump model:
81 // - Whenever we receive a wakeup event or the timer for delayed work expires,
82 // we run DoWork and/or DoDelayedWork. That part will also run in the other
83 // event pumps.
84 // - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main
85 // loop, around event handling.
86 
87 struct WorkSource : public GSource {
88   MessagePumpGlib* pump;
89 };
90 
WorkSourcePrepare(GSource * source,gint * timeout_ms)91 gboolean WorkSourcePrepare(GSource* source,
92                            gint* timeout_ms) {
93   *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
94   // We always return FALSE, so that our timeout is honored.  If we were
95   // to return TRUE, the timeout would be considered to be 0 and the poll
96   // would never block.  Once the poll is finished, Check will be called.
97   return FALSE;
98 }
99 
WorkSourceCheck(GSource * source)100 gboolean WorkSourceCheck(GSource* source) {
101   // Only return TRUE if Dispatch should be called.
102   return static_cast<WorkSource*>(source)->pump->HandleCheck();
103 }
104 
WorkSourceDispatch(GSource * source,GSourceFunc unused_func,gpointer unused_data)105 gboolean WorkSourceDispatch(GSource* source,
106                             GSourceFunc unused_func,
107                             gpointer unused_data) {
108 
109   static_cast<WorkSource*>(source)->pump->HandleDispatch();
110   // Always return TRUE so our source stays registered.
111   return TRUE;
112 }
113 
114 // I wish these could be const, but g_source_new wants non-const.
115 GSourceFuncs WorkSourceFuncs = {
116   WorkSourcePrepare,
117   WorkSourceCheck,
118   WorkSourceDispatch,
119   NULL
120 };
121 
122 // The following is used to make sure we only run the MessagePumpGlib on one
123 // thread. X only has one message pump so we can only have one UI loop per
124 // process.
125 #ifndef NDEBUG
126 
127 // Tracks the pump the most recent pump that has been run.
128 struct ThreadInfo {
129   // The pump.
130   MessagePumpGlib* pump;
131 
132   // ID of the thread the pump was run on.
133   PlatformThreadId thread_id;
134 };
135 
136 // Used for accesing |thread_info|.
137 static LazyInstance<Lock>::Leaky thread_info_lock = LAZY_INSTANCE_INITIALIZER;
138 
139 // If non-NULL it means a MessagePumpGlib exists and has been Run. This is
140 // destroyed when the MessagePump is destroyed.
141 ThreadInfo* thread_info = NULL;
142 
CheckThread(MessagePumpGlib * pump)143 void CheckThread(MessagePumpGlib* pump) {
144   AutoLock auto_lock(thread_info_lock.Get());
145   if (!thread_info) {
146     thread_info = new ThreadInfo;
147     thread_info->pump = pump;
148     thread_info->thread_id = PlatformThread::CurrentId();
149   }
150   DCHECK(thread_info->thread_id == PlatformThread::CurrentId()) <<
151       "Running MessagePumpGlib on two different threads; "
152       "this is unsupported by GLib!";
153 }
154 
PumpDestroyed(MessagePumpGlib * pump)155 void PumpDestroyed(MessagePumpGlib* pump) {
156   AutoLock auto_lock(thread_info_lock.Get());
157   if (thread_info && thread_info->pump == pump) {
158     delete thread_info;
159     thread_info = NULL;
160   }
161 }
162 
163 #endif
164 
165 }  // namespace
166 
167 struct MessagePumpGlib::RunState {
168   Delegate* delegate;
169 
170   // Used to flag that the current Run() invocation should return ASAP.
171   bool should_quit;
172 
173   // Used to count how many Run() invocations are on the stack.
174   int run_depth;
175 
176   // This keeps the state of whether the pump got signaled that there was new
177   // work to be done. Since we eat the message on the wake up pipe as soon as
178   // we get it, we keep that state here to stay consistent.
179   bool has_work;
180 };
181 
MessagePumpGlib()182 MessagePumpGlib::MessagePumpGlib()
183     : state_(NULL),
184       context_(g_main_context_default()),
185       wakeup_gpollfd_(new GPollFD) {
186   // Create our wakeup pipe, which is used to flag when work was scheduled.
187   int fds[2];
188   int ret = pipe(fds);
189   DCHECK_EQ(ret, 0);
190   (void)ret;  // Prevent warning in release mode.
191 
192   wakeup_pipe_read_  = fds[0];
193   wakeup_pipe_write_ = fds[1];
194   wakeup_gpollfd_->fd = wakeup_pipe_read_;
195   wakeup_gpollfd_->events = G_IO_IN;
196 
197   work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
198   static_cast<WorkSource*>(work_source_)->pump = this;
199   g_source_add_poll(work_source_, wakeup_gpollfd_.get());
200   // Use a low priority so that we let other events in the queue go first.
201   g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
202   // This is needed to allow Run calls inside Dispatch.
203   g_source_set_can_recurse(work_source_, TRUE);
204   g_source_attach(work_source_, context_);
205 }
206 
~MessagePumpGlib()207 MessagePumpGlib::~MessagePumpGlib() {
208 #ifndef NDEBUG
209   PumpDestroyed(this);
210 #endif
211   g_source_destroy(work_source_);
212   g_source_unref(work_source_);
213   close(wakeup_pipe_read_);
214   close(wakeup_pipe_write_);
215 }
216 
217 // Return the timeout we want passed to poll.
