1 /* Utilities to execute a program in a subprocess (possibly linked by pipes
2 with other subprocesses), and wait for it. Generic Unix version
3 (also used for UWIN and VMS).
4 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of the libiberty library.
8 Libiberty is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Library General Public
10 License as published by the Free Software Foundation; either
11 version 2 of the License, or (at your option) any later version.
12
13 Libiberty is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Library General Public License for more details.
17
18 You should have received a copy of the GNU Library General Public
19 License along with libiberty; see the file COPYING.LIB. If not,
20 write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "config.h"
24 #include "libiberty.h"
25 #include "pex-common.h"
26
27 #include <stdio.h>
28 #include <signal.h>
29 #include <errno.h>
30 #ifdef NEED_DECLARATION_ERRNO
31 extern int errno;
32 #endif
33 #ifdef HAVE_STDLIB_H
34 #include <stdlib.h>
35 #endif
36 #ifdef HAVE_STRING_H
37 #include <string.h>
38 #endif
39 #ifdef HAVE_UNISTD_H
40 #include <unistd.h>
41 #endif
42
43 #include <sys/types.h>
44
45 #ifdef HAVE_FCNTL_H
46 #include <fcntl.h>
47 #endif
48 #ifdef HAVE_SYS_WAIT_H
49 #include <sys/wait.h>
50 #endif
51 #ifdef HAVE_GETRUSAGE
52 #include <sys/time.h>
53 #include <sys/resource.h>
54 #endif
55 #ifdef HAVE_SYS_STAT_H
56 #include <sys/stat.h>
57 #endif
58 #ifdef HAVE_PROCESS_H
59 #include <process.h>
60 #endif
61
62 #ifdef vfork /* Autoconf may define this to fork for us. */
63 # define VFORK_STRING "fork"
64 #else
65 # define VFORK_STRING "vfork"
66 #endif
67 #ifdef HAVE_VFORK_H
68 #include <vfork.h>
69 #endif
70 #if defined(VMS) && defined (__LONG_POINTERS)
71 #ifndef __CHAR_PTR32
72 typedef char * __char_ptr32
73 __attribute__ ((mode (SI)));
74 #endif
75
76 typedef __char_ptr32 *__char_ptr_char_ptr32
77 __attribute__ ((mode (SI)));
78
79 /* Return a 32 bit pointer to an array of 32 bit pointers
80 given a 64 bit pointer to an array of 64 bit pointers. */
81
82 static __char_ptr_char_ptr32
to_ptr32(char ** ptr64)83 to_ptr32 (char **ptr64)
84 {
85 int argc;
86 __char_ptr_char_ptr32 short_argv;
87
88 /* Count number of arguments. */
89 for (argc = 0; ptr64[argc] != NULL; argc++)
90 ;
91
92 /* Reallocate argv with 32 bit pointers. */
93 short_argv = (__char_ptr_char_ptr32) decc$malloc
94 (sizeof (__char_ptr32) * (argc + 1));
95
96 for (argc = 0; ptr64[argc] != NULL; argc++)
97 short_argv[argc] = (__char_ptr32) decc$strdup (ptr64[argc]);
98
99 short_argv[argc] = (__char_ptr32) 0;
100 return short_argv;
101
102 }
103 #else
104 #define to_ptr32(argv) argv
105 #endif
106
107 /* File mode to use for private and world-readable files. */
108
109 #if defined (S_IRUSR) && defined (S_IWUSR) && defined (S_IRGRP) && defined (S_IWGRP) && defined (S_IROTH) && defined (S_IWOTH)
110 #define PUBLIC_MODE \
111 (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)
112 #else
113 #define PUBLIC_MODE 0666
114 #endif
115
116 /* Get the exit status of a particular process, and optionally get the
117 time that it took. This is simple if we have wait4, slightly
118 harder if we have waitpid, and is a pain if we only have wait. */
