1 // powerpc.cc -- powerpc target support for gold.
2 
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6 
7 // This file is part of gold.
8 
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13 
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18 
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23 
24 #include "gold.h"
25 
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44 
45 namespace
46 {
47 
48 using namespace gold;
49 
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52 
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55 
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58 
59 template<int size, bool big_endian>
60 class Output_data_glink;
61 
62 template<int size, bool big_endian>
63 class Stub_table;
64 
65 template<int size, bool big_endian>
66 class Target_powerpc;
67 
68 struct Stub_table_owner
69 {
70   Output_section* output_section;
71   const Output_section::Input_section* owner;
72 };
73 
74 inline bool
75 is_branch_reloc(unsigned int r_type);
76 
77 template<int size, bool big_endian>
78 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
79 {
80 public:
81   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
82   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
83   typedef Unordered_map<Address, Section_refs> Access_from;
84 
Powerpc_relobj(const std::string & name,Input_file * input_file,off_t offset,const typename elfcpp::Ehdr<size,big_endian> & ehdr)85   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
86 		 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
87     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
88       special_(0), has_small_toc_reloc_(false), opd_valid_(false),
89       opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
90       e_flags_(ehdr.get_e_flags()), st_other_()
91   {
92     this->set_abiversion(0);
93   }
94 
~Powerpc_relobj()95   ~Powerpc_relobj()
96   { }
97 
98   // Read the symbols then set up st_other vector.
99   void
100   do_read_symbols(Read_symbols_data*);
101 
102   // The .got2 section shndx.
103   unsigned int
got2_shndx() const104   got2_shndx() const
105   {
106     if (size == 32)
107       return this->special_;
108     else
109       return 0;
110   }
111 
112   // The .opd section shndx.
113   unsigned int
opd_shndx() const114   opd_shndx() const
115   {
116     if (size == 32)
117       return 0;
118     else
119       return this->special_;
120   }
121 
122   // Init OPD entry arrays.
123   void
init_opd(size_t opd_size)124   init_opd(size_t opd_size)
125   {
126     size_t count = this->opd_ent_ndx(opd_size);
127     this->opd_ent_.resize(count);
128   }
129 
130   // Return section and offset of function entry for .opd + R_OFF.
131   unsigned int
get_opd_ent(Address r_off,Address * value=NULL) const132   get_opd_ent(Address r_off, Address* value = NULL) const
133   {
134     size_t ndx = this->opd_ent_ndx(r_off);
135     gold_assert(ndx < this->opd_ent_.size());
136     gold_assert(this->opd_ent_[ndx].shndx != 0);
137     if (value != NULL)
138       *value = this->opd_ent_[ndx].off;
139     return this->opd_ent_[ndx].shndx;
140   }
141 
142   // Set section and offset of function entry for .opd + R_OFF.
143   void
set_opd_ent(Address r_off,unsigned int shndx,Address value)144   set_opd_ent(Address r_off, unsigned int shndx, Address value)
145   {
146     size_t ndx = this->opd_ent_ndx(r_off);
147     gold_assert(ndx < this->opd_ent_.size());
148     this->opd_ent_[ndx].shndx = shndx;
149     this->opd_ent_[ndx].off = value;
150   }
151 
152   // Return discard flag for .opd + R_OFF.
153   bool
get_opd_discard(Address r_off) const154   get_opd_discard(Address r_off) const
155   {
156     size_t ndx = this->opd_ent_ndx(r_off);
157     gold_assert(ndx < this->opd_ent_.size());
158     return this->opd_ent_[ndx].discard;
159   }
160 
161   // Set discard flag for .opd + R_OFF.
162   void
set_opd_discard(Address r_off)163   set_opd_discard(Address r_off)
164   {
165     size_t ndx = this->opd_ent_ndx(r_off);
166     gold_assert(ndx < this->opd_ent_.size());
167     this->opd_ent_[ndx].discard = true;
168   }
169 
170   bool
opd_valid() const171   opd_valid() const
172   { return this->opd_valid_; }
173 
174   void
set_opd_valid()175   set_opd_valid()
176   { this->opd_valid_ = true; }
177 
178   // Examine .rela.opd to build info about function entry points.
179   void
180   scan_opd_relocs(size_t reloc_count,
181 		  const unsigned char* prelocs,
182 		  const unsigned char* plocal_syms);
183 
184   // Perform the Sized_relobj_file method, then set up opd info from
185   // .opd relocs.
186   void
187   do_read_relocs(Read_relocs_data*);
188 
189   bool
190   do_find_special_sections(Read_symbols_data* sd);
191 
192   // Adjust this local symbol value.  Return false if the symbol
193   // should be discarded from the output file.
194   bool
do_adjust_local_symbol(Symbol_value<size> * lv) const195   do_adjust_local_symbol(Symbol_value<size>* lv) const
196   {
197     if (size == 64 && this->opd_shndx() != 0)
198       {
199 	bool is_ordinary;
200 	if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
201 	  return true;
202 	if (this->get_opd_discard(lv->input_value()))
203 	  return false;
204       }
205     return true;
206   }
207 
208   Access_from*
access_from_map()209   access_from_map()
210   { return &this->access_from_map_; }
211 
212   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
213   // section at DST_OFF.
214   void
add_reference(Object * src_obj,unsigned int src_indx,typename elfcpp::Elf_types<size>::Elf_Addr dst_off)215   add_reference(Object* src_obj,
216 		unsigned int src_indx,
217 		typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218   {
219     Section_id src_id(src_obj, src_indx);
220     this->access_from_map_[dst_off].insert(src_id);
221   }
222 
223   // Add a reference to the code section specified by the .opd entry
224   // at DST_OFF
225   void
add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)226   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
227   {
228     size_t ndx = this->opd_ent_ndx(dst_off);
229     if (ndx >= this->opd_ent_.size())
230       this->opd_ent_.resize(ndx + 1);
231     this->opd_ent_[ndx].gc_mark = true;
232   }
233 
234   void
process_gc_mark(Symbol_table * symtab)235   process_gc_mark(Symbol_table* symtab)
236   {
237     for (size_t i = 0; i < this->opd_ent_.size(); i++)
238       if (this->opd_ent_[i].gc_mark)
239 	{
240 	  unsigned int shndx = this->opd_ent_[i].shndx;
241 	  symtab->gc()->worklist().push(Section_id(this, shndx));
242 	}
243   }
244 
245   // Return offset in output GOT section that this object will use
246   // as a TOC pointer.  Won't be just a constant with multi-toc support.
247   Address
toc_base_offset() const248   toc_base_offset() const
249   { return 0x8000; }
250 
251   void
set_has_small_toc_reloc()252   set_has_small_toc_reloc()
253   { has_small_toc_reloc_ = true; }
254 
255   bool
has_small_toc_reloc() const256   has_small_toc_reloc() const
257   { return has_small_toc_reloc_; }
258 
259   void
set_has_14bit_branch(unsigned int shndx)260   set_has_14bit_branch(unsigned int shndx)
261   {
262     if (shndx >= this->has14_.size())
263       this->has14_.resize(shndx + 1);
264     this->has14_[shndx] = true;
265   }
266 
267   bool
has_14bit_branch(unsigned int shndx) const268   has_14bit_branch(unsigned int shndx) const
269   { return shndx < this->has14_.size() && this->has14_[shndx];  }
270 
271   void
set_stub_table(unsigned int shndx,unsigned int stub_index)272   set_stub_table(unsigned int shndx, unsigned int stub_index)
273   {
274     if (shndx >= this->stub_table_index_.size())
275       this->stub_table_index_.resize(shndx + 1);
276     this->stub_table_index_[shndx] = stub_index;
277   }
278 
279   Stub_table<size, big_endian>*
stub_table(unsigned int shndx)280   stub_table(unsigned int shndx)
281   {
282     if (shndx < this->stub_table_index_.size())
283       {
284 	Target_powerpc<size, big_endian>* target
285 	  = static_cast<Target_powerpc<size, big_endian>*>(
286 	      parameters->sized_target<size, big_endian>());
287 	unsigned int indx = this->stub_table_index_[shndx];
288 	gold_assert(indx < target->stub_tables().size());
289 	return target->stub_tables()[indx];
290       }
291     return NULL;
292   }
293 
294   void
clear_stub_table()295   clear_stub_table()
296   {
297     this->stub_table_index_.clear();
298   }
299 
300   int
abiversion() const301   abiversion() const
302   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
303 
304   // Set ABI version for input and output
305   void
306   set_abiversion(int ver);
307 
308   unsigned int
ppc64_local_entry_offset(const Symbol * sym) const309   ppc64_local_entry_offset(const Symbol* sym) const
310   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
311 
312   unsigned int
ppc64_local_entry_offset(unsigned int symndx) const313   ppc64_local_entry_offset(unsigned int symndx) const
314   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
315 
316 private:
317   struct Opd_ent
318   {
319     unsigned int shndx;
320     bool discard : 1;
321     bool gc_mark : 1;
322     Address off;
323   };
324 
325   // Return index into opd_ent_ array for .opd entry at OFF.
326   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
327   // apart when the language doesn't use the last 8-byte word, the
328   // environment pointer.  Thus dividing the entry section offset by
329   // 16 will give an index into opd_ent_ that works for either layout
330   // of .opd.  (It leaves some elements of the vector unused when .opd
331   // entries are spaced 24 bytes apart, but we don't know the spacing
332   // until relocations are processed, and in any case it is possible
333   // for an object to have some entries spaced 16 bytes apart and
334   // others 24 bytes apart.)
335   size_t
opd_ent_ndx(size_t off) const336   opd_ent_ndx(size_t off) const
337   { return off >> 4;}
338 
339   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
340   unsigned int special_;
341 
342   // For 64-bit, whether this object uses small model relocs to access
343   // the toc.
344   bool has_small_toc_reloc_;
345 
346   // Set at the start of gc_process_relocs, when we know opd_ent_
347   // vector is valid.  The flag could be made atomic and set in
348   // do_read_relocs with memory_order_release and then tested with
349   // memory_order_acquire, potentially resulting in fewer entries in
350   // access_from_map_.
351   bool opd_valid_;
352 
353   // The first 8-byte word of an OPD entry gives the address of the
354   // entry point of the function.  Relocatable object files have a
355   // relocation on this word.  The following vector records the
356   // section and offset specified by these relocations.
357   std::vector<Opd_ent> opd_ent_;
358 
359   // References made to this object's .opd section when running
360   // gc_process_relocs for another object, before the opd_ent_ vector
361   // is valid for this object.
362   Access_from access_from_map_;
363 
364   // Whether input section has a 14-bit branch reloc.
365   std::vector<bool> has14_;
366 
367   // The stub table to use for a given input section.
368   std::vector<unsigned int> stub_table_index_;
369 
370   // Header e_flags
371   elfcpp::Elf_Word e_flags_;
372 
373   // ELF st_other field for local symbols.
374   std::vector<unsigned char> st_other_;
375 };
376 
377 template<int size, bool big_endian>
378 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
379 {
380 public:
381   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
382 
Powerpc_dynobj(const std::string & name,Input_file * input_file,off_t offset,const typename elfcpp::Ehdr<size,big_endian> & ehdr)383   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
384 		 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
385     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
386       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
387   {
388     this->set_abiversion(0);
389   }
390 
~Powerpc_dynobj()391   ~Powerpc_dynobj()
392   { }
393 
394   // Call Sized_dynobj::do_read_symbols to read the symbols then
395   // read .opd from a dynamic object, filling in opd_ent_ vector,
396   void
397   do_read_symbols(Read_symbols_data*);
398 
399   // The .opd section shndx.
400   unsigned int
opd_shndx() const401   opd_shndx() const
402   {
403     return this->opd_shndx_;
404   }
405 
406   // The .opd section address.
407   Address
opd_address() const408   opd_address() const
409   {
410     return this->opd_address_;
411   }
412 
413   // Init OPD entry arrays.
414   void
init_opd(size_t opd_size)415   init_opd(size_t opd_size)
416   {
417     size_t count = this->opd_ent_ndx(opd_size);
418     this->opd_ent_.resize(count);
419   }
420 
421   // Return section and offset of function entry for .opd + R_OFF.
422   unsigned int
get_opd_ent(Address r_off,Address * value=NULL) const423   get_opd_ent(Address r_off, Address* value = NULL) const
424   {
425     size_t ndx = this->opd_ent_ndx(r_off);
426     gold_assert(ndx < this->opd_ent_.size());
427     gold_assert(this->opd_ent_[ndx].shndx != 0);
428     if (value != NULL)
429       *value = this->opd_ent_[ndx].off;
430     return this->opd_ent_[ndx].shndx;
431   }
432 
433   // Set section and offset of function entry for .opd + R_OFF.
434   void
set_opd_ent(Address r_off,unsigned int shndx,Address value)435   set_opd_ent(Address r_off, unsigned int shndx, Address value)
436   {
437     size_t ndx = this->opd_ent_ndx(r_off);
438     gold_assert(ndx < this->opd_ent_.size());
439     this->opd_ent_[ndx].shndx = shndx;
440     this->opd_ent_[ndx].off = value;
441   }
442 
443   int
abiversion() const444   abiversion() const
445   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
446 
447   // Set ABI version for input and output.
448   void
449   set_abiversion(int ver);
450 
451 private:
452   // Used to specify extent of executable sections.
453   struct Sec_info
454   {
Sec_info__anon0f0c9f3e0111::Powerpc_dynobj::Sec_info455     Sec_info(Address start_, Address len_, unsigned int shndx_)
456       : start(start_), len(len_), shndx(shndx_)
457     { }
458 
459     bool
operator <__anon0f0c9f3e0111::Powerpc_dynobj::Sec_info460     operator<(const Sec_info& that) const
461     { return this->start < that.start; }
462 
463     Address start;
464     Address len;
465     unsigned int shndx;
466   };
467 
468   struct Opd_ent
469   {
470     unsigned int shndx;
471     Address off;
472   };
473 
474   // Return index into opd_ent_ array for .opd entry at OFF.
475   size_t
opd_ent_ndx(size_t off) const476   opd_ent_ndx(size_t off) const
477   { return off >> 4;}
478 
479   // For 64-bit the .opd section shndx and address.
480   unsigned int opd_shndx_;
481   Address opd_address_;
482 
483   // The first 8-byte word of an OPD entry gives the address of the
484   // entry point of the function.  Records the section and offset
485   // corresponding to the address.  Note that in dynamic objects,
486   // offset is *not* relative to the section.
487   std::vector<Opd_ent> opd_ent_;
488 
489   // Header e_flags
490   elfcpp::Elf_Word e_flags_;
491 };
492 
493 template<int size, bool big_endian>
494 class Target_powerpc : public Sized_target<size, big_endian>
495 {
496  public:
497   typedef
498     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
499   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
500   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
501   static const Address invalid_address = static_cast<Address>(0) - 1;
502   // Offset of tp and dtp pointers from start of TLS block.
503   static const Address tp_offset = 0x7000;
504   static const Address dtp_offset = 0x8000;
505 
Target_powerpc()506   Target_powerpc()
507     : Sized_target<size, big_endian>(&powerpc_info),
508       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
509       glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
510       tlsld_got_offset_(-1U),
511       stub_tables_(), branch_lookup_table_(), branch_info_(),
512       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
513       stub_group_size_(0)
514   {
515   }
516 
517   // Process the relocations to determine unreferenced sections for
518   // garbage collection.
519   void
520   gc_process_relocs(Symbol_table* symtab,
521 		    Layout* layout,
522 		    Sized_relobj_file<size, big_endian>* object,
523 		    unsigned int data_shndx,
524 		    unsigned int sh_type,
525 		    const unsigned char* prelocs,
526 		    size_t reloc_count,
527 		    Output_section* output_section,
528 		    bool needs_special_offset_handling,
529 		    size_t local_symbol_count,
530 		    const unsigned char* plocal_symbols);
531 
532   // Scan the relocations to look for symbol adjustments.
533   void
534   scan_relocs(Symbol_table* symtab,
535 	      Layout* layout,
536 	      Sized_relobj_file<size, big_endian>* object,
537 	      unsigned int data_shndx,
538 	      unsigned int sh_type,
539 	      const unsigned char* prelocs,
540 	      size_t reloc_count,
541 	      Output_section* output_section,
542 	      bool needs_special_offset_handling,
543 	      size_t local_symbol_count,
544 	      const unsigned char* plocal_symbols);
545 
546   // Map input .toc section to output .got section.
547   const char*
do_output_section_name(const Relobj *,const char * name,size_t * plen) const548   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
549   {
550     if (size == 64 && strcmp(name, ".toc") == 0)
551       {
552 	*plen = 4;
553 	return ".got";
554       }
555     return NULL;
556   }
557 
558   // Provide linker defined save/restore functions.
559   void
560   define_save_restore_funcs(Layout*, Symbol_table*);
561 
562   // No stubs unless a final link.
563   bool
do_may_relax() const564   do_may_relax() const
565   { return !parameters->options().relocatable(); }
566 
567   bool
568   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
569 
570   void
571   do_plt_fde_location(const Output_data*, unsigned char*,
572 		      uint64_t*, off_t*) const;
573 
574   // Stash info about branches, for stub generation.
575   void
push_branch(Powerpc_relobj<size,big_endian> * ppc_object,unsigned int data_shndx,Address r_offset,unsigned int r_type,unsigned int r_sym,Address addend)576   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
577 	      unsigned int data_shndx, Address r_offset,
578 	      unsigned int r_type, unsigned int r_sym, Address addend)
579   {
580     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
581     this->branch_info_.push_back(info);
582     if (r_type == elfcpp::R_POWERPC_REL14
583 	|| r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
584 	|| r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
585       ppc_object->set_has_14bit_branch(data_shndx);
586   }
587 
588   void
589   do_define_standard_symbols(Symbol_table*, Layout*);
590 
591   // Finalize the sections.
592   void
593   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
594 
595   // Return the value to use for a dynamic which requires special
596   // treatment.
597   uint64_t
598   do_dynsym_value(const Symbol*) const;
599 
600   // Return the PLT address to use for a local symbol.
601   uint64_t
602   do_plt_address_for_local(const Relobj*, unsigned int) const;
603 
604   // Return the PLT address to use for a global symbol.
605   uint64_t
606   do_plt_address_for_global(const Symbol*) const;
607 
608   // Return the offset to use for the GOT_INDX'th got entry which is
609   // for a local tls symbol specified by OBJECT, SYMNDX.
610   int64_t
611   do_tls_offset_for_local(const Relobj* object,
612 			  unsigned int symndx,
613 			  unsigned int got_indx) const;
614 
615   // Return the offset to use for the GOT_INDX'th got entry which is
616   // for global tls symbol GSYM.
617   int64_t
618   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
619 
620   void
621   do_function_location(Symbol_location*) const;
622 
623   bool
do_can_check_for_function_pointers() const624   do_can_check_for_function_pointers() const
625   { return true; }
626 
627   // Relocate a section.