HandlePrepare()218 int MessagePumpGlib::HandlePrepare() {
219   // We know we have work, but we haven't called HandleDispatch yet. Don't let
220   // the pump block so that we can do some processing.
221   if (state_ &&  // state_ may be null during tests.
222       state_->has_work)
223     return 0;
224 
225   // We don't think we have work to do, but make sure not to block
226   // longer than the next time we need to run delayed work.
227   return GetTimeIntervalMilliseconds(delayed_work_time_);
228 }
229 
HandleCheck()230 bool MessagePumpGlib::HandleCheck() {
231   if (!state_)  // state_ may be null during tests.
232     return false;
233 
234   // We usually have a single message on the wakeup pipe, since we are only
235   // signaled when the queue went from empty to non-empty, but there can be
236   // two messages if a task posted a task, hence we read at most two bytes.
237   // The glib poll will tell us whether there was data, so this read
238   // shouldn't block.
239   if (wakeup_gpollfd_->revents & G_IO_IN) {
240     char msg[2];
241     const int num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2));
242     if (num_bytes < 1) {
243       NOTREACHED() << "Error reading from the wakeup pipe.";
244     }
245     DCHECK((num_bytes == 1 && msg[0] == '!') ||
246            (num_bytes == 2 && msg[0] == '!' && msg[1] == '!'));
247     // Since we ate the message, we need to record that we have more work,
248     // because HandleCheck() may be called without HandleDispatch being called
249     // afterwards.
250     state_->has_work = true;
251   }
252 
253   if (state_->has_work)
254     return true;
255 
256   if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
257     // The timer has expired. That condition will stay true until we process
258     // that delayed work, so we don't need to record this differently.
259     return true;
260   }
261 
262   return false;
263 }
264 
HandleDispatch()265 void MessagePumpGlib::HandleDispatch() {
266   state_->has_work = false;
267   if (state_->delegate->DoWork()) {
268     // NOTE: on Windows at this point we would call ScheduleWork (see
269     // MessagePumpGlib::HandleWorkMessage in message_pump_win.cc). But here,
270     // instead of posting a message on the wakeup pipe, we can avoid the
271     // syscalls and just signal that we have more work.
272     state_->has_work = true;
273   }
274 
275   if (state_->should_quit)
276     return;
277 
278   state_->delegate->DoDelayedWork(&delayed_work_time_);
279 }
280 
Run(Delegate * delegate)281 void MessagePumpGlib::Run(Delegate* delegate) {
282 #ifndef NDEBUG
283   CheckThread(this);
284 #endif
285 
286   RunState state;
287   state.delegate = delegate;
288   state.should_quit = false;
289   state.run_depth = state_ ? state_->run_depth + 1 : 1;
290   state.has_work = false;
291 
292   RunState* previous_state = state_;
293   state_ = &state;
294 
295   // We really only do a single task for each iteration of the loop.  If we
296   // have done something, assume there is likely something more to do.  This
297   // will mean that we don't block on the message pump until there was nothing
298   // more to do.  We also set this to true to make sure not to block on the
299   // first iteration of the loop, so RunUntilIdle() works correctly.
300   bool more_work_is_plausible = true;
301 
302   // We run our own loop instead of using g_main_loop_quit in one of the
303   // callbacks.  This is so we only quit our own loops, and we don't quit
304   // nested loops run by others.  TODO(deanm): Is this what we want?
305   for (;;) {
306     // Don't block if we think we have more work to do.
307     bool block = !more_work_is_plausible;
308 
309     more_work_is_plausible = g_main_context_iteration(context_, block);
310     if (state_->should_quit)
311       break;
312 
313     more_work_is_plausible |= state_->delegate->DoWork();
314     if (state_->should_quit)
315       break;
316 
317     more_work_is_plausible |=
318         state_->delegate->DoDelayedWork(&delayed_work_time_);
319     if (state_->should_quit)
320       break;
321 
322     if (more_work_is_plausible)
323       continue;
324 
325     more_work_is_plausible = state_->delegate->DoIdleWork();
326     if (state_->should_quit)
327       break;
328   }
329 
330   state_ = previous_state;
331 }
332 
Quit()333 void MessagePumpGlib::Quit() {
334   if (state_) {
335     state_->should_quit = true;
336   } else {
337     NOTREACHED() << "Quit called outside Run!";
338   }
339 }
340 
ScheduleWork()341 void MessagePumpGlib::ScheduleWork() {
342   // This can be called on any thread, so we don't want to touch any state
343   // variables as we would then need locks all over.  This ensures that if
344   // we are sleeping in a poll that we will wake up.
345   char msg = '!';
346   if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
347     NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
348   }
349 }
350 
ScheduleDelayedWork(const TimeTicks & delayed_work_time)351 void MessagePumpGlib::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
352   // We need to wake up the loop in case the poll timeout needs to be
353   // adjusted.  This will cause us to try to do work, but that's ok.
354   delayed_work_time_ = delayed_work_time;
355   ScheduleWork();
356 }
357 
ShouldQuit() const358 bool MessagePumpGlib::ShouldQuit() const {
359   CHECK(state_);
360   return state_->should_quit;
361 }
362 
363 }  // namespace base
364