119
120 static pid_t pex_wait (struct pex_obj *, pid_t, int *, struct pex_time *);
121
122 #ifdef HAVE_WAIT4
123
124 static pid_t
pex_wait(struct pex_obj * obj ATTRIBUTE_UNUSED,pid_t pid,int * status,struct pex_time * time)125 pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status,
126 struct pex_time *time)
127 {
128 pid_t ret;
129 struct rusage r;
130
131 #ifdef HAVE_WAITPID
132 if (time == NULL)
133 return waitpid (pid, status, 0);
134 #endif
135
136 ret = wait4 (pid, status, 0, &r);
137
138 if (time != NULL)
139 {
140 time->user_seconds = r.ru_utime.tv_sec;
141 time->user_microseconds= r.ru_utime.tv_usec;
142 time->system_seconds = r.ru_stime.tv_sec;
143 time->system_microseconds= r.ru_stime.tv_usec;
144 }
145
146 return ret;
147 }
148
149 #else /* ! defined (HAVE_WAIT4) */
150
151 #ifdef HAVE_WAITPID
152
153 #ifndef HAVE_GETRUSAGE
154
155 static pid_t
pex_wait(struct pex_obj * obj ATTRIBUTE_UNUSED,pid_t pid,int * status,struct pex_time * time)156 pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status,
157 struct pex_time *time)
158 {
159 if (time != NULL)
160 memset (time, 0, sizeof (struct pex_time));
161 return waitpid (pid, status, 0);
162 }
163
164 #else /* defined (HAVE_GETRUSAGE) */
165
166 static pid_t
pex_wait(struct pex_obj * obj ATTRIBUTE_UNUSED,pid_t pid,int * status,struct pex_time * time)167 pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status,
168 struct pex_time *time)
169 {
170 struct rusage r1, r2;
171 pid_t ret;
172
173 if (time == NULL)
174 return waitpid (pid, status, 0);
175
176 getrusage (RUSAGE_CHILDREN, &r1);
177
178 ret = waitpid (pid, status, 0);
179 if (ret < 0)
180 return ret;
181
182 getrusage (RUSAGE_CHILDREN, &r2);
183
184 time->user_seconds = r2.ru_utime.tv_sec - r1.ru_utime.tv_sec;
185 time->user_microseconds = r2.ru_utime.tv_usec - r1.ru_utime.tv_usec;
186 if (r2.ru_utime.tv_usec < r1.ru_utime.tv_usec)
187 {
188 --time->user_seconds;
189 time->user_microseconds += 1000000;
190 }
191
192 time->system_seconds = r2.ru_stime.tv_sec - r1.ru_stime.tv_sec;
193 time->system_microseconds = r2.ru_stime.tv_usec - r1.ru_stime.tv_usec;
194 if (r2.ru_stime.tv_usec < r1.ru_stime.tv_usec)
195 {
196 --time->system_seconds;
197 time->system_microseconds += 1000000;
198 }
199
200 return ret;
201 }
202
203 #endif /* defined (HAVE_GETRUSAGE) */
204
205 #else /* ! defined (HAVE_WAITPID) */
206
207 struct status_list
208 {
209 struct status_list *next;
210 pid_t pid;
211 int status;
212 struct pex_time time;
213 };
214
215 static pid_t
pex_wait(struct pex_obj * obj,pid_t pid,int * status,struct pex_time * time)216 pex_wait (struct pex_obj *obj, pid_t pid, int *status, struct pex_time *time)
217 {
218 struct status_list **pp;
219
220 for (pp = (struct status_list **) &obj->sysdep;
221 *pp != NULL;
222 pp = &(*pp)->next)
223 {
224 if ((*pp)->pid == pid)
225 {
226 struct status_list *p;
227
228 p = *pp;
229 *status = p->status;
230 if (time != NULL)
231 *time = p->time;
232 *pp = p->next;
233 free (p);
234 return pid;
235 }
236 }
237
238 while (1)
239 {
240 pid_t cpid;
241 struct status_list *psl;
242 struct pex_time pt;
243 #ifdef HAVE_GETRUSAGE
244 struct rusage r1, r2;
245 #endif
246
247 if (time != NULL)
248 {
249 #ifdef HAVE_GETRUSAGE