628   void
629   relocate_section(const Relocate_info<size, big_endian>*,
630 		   unsigned int sh_type,
631 		   const unsigned char* prelocs,
632 		   size_t reloc_count,
633 		   Output_section* output_section,
634 		   bool needs_special_offset_handling,
635 		   unsigned char* view,
636 		   Address view_address,
637 		   section_size_type view_size,
638 		   const Reloc_symbol_changes*);
639 
640   // Scan the relocs during a relocatable link.
641   void
642   scan_relocatable_relocs(Symbol_table* symtab,
643 			  Layout* layout,
644 			  Sized_relobj_file<size, big_endian>* object,
645 			  unsigned int data_shndx,
646 			  unsigned int sh_type,
647 			  const unsigned char* prelocs,
648 			  size_t reloc_count,
649 			  Output_section* output_section,
650 			  bool needs_special_offset_handling,
651 			  size_t local_symbol_count,
652 			  const unsigned char* plocal_symbols,
653 			  Relocatable_relocs*);
654 
655   // Emit relocations for a section.
656   void
657   relocate_relocs(const Relocate_info<size, big_endian>*,
658 		  unsigned int sh_type,
659 		  const unsigned char* prelocs,
660 		  size_t reloc_count,
661 		  Output_section* output_section,
662 		  typename elfcpp::Elf_types<size>::Elf_Off
663                     offset_in_output_section,
664 		  const Relocatable_relocs*,
665 		  unsigned char*,
666 		  Address view_address,
667 		  section_size_type,
668 		  unsigned char* reloc_view,
669 		  section_size_type reloc_view_size);
670 
671   // Return whether SYM is defined by the ABI.
672   bool
do_is_defined_by_abi(const Symbol * sym) const673   do_is_defined_by_abi(const Symbol* sym) const
674   {
675     return strcmp(sym->name(), "__tls_get_addr") == 0;
676   }
677 
678   // Return the size of the GOT section.
679   section_size_type
got_size() const680   got_size() const
681   {
682     gold_assert(this->got_ != NULL);
683     return this->got_->data_size();
684   }
685 
686   // Get the PLT section.
687   const Output_data_plt_powerpc<size, big_endian>*
plt_section() const688   plt_section() const
689   {
690     gold_assert(this->plt_ != NULL);
691     return this->plt_;
692   }
693 
694   // Get the IPLT section.
695   const Output_data_plt_powerpc<size, big_endian>*
iplt_section() const696   iplt_section() const
697   {
698     gold_assert(this->iplt_ != NULL);
699     return this->iplt_;
700   }
701 
702   // Get the .glink section.
703   const Output_data_glink<size, big_endian>*
glink_section() const704   glink_section() const
705   {
706     gold_assert(this->glink_ != NULL);
707     return this->glink_;
708   }
709 
710   Output_data_glink<size, big_endian>*
glink_section()711   glink_section()
712   {
713     gold_assert(this->glink_ != NULL);
714     return this->glink_;
715   }
716 
has_glink() const717   bool has_glink() const
718   { return this->glink_ != NULL; }
719 
720   // Get the GOT section.
721   const Output_data_got_powerpc<size, big_endian>*
got_section() const722   got_section() const
723   {
724     gold_assert(this->got_ != NULL);
725     return this->got_;
726   }
727 
728   // Get the GOT section, creating it if necessary.
729   Output_data_got_powerpc<size, big_endian>*
730   got_section(Symbol_table*, Layout*);
731 
732   Object*
733   do_make_elf_object(const std::string&, Input_file*, off_t,
734 		     const elfcpp::Ehdr<size, big_endian>&);
735 
736   // Return the number of entries in the GOT.
737   unsigned int
got_entry_count() const738   got_entry_count() const
739   {
740     if (this->got_ == NULL)
741       return 0;
742     return this->got_size() / (size / 8);
743   }
744 
745   // Return the number of entries in the PLT.
746   unsigned int
747   plt_entry_count() const;
748 
749   // Return the offset of the first non-reserved PLT entry.
750   unsigned int
first_plt_entry_offset() const751   first_plt_entry_offset() const
752   {
753     if (size == 32)
754       return 0;
755     if (this->abiversion() >= 2)
756       return 16;
757     return 24;
758   }
759 
760   // Return the size of each PLT entry.
761   unsigned int
plt_entry_size() const762   plt_entry_size() const
763   {
764     if (size == 32)
765       return 4;
766     if (this->abiversion() >= 2)
767       return 8;
768     return 24;
769   }
770 
771   // Add any special sections for this symbol to the gc work list.
772   // For powerpc64, this adds the code section of a function
773   // descriptor.
774   void
775   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
776 
777   // Handle target specific gc actions when adding a gc reference from
778   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
779   // and DST_OFF.  For powerpc64, this adds a referenc to the code
780   // section of a function descriptor.
781   void
782   do_gc_add_reference(Symbol_table* symtab,
783 		      Object* src_obj,
784 		      unsigned int src_shndx,
785 		      Object* dst_obj,
786 		      unsigned int dst_shndx,
787 		      Address dst_off) const;
788 
789   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
790   const Stub_tables&
stub_tables() const791   stub_tables() const
792   { return this->stub_tables_; }
793 
794   const Output_data_brlt_powerpc<size, big_endian>*
brlt_section() const795   brlt_section() const
796   { return this->brlt_section_; }
797 
798   void
add_branch_lookup_table(Address to)799   add_branch_lookup_table(Address to)
800   {
801     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
802     this->branch_lookup_table_.insert(std::make_pair(to, off));
803   }
804 
805   Address
find_branch_lookup_table(Address to)806   find_branch_lookup_table(Address to)
807   {
808     typename Branch_lookup_table::const_iterator p
809       = this->branch_lookup_table_.find(to);
810     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
811   }
812 
813   void
write_branch_lookup_table(unsigned char * oview)814   write_branch_lookup_table(unsigned char *oview)
815   {
816     for (typename Branch_lookup_table::const_iterator p
817 	   = this->branch_lookup_table_.begin();
818 	 p != this->branch_lookup_table_.end();
819 	 ++p)
820       {
821 	elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
822       }
823   }
824 
825   bool
plt_thread_safe() const826   plt_thread_safe() const
827   { return this->plt_thread_safe_; }
828 
829   int
abiversion() const830   abiversion () const
831   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
832 
833   void
set_abiversion(int ver)834   set_abiversion (int ver)
835   {
836     elfcpp::Elf_Word flags = this->processor_specific_flags();
837     flags &= ~elfcpp::EF_PPC64_ABI;
838     flags |= ver & elfcpp::EF_PPC64_ABI;
839     this->set_processor_specific_flags(flags);
840   }
841 
842   // Offset to to save stack slot
843   int
stk_toc() const844   stk_toc () const
845   { return this->abiversion() < 2 ? 40 : 24; }
846 
847  private:
848 
849   class Track_tls
850   {
851   public:
852     enum Tls_get_addr
853     {
854       NOT_EXPECTED = 0,
855       EXPECTED = 1,
856       SKIP = 2,
857       NORMAL = 3
858     };
859 
Track_tls()860     Track_tls()
861       : tls_get_addr_(NOT_EXPECTED),
862 	relinfo_(NULL), relnum_(0), r_offset_(0)
863     { }
864 
~Track_tls()865     ~Track_tls()
866     {
867       if (this->tls_get_addr_ != NOT_EXPECTED)
868 	this->missing();
869     }
870 
871     void
missing(void)872     missing(void)
873     {
874       if (this->relinfo_ != NULL)
875 	gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
876 			       _("missing expected __tls_get_addr call"));
877     }
878 
879     void
expect_tls_get_addr_call(const Relocate_info<size,big_endian> * relinfo,size_t relnum,Address r_offset)880     expect_tls_get_addr_call(
881 	const Relocate_info<size, big_endian>* relinfo,
882 	size_t relnum,
883 	Address r_offset)
884     {
885       this->tls_get_addr_ = EXPECTED;
886       this->relinfo_ = relinfo;
887       this->relnum_ = relnum;
888       this->r_offset_ = r_offset;
889     }
890 
891     void
expect_tls_get_addr_call()892     expect_tls_get_addr_call()
893     { this->tls_get_addr_ = EXPECTED; }
894 
895     void
skip_next_tls_get_addr_call()896     skip_next_tls_get_addr_call()
897     {this->tls_get_addr_ = SKIP; }
898 
899     Tls_get_addr
maybe_skip_tls_get_addr_call(unsigned int r_type,const Symbol * gsym)900     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
901     {
902       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
903 			   || r_type == elfcpp::R_PPC_PLTREL24)
904 			  && gsym != NULL
905 			  && strcmp(gsym->name(), "__tls_get_addr") == 0);
906       Tls_get_addr last_tls = this->tls_get_addr_;
907       this->tls_get_addr_ = NOT_EXPECTED;
908       if (is_tls_call && last_tls != EXPECTED)
909 	return last_tls;
910       else if (!is_tls_call && last_tls != NOT_EXPECTED)
911 	{
912 	  this->missing();
913 	  return EXPECTED;
914 	}
915       return NORMAL;
916     }
917 
918   private:
919     // What we're up to regarding calls to __tls_get_addr.
920     // On powerpc, the branch and link insn making a call to
921     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
922     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
923     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
924     // The marker relocation always comes first, and has the same
925     // symbol as the reloc on the insn setting up the __tls_get_addr
926     // argument.  This ties the arg setup insn with the call insn,
927     // allowing ld to safely optimize away the call.  We check that
928     // every call to __tls_get_addr has a marker relocation, and that
929     // every marker relocation is on a call to __tls_get_addr.
930     Tls_get_addr tls_get_addr_;
931     // Info about the last reloc for error message.
932     const Relocate_info<size, big_endian>* relinfo_;
933     size_t relnum_;
934     Address r_offset_;
935   };
936 
937   // The class which scans relocations.
938   class Scan : protected Track_tls
939   {
940   public:
941     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
942 
Scan()943     Scan()
944       : Track_tls(), issued_non_pic_error_(false)
945     { }
946 
947     static inline int
948     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
949 
950     inline void
951     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
952 	  Sized_relobj_file<size, big_endian>* object,
953 	  unsigned int data_shndx,
954 	  Output_section* output_section,
955 	  const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
956 	  const elfcpp::Sym<size, big_endian>& lsym,
957 	  bool is_discarded);
958 
959     inline void
960     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
961 	   Sized_relobj_file<size, big_endian>* object,
962 	   unsigned int data_shndx,
963 	   Output_section* output_section,
964 	   const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
965 	   Symbol* gsym);
966 
967     inline bool
local_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_powerpc *,Sized_relobj_file<size,big_endian> * relobj,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,const elfcpp::Sym<size,big_endian> &)968     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
969 					Target_powerpc* ,
970 					Sized_relobj_file<size, big_endian>* relobj,
971 					unsigned int ,
972 					Output_section* ,
973 					const elfcpp::Rela<size, big_endian>& ,
974 					unsigned int r_type,
975 					const elfcpp::Sym<size, big_endian>&)
976     {
977       // PowerPC64 .opd is not folded, so any identical function text
978       // may be folded and we'll still keep function addresses distinct.
979       // That means no reloc is of concern here.
980       if (size == 64)
981 	{
982 	  Powerpc_relobj<size, big_endian>* ppcobj = static_cast
983 	    <Powerpc_relobj<size, big_endian>*>(relobj);
984 	  if (ppcobj->abiversion() == 1)
985 	    return false;
986 	}
987       // For 32-bit and ELFv2, conservatively assume anything but calls to
988       // function code might be taking the address of the function.
989       return !is_branch_reloc(r_type);
990     }
991 
992     inline bool
global_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_powerpc *,Sized_relobj_file<size,big_endian> * relobj,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,Symbol *)993     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
994 					 Target_powerpc* ,
995 					 Sized_relobj_file<size, big_endian>* relobj,
996 					 unsigned int ,
997 					 Output_section* ,
998 					 const elfcpp::Rela<size, big_endian>& ,
999 					 unsigned int r_type,
1000 					 Symbol*)
1001     {
1002       // As above.
1003       if (size == 64)
1004 	{
1005 	  Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1006 	    <Powerpc_relobj<size, big_endian>*>(relobj);
1007 	  if (ppcobj->abiversion() == 1)
1008 	    return false;
1009 	}
1010       return !is_branch_reloc(r_type);
1011     }
1012 
1013     static bool
1014     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1015 			      Sized_relobj_file<size, big_endian>* object,
1016 			      unsigned int r_type, bool report_err);
1017 
1018   private:
1019     static void
1020     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1021 			    unsigned int r_type);
1022 
1023     static void
1024     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1025 			     unsigned int r_type, Symbol*);
1026 
1027     static void
1028     generate_tls_call(Symbol_table* symtab, Layout* layout,
1029 		      Target_powerpc* target);
1030 
1031     void
1032     check_non_pic(Relobj*, unsigned int r_type);
1033 
1034     // Whether we have issued an error about a non-PIC compilation.
1035     bool issued_non_pic_error_;
1036   };
1037 
1038   bool
1039   symval_for_branch(const Symbol_table* symtab,
1040 		    const Sized_symbol<size>* gsym,
1041 		    Powerpc_relobj<size, big_endian>* object,
1042 		    Address *value, unsigned int *dest_shndx);
1043 
1044   // The class which implements relocation.
1045   class Relocate : protected Track_tls
1046   {
1047    public:
1048     // Use 'at' branch hints when true, 'y' when false.
1049     // FIXME maybe: set this with an option.
1050     static const bool is_isa_v2 = true;
1051 
Relocate()1052     Relocate()
1053       : Track_tls()
1054     { }
1055 
1056     // Do a relocation.  Return false if the caller should not issue
1057     // any warnings about this relocation.
1058     inline bool
1059     relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1060 	     Output_section*, size_t relnum,
1061 	     const elfcpp::Rela<size, big_endian>&,
1062 	     unsigned int r_type, const Sized_symbol<size>*,
1063 	     const Symbol_value<size>*,
1064 	     unsigned char*,
1065 	     typename elfcpp::Elf_types<size>::Elf_Addr,
1066 	     section_size_type);
1067   };
1068 
1069   class Relocate_comdat_behavior
1070   {
1071    public:
1072     // Decide what the linker should do for relocations that refer to
1073     // discarded comdat sections.
1074     inline Comdat_behavior
get(const char * name)1075     get(const char* name)
1076     {
1077       gold::Default_comdat_behavior default_behavior;
1078       Comdat_behavior ret = default_behavior.get(name);
1079       if (ret == CB_WARNING)
1080 	{
1081 	  if (size == 32
1082 	      && (strcmp(name, ".fixup") == 0
1083 		  || strcmp(name, ".got2") == 0))
1084 	    ret = CB_IGNORE;
1085 	  if (size == 64
1086 	      && (strcmp(name, ".opd") == 0
1087 		  || strcmp(name, ".toc") == 0
1088 		  || strcmp(name, ".toc1") == 0))
1089 	    ret = CB_IGNORE;
1090 	}
1091       return ret;
1092     }
1093   };
1094 
1095   // A class which returns the size required for a relocation type,
1096   // used while scanning relocs during a relocatable link.
1097   class Relocatable_size_for_reloc
1098   {
1099    public:
1100     unsigned int
get_size_for_reloc(unsigned int,Relobj *)1101     get_size_for_reloc(unsigned int, Relobj*)
1102     {
1103       gold_unreachable();
1104       return 0;
1105     }
1106   };
1107 
1108   // Optimize the TLS relocation type based on what we know about the
1109   // symbol.  IS_FINAL is true if the final address of this symbol is
1110   // known at link time.
1111 
1112   tls::Tls_optimization
optimize_tls_gd(bool is_final)1113   optimize_tls_gd(bool is_final)
1114   {
1115     // If we are generating a shared library, then we can't do anything
1116     // in the linker.
1117     if (parameters->options().shared())
1118       return tls::TLSOPT_NONE;
1119 
1120     if (!is_final)
1121       return tls::TLSOPT_TO_IE;
1122     return tls::TLSOPT_TO_LE;
1123   }
1124 
1125   tls::Tls_optimization
optimize_tls_ld()1126   optimize_tls_ld()
1127   {
1128     if (parameters->options().shared())
1129       return tls::TLSOPT_NONE;
1130 
1131     return tls::TLSOPT_TO_LE;
1132   }
1133 
1134   tls::Tls_optimization
optimize_tls_ie(bool is_final)1135   optimize_tls_ie(bool is_final)
1136   {
1137     if (!is_final || parameters->options().shared())
1138       return tls::TLSOPT_NONE;
1139 
1140     return tls::TLSOPT_TO_LE;
1141   }
1142 
1143   // Create glink.
1144   void
1145   make_glink_section(Layout*);
1146 
1147   // Create the PLT section.
1148   void
1149   make_plt_section(Symbol_table*, Layout*);
1150 
1151   void
1152   make_iplt_section(Symbol_table*, Layout*);
1153 
1154   void
1155   make_brlt_section(Layout*);
1156 
1157   // Create a PLT entry for a global symbol.
1158   void
1159   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1160 
1161   // Create a PLT entry for a local IFUNC symbol.
1162   void
1163   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1164 			     Sized_relobj_file<size, big_endian>*,
1165 			     unsigned int);
1166 
1167 
1168   // Create a GOT entry for local dynamic __tls_get_addr.
1169   unsigned int
1170   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1171 		   Sized_relobj_file<size, big_endian>* object);
1172 
1173   unsigned int
tlsld_got_offset() const1174   tlsld_got_offset() const
1175   {
1176     return this->tlsld_got_offset_;
1177   }
1178 
1179   // Get the dynamic reloc section, creating it if necessary.
1180   Reloc_section*
1181   rela_dyn_section(Layout*);
1182 
1183   // Similarly, but for ifunc symbols get the one for ifunc.
1184   Reloc_section*
1185   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1186 
1187   // Copy a relocation against a global symbol.
1188   void
copy_reloc(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int shndx,Output_section * output_section,Symbol * sym,const elfcpp::Rela<size,big_endian> & reloc)1189   copy_reloc(Symbol_table* symtab, Layout* layout,
1190 	     Sized_relobj_file<size, big_endian>* object,
1191 	     unsigned int shndx, Output_section* output_section,
1192 	     Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1193   {
1194     this->copy_relocs_.copy_reloc(symtab, layout,
1195 				  symtab->get_sized_symbol<size>(sym),
1196 				  object, shndx, output_section,
1197 				  reloc, this->rela_dyn_section(layout));
1198   }
1199 
1200   // Look over all the input sections, deciding where to place stubs.
1201   void
1202   group_sections(Layout*, const Task*, bool);
1203 
1204   // Sort output sections by address.
1205   struct Sort_sections
1206   {
1207     bool
operator ()__anon0f0c9f3e0111::Target_powerpc::Sort_sections1208     operator()(const Output_section* sec1, const Output_section* sec2)
1209     { return sec1->address() < sec2->address(); }
1210   };
1211 
1212   class Branch_info
1213   {
1214    public:
Branch_info(Powerpc_relobj<size,big_endian> * ppc_object,unsigned int data_shndx,Address r_offset,unsigned int r_type,unsigned int r_sym,Address addend)1215     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1216 		unsigned int data_shndx,
1217 		Address r_offset,
1218 		unsigned int r_type,
1219 		unsigned int r_sym,
1220 		Address addend)
1221       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1222 	r_type_(r_type), r_sym_(r_sym), addend_(addend)
1223     { }
1224 
~Branch_info()1225     ~Branch_info()
1226     { }
1227 
1228     // If this branch needs a plt call stub, or a long branch stub, make one.
1229     bool
1230     make_stub(Stub_table<size, big_endian>*,
1231 	      Stub_table<size, big_endian>*,
1232 	      Symbol_table*) const;
1233 
1234    private:
1235     // The branch location..
1236     Powerpc_relobj<size, big_endian>* object_;
1237     unsigned int shndx_;
1238     Address offset_;
1239     // ..and the branch type and destination.
1240     unsigned int r_type_;
1241     unsigned int r_sym_;
1242     Address addend_;
1243   };
1244 
1245   // Information about this specific target which we pass to the
1246   // general Target structure.
1247   static Target::Target_info powerpc_info;
1248 
1249   // The types of GOT entries needed for this platform.
1250   // These values are exposed to the ABI in an incremental link.
1251   // Do not renumber existing values without changing the version
1252   // number of the .gnu_incremental_inputs section.
1253   enum Got_type
1254   {
1255     GOT_TYPE_STANDARD,
1256     GOT_TYPE_TLSGD,	// double entry for @got@tlsgd
1257     GOT_TYPE_DTPREL,	// entry for @got@dtprel
1258     GOT_TYPE_TPREL	// entry for @got@tprel
1259   };
1260 
1261   // The GOT section.
1262   Output_data_got_powerpc<size, big_endian>* got_;
1263   // The PLT section.  This is a container for a table of addresses,
1264   // and their relocations.  Each address in the PLT has a dynamic
1265   // relocation (R_*_JMP_SLOT) and each address will have a
1266   // corresponding entry in .glink for lazy resolution of the PLT.
1267   // ppc32 initialises the PLT to point at the .glink entry, while
1268   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1269   // linker adds a stub that loads the PLT entry into ctr then
1270   // branches to ctr.  There may be more than one stub for each PLT
1271   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1272   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1273   Output_data_plt_powerpc<size, big_endian>* plt_;
1274   // The IPLT section.  Like plt_, this is a container for a table of
1275   // addresses and their relocations, specifically for STT_GNU_IFUNC
1276   // functions that resolve locally (STT_GNU_IFUNC functions that
1277   // don't resolve locally go in PLT).  Unlike plt_, these have no
1278   // entry in .glink for lazy resolution, and the relocation section
1279   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1280   // the relocation section may contain relocations against
1281   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1282   // relocation section will appear at the end of other dynamic
1283   // relocations, so that ld.so applies these relocations after other
1284   // dynamic relocations.  In a static executable, the relocation
1285   // section is emitted and marked with __rela_iplt_start and
1286   // __rela_iplt_end symbols.
1287   Output_data_plt_powerpc<size, big_endian>* iplt_;
1288   // Section holding long branch destinations.
1289   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1290   // The .glink section.
1291   Output_data_glink<size, big_endian>* glink_;
1292   // The dynamic reloc section.
1293   Reloc_section* rela_dyn_;
1294   // Relocs saved to avoid a COPY reloc.
1295   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1296   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1297   unsigned int tlsld_got_offset_;
1298 
1299   Stub_tables stub_tables_;
1300   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1301   Branch_lookup_table branch_lookup_table_;
1302 
1303   typedef std::vector<Branch_info> Branches;
1304   Branches branch_info_;
1305 
1306   bool plt_thread_safe_;
1307 
1308   bool relax_failed_;
1309   int relax_fail_count_;
1310   int32_t stub_group_size_;
1311 };
1312 
1313 template<>
1314 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1315 {
1316   32,			// size
1317   true,			// is_big_endian
1318   elfcpp::EM_PPC,	// machine_code
1319   false,		// has_make_symbol
1320   false,		// has_resolve
1321   false,		// has_code_fill
1322   true,			// is_default_stack_executable
1323   false,		// can_icf_inline_merge_sections
1324   '\0',			// wrap_char
1325   "/usr/lib/ld.so.1",	// dynamic_linker
1326   0x10000000,		// default_text_segment_address
1327   64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
1328   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
1329   false,		// isolate_execinstr
1330   0,			// rosegment_gap
1331   elfcpp::SHN_UNDEF,	// small_common_shndx
1332   elfcpp::SHN_UNDEF,	// large_common_shndx
1333   0,			// small_common_section_flags
1334   0,			// large_common_section_flags
1335   NULL,			// attributes_section
1336   NULL,			// attributes_vendor
1337   "_start"		// entry_symbol_name
1338 };
1339 
1340 template<>
1341 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1342 {
1343   32,			// size
1344   false,		// is_big_endian
1345   elfcpp::EM_PPC,	// machine_code
1346   false,		// has_make_symbol
1347   false,		// has_resolve
1348   false,		// has_code_fill
1349   true,			// is_default_stack_executable
1350   false,		// can_icf_inline_merge_sections
1351   '\0',			// wrap_char
1352   "/usr/lib/ld.so.1",	// dynamic_linker
1353   0x10000000,		// default_text_segment_address
1354   64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
1355   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
1356   false,		// isolate_execinstr
1357   0,			// rosegment_gap
1358   elfcpp::SHN_UNDEF,	// small_common_shndx
1359   elfcpp::SHN_UNDEF,	// large_common_shndx
1360   0,			// small_common_section_flags
1361   0,			// large_common_section_flags
1362   NULL,			// attributes_section
1363   NULL,			// attributes_vendor
1364   "_start"		// entry_symbol_name
1365 };
1366 
1367 template<>
1368 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1369 {
1370   64,			// size
1371   true,			// is_big_endian
1372   elfcpp::EM_PPC64,	// machine_code
1373   false,		// has_make_symbol
1374   false,		// has_resolve
1375   false,		// has_code_fill
1376   true,			// is_default_stack_executable
1377   false,		// can_icf_inline_merge_sections
1378   '\0',			// wrap_char
1379   "/usr/lib/ld.so.1",	// dynamic_linker
1380   0x10000000,		// default_text_segment_address
1381   64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
1382   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
1383   false,		// isolate_execinstr
1384   0,			// rosegment_gap
1385   elfcpp::SHN_UNDEF,	// small_common_shndx
1386   elfcpp::SHN_UNDEF,	// large_common_shndx
1387   0,			// small_common_section_flags
1388   0,			// large_common_section_flags
1389   NULL,			// attributes_section
1390   NULL,			// attributes_vendor
1391   "_start"		// entry_symbol_name
1392 };
1393 
1394 template<>
1395 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1396 {
1397   64,			// size
1398   false,		// is_big_endian
1399   elfcpp::EM_PPC64,	// machine_code
1400   false,		// has_make_symbol
1401   false,		// has_resolve
1402   false,		// has_code_fill
1403   true,			// is_default_stack_executable
1404   false,		// can_icf_inline_merge_sections
1405   '\0',			// wrap_char
1406   "/usr/lib/ld.so.1",	// dynamic_linker
1407   0x10000000,		// default_text_segment_address
1408   64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
1409   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
1410   false,		// isolate_execinstr
1411   0,			// rosegment_gap
1412   elfcpp::SHN_UNDEF,	// small_common_shndx
1413   elfcpp::SHN_UNDEF,	// large_common_shndx
1414   0,			// small_common_section_flags
1415   0,			// large_common_section_flags
1416   NULL,			// attributes_section
1417   NULL,			// attributes_vendor
1418   "_start"		// entry_symbol_name
1419 };
1420 
1421 inline bool
is_branch_reloc(unsigned int r_type)1422 is_branch_reloc(unsigned int r_type)
1423 {
1424   return (r_type == elfcpp::R_POWERPC_REL24
1425 	  || r_type == elfcpp::R_PPC_PLTREL24
1426 	  || r_type == elfcpp::R_PPC_LOCAL24PC
1427 	  || r_type == elfcpp::R_POWERPC_REL14
1428 	  || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1429 	  || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1430 	  || r_type == elfcpp::R_POWERPC_ADDR24
1431 	  || r_type == elfcpp::R_POWERPC_ADDR14
1432 	  || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1433 	  || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1434 }
1435 
1436 // If INSN is an opcode that may be used with an @tls operand, return
1437 // the transformed insn for TLS optimisation, otherwise return 0.  If
1438 // REG is non-zero only match an insn with RB or RA equal to REG.
1439 uint32_t
at_tls_transform(uint32_t insn,unsigned int reg)1440 at_tls_transform(uint32_t insn, unsigned int reg)
1441 {
1442   if ((insn & (0x3f << 26)) != 31 << 26)
1443     return 0;
1444 
1445   unsigned int rtra;
1446   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1447     rtra = insn & ((1 << 26) - (1 << 16));
1448   else if (((insn >> 16) & 0x1f) == reg)
1449     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1450   else
1451     return 0;
1452 
1453   if ((insn & (0x3ff << 1)) == 266 << 1)
1454     // add -> addi
1455     insn = 14 << 26;
1456   else if ((insn & (0x1f << 1)) == 23 << 1
1457 	   && ((insn & (0x1f << 6)) < 14 << 6
1458 	       || ((insn & (0x1f << 6)) >= 16 << 6
1459 		   && (insn & (0x1f << 6)) < 24 << 6)))
1460     // load and store indexed -> dform
1461     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1462   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1463     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1464     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1465   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1466     // lwax -> lwa
1467     insn = (58 << 26) | 2;
1468   else
1469     return 0;
1470   insn |= rtra;
1471   return insn;
1472 }
1473 
1474 
1475 template<int size, bool big_endian>
1476 class Powerpc_relocate_functions
1477 {
1478 public:
1479   enum Overflow_check
1480   {
1481     CHECK_NONE,
1482     CHECK_SIGNED,
1483     CHECK_UNSIGNED,
1484     CHECK_BITFIELD,
1485     CHECK_LOW_INSN,
1486     CHECK_HIGH_INSN
1487   };
1488 
1489   enum Status
1490   {
1491     STATUS_OK,
1492     STATUS_OVERFLOW
1493   };
1494 
1495 private:
1496   typedef Powerpc_relocate_functions<size, big_endian> This;
1497   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1498 
1499   template<int valsize>
1500   static inline bool
has_overflow_signed(Address value)1501   has_overflow_signed(Address value)
1502   {
1503     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1504     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1505     limit <<= ((valsize - 1) >> 1);
1506     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1507     return value + limit > (limit << 1) - 1;
1508   }
1509 
1510   template<int valsize>
1511   static inline bool
has_overflow_unsigned(Address value)1512   has_overflow_unsigned(Address value)
1513   {
1514     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1515     limit <<= ((valsize - 1) >> 1);
1516     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1517     return value > (limit << 1) - 1;
1518   }
1519 
1520   template<int valsize>
1521   static inline bool
has_overflow_bitfield(Address value)1522   has_overflow_bitfield(Address value)
1523   {
1524     return (has_overflow_unsigned<valsize>(value)
1525 	    && has_overflow_signed<valsize>(value));
1526   }
1527 
1528   template<int valsize>
1529   static inline Status
overflowed(Address value,Overflow_check overflow)1530   overflowed(Address value, Overflow_check overflow)
1531   {
1532     if (overflow == CHECK_SIGNED)
1533       {
1534 	if (has_overflow_signed<valsize>(value))
1535 	  return STATUS_OVERFLOW;
1536       }
1537     else if (overflow == CHECK_UNSIGNED)
1538       {
1539 	if (has_overflow_unsigned<valsize>(value))
1540 	  return STATUS_OVERFLOW;
1541       }
1542     else if (overflow == CHECK_BITFIELD)
1543       {
1544 	if (has_overflow_bitfield<valsize>(value))
1545 	  return STATUS_OVERFLOW;
1546       }
1547     return STATUS_OK;
1548   }
1549 
1550   // Do a simple RELA relocation
1551   template<int fieldsize, int valsize>
1552   static inline Status
rela(unsigned char * view,Address value,Overflow_check overflow)1553   rela(unsigned char* view, Address value, Overflow_check overflow)
1554   {
1555     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1556     Valtype* wv = reinterpret_cast<Valtype*>(view);
1557     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1558     return overflowed<valsize>(value, overflow);
1559   }
1560 
1561   template<int fieldsize, int valsize>
1562   static inline Status
rela(unsigned char * view,unsigned int right_shift,typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,Address value,Overflow_check overflow)1563   rela(unsigned char* view,
1564        unsigned int right_shift,
1565        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1566        Address value,
1567        Overflow_check overflow)
1568   {
1569     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1570     Valtype* wv = reinterpret_cast<Valtype*>(view);
1571     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1572     Valtype reloc = value >> right_shift;
1573     val &= ~dst_mask;
1574     reloc &= dst_mask;
1575     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1576     return overflowed<valsize>(value >> right_shift, overflow);
1577   }
1578 
1579   // Do a simple RELA relocation, unaligned.
1580   template<int fieldsize, int valsize>
1581   static inline Status
rela_ua(unsigned char * view,Address value,Overflow_check overflow)1582   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1583   {
1584     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1585     return overflowed<valsize>(value, overflow);
1586   }
1587 
1588   template<int fieldsize, int valsize>
1589   static inline Status
rela_ua(unsigned char * view,unsigned int right_shift,typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,Address value,Overflow_check overflow)1590   rela_ua(unsigned char* view,
1591 	  unsigned int right_shift,
1592 	  typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1593 	  Address value,
1594 	  Overflow_check overflow)
1595   {
1596     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1597       Valtype;
1598     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1599     Valtype reloc = value >> right_shift;
1600     val &= ~dst_mask;
1601     reloc &= dst_mask;
1602     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1603     return overflowed<valsize>(value >> right_shift, overflow);
1604   }
1605 
1606 public:
1607   // R_PPC64_ADDR64: (Symbol + Addend)
1608   static inline void
addr64(unsigned char * view,Address value)1609   addr64(unsigned char* view, Address value)
1610   { This::template rela<64,64>(view, value, CHECK_NONE); }
1611 
1612   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1613   static inline void
addr64_u(unsigned char * view,Address value)1614   addr64_u(unsigned char* view, Address value)
1615   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1616 
1617   // R_POWERPC_ADDR32: (Symbol + Addend)
1618   static inline Status
addr32(unsigned char * view,Address value,Overflow_check overflow)1619   addr32(unsigned char* view, Address value, Overflow_check overflow)
1620   { return This::template rela<32,32>(view, value, overflow); }
1621 
1622   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1623   static inline Status
addr32_u(unsigned char * view,Address value,Overflow_check overflow)1624   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1625   { return This::template rela_ua<32,32>(view, value, overflow); }
1626 
1627   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1628   static inline Status
addr24(unsigned char * view,Address value,Overflow_check overflow)1629   addr24(unsigned char* view, Address value, Overflow_check overflow)
1630   {
1631     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1632 					     value, overflow);
1633     if (overflow != CHECK_NONE && (value & 3) != 0)
1634       stat = STATUS_OVERFLOW;
1635     return stat;
1636   }
1637 
1638   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1639   static inline Status
addr16(unsigned char * view,Address value,Overflow_check overflow)1640   addr16(unsigned char* view, Address value, Overflow_check overflow)
1641   { return This::template rela<16,16>(view, value, overflow); }
1642 
1643   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1644   static inline Status
addr16_u(unsigned char * view,Address value,Overflow_check overflow)1645   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1646   { return This::template rela_ua<16,16>(view, value, overflow); }
1647 
1648   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1649   static inline Status
addr16_ds(unsigned char * view,Address value,Overflow_check overflow)1650   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1651   {
1652     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1653     if (overflow != CHECK_NONE && (value & 3) != 0)
1654       stat = STATUS_OVERFLOW;
1655     return stat;
1656   }
1657 
1658   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1659   static inline void
addr16_hi(unsigned char * view,Address value)1660   addr16_hi(unsigned char* view, Address value)
1661   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1662 
1663   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1664   static inline void
addr16_ha(unsigned char * view,Address value)1665   addr16_ha(unsigned char* view, Address value)
1666   { This::addr16_hi(view, value + 0x8000); }
1667 
1668   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1669   static inline void
addr16_hi2(unsigned char * view,Address value)1670   addr16_hi2(unsigned char* view, Address value)
1671   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1672 
1673   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1674   static inline void
addr16_ha2(unsigned char * view,Address value)1675   addr16_ha2(unsigned char* view, Address value)
1676   { This::addr16_hi2(view, value + 0x8000); }
1677 
1678   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1679   static inline void
addr16_hi3(unsigned char * view,Address value)1680   addr16_hi3(unsigned char* view, Address value)
1681   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1682 
1683   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1684   static inline void
addr16_ha3(unsigned char * view,Address value)1685   addr16_ha3(unsigned char* view, Address value)
1686   { This::addr16_hi3(view, value + 0x8000); }
1687 
1688   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1689   static inline Status
addr14(unsigned char * view,Address value,Overflow_check overflow)1690   addr14(unsigned char* view, Address value, Overflow_check overflow)
1691   {
1692     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1693     if (overflow != CHECK_NONE && (value & 3) != 0)
1694       stat = STATUS_OVERFLOW;
1695     return stat;
1696   }
1697 };
1698 
1699 // Set ABI version for input and output.
1700 
1701 template<int size, bool big_endian>
1702 void
set_abiversion(int ver)1703 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1704 {
1705   this->e_flags_ |= ver;
1706   if (this->abiversion() != 0)
1707     {
1708       Target_powerpc<size, big_endian>* target =
1709 	static_cast<Target_powerpc<size, big_endian>*>(
1710 	   parameters->sized_target<size, big_endian>());
1711       if (target->abiversion() == 0)
1712 	target->set_abiversion(this->abiversion());
1713       else if (target->abiversion() != this->abiversion())
1714 	gold_error(_("%s: ABI version %d is not compatible "
1715 		     "with ABI version %d output"),
1716 		   this->name().c_str(),
1717 		   this->abiversion(), target->abiversion());
1718 
1719     }
1720 }
1721 
1722 // Stash away the index of .got2 or .opd in a relocatable object, if
1723 // such a section exists.
1724 
1725 template<int size, bool big_endian>
1726 bool
do_find_special_sections(Read_symbols_data * sd)1727 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1728     Read_symbols_data* sd)
1729 {
1730   const unsigned char* const pshdrs = sd->section_headers->data();
1731   const unsigned char* namesu = sd->section_names->data();
1732   const char* names = reinterpret_cast<const char*>(namesu);
1733   section_size_type names_size = sd->section_names_size;
1734   const unsigned char* s;
1735 
1736   s = this->template find_shdr<size, big_endian>(pshdrs,
1737 						 size == 32 ? ".got2" : ".opd",
1738 						 names, names_size, NULL);
1739   if (s != NULL)
1740     {
1741       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1742       this->special_ = ndx;
1743       if (size == 64)
1744 	{
1745 	  if (this->abiversion() == 0)
1746 	    this->set_abiversion(1);
1747 	  else if (this->abiversion() > 1)
1748 	    gold_error(_("%s: .opd invalid in abiv%d"),
1749 		       this->name().c_str(), this->abiversion());
1750 	}
1751     }
1752   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1753 }
1754 
1755 // Examine .rela.opd to build info about function entry points.