250 getrusage (RUSAGE_CHILDREN, &r1);
251 #else
252 memset (&pt, 0, sizeof (struct pex_time));
253 #endif
254 }
255
256 cpid = wait (status);
257
258 #ifdef HAVE_GETRUSAGE
259 if (time != NULL && cpid >= 0)
260 {
261 getrusage (RUSAGE_CHILDREN, &r2);
262
263 pt.user_seconds = r2.ru_utime.tv_sec - r1.ru_utime.tv_sec;
264 pt.user_microseconds = r2.ru_utime.tv_usec - r1.ru_utime.tv_usec;
265 if (pt.user_microseconds < 0)
266 {
267 --pt.user_seconds;
268 pt.user_microseconds += 1000000;
269 }
270
271 pt.system_seconds = r2.ru_stime.tv_sec - r1.ru_stime.tv_sec;
272 pt.system_microseconds = r2.ru_stime.tv_usec - r1.ru_stime.tv_usec;
273 if (pt.system_microseconds < 0)
274 {
275 --pt.system_seconds;
276 pt.system_microseconds += 1000000;
277 }
278 }
279 #endif
280
281 if (cpid < 0 || cpid == pid)
282 {
283 if (time != NULL)
284 *time = pt;
285 return cpid;
286 }
287
288 psl = XNEW (struct status_list);
289 psl->pid = cpid;
290 psl->status = *status;
291 if (time != NULL)
292 psl->time = pt;
293 psl->next = (struct status_list *) obj->sysdep;
294 obj->sysdep = (void *) psl;
295 }
296 }
297
298 #endif /* ! defined (HAVE_WAITPID) */
299 #endif /* ! defined (HAVE_WAIT4) */
300
301 static void pex_child_error (struct pex_obj *, const char *, const char *, int)
302 ATTRIBUTE_NORETURN;
303 static int pex_unix_open_read (struct pex_obj *, const char *, int);
304 static int pex_unix_open_write (struct pex_obj *, const char *, int, int);
305 static pid_t pex_unix_exec_child (struct pex_obj *, int, const char *,
306 char * const *, char * const *,
307 int, int, int, int,
308 const char **, int *);
309 static int pex_unix_close (struct pex_obj *, int);
310 static int pex_unix_wait (struct pex_obj *, pid_t, int *, struct pex_time *,
311 int, const char **, int *);
312 static int pex_unix_pipe (struct pex_obj *, int *, int);
313 static FILE *pex_unix_fdopenr (struct pex_obj *, int, int);
314 static FILE *pex_unix_fdopenw (struct pex_obj *, int, int);
315 static void pex_unix_cleanup (struct pex_obj *);
316
317 /* The list of functions we pass to the common routines. */
318
319 const struct pex_funcs funcs =
320 {
321 pex_unix_open_read,
322 pex_unix_open_write,
323 pex_unix_exec_child,
324 pex_unix_close,
325 pex_unix_wait,
326 pex_unix_pipe,
327 pex_unix_fdopenr,
328 pex_unix_fdopenw,
329 pex_unix_cleanup
330 };
331
332 /* Return a newly initialized pex_obj structure. */
333
334 struct pex_obj *
pex_init(int flags,const char * pname,const char * tempbase)335 pex_init (int flags, const char *pname, const char *tempbase)
336 {
337 return pex_init_common (flags, pname, tempbase, &funcs);
338 }
339
340 /* Open a file for reading. */
341
342 static int
pex_unix_open_read(struct pex_obj * obj ATTRIBUTE_UNUSED,const char * name,int binary ATTRIBUTE_UNUSED)343 pex_unix_open_read (struct pex_obj *obj ATTRIBUTE_UNUSED, const char *name,
344 int binary ATTRIBUTE_UNUSED)
345 {
346 return open (name, O_RDONLY);
347 }
348
349 /* Open a file for writing. */
350
351 static int
pex_unix_open_write(struct pex_obj * obj ATTRIBUTE_UNUSED,const char * name,int binary ATTRIBUTE_UNUSED,int append)352 pex_unix_open_write (struct pex_obj *obj ATTRIBUTE_UNUSED, const char *name,
353 int binary ATTRIBUTE_UNUSED, int append)