1756 
1757 template<int size, bool big_endian>
1758 void
scan_opd_relocs(size_t reloc_count,const unsigned char * prelocs,const unsigned char * plocal_syms)1759 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1760     size_t reloc_count,
1761     const unsigned char* prelocs,
1762     const unsigned char* plocal_syms)
1763 {
1764   if (size == 64)
1765     {
1766       typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1767 	Reltype;
1768       const int reloc_size
1769 	= Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1770       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1771       Address expected_off = 0;
1772       bool regular = true;
1773       unsigned int opd_ent_size = 0;
1774 
1775       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1776 	{
1777 	  Reltype reloc(prelocs);
1778 	  typename elfcpp::Elf_types<size>::Elf_WXword r_info
1779 	    = reloc.get_r_info();
1780 	  unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1781 	  if (r_type == elfcpp::R_PPC64_ADDR64)
1782 	    {
1783 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1784 	      typename elfcpp::Elf_types<size>::Elf_Addr value;
1785 	      bool is_ordinary;
1786 	      unsigned int shndx;
1787 	      if (r_sym < this->local_symbol_count())
1788 		{
1789 		  typename elfcpp::Sym<size, big_endian>
1790 		    lsym(plocal_syms + r_sym * sym_size);
1791 		  shndx = lsym.get_st_shndx();
1792 		  shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1793 		  value = lsym.get_st_value();
1794 		}
1795 	      else
1796 		shndx = this->symbol_section_and_value(r_sym, &value,
1797 						       &is_ordinary);
1798 	      this->set_opd_ent(reloc.get_r_offset(), shndx,
1799 				value + reloc.get_r_addend());
1800 	      if (i == 2)
1801 		{
1802 		  expected_off = reloc.get_r_offset();
1803 		  opd_ent_size = expected_off;
1804 		}
1805 	      else if (expected_off != reloc.get_r_offset())
1806 		regular = false;
1807 	      expected_off += opd_ent_size;
1808 	    }
1809 	  else if (r_type == elfcpp::R_PPC64_TOC)
1810 	    {
1811 	      if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1812 		regular = false;
1813 	    }
1814 	  else
1815 	    {
1816 	      gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1817 			   this->name().c_str(), r_type);
1818 	      regular = false;
1819 	    }
1820 	}
1821       if (reloc_count <= 2)
1822 	opd_ent_size = this->section_size(this->opd_shndx());
1823       if (opd_ent_size != 24 && opd_ent_size != 16)
1824 	regular = false;
1825       if (!regular)
1826 	{
1827 	  gold_warning(_("%s: .opd is not a regular array of opd entries"),
1828 		       this->name().c_str());
1829 	  opd_ent_size = 0;
1830 	}
1831     }
1832 }
1833 
1834 template<int size, bool big_endian>
1835 void
do_read_relocs(Read_relocs_data * rd)1836 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1837 {
1838   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1839   if (size == 64)
1840     {
1841       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1842 	   p != rd->relocs.end();
1843 	   ++p)
1844 	{
1845 	  if (p->data_shndx == this->opd_shndx())
1846 	    {
1847 	      uint64_t opd_size = this->section_size(this->opd_shndx());
1848 	      gold_assert(opd_size == static_cast<size_t>(opd_size));
1849 	      if (opd_size != 0)
1850 		{
1851 		  this->init_opd(opd_size);
1852 		  this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1853 					rd->local_symbols->data());
1854 		}
1855 	      break;
1856 	    }
1857 	}
1858     }
1859 }
1860 
1861 // Read the symbols then set up st_other vector.
1862 
1863 template<int size, bool big_endian>
1864 void
do_read_symbols(Read_symbols_data * sd)1865 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1866 {
1867   this->base_read_symbols(sd);
1868   if (size == 64)
1869     {
1870       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1871       const unsigned char* const pshdrs = sd->section_headers->data();
1872       const unsigned int loccount = this->do_local_symbol_count();
1873       if (loccount != 0)
1874 	{
1875 	  this->st_other_.resize(loccount);
1876 	  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1877 	  off_t locsize = loccount * sym_size;
1878 	  const unsigned int symtab_shndx = this->symtab_shndx();
1879 	  const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1880 	  typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1881 	  const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1882 						      locsize, true, false);
1883 	  psyms += sym_size;
1884 	  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1885 	    {
1886 	      elfcpp::Sym<size, big_endian> sym(psyms);
1887 	      unsigned char st_other = sym.get_st_other();
1888 	      this->st_other_[i] = st_other;
1889 	      if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1890 		{
1891 		  if (this->abiversion() == 0)
1892 		    this->set_abiversion(2);
1893 		  else if (this->abiversion() < 2)
1894 		    gold_error(_("%s: local symbol %d has invalid st_other"
1895 				 " for ABI version 1"),
1896 			       this->name().c_str(), i);
1897 		}
1898 	    }
1899 	}
1900     }
1901 }
1902 
1903 template<int size, bool big_endian>
1904 void
set_abiversion(int ver)1905 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1906 {
1907   this->e_flags_ |= ver;
1908   if (this->abiversion() != 0)
1909     {
1910       Target_powerpc<size, big_endian>* target =
1911 	static_cast<Target_powerpc<size, big_endian>*>(
1912 	  parameters->sized_target<size, big_endian>());
1913       if (target->abiversion() == 0)
1914 	target->set_abiversion(this->abiversion());
1915       else if (target->abiversion() != this->abiversion())
1916 	gold_error(_("%s: ABI version %d is not compatible "
1917 		     "with ABI version %d output"),
1918 		   this->name().c_str(),
1919 		   this->abiversion(), target->abiversion());
1920 
1921     }
1922 }
1923 
1924 // Call Sized_dynobj::base_read_symbols to read the symbols then
1925 // read .opd from a dynamic object, filling in opd_ent_ vector,
1926 
1927 template<int size, bool big_endian>
1928 void
do_read_symbols(Read_symbols_data * sd)1929 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1930 {
1931   this->base_read_symbols(sd);
1932   if (size == 64)
1933     {
1934       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1935       const unsigned char* const pshdrs = sd->section_headers->data();
1936       const unsigned char* namesu = sd->section_names->data();
1937       const char* names = reinterpret_cast<const char*>(namesu);
1938       const unsigned char* s = NULL;
1939       const unsigned char* opd;
1940       section_size_type opd_size;
1941 
1942       // Find and read .opd section.
1943       while (1)
1944 	{
1945 	  s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1946 							 sd->section_names_size,
1947 							 s);
1948 	  if (s == NULL)
1949 	    return;
1950 
1951 	  typename elfcpp::Shdr<size, big_endian> shdr(s);
1952 	  if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1953 	      && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1954 	    {
1955 	      if (this->abiversion() == 0)
1956 		this->set_abiversion(1);
1957 	      else if (this->abiversion() > 1)
1958 		gold_error(_("%s: .opd invalid in abiv%d"),
1959 			   this->name().c_str(), this->abiversion());
1960 
1961 	      this->opd_shndx_ = (s - pshdrs) / shdr_size;
1962 	      this->opd_address_ = shdr.get_sh_addr();
1963 	      opd_size = convert_to_section_size_type(shdr.get_sh_size());
1964 	      opd = this->get_view(shdr.get_sh_offset(), opd_size,
1965 				   true, false);
1966 	      break;
1967 	    }
1968 	}
1969 
1970       // Build set of executable sections.
1971       // Using a set is probably overkill.  There is likely to be only
1972       // a few executable sections, typically .init, .text and .fini,
1973       // and they are generally grouped together.
1974       typedef std::set<Sec_info> Exec_sections;
1975       Exec_sections exec_sections;
1976       s = pshdrs;
1977       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1978 	{
1979 	  typename elfcpp::Shdr<size, big_endian> shdr(s);
1980 	  if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1981 	      && ((shdr.get_sh_flags()
1982 		   & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1983 		  == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1984 	      && shdr.get_sh_size() != 0)
1985 	    {
1986 	      exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1987 					    shdr.get_sh_size(), i));
1988 	    }
1989 	}
1990       if (exec_sections.empty())
1991 	return;
1992 
1993       // Look over the OPD entries.  This is complicated by the fact
1994       // that some binaries will use two-word entries while others
1995       // will use the standard three-word entries.  In most cases
1996       // the third word (the environment pointer for languages like
1997       // Pascal) is unused and will be zero.  If the third word is
1998       // used it should not be pointing into executable sections,
1999       // I think.
2000       this->init_opd(opd_size);
2001       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2002 	{
2003 	  typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2004 	  const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2005 	  Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2006 	  if (val == 0)
2007 	    // Chances are that this is the third word of an OPD entry.
2008 	    continue;
2009 	  typename Exec_sections::const_iterator e
2010 	    = exec_sections.upper_bound(Sec_info(val, 0, 0));
2011 	  if (e != exec_sections.begin())
2012 	    {
2013 	      --e;
2014 	      if (e->start <= val && val < e->start + e->len)
2015 		{
2016 		  // We have an address in an executable section.
2017 		  // VAL ought to be the function entry, set it up.
2018 		  this->set_opd_ent(p - opd, e->shndx, val);
2019 		  // Skip second word of OPD entry, the TOC pointer.
2020 		  p += 8;
2021 		}
2022 	    }
2023 	  // If we didn't match any executable sections, we likely
2024 	  // have a non-zero third word in the OPD entry.
2025 	}
2026     }
2027 }
2028 
2029 // Set up some symbols.
2030 
2031 template<int size, bool big_endian>
2032 void
do_define_standard_symbols(Symbol_table * symtab,Layout * layout)2033 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2034     Symbol_table* symtab,
2035     Layout* layout)
2036 {
2037   if (size == 32)
2038     {
2039       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2040       // undefined when scanning relocs (and thus requires
2041       // non-relative dynamic relocs).  The proper value will be
2042       // updated later.
2043       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2044       if (gotsym != NULL && gotsym->is_undefined())
2045 	{
2046 	  Target_powerpc<size, big_endian>* target =
2047 	    static_cast<Target_powerpc<size, big_endian>*>(
2048 		parameters->sized_target<size, big_endian>());
2049 	  Output_data_got_powerpc<size, big_endian>* got
2050 	    = target->got_section(symtab, layout);
2051 	  symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2052 					Symbol_table::PREDEFINED,
2053 					got, 0, 0,
2054 					elfcpp::STT_OBJECT,
2055 					elfcpp::STB_LOCAL,
2056 					elfcpp::STV_HIDDEN, 0,
2057 					false, false);
2058 	}
2059 
2060       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2061       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2062       if (sdasym != NULL && sdasym->is_undefined())
2063 	{
2064 	  Output_data_space* sdata = new Output_data_space(4, "** sdata");
2065 	  Output_section* os
2066 	    = layout->add_output_section_data(".sdata", 0,
2067 					      elfcpp::SHF_ALLOC
2068 					      | elfcpp::SHF_WRITE,
2069 					      sdata, ORDER_SMALL_DATA, false);
2070 	  symtab->define_in_output_data("_SDA_BASE_", NULL,
2071 					Symbol_table::PREDEFINED,
2072 					os, 32768, 0, elfcpp::STT_OBJECT,
2073 					elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2074 					0, false, false);
2075 	}
2076     }
2077   else
2078     {
2079       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2080       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2081       if (gotsym != NULL && gotsym->is_undefined())
2082 	{
2083 	  Target_powerpc<size, big_endian>* target =
2084 	    static_cast<Target_powerpc<size, big_endian>*>(
2085 		parameters->sized_target<size, big_endian>());
2086 	  Output_data_got_powerpc<size, big_endian>* got
2087 	    = target->got_section(symtab, layout);
2088 	  symtab->define_in_output_data(".TOC.", NULL,
2089 					Symbol_table::PREDEFINED,
2090 					got, 0x8000, 0,
2091 					elfcpp::STT_OBJECT,
2092 					elfcpp::STB_LOCAL,
2093 					elfcpp::STV_HIDDEN, 0,
2094 					false, false);
2095 	}
2096     }
2097 }
2098 
2099 // Set up PowerPC target specific relobj.
2100 
2101 template<int size, bool big_endian>
2102 Object*
do_make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)2103 Target_powerpc<size, big_endian>::do_make_elf_object(
2104     const std::string& name,
2105     Input_file* input_file,
2106     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2107 {
2108   int et = ehdr.get_e_type();
2109   // ET_EXEC files are valid input for --just-symbols/-R,
2110   // and we treat them as relocatable objects.
2111   if (et == elfcpp::ET_REL
2112       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2113     {
2114       Powerpc_relobj<size, big_endian>* obj =
2115 	new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2116       obj->setup();
2117       return obj;
2118     }
2119   else if (et == elfcpp::ET_DYN)
2120     {
2121       Powerpc_dynobj<size, big_endian>* obj =
2122 	new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2123       obj->setup();
2124       return obj;
2125     }
2126   else
2127     {
2128       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2129       return NULL;
2130     }
2131 }
2132 
2133 template<int size, bool big_endian>
2134 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2135 {
2136 public:
2137   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2138   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2139 
Output_data_got_powerpc(Symbol_table * symtab,Layout * layout)2140   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2141     : Output_data_got<size, big_endian>(),
2142       symtab_(symtab), layout_(layout),
2143       header_ent_cnt_(size == 32 ? 3 : 1),
2144       header_index_(size == 32 ? 0x2000 : 0)
2145   { }
2146 
2147   // Override all the Output_data_got methods we use so as to first call
2148   // reserve_ent().
2149   bool
add_global(Symbol * gsym,unsigned int got_type)2150   add_global(Symbol* gsym, unsigned int got_type)
2151   {
2152     this->reserve_ent();
2153     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2154   }
2155 
2156   bool
add_global_plt(Symbol * gsym,unsigned int got_type)2157   add_global_plt(Symbol* gsym, unsigned int got_type)
2158   {
2159     this->reserve_ent();
2160     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2161   }
2162 
2163   bool
add_global_tls(Symbol * gsym,unsigned int got_type)2164   add_global_tls(Symbol* gsym, unsigned int got_type)
2165   { return this->add_global_plt(gsym, got_type); }
2166 
2167   void
add_global_with_rel(Symbol * gsym,unsigned int got_type,Output_data_reloc_generic * rel_dyn,unsigned int r_type)2168   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2169 		      Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2170   {
2171     this->reserve_ent();
2172     Output_data_got<size, big_endian>::
2173       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2174   }
2175 
2176   void
add_global_pair_with_rel(Symbol * gsym,unsigned int got_type,Output_data_reloc_generic * rel_dyn,unsigned int r_type_1,unsigned int r_type_2)2177   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2178 			   Output_data_reloc_generic* rel_dyn,
2179 			   unsigned int r_type_1, unsigned int r_type_2)
2180   {
2181     this->reserve_ent(2);
2182     Output_data_got<size, big_endian>::
2183       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2184   }
2185 
2186   bool
add_local(Relobj * object,unsigned int sym_index,unsigned int got_type)2187   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2188   {
2189     this->reserve_ent();
2190     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2191 							got_type);
2192   }
2193 
2194   bool
add_local_plt(Relobj * object,unsigned int sym_index,unsigned int got_type)2195   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2196   {
2197     this->reserve_ent();
2198     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2199 							    got_type);
2200   }
2201 
2202   bool
add_local_tls(Relobj * object,unsigned int sym_index,unsigned int got_type)2203   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2204   { return this->add_local_plt(object, sym_index, got_type); }
2205 
2206   void
add_local_tls_pair(Relobj * object,unsigned int sym_index,unsigned int got_type,Output_data_reloc_generic * rel_dyn,unsigned int r_type)2207   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2208 		     unsigned int got_type,
2209 		     Output_data_reloc_generic* rel_dyn,
2210 		     unsigned int r_type)
2211   {
2212     this->reserve_ent(2);
2213     Output_data_got<size, big_endian>::
2214       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2215   }
2216 
2217   unsigned int
add_constant(Valtype constant)2218   add_constant(Valtype constant)
2219   {
2220     this->reserve_ent();
2221     return Output_data_got<size, big_endian>::add_constant(constant);
2222   }
2223 
2224   unsigned int
add_constant_pair(Valtype c1,Valtype c2)2225   add_constant_pair(Valtype c1, Valtype c2)
2226   {
2227     this->reserve_ent(2);
2228     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2229   }
2230 
2231   // Offset of _GLOBAL_OFFSET_TABLE_.
2232   unsigned int
g_o_t() const2233   g_o_t() const
2234   {
2235     return this->got_offset(this->header_index_);
2236   }
2237 
2238   // Offset of base used to access the GOT/TOC.
2239   // The got/toc pointer reg will be set to this value.
2240   Valtype
got_base_offset(const Powerpc_relobj<size,big_endian> * object) const2241   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2242   {
2243     if (size == 32)
2244       return this->g_o_t();
2245     else
2246       return (this->output_section()->address()
2247 	      + object->toc_base_offset()
2248 	      - this->address());
2249   }
2250 
2251   // Ensure our GOT has a header.
2252   void
set_final_data_size()2253   set_final_data_size()
2254   {
2255     if (this->header_ent_cnt_ != 0)
2256       this->make_header();
2257     Output_data_got<size, big_endian>::set_final_data_size();
2258   }
2259 
2260   // First word of GOT header needs some values that are not
2261   // handled by Output_data_got so poke them in here.
2262   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2263   void
do_write(Output_file * of)2264   do_write(Output_file* of)
2265   {
2266     Valtype val = 0;
2267     if (size == 32 && this->layout_->dynamic_data() != NULL)
2268       val = this->layout_->dynamic_section()->address();
2269     if (size == 64)
2270       val = this->output_section()->address() + 0x8000;
2271     this->replace_constant(this->header_index_, val);
2272     Output_data_got<size, big_endian>::do_write(of);
2273   }
2274 
2275 private:
2276   void
reserve_ent(unsigned int cnt=1)2277   reserve_ent(unsigned int cnt = 1)
2278   {
2279     if (this->header_ent_cnt_ == 0)
2280       return;
2281     if (this->num_entries() + cnt > this->header_index_)
2282       this->make_header();
2283   }
2284 
2285   void
make_header()2286   make_header()
2287   {
2288     this->header_ent_cnt_ = 0;
2289     this->header_index_ = this->num_entries();
2290     if (size == 32)
2291       {
2292 	Output_data_got<size, big_endian>::add_constant(0);
2293 	Output_data_got<size, big_endian>::add_constant(0);
2294 	Output_data_got<size, big_endian>::add_constant(0);
2295 
2296 	// Define _GLOBAL_OFFSET_TABLE_ at the header
2297 	Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2298 	if (gotsym != NULL)
2299 	  {
2300 	    Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2301 	    sym->set_value(this->g_o_t());
2302 	  }
2303 	else
2304 	  this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2305 					       Symbol_table::PREDEFINED,
2306 					       this, this->g_o_t(), 0,
2307 					       elfcpp::STT_OBJECT,
2308 					       elfcpp::STB_LOCAL,
2309 					       elfcpp::STV_HIDDEN, 0,
2310 					       false, false);
2311       }
2312     else
2313       Output_data_got<size, big_endian>::add_constant(0);
2314   }
2315 
2316   // Stashed pointers.