354 {
355 /* Note that we can't use O_EXCL here because gcc may have already
356 created the temporary file via make_temp_file. */
357 return open (name, O_WRONLY | O_CREAT
358 | (append ? O_APPEND : O_TRUNC), PUBLIC_MODE);
359 }
360
361 /* Close a file. */
362
363 static int
pex_unix_close(struct pex_obj * obj ATTRIBUTE_UNUSED,int fd)364 pex_unix_close (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd)
365 {
366 return close (fd);
367 }
368
369 /* Report an error from a child process. We don't use stdio routines,
370 because we might be here due to a vfork call. */
371
372 static void
pex_child_error(struct pex_obj * obj,const char * executable,const char * errmsg,int err)373 pex_child_error (struct pex_obj *obj, const char *executable,
374 const char *errmsg, int err)
375 {
376 int retval = 0;
377 #define writeerr(s) retval |= (write (STDERR_FILE_NO, s, strlen (s)) < 0)
378 writeerr (obj->pname);
379 writeerr (": error trying to exec '");
380 writeerr (executable);
381 writeerr ("': ");
382 writeerr (errmsg);
383 writeerr (": ");
384 writeerr (xstrerror (err));
385 writeerr ("\n");
386 #undef writeerr
387 /* Exit with -2 if the error output failed, too. */
388 _exit (retval == 0 ? -1 : -2);
389 }
390
391 /* Execute a child. */
392
393 extern char **environ;
394
395 #if defined(HAVE_SPAWNVE) && defined(HAVE_SPAWNVPE)
396 /* Implementation of pex->exec_child using the Cygwin spawn operation. */
397
398 /* Subroutine of pex_unix_exec_child. Move OLD_FD to a new file descriptor
399 to be stored in *PNEW_FD, save the flags in *PFLAGS, and arrange for the
400 saved copy to be close-on-exec. Move CHILD_FD into OLD_FD. If CHILD_FD
401 is -1, OLD_FD is to be closed. Return -1 on error. */
402
403 static int
save_and_install_fd(int * pnew_fd,int * pflags,int old_fd,int child_fd)404 save_and_install_fd(int *pnew_fd, int *pflags, int old_fd, int child_fd)
405 {
406 int new_fd, flags;
407
408 flags = fcntl (old_fd, F_GETFD);
409
410 /* If we could not retrieve the flags, then OLD_FD was not open. */
411 if (flags < 0)
412 {
413 new_fd = -1, flags = 0;
414 if (child_fd >= 0 && dup2 (child_fd, old_fd) < 0)
415 return -1;
416 }
417 /* If we wish to close OLD_FD, just mark it CLOEXEC. */
418 else if (child_fd == -1)
419 {
420 new_fd = old_fd;
421 if ((flags & FD_CLOEXEC) == 0 && fcntl (old_fd, F_SETFD, FD_CLOEXEC) < 0)
422 return -1;
423 }
424 /* Otherwise we need to save a copy of OLD_FD before installing CHILD_FD. */
425 else
426 {
427 #ifdef F_DUPFD_CLOEXEC
428 new_fd = fcntl (old_fd, F_DUPFD_CLOEXEC, 3);
429 if (new_fd < 0)
430 return -1;
431 #else
432 /* Prefer F_DUPFD over dup in order to avoid getting a new fd
433 in the range 0-2, right where a new stderr fd might get put. */
434 new_fd = fcntl (old_fd, F_DUPFD, 3);
435 if (new_fd < 0)
436 return -1;
437 if (fcntl (new_fd, F_SETFD, FD_CLOEXEC) < 0)
438 return -1;
439 #endif
440 if (dup2 (child_fd, old_fd) < 0)
441 return -1;
442 }
443
444 *pflags = flags;
445 if (pnew_fd)
446 *pnew_fd = new_fd;
447 else if (new_fd != old_fd)
448 abort ();
449
450 return 0;
451 }
452
453 /* Subroutine of pex_unix_exec_child. Move SAVE_FD back to OLD_FD
454 restoring FLAGS. If SAVE_FD < 0, OLD_FD is to be closed. */
455
456 static int