2317   Symbol_table* symtab_;
2318   Layout* layout_;
2319 
2320   // GOT header size.
2321   unsigned int header_ent_cnt_;
2322   // GOT header index.
2323   unsigned int header_index_;
2324 };
2325 
2326 // Get the GOT section, creating it if necessary.
2327 
2328 template<int size, bool big_endian>
2329 Output_data_got_powerpc<size, big_endian>*
got_section(Symbol_table * symtab,Layout * layout)2330 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2331 					      Layout* layout)
2332 {
2333   if (this->got_ == NULL)
2334     {
2335       gold_assert(symtab != NULL && layout != NULL);
2336 
2337       this->got_
2338 	= new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2339 
2340       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2341 				      elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2342 				      this->got_, ORDER_DATA, false);
2343     }
2344 
2345   return this->got_;
2346 }
2347 
2348 // Get the dynamic reloc section, creating it if necessary.
2349 
2350 template<int size, bool big_endian>
2351 typename Target_powerpc<size, big_endian>::Reloc_section*
rela_dyn_section(Layout * layout)2352 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2353 {
2354   if (this->rela_dyn_ == NULL)
2355     {
2356       gold_assert(layout != NULL);
2357       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2358       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2359 				      elfcpp::SHF_ALLOC, this->rela_dyn_,
2360 				      ORDER_DYNAMIC_RELOCS, false);
2361     }
2362   return this->rela_dyn_;
2363 }
2364 
2365 // Similarly, but for ifunc symbols get the one for ifunc.
2366 
2367 template<int size, bool big_endian>
2368 typename Target_powerpc<size, big_endian>::Reloc_section*
rela_dyn_section(Symbol_table * symtab,Layout * layout,bool for_ifunc)2369 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2370 						   Layout* layout,
2371 						   bool for_ifunc)
2372 {
2373   if (!for_ifunc)
2374     return this->rela_dyn_section(layout);
2375 
2376   if (this->iplt_ == NULL)
2377     this->make_iplt_section(symtab, layout);
2378   return this->iplt_->rel_plt();
2379 }
2380 
2381 class Stub_control
2382 {
2383  public:
2384   // Determine the stub group size.  The group size is the absolute
2385   // value of the parameter --stub-group-size.  If --stub-group-size
2386   // is passed a negative value, we restrict stubs to be always before
2387   // the stubbed branches.
Stub_control(int32_t size,bool no_size_errors)2388   Stub_control(int32_t size, bool no_size_errors)
2389     : state_(NO_GROUP), stub_group_size_(abs(size)),
2390       stub14_group_size_(abs(size) >> 10),
2391       stubs_always_before_branch_(size < 0),
2392       suppress_size_errors_(no_size_errors),
2393       group_end_addr_(0), owner_(NULL), output_section_(NULL)
2394   {
2395   }
2396 
2397   // Return true iff input section can be handled by current stub
2398   // group.
2399   bool
2400   can_add_to_stub_group(Output_section* o,
2401 			const Output_section::Input_section* i,
2402 			bool has14);
2403 
2404   const Output_section::Input_section*
owner()2405   owner()
2406   { return owner_; }
2407 
2408   Output_section*
output_section()2409   output_section()
2410   { return output_section_; }
2411 
2412   void
set_output_and_owner(Output_section * o,const Output_section::Input_section * i)2413   set_output_and_owner(Output_section* o,
2414 		       const Output_section::Input_section* i)
2415   {
2416     this->output_section_ = o;
2417     this->owner_ = i;
2418   }
2419 
2420  private:
2421   typedef enum
2422   {
2423     NO_GROUP,
2424     FINDING_STUB_SECTION,
2425     HAS_STUB_SECTION
2426   } State;
2427 
2428   State state_;
2429   uint32_t stub_group_size_;
2430   uint32_t stub14_group_size_;
2431   bool stubs_always_before_branch_;
2432   bool suppress_size_errors_;
2433   uint64_t group_end_addr_;
2434   const Output_section::Input_section* owner_;
2435   Output_section* output_section_;
2436 };
2437 
2438 // Return true iff input section can be handled by current stub
2439 // group.
2440 
2441 bool
can_add_to_stub_group(Output_section * o,const Output_section::Input_section * i,bool has14)2442 Stub_control::can_add_to_stub_group(Output_section* o,
2443 				    const Output_section::Input_section* i,
2444 				    bool has14)
2445 {
2446   uint32_t group_size
2447     = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2448   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2449   uint64_t this_size;
2450   uint64_t start_addr = o->address();
2451 
2452   if (whole_sec)
2453     // .init and .fini sections are pasted together to form a single
2454     // function.  We can't be adding stubs in the middle of the function.
2455     this_size = o->data_size();
2456   else
2457     {
2458       start_addr += i->relobj()->output_section_offset(i->shndx());
2459       this_size = i->data_size();
2460     }
2461   uint64_t end_addr = start_addr + this_size;
2462   bool toobig = this_size > group_size;
2463 
2464   if (toobig && !this->suppress_size_errors_)
2465     gold_warning(_("%s:%s exceeds group size"),
2466 		 i->relobj()->name().c_str(),
2467 		 i->relobj()->section_name(i->shndx()).c_str());
2468 
2469   if (this->state_ != HAS_STUB_SECTION
2470       && (!whole_sec || this->output_section_ != o)
2471       && (this->state_ == NO_GROUP
2472 	  || this->group_end_addr_ - end_addr < group_size))
2473     {
2474       this->owner_ = i;
2475       this->output_section_ = o;
2476     }
2477 
2478   if (this->state_ == NO_GROUP)
2479     {
2480       this->state_ = FINDING_STUB_SECTION;
2481       this->group_end_addr_ = end_addr;
2482     }
2483   else if (this->group_end_addr_ - start_addr < group_size)
2484     ;
2485   // Adding this section would make the group larger than GROUP_SIZE.
2486   else if (this->state_ == FINDING_STUB_SECTION
2487 	   && !this->stubs_always_before_branch_
2488 	   && !toobig)
2489     {
2490       // But wait, there's more!  Input sections up to GROUP_SIZE
2491       // bytes before the stub table can be handled by it too.
2492       this->state_ = HAS_STUB_SECTION;
2493       this->group_end_addr_ = end_addr;
2494     }
2495   else
2496     {
2497       this->state_ = NO_GROUP;
2498       return false;
2499     }
2500   return true;
2501 }
2502 
2503 // Look over all the input sections, deciding where to place stubs.
2504 
2505 template<int size, bool big_endian>
2506 void
group_sections(Layout * layout,const Task *,bool no_size_errors)2507 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2508 						 const Task*,
2509 						 bool no_size_errors)
2510 {
2511   Stub_control stub_control(this->stub_group_size_, no_size_errors);
2512 
2513   // Group input sections and insert stub table
2514   Stub_table_owner* table_owner = NULL;
2515   std::vector<Stub_table_owner*> tables;
2516   Layout::Section_list section_list;
2517   layout->get_executable_sections(&section_list);
2518   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2519   for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2520        o != section_list.rend();
2521        ++o)
2522     {
2523       typedef Output_section::Input_section_list Input_section_list;
2524       for (Input_section_list::const_reverse_iterator i
2525 	     = (*o)->input_sections().rbegin();
2526 	   i != (*o)->input_sections().rend();
2527 	   ++i)
2528 	{
2529 	  if (i->is_input_section()
2530 	      || i->is_relaxed_input_section())
2531 	    {
2532 	      Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2533 		<Powerpc_relobj<size, big_endian>*>(i->relobj());
2534 	      bool has14 = ppcobj->has_14bit_branch(i->shndx());
2535 	      if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2536 		{
2537 		  table_owner->output_section = stub_control.output_section();
2538 		  table_owner->owner = stub_control.owner();
2539 		  stub_control.set_output_and_owner(*o, &*i);
2540 		  table_owner = NULL;
2541 		}
2542 	      if (table_owner == NULL)
2543 		{
2544 		  table_owner = new Stub_table_owner;
2545 		  tables.push_back(table_owner);
2546 		}
2547 	      ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2548 	    }
2549 	}
2550     }
2551   if (table_owner != NULL)
2552     {
2553       const Output_section::Input_section* i = stub_control.owner();
2554 
2555       if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2556 	{
2557 	  // Corner case.  A new stub group was made for the first
2558 	  // section (last one looked at here) for some reason, but
2559 	  // the first section is already being used as the owner for
2560 	  // a stub table for following sections.  Force it into that
2561 	  // stub group.
2562 	  tables.pop_back();
2563 	  delete table_owner;
2564 	  Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2565 	    <Powerpc_relobj<size, big_endian>*>(i->relobj());
2566 	  ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2567 	}
2568       else
2569 	{
2570 	  table_owner->output_section = stub_control.output_section();
2571 	  table_owner->owner = i;
2572 	}
2573     }
2574   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2575        t != tables.end();
2576        ++t)
2577     {
2578       Stub_table<size, big_endian>* stub_table;
2579 
2580       if ((*t)->owner->is_input_section())
2581 	stub_table = new Stub_table<size, big_endian>(this,
2582 						      (*t)->output_section,
2583 						      (*t)->owner);
2584       else if ((*t)->owner->is_relaxed_input_section())
2585 	stub_table = static_cast<Stub_table<size, big_endian>*>(
2586 			(*t)->owner->relaxed_input_section());
2587       else
2588 	gold_unreachable();
2589       this->stub_tables_.push_back(stub_table);
2590       delete *t;
2591     }
2592 }
2593 
2594 static unsigned long
max_branch_delta(unsigned int r_type)2595 max_branch_delta (unsigned int r_type)
2596 {
2597   if (r_type == elfcpp::R_POWERPC_REL14
2598       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2599       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2600     return 1L << 15;
2601   if (r_type == elfcpp::R_POWERPC_REL24
2602       || r_type == elfcpp::R_PPC_PLTREL24
2603       || r_type == elfcpp::R_PPC_LOCAL24PC)
2604     return 1L << 25;
2605   return 0;
2606 }
2607 
2608 // If this branch needs a plt call stub, or a long branch stub, make one.
2609 
2610 template<int size, bool big_endian>
2611 bool
make_stub(Stub_table<size,big_endian> * stub_table,Stub_table<size,big_endian> * ifunc_stub_table,Symbol_table * symtab) const2612 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2613     Stub_table<size, big_endian>* stub_table,
2614     Stub_table<size, big_endian>* ifunc_stub_table,
2615     Symbol_table* symtab) const
2616 {
2617   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2618   if (sym != NULL && sym->is_forwarder())
2619     sym = symtab->resolve_forwards(sym);
2620   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2621   Target_powerpc<size, big_endian>* target =
2622     static_cast<Target_powerpc<size, big_endian>*>(
2623       parameters->sized_target<size, big_endian>());
2624   if (gsym != NULL
2625       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2626       : this->object_->local_has_plt_offset(this->r_sym_))
2627     {
2628       if (size == 64
2629 	  && gsym != NULL
2630 	  && target->abiversion() >= 2
2631 	  && !parameters->options().output_is_position_independent()
2632 	  && !is_branch_reloc(this->r_type_))
2633 	target->glink_section()->add_global_entry(gsym);
2634       else
2635 	{
2636 	  if (stub_table == NULL)
2637 	    stub_table = this->object_->stub_table(this->shndx_);
2638 	  if (stub_table == NULL)
2639 	    {
2640 	      // This is a ref from a data section to an ifunc symbol.
2641 	      stub_table = ifunc_stub_table;
2642 	    }
2643 	  gold_assert(stub_table != NULL);
2644 	  Address from = this->object_->get_output_section_offset(this->shndx_);
2645 	  if (from != invalid_address)
2646 	    from += (this->object_->output_section(this->shndx_)->address()
2647 		     + this->offset_);
2648 	  if (gsym != NULL)
2649 	    return stub_table->add_plt_call_entry(from,
2650 						  this->object_, gsym,
2651 						  this->r_type_, this->addend_);
2652 	  else
2653 	    return stub_table->add_plt_call_entry(from,
2654 						  this->object_, this->r_sym_,
2655 						  this->r_type_, this->addend_);
2656 	}
2657     }
2658   else
2659     {
2660       Address max_branch_offset = max_branch_delta(this->r_type_);
2661       if (max_branch_offset == 0)
2662 	return true;
2663       Address from = this->object_->get_output_section_offset(this->shndx_);
2664       gold_assert(from != invalid_address);
2665       from += (this->object_->output_section(this->shndx_)->address()
2666 	       + this->offset_);
2667       Address to;
2668       if (gsym != NULL)
2669 	{
2670 	  switch (gsym->source())
2671 	    {
2672 	    case Symbol::FROM_OBJECT:
2673 	      {
2674 		Object* symobj = gsym->object();
2675 		if (symobj->is_dynamic()
2676 		    || symobj->pluginobj() != NULL)
2677 		  return true;
2678 		bool is_ordinary;
2679 		unsigned int shndx = gsym->shndx(&is_ordinary);
2680 		if (shndx == elfcpp::SHN_UNDEF)
2681 		  return true;
2682 	      }
2683 	      break;
2684 
2685 	    case Symbol::IS_UNDEFINED:
2686 	      return true;
2687 
2688 	    default:
2689 	      break;
2690 	    }
2691 	  Symbol_table::Compute_final_value_status status;
2692 	  to = symtab->compute_final_value<size>(gsym, &status);
2693 	  if (status != Symbol_table::CFVS_OK)
2694 	    return true;
2695 	  if (size == 64)
2696 	    to += this->object_->ppc64_local_entry_offset(gsym);
2697 	}
2698       else
2699 	{
2700 	  const Symbol_value<size>* psymval
2701 	    = this->object_->local_symbol(this->r_sym_);
2702 	  Symbol_value<size> symval;
2703 	  typedef Sized_relobj_file<size, big_endian> ObjType;
2704 	  typename ObjType::Compute_final_local_value_status status
2705 	    = this->object_->compute_final_local_value(this->r_sym_, psymval,
2706 						       &symval, symtab);
2707 	  if (status != ObjType::CFLV_OK
2708 	      || !symval.has_output_value())
2709 	    return true;
2710 	  to = symval.value(this->object_, 0);
2711 	  if (size == 64)
2712 	    to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2713 	}
2714       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2715 	to += this->addend_;
2716       if (stub_table == NULL)
2717 	stub_table = this->object_->stub_table(this->shndx_);
2718       if (size == 64 && target->abiversion() < 2)
2719 	{
2720 	  unsigned int dest_shndx;
2721 	  if (!target->symval_for_branch(symtab, gsym, this->object_,
2722 					 &to, &dest_shndx))
2723 	    return true;
2724 	}
2725       Address delta = to - from;
2726       if (delta + max_branch_offset >= 2 * max_branch_offset)
2727 	{
2728 	  if (stub_table == NULL)
2729 	    {
2730 	      gold_warning(_("%s:%s: branch in non-executable section,"
2731 			     " no long branch stub for you"),
2732 			   this->object_->name().c_str(),
2733 			   this->object_->section_name(this->shndx_).c_str());
2734 	      return true;
2735 	    }
2736 	  return stub_table->add_long_branch_entry(this->object_,
2737 						   this->r_type_, from, to);
2738 	}
2739     }
2740   return true;
2741 }
2742 
2743 // Relaxation hook.  This is where we do stub generation.
2744 
2745 template<int size, bool big_endian>
2746 bool
do_relax(int pass,const Input_objects *,Symbol_table * symtab,Layout * layout,const Task * task)2747 Target_powerpc<size, big_endian>::do_relax(int pass,
2748 					   const Input_objects*,
2749 					   Symbol_table* symtab,
2750 					   Layout* layout,
2751 					   const Task* task)
2752 {
2753   unsigned int prev_brlt_size = 0;
2754   if (pass == 1)
2755     {
2756       bool thread_safe
2757 	= this->abiversion() < 2 && parameters->options().plt_thread_safe();
2758       if (size == 64
2759 	  && this->abiversion() < 2
2760 	  && !thread_safe
2761 	  && !parameters->options().user_set_plt_thread_safe())
2762 	{
2763 	  static const char* const thread_starter[] =
2764 	    {
2765 	      "pthread_create",
2766 	      /* libstdc++ */
2767 	      "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2768 	      /* librt */
2769 	      "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2770 	      "mq_notify", "create_timer",
2771 	      /* libanl */
2772 	      "getaddrinfo_a",
2773 	      /* libgomp */
2774 	      "GOMP_parallel",
2775 	      "GOMP_parallel_start",
2776 	      "GOMP_parallel_loop_static",
2777 	      "GOMP_parallel_loop_static_start",
2778 	      "GOMP_parallel_loop_dynamic",
2779 	      "GOMP_parallel_loop_dynamic_start",
2780 	      "GOMP_parallel_loop_guided",
2781 	      "GOMP_parallel_loop_guided_start",
2782 	      "GOMP_parallel_loop_runtime",
2783 	      "GOMP_parallel_loop_runtime_start",
2784 	      "GOMP_parallel_sections",
2785 	      "GOMP_parallel_sections_start",
2786 	      /* libgo */
2787 	      "__go_go",
2788 	    };
2789 
2790 	  if (parameters->options().shared())
2791 	    thread_safe = true;
2792 	  else
2793 	    {
2794 	      for (unsigned int i = 0;
2795 		   i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2796 		   i++)
2797 		{
2798 		  Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2799 		  thread_safe = (sym != NULL
2800 				 && sym->in_reg()
2801 				 && sym->in_real_elf());
2802 		  if (thread_safe)
2803 		    break;
2804 		}
2805 	    }
2806 	}
2807       this->plt_thread_safe_ = thread_safe;
2808     }
2809 
2810   if (pass == 1)
2811     {
2812       this->stub_group_size_ = parameters->options().stub_group_size();
2813       bool no_size_errors = true;
2814       if (this->stub_group_size_ == 1)
2815 	this->stub_group_size_ = 0x1c00000;
2816       else if (this->stub_group_size_ == -1)
2817 	this->stub_group_size_ = -0x1e00000;
2818       else
2819 	no_size_errors = false;
2820       this->group_sections(layout, task, no_size_errors);
2821     }
2822   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2823     {
2824       this->branch_lookup_table_.clear();
2825       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2826 	   p != this->stub_tables_.end();
2827 	   ++p)
2828 	{
2829 	  (*p)->clear_stubs(true);
2830 	}
2831       this->stub_tables_.clear();
2832       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2833       gold_info(_("%s: stub group size is too large; retrying with %d"),
2834 		program_name, this->stub_group_size_);
2835       this->group_sections(layout, task, true);
2836     }
2837 
2838   // We need address of stub tables valid for make_stub.
2839   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2840        p != this->stub_tables_.end();
2841        ++p)
2842     {
2843       const Powerpc_relobj<size, big_endian>* object
2844 	= static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2845       Address off = object->get_output_section_offset((*p)->shndx());
2846       gold_assert(off != invalid_address);
2847       Output_section* os = (*p)->output_section();
2848       (*p)->set_address_and_size(os, off);
2849     }
2850 
2851   if (pass != 1)
2852     {
2853       // Clear plt call stubs, long branch stubs and branch lookup table.
2854       prev_brlt_size = this->branch_lookup_table_.size();
2855       this->branch_lookup_table_.clear();
2856       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2857 	   p != this->stub_tables_.end();
2858 	   ++p)
2859 	{
2860 	  (*p)->clear_stubs(false);
2861 	}
2862     }
2863 
2864   // Build all the stubs.
2865   this->relax_failed_ = false;
2866   Stub_table<size, big_endian>* ifunc_stub_table
2867     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2868   Stub_table<size, big_endian>* one_stub_table
2869     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2870   for (typename Branches::const_iterator b = this->branch_info_.begin();
2871        b != this->branch_info_.end();
2872        b++)
2873     {
2874       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2875 	  && !this->relax_failed_)
2876 	{
2877 	  this->relax_failed_ = true;
2878 	  this->relax_fail_count_++;
2879 	  if (this->relax_fail_count_ < 3)
2880 	    return true;
2881 	}
2882     }
2883 
2884   // Did anything change size?
2885   unsigned int num_huge_branches = this->branch_lookup_table_.size();
2886   bool again = num_huge_branches != prev_brlt_size;
2887   if (size == 64 && num_huge_branches != 0)
2888     this->make_brlt_section(layout);
2889   if (size == 64 && again)
2890     this->brlt_section_->set_current_size(num_huge_branches);
2891 
2892   typedef Unordered_set<Output_section*> Output_sections;
2893   Output_sections os_need_update;
2894   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2895        p != this->stub_tables_.end();
2896        ++p)
2897     {
2898       if ((*p)->size_update())
2899 	{
2900 	  again = true;
2901 	  (*p)->add_eh_frame(layout);
2902 	  os_need_update.insert((*p)->output_section());
2903 	}
2904     }
2905 
2906   // Set output section offsets for all input sections in an output
2907   // section that just changed size.  Anything past the stubs will
2908   // need updating.
2909   for (typename Output_sections::iterator p = os_need_update.begin();
2910        p != os_need_update.end();
2911        p++)
2912     {
2913       Output_section* os = *p;
2914       Address off = 0;
2915       typedef Output_section::Input_section_list Input_section_list;
2916       for (Input_section_list::const_iterator i = os->input_sections().begin();
2917 	   i != os->input_sections().end();
2918 	   ++i)
2919 	{
2920 	  off = align_address(off, i->addralign());
2921 	  if (i->is_input_section() || i->is_relaxed_input_section())
2922 	    i->relobj()->set_section_offset(i->shndx(), off);
2923 	  if (i->is_relaxed_input_section())
2924 	    {
2925 	      Stub_table<size, big_endian>* stub_table
2926 		= static_cast<Stub_table<size, big_endian>*>(
2927 		    i->relaxed_input_section());
2928 	      off += stub_table->set_address_and_size(os, off);
2929 	    }
2930 	  else
2931 	    off += i->data_size();
2932 	}
2933       // If .branch_lt is part of this output section, then we have
2934       // just done the offset adjustment.
2935       os->clear_section_offsets_need_adjustment();
2936     }
2937 
2938   if (size == 64
2939       && !again
2940       && num_huge_branches != 0
2941       && parameters->options().output_is_position_independent())
2942     {
2943       // Fill in the BRLT relocs.
2944       this->brlt_section_->reset_brlt_sizes();
2945       for (typename Branch_lookup_table::const_iterator p
2946 	     = this->branch_lookup_table_.begin();
2947 	   p != this->branch_lookup_table_.end();
2948 	   ++p)
2949 	{
2950 	  this->brlt_section_->add_reloc(p->first, p->second);
2951 	}
2952       this->brlt_section_->finalize_brlt_sizes();
2953     }
2954   return again;
2955 }
2956 
2957 template<int size, bool big_endian>
2958 void
do_plt_fde_location(const Output_data * plt,unsigned char * oview,uint64_t * paddress,off_t * plen) const2959 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2960 						      unsigned char* oview,
2961 						      uint64_t* paddress,
2962 						      off_t* plen) const
2963 {
2964   uint64_t address = plt->address();
2965   off_t len = plt->data_size();
2966 
2967   if (plt == this->glink_)
2968     {
2969       // See Output_data_glink::do_write() for glink contents.
2970       if (len == 0)
2971 	{
2972 	  gold_assert(parameters->doing_static_link());
2973 	  // Static linking may need stubs, to support ifunc and long
2974 	  // branches.  We need to create an output section for
2975 	  // .eh_frame early in the link process, to have a place to
2976 	  // attach stub .eh_frame info.  We also need to have
2977 	  // registered a CIE that matches the stub CIE.  Both of
2978 	  // these requirements are satisfied by creating an FDE and
2979 	  // CIE for .glink, even though static linking will leave
2980 	  // .glink zero length.
2981 	  // ??? Hopefully generating an FDE with a zero address range
2982 	  // won't confuse anything that consumes .eh_frame info.
2983 	}
2984       else if (size == 64)
2985 	{
2986 	  // There is one word before __glink_PLTresolve
2987 	  address += 8;
2988 	  len -= 8;
2989 	}
2990       else if (parameters->options().output_is_position_independent())
2991 	{
2992 	  // There are two FDEs for a position independent glink.
2993 	  // The first covers the branch table, the second
2994 	  // __glink_PLTresolve at the end of glink.
2995 	  off_t resolve_size = this->glink_->pltresolve_size;
2996 	  if (oview[9] == elfcpp::DW_CFA_nop)
2997 	    len -= resolve_size;
2998 	  else
2999 	    {
3000 	      address += len - resolve_size;
3001 	      len = resolve_size;
3002 	    }
3003 	}
3004     }
3005   else
3006     {
3007       // Must be a stub table.
3008       const Stub_table<size, big_endian>* stub_table
3009 	= static_cast<const Stub_table<size, big_endian>*>(plt);
3010       uint64_t stub_address = stub_table->stub_address();
3011       len -= stub_address - address;
3012       address = stub_address;
3013     }
3014 
3015   *paddress = address;
3016   *plen = len;
3017 }
3018 
3019 // A class to handle the PLT data.
3020 
3021 template<int size, bool big_endian>
3022 class Output_data_plt_powerpc : public Output_section_data_build
3023 {
3024  public:
3025   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3026 			    size, big_endian> Reloc_section;
3027 
Output_data_plt_powerpc(Target_powerpc<size,big_endian> * targ,Reloc_section * plt_rel,const char * name)3028   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3029 			  Reloc_section* plt_rel,
3030 			  const char* name)
3031     : Output_section_data_build(size == 32 ? 4 : 8),
3032       rel_(plt_rel),
3033       targ_(targ),
3034       name_(name)
3035   { }
3036 
3037   // Add an entry to the PLT.
3038   void
3039   add_entry(Symbol*);
3040 
3041   void
3042   add_ifunc_entry(Symbol*);
3043 
3044   void
3045   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3046 
3047   // Return the .rela.plt section data.
3048   Reloc_section*
rel_plt() const3049   rel_plt() const
3050   {
3051     return this->rel_;
3052   }
3053 
3054   // Return the number of PLT entries.
3055   unsigned int
entry_count() const3056   entry_count() const
3057   {
3058     if (this->current_data_size() == 0)
3059       return 0;
3060     return ((this->current_data_size() - this->first_plt_entry_offset())
3061 	    / this->plt_entry_size());
3062   }
3063 
3064  protected:
3065   void
do_adjust_output_section(Output_section * os)3066   do_adjust_output_section(Output_section* os)
3067   {
3068     os->set_entsize(0);
3069   }
3070 
3071   // Write to a map file.
3072   void
do_print_to_mapfile(Mapfile * mapfile) const3073   do_print_to_mapfile(Mapfile* mapfile) const
3074   { mapfile->print_output_data(this, this->name_); }
3075 
3076  private:
3077   // Return the offset of the first non-reserved PLT entry.
3078   unsigned int
first_plt_entry_offset() const3079   first_plt_entry_offset() const
3080   {
3081     // IPLT has no reserved entry.
3082     if (this->name_[3] == 'I')
3083       return 0;
3084     return this->targ_->first_plt_entry_offset();
3085   }
3086 
3087   // Return the size of each PLT entry.
3088   unsigned int
plt_entry_size() const3089   plt_entry_size() const
3090   {
3091     return this->targ_->plt_entry_size();
3092   }
3093 
3094   // Write out the PLT data.
3095   void
3096   do_write(Output_file*);
3097 
3098   // The reloc section.
3099   Reloc_section* rel_;
3100   // Allows access to .glink for do_write.
3101   Target_powerpc<size, big_endian>* targ_;
3102   // What to report in map file.
3103   const char *name_;
3104 };
3105 
3106 // Add an entry to the PLT.
3107 
3108 template<int size, bool big_endian>
3109 void
add_entry(Symbol * gsym)3110 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3111 {
3112   if (!gsym->has_plt_offset())
3113     {
3114       section_size_type off = this->current_data_size();
3115       if (off == 0)
3116 	off += this->first_plt_entry_offset();
3117       gsym->set_plt_offset(off);
3118       gsym->set_needs_dynsym_entry();
3119       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3120       this->rel_->add_global(gsym, dynrel, this, off, 0);
3121       off += this->plt_entry_size();
3122       this->set_current_data_size(off);
3123     }
3124 }
3125 
3126 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3127 
3128 template<int size, bool big_endian>
3129 void
add_ifunc_entry(Symbol * gsym)3130 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3131 {
3132   if (!gsym->has_plt_offset())
3133     {
3134       section_size_type off = this->current_data_size();
3135       gsym->set_plt_offset(off);
3136       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3137       if (size == 64 && this->targ_->abiversion() < 2)
3138 	dynrel = elfcpp::R_PPC64_JMP_IREL;
3139       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3140       off += this->plt_entry_size();
3141       this->set_current_data_size(off);
3142     }
3143 }
3144 
3145 // Add an entry for a local ifunc symbol to the IPLT.
3146 
3147 template<int size, bool big_endian>
3148 void
add_local_ifunc_entry(Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)3149 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3150     Sized_relobj_file<size, big_endian>* relobj,
3151     unsigned int local_sym_index)
3152 {
3153   if (!relobj->local_has_plt_offset(local_sym_index))
3154     {
3155       section_size_type off = this->current_data_size();
3156       relobj->set_local_plt_offset(local_sym_index, off);
3157       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3158       if (size == 64 && this->targ_->abiversion() < 2)
3159 	dynrel = elfcpp::R_PPC64_JMP_IREL;
3160       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3161 					      this, off, 0);
3162       off += this->plt_entry_size();
3163       this->set_current_data_size(off);
3164     }
3165 }
3166 
3167 static const uint32_t add_0_11_11	= 0x7c0b5a14;
3168 static const uint32_t add_2_2_11	= 0x7c425a14;
3169 static const uint32_t add_3_3_2		= 0x7c631214;
3170 static const uint32_t add_3_3_13	= 0x7c636a14;
3171 static const uint32_t add_11_0_11	= 0x7d605a14;
3172 static const uint32_t add_11_2_11	= 0x7d625a14;
3173 static const uint32_t add_11_11_2	= 0x7d6b1214;
3174 static const uint32_t addi_0_12		= 0x380c0000;
3175 static const uint32_t addi_2_2		= 0x38420000;
3176 static const uint32_t addi_3_3		= 0x38630000;
3177 static const uint32_t addi_11_11	= 0x396b0000;
3178 static const uint32_t addi_12_12	= 0x398c0000;
3179 static const uint32_t addis_0_2		= 0x3c020000;
3180 static const uint32_t addis_0_13	= 0x3c0d0000;
3181 static const uint32_t addis_11_2	= 0x3d620000;
3182 static const uint32_t addis_11_11	= 0x3d6b0000;
3183 static const uint32_t addis_11_30	= 0x3d7e0000;
3184 static const uint32_t addis_12_2	= 0x3d820000;
3185 static const uint32_t addis_12_12	= 0x3d8c0000;
3186 static const uint32_t b			= 0x48000000;
3187 static const uint32_t bcl_20_31		= 0x429f0005;
3188 static const uint32_t bctr		= 0x4e800420;
3189 static const uint32_t blr		= 0x4e800020;
3190 static const uint32_t bnectr_p4		= 0x4ce20420;
3191 static const uint32_t cmpldi_2_0	= 0x28220000;
3192 static const uint32_t cror_15_15_15	= 0x4def7b82;
3193 static const uint32_t cror_31_31_31	= 0x4ffffb82;
3194 static const uint32_t ld_0_1		= 0xe8010000;
3195 static const uint32_t ld_0_12		= 0xe80c0000;
3196 static const uint32_t ld_2_1		= 0xe8410000;
3197 static const uint32_t ld_2_2		= 0xe8420000;
3198 static const uint32_t ld_2_11		= 0xe84b0000;
3199 static const uint32_t ld_11_2		= 0xe9620000;
3200 static const uint32_t ld_11_11		= 0xe96b0000;
3201 static const uint32_t ld_12_2		= 0xe9820000;
3202 static const uint32_t ld_12_11		= 0xe98b0000;
3203 static const uint32_t ld_12_12		= 0xe98c0000;
3204 static const uint32_t lfd_0_1		= 0xc8010000;
3205 static const uint32_t li_0_0		= 0x38000000;
3206 static const uint32_t li_12_0		= 0x39800000;
3207 static const uint32_t lis_0_0		= 0x3c000000;
3208 static const uint32_t lis_11		= 0x3d600000;
3209 static const uint32_t lis_12		= 0x3d800000;
3210 static const uint32_t lvx_0_12_0	= 0x7c0c00ce;
3211 static const uint32_t lwz_0_12		= 0x800c0000;
3212 static const uint32_t lwz_11_11		= 0x816b0000;
3213 static const uint32_t lwz_11_30		= 0x817e0000;
3214 static const uint32_t lwz_12_12		= 0x818c0000;
3215 static const uint32_t lwzu_0_12		= 0x840c0000;
3216 static const uint32_t mflr_0		= 0x7c0802a6;
3217 static const uint32_t mflr_11		= 0x7d6802a6;
3218 static const uint32_t mflr_12		= 0x7d8802a6;
3219 static const uint32_t mtctr_0		= 0x7c0903a6;
3220 static const uint32_t mtctr_11		= 0x7d6903a6;
3221 static const uint32_t mtctr_12		= 0x7d8903a6;
3222 static const uint32_t mtlr_0		= 0x7c0803a6;
3223 static const uint32_t mtlr_12		= 0x7d8803a6;
3224 static const uint32_t nop		= 0x60000000;
3225 static const uint32_t ori_0_0_0		= 0x60000000;
3226 static const uint32_t srdi_0_0_2	= 0x7800f082;
3227 static const uint32_t std_0_1		= 0xf8010000;
3228 static const uint32_t std_0_12		= 0xf80c0000;
3229 static const uint32_t std_2_1		= 0xf8410000;
3230 static const uint32_t stfd_0_1		= 0xd8010000;
3231 static const uint32_t stvx_0_12_0	= 0x7c0c01ce;
3232 static const uint32_t sub_11_11_12	= 0x7d6c5850;
3233 static const uint32_t sub_12_12_11	= 0x7d8b6050;
3234 static const uint32_t xor_2_12_12	= 0x7d826278;
3235 static const uint32_t xor_11_12_12	= 0x7d8b6278;
3236 
3237 // Write out the PLT.
3238 
3239 template<int size, bool big_endian>
3240 void
do_write(Output_file * of)3241 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3242 {
3243   if (size == 32 && this->name_[3] != 'I')
3244     {
3245       const section_size_type offset = this->offset();
3246       const section_size_type oview_size
3247 	= convert_to_section_size_type(this->data_size());
3248       unsigned char* const oview = of->get_output_view(offset, oview_size);
3249       unsigned char* pov = oview;
3250       unsigned char* endpov = oview + oview_size;
3251 
3252       // The address of the .glink branch table
3253       const Output_data_glink<size, big_endian>* glink
3254 	= this->targ_->glink_section();
3255       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3256 
3257       while (pov < endpov)
3258 	{
3259 	  elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3260 	  pov += 4;
3261 	  branch_tab += 4;
3262 	}
3263 
3264       of->write_output_view(offset, oview_size, oview);
3265     }
3266 }
3267 
3268 // Create the PLT section.
3269 
3270 template<int size, bool big_endian>
3271 void
make_plt_section(Symbol_table * symtab,Layout * layout)3272 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3273 						   Layout* layout)
3274 {
3275   if (this->plt_ == NULL)
3276     {
3277       if (this->got_ == NULL)
3278 	this->got_section(symtab, layout);
3279 
3280       if (this->glink_ == NULL)
3281 	make_glink_section(layout);
3282 
3283       // Ensure that .rela.dyn always appears before .rela.plt  This is
3284       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3285       // needs to include .rela.plt in its range.
3286       this->rela_dyn_section(layout);
3287 
3288       Reloc_section* plt_rel = new Reloc_section(false);
3289       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3290 				      elfcpp::SHF_ALLOC, plt_rel,
3291 				      ORDER_DYNAMIC_PLT_RELOCS, false);
3292       this->plt_
3293 	= new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3294 							"** PLT");
3295       layout->add_output_section_data(".plt",
3296 				      (size == 32
3297 				       ? elfcpp::SHT_PROGBITS
3298 				       : elfcpp::SHT_NOBITS),
3299 				      elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3300 				      this->plt_,
3301 				      (size == 32
3302 				       ? ORDER_SMALL_DATA
3303 				       : ORDER_SMALL_BSS),
3304 				      false);
3305     }
3306 }
3307 
3308 // Create the IPLT section.
3309 
3310 template<int size, bool big_endian>
3311 void
make_iplt_section(Symbol_table * symtab,Layout * layout)3312 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3313 						    Layout* layout)
3314 {
3315   if (this->iplt_ == NULL)
3316     {
3317       this->make_plt_section(symtab, layout);
3318 
3319       Reloc_section* iplt_rel = new Reloc_section(false);
3320       this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3321       this->iplt_
3322 	= new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3323 							"** IPLT");
3324       this->plt_->output_section()->add_output_section_data(this->iplt_);
3325     }
3326 }
3327 
3328 // A section for huge long branch addresses, similar to plt section.