restore_fd(int old_fd,int save_fd,int flags)457 restore_fd(int old_fd, int save_fd, int flags)
458 {
459 /* For SAVE_FD < 0, all we have to do is restore the
460 "closed-ness" of the original. */
461 if (save_fd < 0)
462 return close (old_fd);
463
464 /* For SAVE_FD == OLD_FD, all we have to do is restore the
465 original setting of the CLOEXEC flag. */
466 if (save_fd == old_fd)
467 {
468 if (flags & FD_CLOEXEC)
469 return 0;
470 return fcntl (old_fd, F_SETFD, flags);
471 }
472
473 /* Otherwise we have to move the descriptor back, restore the flags,
474 and close the saved copy. */
475 #ifdef HAVE_DUP3
476 if (flags == FD_CLOEXEC)
477 {
478 if (dup3 (save_fd, old_fd, O_CLOEXEC) < 0)
479 return -1;
480 }
481 else
482 #endif
483 {
484 if (dup2 (save_fd, old_fd) < 0)
485 return -1;
486 if (flags != 0 && fcntl (old_fd, F_SETFD, flags) < 0)
487 return -1;
488 }
489 return close (save_fd);
490 }
491
492 static pid_t
pex_unix_exec_child(struct pex_obj * obj ATTRIBUTE_UNUSED,int flags,const char * executable,char * const * argv,char * const * env,int in,int out,int errdes,int toclose,const char ** errmsg,int * err)493 pex_unix_exec_child (struct pex_obj *obj ATTRIBUTE_UNUSED,
494 int flags, const char *executable,
495 char * const * argv, char * const * env,
496 int in, int out, int errdes, int toclose,
497 const char **errmsg, int *err)
498 {
499 int fl_in = 0, fl_out = 0, fl_err = 0, fl_tc = 0;
500 int save_in = -1, save_out = -1, save_err = -1;
501 int max, retries;
502 pid_t pid;
503
504 if (flags & PEX_STDERR_TO_STDOUT)
505 errdes = out;
506
507 /* We need the three standard file descriptors to be set up as for
508 the child before we perform the spawn. The file descriptors for
509 the parent need to be moved and marked for close-on-exec. */
510 if (in != STDIN_FILE_NO
511 && save_and_install_fd (&save_in, &fl_in, STDIN_FILE_NO, in) < 0)
512 goto error_dup2;
513 if (out != STDOUT_FILE_NO
514 && save_and_install_fd (&save_out, &fl_out, STDOUT_FILE_NO, out) < 0)
515 goto error_dup2;
516 if (errdes != STDERR_FILE_NO
517 && save_and_install_fd (&save_err, &fl_err, STDERR_FILE_NO, errdes) < 0)
518 goto error_dup2;
519 if (toclose >= 0
520 && save_and_install_fd (NULL, &fl_tc, toclose, -1) < 0)
521 goto error_dup2;
522
523 /* Now that we've moved the file descriptors for the child into place,
524 close the originals. Be careful not to close any of the standard
525 file descriptors that we just set up. */
526 max = -1;
527 if (errdes >= 0)
528 max = STDERR_FILE_NO;
529 else if (out >= 0)
530 max = STDOUT_FILE_NO;
531 else if (in >= 0)
532 max = STDIN_FILE_NO;
533 if (in > max)
534 close (in);
535 if (out > max)
536 close (out);
537 if (errdes > max && errdes != out)
538 close (errdes);
539
540 /* If we were not given an environment, use the global environment. */
541 if (env == NULL)
542 env = environ;
543
544 /* Launch the program. If we get EAGAIN (normally out of pid's), try
545 again a few times with increasing backoff times. */
546 retries = 0;
547 while (1)
548 {
549 typedef const char * const *cc_cp;
550
551 if (flags & PEX_SEARCH)
552 pid = spawnvpe (_P_NOWAITO, executable, (cc_cp)argv, (cc_cp)env);
553 else
554 pid = spawnve (_P_NOWAITO, executable, (cc_cp)argv, (cc_cp)env);
555
556 if (pid > 0)
557 break;
558
559 *err = errno;
560 *errmsg = "spawn";
561 if (errno != EAGAIN || ++retries == 4)
562 return (pid_t) -1;
563 sleep (1 << retries);
564 }
565
566 /* Success. Restore the parent's file descriptors that we saved above. */
567 if (toclose >= 0
568 && restore_fd (toclose, toclose, fl_tc) < 0)
569 goto error_dup2;
570 if (in != STDIN_FILE_NO
571 && restore_fd (STDIN_FILE_NO, save_in, fl_in) < 0)
572 goto error_dup2;
573 if (out != STDOUT_FILE_NO
574 && restore_fd (STDOUT_FILE_NO, save_out, fl_out) < 0)
575 goto error_dup2;
576 if (errdes != STDERR_FILE_NO
577 && restore_fd (STDERR_FILE_NO, save_err, fl_err) < 0)
578 goto error_dup2;
579
580 return pid;
581
582 error_dup2:
583 *err = errno;
584 *errmsg = "dup2";
585 return (pid_t) -1;
586 }
587
588 #else
589 /* Implementation of pex->exec_child using standard vfork + exec. */
590
591 static pid_t
pex_unix_exec_child(struct pex_obj * obj,int flags,const char * executable,char * const * argv,char * const * env,int in,int out,int errdes,int toclose,const char ** errmsg,int * err)592 pex_unix_exec_child (struct pex_obj *obj, int flags, const char *executable,
593 char * const * argv, char * const * env,
594 int in, int out, int errdes,
595 int toclose, const char **errmsg, int *err)
596 {
597 pid_t pid;
598
599 /* We declare these to be volatile to avoid warnings from gcc about
600 them being clobbered by vfork. */
601 volatile int sleep_interval;
602 volatile int retries;
603
604 /* We vfork and then set environ in the child before calling execvp.
605 This clobbers the parent's environ so we need to restore it.
606 It would be nice to use one of the exec* functions that takes an
607 environment as a parameter, but that may have portability issues. */
608 char **save_environ = environ;
609
610 sleep_interval = 1;
611 pid = -1;
612 for (retries = 0; retries < 4; ++retries)
613 {
614 pid = vfork ();
615 if (pid >= 0)
616 break;
617 sleep (sleep_interval);
618 sleep_interval *= 2;
619 }
620
621 switch (pid)
622 {
623 case -1:
624 *err = errno;
625 *errmsg = VFORK_STRING;
626 return (pid_t) -1;
627
628 case 0:
629 /* Child process. */
630 if (in != STDIN_FILE_NO)
631 {
632 if (dup2 (in, STDIN_FILE_NO) < 0)
633 pex_child_error (obj, executable, "dup2", errno);
634 if (close (in) < 0)
635 pex_child_error (obj, executable, "close", errno);
636 }
637 if (out != STDOUT_FILE_NO)
638 {
639 if (dup2 (out, STDOUT_FILE_NO) < 0)
640 pex_child_error (obj, executable, "dup2", errno);
641 if (close (out) < 0)
642 pex_child_error (obj, executable, "close", errno);
643 }
644 if (errdes != STDERR_FILE_NO)
645 {
646 if (dup2 (errdes, STDERR_FILE_NO) < 0)
647 pex_child_error (obj, executable, "dup2", errno);
648 if (close (errdes) < 0)
649 pex_child_error (obj, executable, "close", errno);
650 }
651 if (toclose >= 0)
652 {
653 if (close (toclose) < 0)
654 pex_child_error (obj, executable, "close", errno);
655 }
656 if ((flags & PEX_STDERR_TO_STDOUT) != 0)
657 {
658 if (dup2 (STDOUT_FILE_NO, STDERR_FILE_NO) < 0)
659 pex_child_error (obj, executable, "dup2", errno);
660 }
661
662 if (env)
663 {
664 /* NOTE: In a standard vfork implementation this clobbers the
665 parent's copy of environ "too" (in reality there's only one copy).