3329 
3330 template<int size, bool big_endian>
3331 class Output_data_brlt_powerpc : public Output_section_data_build
3332 {
3333  public:
3334   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3335   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3336 			    size, big_endian> Reloc_section;
3337 
Output_data_brlt_powerpc(Target_powerpc<size,big_endian> * targ,Reloc_section * brlt_rel)3338   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3339 			   Reloc_section* brlt_rel)
3340     : Output_section_data_build(size == 32 ? 4 : 8),
3341       rel_(brlt_rel),
3342       targ_(targ)
3343   { }
3344 
3345   void
reset_brlt_sizes()3346   reset_brlt_sizes()
3347   {
3348     this->reset_data_size();
3349     this->rel_->reset_data_size();
3350   }
3351 
3352   void
finalize_brlt_sizes()3353   finalize_brlt_sizes()
3354   {
3355     this->finalize_data_size();
3356     this->rel_->finalize_data_size();
3357   }
3358 
3359   // Add a reloc for an entry in the BRLT.
3360   void
add_reloc(Address to,unsigned int off)3361   add_reloc(Address to, unsigned int off)
3362   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3363 
3364   // Update section and reloc section size.
3365   void
set_current_size(unsigned int num_branches)3366   set_current_size(unsigned int num_branches)
3367   {
3368     this->reset_address_and_file_offset();
3369     this->set_current_data_size(num_branches * 16);
3370     this->finalize_data_size();
3371     Output_section* os = this->output_section();
3372     os->set_section_offsets_need_adjustment();
3373     if (this->rel_ != NULL)
3374       {
3375 	unsigned int reloc_size
3376 	  = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3377 	this->rel_->reset_address_and_file_offset();
3378 	this->rel_->set_current_data_size(num_branches * reloc_size);
3379 	this->rel_->finalize_data_size();
3380 	Output_section* os = this->rel_->output_section();
3381 	os->set_section_offsets_need_adjustment();
3382       }
3383   }
3384 
3385  protected:
3386   void
do_adjust_output_section(Output_section * os)3387   do_adjust_output_section(Output_section* os)
3388   {
3389     os->set_entsize(0);
3390   }
3391 
3392   // Write to a map file.
3393   void
do_print_to_mapfile(Mapfile * mapfile) const3394   do_print_to_mapfile(Mapfile* mapfile) const
3395   { mapfile->print_output_data(this, "** BRLT"); }
3396 
3397  private:
3398   // Write out the BRLT data.
3399   void
3400   do_write(Output_file*);
3401 
3402   // The reloc section.
3403   Reloc_section* rel_;
3404   Target_powerpc<size, big_endian>* targ_;
3405 };
3406 
3407 // Make the branch lookup table section.
3408 
3409 template<int size, bool big_endian>
3410 void
make_brlt_section(Layout * layout)3411 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3412 {
3413   if (size == 64 && this->brlt_section_ == NULL)
3414     {
3415       Reloc_section* brlt_rel = NULL;
3416       bool is_pic = parameters->options().output_is_position_independent();
3417       if (is_pic)
3418 	{
3419 	  // When PIC we can't fill in .branch_lt (like .plt it can be
3420 	  // a bss style section) but must initialise at runtime via
3421 	  // dynamic relocats.
3422 	  this->rela_dyn_section(layout);
3423 	  brlt_rel = new Reloc_section(false);
3424 	  this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3425 	}
3426       this->brlt_section_
3427 	= new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3428       if (this->plt_ && is_pic)
3429 	this->plt_->output_section()
3430 	  ->add_output_section_data(this->brlt_section_);
3431       else
3432 	layout->add_output_section_data(".branch_lt",
3433 					(is_pic ? elfcpp::SHT_NOBITS
3434 					 : elfcpp::SHT_PROGBITS),
3435 					elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3436 					this->brlt_section_,
3437 					(is_pic ? ORDER_SMALL_BSS
3438 					 : ORDER_SMALL_DATA),
3439 					false);
3440     }
3441 }
3442 
3443 // Write out .branch_lt when non-PIC.
3444 
3445 template<int size, bool big_endian>
3446 void
do_write(Output_file * of)3447 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3448 {
3449   if (size == 64 && !parameters->options().output_is_position_independent())
3450     {
3451       const section_size_type offset = this->offset();
3452       const section_size_type oview_size
3453 	= convert_to_section_size_type(this->data_size());
3454       unsigned char* const oview = of->get_output_view(offset, oview_size);
3455 
3456       this->targ_->write_branch_lookup_table(oview);
3457       of->write_output_view(offset, oview_size, oview);
3458     }
3459 }
3460 
3461 static inline uint32_t
l(uint32_t a)3462 l(uint32_t a)
3463 {
3464   return a & 0xffff;
3465 }
3466 
3467 static inline uint32_t
hi(uint32_t a)3468 hi(uint32_t a)
3469 {
3470   return l(a >> 16);
3471 }
3472 
3473 static inline uint32_t
ha(uint32_t a)3474 ha(uint32_t a)
3475 {
3476   return hi(a + 0x8000);
3477 }
3478 
3479 template<int size>
3480 struct Eh_cie
3481 {
3482   static const unsigned char eh_frame_cie[12];
3483 };
3484 
3485 template<int size>
3486 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3487 {
3488   1,					// CIE version.
3489   'z', 'R', 0,				// Augmentation string.
3490   4,					// Code alignment.
3491   0x80 - size / 8 ,			// Data alignment.
3492   65,					// RA reg.
3493   1,					// Augmentation size.
3494   (elfcpp::DW_EH_PE_pcrel
3495    | elfcpp::DW_EH_PE_sdata4),		// FDE encoding.
3496   elfcpp::DW_CFA_def_cfa, 1, 0		// def_cfa: r1 offset 0.
3497 };
3498 
3499 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3500 static const unsigned char glink_eh_frame_fde_64v1[] =
3501 {
3502   0, 0, 0, 0,				// Replaced with offset to .glink.
3503   0, 0, 0, 0,				// Replaced with size of .glink.
3504   0,					// Augmentation size.
3505   elfcpp::DW_CFA_advance_loc + 1,
3506   elfcpp::DW_CFA_register, 65, 12,
3507   elfcpp::DW_CFA_advance_loc + 4,
3508   elfcpp::DW_CFA_restore_extended, 65
3509 };
3510 
3511 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3512 static const unsigned char glink_eh_frame_fde_64v2[] =
3513 {
3514   0, 0, 0, 0,				// Replaced with offset to .glink.
3515   0, 0, 0, 0,				// Replaced with size of .glink.
3516   0,					// Augmentation size.
3517   elfcpp::DW_CFA_advance_loc + 1,
3518   elfcpp::DW_CFA_register, 65, 0,
3519   elfcpp::DW_CFA_advance_loc + 4,
3520   elfcpp::DW_CFA_restore_extended, 65
3521 };
3522 
3523 // Describe __glink_PLTresolve use of LR, 32-bit version.
3524 static const unsigned char glink_eh_frame_fde_32[] =
3525 {
3526   0, 0, 0, 0,				// Replaced with offset to .glink.
3527   0, 0, 0, 0,				// Replaced with size of .glink.
3528   0,					// Augmentation size.
3529   elfcpp::DW_CFA_advance_loc + 2,
3530   elfcpp::DW_CFA_register, 65, 0,
3531   elfcpp::DW_CFA_advance_loc + 4,
3532   elfcpp::DW_CFA_restore_extended, 65
3533 };
3534 
3535 static const unsigned char default_fde[] =
3536 {
3537   0, 0, 0, 0,				// Replaced with offset to stubs.
3538   0, 0, 0, 0,				// Replaced with size of stubs.
3539   0,					// Augmentation size.
3540   elfcpp::DW_CFA_nop,			// Pad.
3541   elfcpp::DW_CFA_nop,
3542   elfcpp::DW_CFA_nop
3543 };
3544 
3545 template<bool big_endian>
3546 static inline void
write_insn(unsigned char * p,uint32_t v)3547 write_insn(unsigned char* p, uint32_t v)
3548 {
3549   elfcpp::Swap<32, big_endian>::writeval(p, v);
3550 }
3551 
3552 // Stub_table holds information about plt and long branch stubs.
3553 // Stubs are built in an area following some input section determined
3554 // by group_sections().  This input section is converted to a relaxed
3555 // input section allowing it to be resized to accommodate the stubs
3556 
3557 template<int size, bool big_endian>
3558 class Stub_table : public Output_relaxed_input_section
3559 {
3560  public:
3561   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3562   static const Address invalid_address = static_cast<Address>(0) - 1;
3563 
Stub_table(Target_powerpc<size,big_endian> * targ,Output_section * output_section,const Output_section::Input_section * owner)3564   Stub_table(Target_powerpc<size, big_endian>* targ,
3565 	     Output_section* output_section,
3566 	     const Output_section::Input_section* owner)
3567     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3568 				   owner->relobj()
3569 				   ->section_addralign(owner->shndx())),
3570       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3571       orig_data_size_(owner->current_data_size()),
3572       plt_size_(0), last_plt_size_(0),
3573       branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3574   {
3575     this->set_output_section(output_section);
3576 
3577     std::vector<Output_relaxed_input_section*> new_relaxed;
3578     new_relaxed.push_back(this);
3579     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3580   }
3581 
3582   // Add a plt call stub.
3583   bool
3584   add_plt_call_entry(Address,
3585 		     const Sized_relobj_file<size, big_endian>*,
3586 		     const Symbol*,
3587 		     unsigned int,
3588 		     Address);
3589 
3590   bool
3591   add_plt_call_entry(Address,
3592 		     const Sized_relobj_file<size, big_endian>*,
3593 		     unsigned int,
3594 		     unsigned int,
3595 		     Address);
3596 
3597   // Find a given plt call stub.
3598   Address
3599   find_plt_call_entry(const Symbol*) const;
3600 
3601   Address
3602   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3603 		      unsigned int) const;
3604 
3605   Address
3606   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3607 		      const Symbol*,
3608 		      unsigned int,
3609 		      Address) const;
3610 
3611   Address
3612   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3613 		      unsigned int,
3614 		      unsigned int,
3615 		      Address) const;
3616 
3617   // Add a long branch stub.
3618   bool
3619   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3620 			unsigned int, Address, Address);
3621 
3622   Address
3623   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3624 			 Address) const;
3625 
3626   bool
can_reach_stub(Address from,unsigned int off,unsigned int r_type)3627   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3628   {
3629     Address max_branch_offset = max_branch_delta(r_type);
3630     if (max_branch_offset == 0)
3631       return true;
3632     gold_assert(from != invalid_address);
3633     Address loc = off + this->stub_address();
3634     return loc - from + max_branch_offset < 2 * max_branch_offset;
3635   }
3636 
3637   void
clear_stubs(bool all)3638   clear_stubs(bool all)
3639   {
3640     this->plt_call_stubs_.clear();
3641     this->plt_size_ = 0;
3642     this->long_branch_stubs_.clear();
3643     this->branch_size_ = 0;
3644     if (all)
3645       {
3646 	this->last_plt_size_ = 0;
3647 	this->last_branch_size_ = 0;
3648       }
3649   }
3650 
3651   Address
set_address_and_size(const Output_section * os,Address off)3652   set_address_and_size(const Output_section* os, Address off)
3653   {
3654     Address start_off = off;
3655     off += this->orig_data_size_;
3656     Address my_size = this->plt_size_ + this->branch_size_;
3657     if (my_size != 0)
3658       off = align_address(off, this->stub_align());
3659     // Include original section size and alignment padding in size
3660     my_size += off - start_off;
3661     this->reset_address_and_file_offset();
3662     this->set_current_data_size(my_size);
3663     this->set_address_and_file_offset(os->address() + start_off,
3664 				      os->offset() + start_off);
3665     return my_size;
3666   }
3667 
3668   Address
stub_address() const3669   stub_address() const
3670   {
3671     return align_address(this->address() + this->orig_data_size_,
3672 			 this->stub_align());
3673   }
3674 
3675   Address
stub_offset() const3676   stub_offset() const
3677   {
3678     return align_address(this->offset() + this->orig_data_size_,
3679 			 this->stub_align());
3680   }
3681 
3682   section_size_type
plt_size() const3683   plt_size() const
3684   { return this->plt_size_; }
3685 
3686   bool
size_update()3687   size_update()
3688   {
3689     Output_section* os = this->output_section();
3690     if (os->addralign() < this->stub_align())
3691       {
3692 	os->set_addralign(this->stub_align());
3693 	// FIXME: get rid of the insane checkpointing.
3694 	// We can't increase alignment of the input section to which
3695 	// stubs are attached;  The input section may be .init which
3696 	// is pasted together with other .init sections to form a
3697 	// function.  Aligning might insert zero padding resulting in
3698 	// sigill.  However we do need to increase alignment of the
3699 	// output section so that the align_address() on offset in
3700 	// set_address_and_size() adds the same padding as the
3701 	// align_address() on address in stub_address().
3702 	// What's more, we need this alignment for the layout done in
3703 	// relaxation_loop_body() so that the output section starts at
3704 	// a suitably aligned address.
3705 	os->checkpoint_set_addralign(this->stub_align());
3706       }
3707     if (this->last_plt_size_ != this->plt_size_
3708 	|| this->last_branch_size_ != this->branch_size_)
3709       {
3710 	this->last_plt_size_ = this->plt_size_;
3711 	this->last_branch_size_ = this->branch_size_;
3712 	return true;
3713       }
3714     return false;
3715   }
3716 
3717   // Add .eh_frame info for this stub section.  Unlike other linker
3718   // generated .eh_frame this is added late in the link, because we
3719   // only want the .eh_frame info if this particular stub section is
3720   // non-empty.
3721   void
add_eh_frame(Layout * layout)3722   add_eh_frame(Layout* layout)
3723   {
3724     if (!this->eh_frame_added_)
3725       {
3726 	if (!parameters->options().ld_generated_unwind_info())
3727 	  return;
3728 
3729 	// Since we add stub .eh_frame info late, it must be placed
3730 	// after all other linker generated .eh_frame info so that
3731 	// merge mapping need not be updated for input sections.
3732 	// There is no provision to use a different CIE to that used
3733 	// by .glink.
3734 	if (!this->targ_->has_glink())
3735 	  return;
3736 
3737 	layout->add_eh_frame_for_plt(this,
3738 				     Eh_cie<size>::eh_frame_cie,
3739 				     sizeof (Eh_cie<size>::eh_frame_cie),
3740 				     default_fde,
3741 				     sizeof (default_fde));
3742 	this->eh_frame_added_ = true;
3743       }
3744   }
3745 
3746   Target_powerpc<size, big_endian>*
targ() const3747   targ() const
3748   { return targ_; }
3749 
3750  private:
3751   class Plt_stub_ent;
3752   class Plt_stub_ent_hash;
3753   typedef Unordered_map<Plt_stub_ent, unsigned int,
3754 			Plt_stub_ent_hash> Plt_stub_entries;
3755 
3756   // Alignment of stub section.
3757   unsigned int
stub_align() const3758   stub_align() const
3759   {
3760     if (size == 32)
3761       return 16;
3762     unsigned int min_align = 32;
3763     unsigned int user_align = 1 << parameters->options().plt_align();
3764     return std::max(user_align, min_align);
3765   }
3766 
3767   // Return the plt offset for the given call stub.
3768   Address
plt_off(typename Plt_stub_entries::const_iterator p,bool * is_iplt) const3769   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3770   {
3771     const Symbol* gsym = p->first.sym_;
3772     if (gsym != NULL)
3773       {
3774 	*is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3775 		    && gsym->can_use_relative_reloc(false));
3776 	return gsym->plt_offset();
3777       }
3778     else
3779       {
3780 	*is_iplt = true;
3781 	const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3782 	unsigned int local_sym_index = p->first.locsym_;
3783 	return relobj->local_plt_offset(local_sym_index);
3784       }
3785   }
3786 
3787   // Size of a given plt call stub.
3788   unsigned int
plt_call_size(typename Plt_stub_entries::const_iterator p) const3789   plt_call_size(typename Plt_stub_entries::const_iterator p) const
3790   {
3791     if (size == 32)
3792       return 16;
3793 
3794     bool is_iplt;
3795     Address plt_addr = this->plt_off(p, &is_iplt);
3796     if (is_iplt)
3797       plt_addr += this->targ_->iplt_section()->address();
3798     else
3799       plt_addr += this->targ_->plt_section()->address();
3800     Address got_addr = this->targ_->got_section()->output_section()->address();
3801     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3802       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3803     got_addr += ppcobj->toc_base_offset();
3804     Address off = plt_addr - got_addr;
3805     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3806     if (this->targ_->abiversion() < 2)
3807       {
3808 	bool static_chain = parameters->options().plt_static_chain();
3809 	bool thread_safe = this->targ_->plt_thread_safe();
3810 	bytes += (4
3811 		  + 4 * static_chain
3812 		  + 8 * thread_safe
3813 		  + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3814       }
3815     unsigned int align = 1 << parameters->options().plt_align();
3816     if (align > 1)
3817       bytes = (bytes + align - 1) & -align;
3818     return bytes;
3819   }
3820 
3821   // Return long branch stub size.
3822   unsigned int
branch_stub_size(Address to)3823   branch_stub_size(Address to)
3824   {
3825     Address loc
3826       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3827     if (to - loc + (1 << 25) < 2 << 25)
3828       return 4;
3829     if (size == 64 || !parameters->options().output_is_position_independent())
3830       return 16;
3831     return 32;
3832   }
3833 
3834   // Write out stubs.
3835   void
3836   do_write(Output_file*);
3837 
3838   // Plt call stub keys.
3839   class Plt_stub_ent
3840   {
3841   public:
Plt_stub_ent(const Symbol * sym)3842     Plt_stub_ent(const Symbol* sym)
3843       : sym_(sym), object_(0), addend_(0), locsym_(0)
3844     { }
3845 
Plt_stub_ent(const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index)3846     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3847 		 unsigned int locsym_index)
3848       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3849     { }
3850 
Plt_stub_ent(const Sized_relobj_file<size,big_endian> * object,const Symbol * sym,unsigned int r_type,Address addend)3851     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3852 		 const Symbol* sym,
3853 		 unsigned int r_type,
3854 		 Address addend)
3855       : sym_(sym), object_(0), addend_(0), locsym_(0)
3856     {
3857       if (size != 32)
3858 	this->addend_ = addend;
3859       else if (parameters->options().output_is_position_independent()
3860 	       && r_type == elfcpp::R_PPC_PLTREL24)
3861 	{
3862 	  this->addend_ = addend;
3863 	  if (this->addend_ >= 32768)
3864 	    this->object_ = object;
3865 	}
3866     }
3867 
Plt_stub_ent(const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index,unsigned int r_type,Address addend)3868     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3869 		 unsigned int locsym_index,
3870 		 unsigned int r_type,
3871 		 Address addend)
3872       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3873     {
3874       if (size != 32)
3875 	this->addend_ = addend;
3876       else if (parameters->options().output_is_position_independent()
3877 	       && r_type == elfcpp::R_PPC_PLTREL24)
3878 	this->addend_ = addend;
3879     }
3880 
operator ==(const Plt_stub_ent & that) const3881     bool operator==(const Plt_stub_ent& that) const
3882     {
3883       return (this->sym_ == that.sym_
3884 	      && this->object_ == that.object_
3885 	      && this->addend_ == that.addend_
3886 	      && this->locsym_ == that.locsym_);
3887     }
3888 
3889     const Symbol* sym_;
3890     const Sized_relobj_file<size, big_endian>* object_;
3891     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3892     unsigned int locsym_;
3893   };
3894 
3895   class Plt_stub_ent_hash
3896   {
3897   public:
operator ()(const Plt_stub_ent & ent) const3898     size_t operator()(const Plt_stub_ent& ent) const
3899     {
3900       return (reinterpret_cast<uintptr_t>(ent.sym_)
3901 	      ^ reinterpret_cast<uintptr_t>(ent.object_)
3902 	      ^ ent.addend_
3903 	      ^ ent.locsym_);
3904     }
3905   };
3906 
3907   // Long branch stub keys.