666 This is ok as we restore it below. */
667 environ = (char**) env;
668 }
669
670 if ((flags & PEX_SEARCH) != 0)
671 {
672 execvp (executable, to_ptr32 (argv));
673 pex_child_error (obj, executable, "execvp", errno);
674 }
675 else
676 {
677 execv (executable, to_ptr32 (argv));
678 pex_child_error (obj, executable, "execv", errno);
679 }
680
681 /* NOTREACHED */
682 return (pid_t) -1;
683
684 default:
685 /* Parent process. */
686
687 /* Restore environ.
688 Note that the parent either doesn't run until the child execs/exits
689 (standard vfork behaviour), or if it does run then vfork is behaving
690 more like fork. In either case we needn't worry about clobbering
691 the child's copy of environ. */
692 environ = save_environ;
693
694 if (in != STDIN_FILE_NO)
695 {
696 if (close (in) < 0)
697 {
698 *err = errno;
699 *errmsg = "close";
700 return (pid_t) -1;
701 }
702 }
703 if (out != STDOUT_FILE_NO)
704 {
705 if (close (out) < 0)
706 {
707 *err = errno;
708 *errmsg = "close";
709 return (pid_t) -1;
710 }
711 }
712 if (errdes != STDERR_FILE_NO)
713 {
714 if (close (errdes) < 0)
715 {
716 *err = errno;
717 *errmsg = "close";
718 return (pid_t) -1;
719 }
720 }
721
722 return pid;
723 }
724 }
725 #endif /* SPAWN */
726
727 /* Wait for a child process to complete. */
728
729 static int
pex_unix_wait(struct pex_obj * obj,pid_t pid,int * status,struct pex_time * time,int done,const char ** errmsg,int * err)730 pex_unix_wait (struct pex_obj *obj, pid_t pid, int *status,
731 struct pex_time *time, int done, const char **errmsg,
732 int *err)
733 {
734 /* If we are cleaning up when the caller didn't retrieve process
735 status for some reason, encourage the process to go away. */
736 if (done)
737 kill (pid, SIGTERM);
738
739 if (pex_wait (obj, pid, status, time) < 0)
740 {
741 *err = errno;
742 *errmsg = "wait";
743 return -1;
744 }
745
746 return 0;
747 }
748
749 /* Create a pipe. */
750
751 static int
pex_unix_pipe(struct pex_obj * obj ATTRIBUTE_UNUSED,int * p,int binary ATTRIBUTE_UNUSED)752 pex_unix_pipe (struct pex_obj *obj ATTRIBUTE_UNUSED, int *p,
753 int binary ATTRIBUTE_UNUSED)
754 {
755 return pipe (p);
756 }
757
758 /* Get a FILE pointer to read from a file descriptor. */
759
760 static FILE *
pex_unix_fdopenr(struct pex_obj * obj ATTRIBUTE_UNUSED,int fd,int binary ATTRIBUTE_UNUSED)761 pex_unix_fdopenr (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd,
762 int binary ATTRIBUTE_UNUSED)
763 {
764 return fdopen (fd, "r");
765 }
766
767 static FILE *
pex_unix_fdopenw(struct pex_obj * obj ATTRIBUTE_UNUSED,int fd,int binary ATTRIBUTE_UNUSED)768 pex_unix_fdopenw (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd,
769 int binary ATTRIBUTE_UNUSED)
770 {
771 if (fcntl (fd, F_SETFD, FD_CLOEXEC) < 0)
772 return NULL;
773 return fdopen (fd, "w");
774 }
775
776 static void
pex_unix_cleanup(struct pex_obj * obj ATTRIBUTE_UNUSED)777 pex_unix_cleanup (struct pex_obj *obj ATTRIBUTE_UNUSED)
778 {
779 #if !defined (HAVE_WAIT4) && !defined (HAVE_WAITPID)
780 while (obj->sysdep != NULL)
781 {
782 struct status_list *this;
783 struct status_list *next;
784
785 this = (struct status_list *) obj->sysdep;
786 next = this->next;
787 free (this);
788 obj->sysdep = (void *) next;
789 }
790 #endif
791 }
792