3908   class Branch_stub_ent
3909   {
3910   public:
Branch_stub_ent(const Powerpc_relobj<size,big_endian> * obj,Address to)3911     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3912       : dest_(to), toc_base_off_(0)
3913     {
3914       if (size == 64)
3915 	toc_base_off_ = obj->toc_base_offset();
3916     }
3917 
operator ==(const Branch_stub_ent & that) const3918     bool operator==(const Branch_stub_ent& that) const
3919     {
3920       return (this->dest_ == that.dest_
3921 	      && (size == 32
3922 		  || this->toc_base_off_ == that.toc_base_off_));
3923     }
3924 
3925     Address dest_;
3926     unsigned int toc_base_off_;
3927   };
3928 
3929   class Branch_stub_ent_hash
3930   {
3931   public:
operator ()(const Branch_stub_ent & ent) const3932     size_t operator()(const Branch_stub_ent& ent) const
3933     { return ent.dest_ ^ ent.toc_base_off_; }
3934   };
3935 
3936   // In a sane world this would be a global.
3937   Target_powerpc<size, big_endian>* targ_;
3938   // Map sym/object/addend to stub offset.
3939   Plt_stub_entries plt_call_stubs_;
3940   // Map destination address to stub offset.
3941   typedef Unordered_map<Branch_stub_ent, unsigned int,
3942 			Branch_stub_ent_hash> Branch_stub_entries;
3943   Branch_stub_entries long_branch_stubs_;
3944   // size of input section
3945   section_size_type orig_data_size_;
3946   // size of stubs
3947   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3948   // Whether .eh_frame info has been created for this stub section.
3949   bool eh_frame_added_;
3950 };
3951 
3952 // Add a plt call stub, if we do not already have one for this
3953 // sym/object/addend combo.
3954 
3955 template<int size, bool big_endian>
3956 bool
add_plt_call_entry(Address from,const Sized_relobj_file<size,big_endian> * object,const Symbol * gsym,unsigned int r_type,Address addend)3957 Stub_table<size, big_endian>::add_plt_call_entry(
3958     Address from,
3959     const Sized_relobj_file<size, big_endian>* object,
3960     const Symbol* gsym,
3961     unsigned int r_type,
3962     Address addend)
3963 {
3964   Plt_stub_ent ent(object, gsym, r_type, addend);
3965   unsigned int off = this->plt_size_;
3966   std::pair<typename Plt_stub_entries::iterator, bool> p
3967     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3968   if (p.second)
3969     this->plt_size_ = off + this->plt_call_size(p.first);
3970   return this->can_reach_stub(from, off, r_type);
3971 }
3972 
3973 template<int size, bool big_endian>
3974 bool
add_plt_call_entry(Address from,const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index,unsigned int r_type,Address addend)3975 Stub_table<size, big_endian>::add_plt_call_entry(
3976     Address from,
3977     const Sized_relobj_file<size, big_endian>* object,
3978     unsigned int locsym_index,
3979     unsigned int r_type,
3980     Address addend)
3981 {
3982   Plt_stub_ent ent(object, locsym_index, r_type, addend);
3983   unsigned int off = this->plt_size_;
3984   std::pair<typename Plt_stub_entries::iterator, bool> p
3985     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3986   if (p.second)
3987     this->plt_size_ = off + this->plt_call_size(p.first);
3988   return this->can_reach_stub(from, off, r_type);
3989 }
3990 
3991 // Find a plt call stub.
3992 
3993 template<int size, bool big_endian>
3994 typename Stub_table<size, big_endian>::Address
find_plt_call_entry(const Sized_relobj_file<size,big_endian> * object,const Symbol * gsym,unsigned int r_type,Address addend) const3995 Stub_table<size, big_endian>::find_plt_call_entry(
3996     const Sized_relobj_file<size, big_endian>* object,
3997     const Symbol* gsym,
3998     unsigned int r_type,
3999     Address addend) const
4000 {
4001   Plt_stub_ent ent(object, gsym, r_type, addend);
4002   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4003   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4004 }
4005 
4006 template<int size, bool big_endian>
4007 typename Stub_table<size, big_endian>::Address
find_plt_call_entry(const Symbol * gsym) const4008 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4009 {
4010   Plt_stub_ent ent(gsym);
4011   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4012   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4013 }
4014 
4015 template<int size, bool big_endian>
4016 typename Stub_table<size, big_endian>::Address
find_plt_call_entry(const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index,unsigned int r_type,Address addend) const4017 Stub_table<size, big_endian>::find_plt_call_entry(
4018     const Sized_relobj_file<size, big_endian>* object,
4019     unsigned int locsym_index,
4020     unsigned int r_type,
4021     Address addend) const
4022 {
4023   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4024   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4025   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4026 }
4027 
4028 template<int size, bool big_endian>
4029 typename Stub_table<size, big_endian>::Address
find_plt_call_entry(const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index) const4030 Stub_table<size, big_endian>::find_plt_call_entry(
4031     const Sized_relobj_file<size, big_endian>* object,
4032     unsigned int locsym_index) const
4033 {
4034   Plt_stub_ent ent(object, locsym_index);
4035   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4036   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4037 }
4038 
4039 // Add a long branch stub if we don't already have one to given
4040 // destination.
4041 
4042 template<int size, bool big_endian>
4043 bool
add_long_branch_entry(const Powerpc_relobj<size,big_endian> * object,unsigned int r_type,Address from,Address to)4044 Stub_table<size, big_endian>::add_long_branch_entry(
4045     const Powerpc_relobj<size, big_endian>* object,
4046     unsigned int r_type,
4047     Address from,
4048     Address to)
4049 {
4050   Branch_stub_ent ent(object, to);
4051   Address off = this->branch_size_;
4052   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4053     {
4054       unsigned int stub_size = this->branch_stub_size(to);
4055       this->branch_size_ = off + stub_size;
4056       if (size == 64 && stub_size != 4)
4057 	this->targ_->add_branch_lookup_table(to);
4058     }
4059   return this->can_reach_stub(from, off, r_type);
4060 }
4061 
4062 // Find long branch stub.
4063 
4064 template<int size, bool big_endian>
4065 typename Stub_table<size, big_endian>::Address
find_long_branch_entry(const Powerpc_relobj<size,big_endian> * object,Address to) const4066 Stub_table<size, big_endian>::find_long_branch_entry(
4067     const Powerpc_relobj<size, big_endian>* object,
4068     Address to) const
4069 {
4070   Branch_stub_ent ent(object, to);
4071   typename Branch_stub_entries::const_iterator p
4072     = this->long_branch_stubs_.find(ent);
4073   return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
4074 }
4075 
4076 // A class to handle .glink.
4077 
4078 template<int size, bool big_endian>
4079 class Output_data_glink : public Output_section_data
4080 {
4081  public:
4082   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4083   static const Address invalid_address = static_cast<Address>(0) - 1;
4084   static const int pltresolve_size = 16*4;
4085 
Output_data_glink(Target_powerpc<size,big_endian> * targ)4086   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4087     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4088       end_branch_table_(), ge_size_(0)
4089   { }
4090 
4091   void
4092   add_eh_frame(Layout* layout);
4093 
4094   void
4095   add_global_entry(const Symbol*);
4096 
4097   Address
4098   find_global_entry(const Symbol*) const;
4099 
4100   Address
global_entry_address() const4101   global_entry_address() const
4102   {
4103     gold_assert(this->is_data_size_valid());
4104     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4105     return this->address() + global_entry_off;
4106   }
4107 
4108  protected:
4109   // Write to a map file.
4110   void
do_print_to_mapfile(Mapfile * mapfile) const4111   do_print_to_mapfile(Mapfile* mapfile) const
4112   { mapfile->print_output_data(this, _("** glink")); }
4113 
4114  private:
4115   void
4116   set_final_data_size();
4117 
4118   // Write out .glink
4119   void
4120   do_write(Output_file*);
4121 
4122   // Allows access to .got and .plt for do_write.
4123   Target_powerpc<size, big_endian>* targ_;
4124 
4125   // Map sym to stub offset.
4126   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4127   Global_entry_stub_entries global_entry_stubs_;
4128 
4129   unsigned int end_branch_table_, ge_size_;
4130 };
4131 
4132 template<int size, bool big_endian>
4133 void
add_eh_frame(Layout * layout)4134 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4135 {
4136   if (!parameters->options().ld_generated_unwind_info())
4137     return;
4138 
4139   if (size == 64)
4140     {
4141       if (this->targ_->abiversion() < 2)
4142 	layout->add_eh_frame_for_plt(this,
4143 				     Eh_cie<64>::eh_frame_cie,
4144 				     sizeof (Eh_cie<64>::eh_frame_cie),
4145 				     glink_eh_frame_fde_64v1,
4146 				     sizeof (glink_eh_frame_fde_64v1));
4147       else
4148 	layout->add_eh_frame_for_plt(this,
4149 				     Eh_cie<64>::eh_frame_cie,
4150 				     sizeof (Eh_cie<64>::eh_frame_cie),
4151 				     glink_eh_frame_fde_64v2,
4152 				     sizeof (glink_eh_frame_fde_64v2));
4153     }
4154   else
4155     {
4156       // 32-bit .glink can use the default since the CIE return
4157       // address reg, LR, is valid.
4158       layout->add_eh_frame_for_plt(this,
4159 				   Eh_cie<32>::eh_frame_cie,
4160 				   sizeof (Eh_cie<32>::eh_frame_cie),
4161 				   default_fde,
4162 				   sizeof (default_fde));
4163       // Except where LR is used in a PIC __glink_PLTresolve.
4164       if (parameters->options().output_is_position_independent())
4165 	layout->add_eh_frame_for_plt(this,
4166 				     Eh_cie<32>::eh_frame_cie,
4167 				     sizeof (Eh_cie<32>::eh_frame_cie),
4168 				     glink_eh_frame_fde_32,
4169 				     sizeof (glink_eh_frame_fde_32));
4170     }
4171 }
4172 
4173 template<int size, bool big_endian>
4174 void
add_global_entry(const Symbol * gsym)4175 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4176 {
4177   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4178     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4179   if (p.second)
4180     this->ge_size_ += 16;
4181 }
4182 
4183 template<int size, bool big_endian>
4184 typename Output_data_glink<size, big_endian>::Address
find_global_entry(const Symbol * gsym) const4185 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4186 {
4187   typename Global_entry_stub_entries::const_iterator p
4188     = this->global_entry_stubs_.find(gsym);
4189   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4190 }
4191 
4192 template<int size, bool big_endian>
4193 void
set_final_data_size()4194 Output_data_glink<size, big_endian>::set_final_data_size()
4195 {
4196   unsigned int count = this->targ_->plt_entry_count();
4197   section_size_type total = 0;
4198 
4199   if (count != 0)
4200     {
4201       if (size == 32)
4202 	{
4203 	  // space for branch table
4204 	  total += 4 * (count - 1);
4205 
4206 	  total += -total & 15;
4207 	  total += this->pltresolve_size;
4208 	}
4209       else
4210 	{
4211 	  total += this->pltresolve_size;
4212 
4213 	  // space for branch table
4214 	  total += 4 * count;
4215 	  if (this->targ_->abiversion() < 2)
4216 	    {
4217 	      total += 4 * count;
4218 	      if (count > 0x8000)
4219 		total += 4 * (count - 0x8000);
4220 	    }
4221 	}
4222     }
4223   this->end_branch_table_ = total;
4224   total = (total + 15) & -16;
4225   total += this->ge_size_;
4226 
4227   this->set_data_size(total);
4228 }
4229 
4230 // Write out plt and long branch stub code.
4231 
4232 template<int size, bool big_endian>
4233 void
do_write(Output_file * of)4234 Stub_table<size, big_endian>::do_write(Output_file* of)
4235 {
4236   if (this->plt_call_stubs_.empty()
4237       && this->long_branch_stubs_.empty())
4238     return;
4239 
4240   const section_size_type start_off = this->offset();
4241   const section_size_type off = this->stub_offset();
4242   const section_size_type oview_size =
4243     convert_to_section_size_type(this->data_size() - (off - start_off));
4244   unsigned char* const oview = of->get_output_view(off, oview_size);
4245   unsigned char* p;
4246 
4247   if (size == 64)
4248     {
4249       const Output_data_got_powerpc<size, big_endian>* got
4250 	= this->targ_->got_section();
4251       Address got_os_addr = got->output_section()->address();
4252 
4253       if (!this->plt_call_stubs_.empty())
4254 	{
4255 	  // The base address of the .plt section.
4256 	  Address plt_base = this->targ_->plt_section()->address();
4257 	  Address iplt_base = invalid_address;
4258 
4259 	  // Write out plt call stubs.
4260 	  typename Plt_stub_entries::const_iterator cs;
4261 	  for (cs = this->plt_call_stubs_.begin();
4262 	       cs != this->plt_call_stubs_.end();
4263 	       ++cs)
4264 	    {
4265 	      bool is_iplt;
4266 	      Address pltoff = this->plt_off(cs, &is_iplt);
4267 	      Address plt_addr = pltoff;
4268 	      if (is_iplt)
4269 		{
4270 		  if (iplt_base == invalid_address)
4271 		    iplt_base = this->targ_->iplt_section()->address();
4272 		  plt_addr += iplt_base;
4273 		}
4274 	      else
4275 		plt_addr += plt_base;
4276 	      const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4277 		<const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4278 	      Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4279 	      Address off = plt_addr - got_addr;
4280 
4281 	      if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4282 		gold_error(_("%s: linkage table error against `%s'"),
4283 			   cs->first.object_->name().c_str(),
4284 			   cs->first.sym_->demangled_name().c_str());
4285 
4286 	      bool plt_load_toc = this->targ_->abiversion() < 2;
4287 	      bool static_chain
4288 		= plt_load_toc && parameters->options().plt_static_chain();
4289 	      bool thread_safe
4290 		= plt_load_toc && this->targ_->plt_thread_safe();
4291 	      bool use_fake_dep = false;
4292 	      Address cmp_branch_off = 0;
4293 	      if (thread_safe)
4294 		{
4295 		  unsigned int pltindex
4296 		    = ((pltoff - this->targ_->first_plt_entry_offset())
4297 		       / this->targ_->plt_entry_size());
4298 		  Address glinkoff
4299 		    = (this->targ_->glink_section()->pltresolve_size
4300 		       + pltindex * 8);
4301 		  if (pltindex > 32768)
4302 		    glinkoff += (pltindex - 32768) * 4;
4303 		  Address to
4304 		    = this->targ_->glink_section()->address() + glinkoff;
4305 		  Address from
4306 		    = (this->stub_address() + cs->second + 24
4307 		       + 4 * (ha(off) != 0)
4308 		       + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4309 		       + 4 * static_chain);
4310 		  cmp_branch_off = to - from;
4311 		  use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4312 		}
4313 
4314 	      p = oview + cs->second;
4315 	      if (ha(off) != 0)
4316 		{
4317 		  write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4318 		  p += 4;
4319 		  if (plt_load_toc)
4320 		    {
4321 		      write_insn<big_endian>(p, addis_11_2 + ha(off));
4322 		      p += 4;
4323 		      write_insn<big_endian>(p, ld_12_11 + l(off));
4324 		      p += 4;
4325 		    }
4326 		  else
4327 		    {
4328 		      write_insn<big_endian>(p, addis_12_2 + ha(off));
4329 		      p += 4;
4330 		      write_insn<big_endian>(p, ld_12_12 + l(off));
4331 		      p += 4;
4332 		    }
4333 		  if (plt_load_toc
4334 		      && ha(off + 8 + 8 * static_chain) != ha(off))
4335 		    {
4336 		      write_insn<big_endian>(p, addi_11_11 + l(off));
4337 		      p += 4;
4338 		      off = 0;
4339 		    }
4340 		  write_insn<big_endian>(p, mtctr_12);
4341 		  p += 4;
4342 		  if (plt_load_toc)
4343 		    {
4344 		      if (use_fake_dep)
4345 			{
4346 			  write_insn<big_endian>(p, xor_2_12_12);
4347 			  p += 4;
4348 			  write_insn<big_endian>(p, add_11_11_2);
4349 			  p += 4;
4350 			}
4351 		      write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4352 		      p += 4;
4353 		      if (static_chain)
4354 			{
4355 			  write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4356 			  p += 4;
4357 			}
4358 		    }
4359 		}
4360 	      else
4361 		{
4362 		  write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4363 		  p += 4;
4364 		  write_insn<big_endian>(p, ld_12_2 + l(off));
4365 		  p += 4;
4366 		  if (plt_load_toc
4367 		      && ha(off + 8 + 8 * static_chain) != ha(off))
4368 		    {
4369 		      write_insn<big_endian>(p, addi_2_2 + l(off));
4370 		      p += 4;
4371 		      off = 0;
4372 		    }
4373 		  write_insn<big_endian>(p, mtctr_12);
4374 		  p += 4;
4375 		  if (plt_load_toc)
4376 		    {
4377 		      if (use_fake_dep)
4378 			{
4379 			  write_insn<big_endian>(p, xor_11_12_12);
4380 			  p += 4;
4381 			  write_insn<big_endian>(p, add_2_2_11);
4382 			  p += 4;
4383 			}
4384 		      if (static_chain)
4385 			{
4386 			  write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4387 			  p += 4;
4388 			}
4389 		      write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4390 		      p += 4;
4391 		    }
4392 		}
4393 	      if (thread_safe && !use_fake_dep)
4394 		{
4395 		  write_insn<big_endian>(p, cmpldi_2_0);
4396 		  p += 4;
4397 		  write_insn<big_endian>(p, bnectr_p4);
4398 		  p += 4;
4399 		  write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4400 		}
4401 	      else
4402 		write_insn<big_endian>(p, bctr);
4403 	    }
4404 	}
4405 
4406       // Write out long branch stubs.
4407       typename Branch_stub_entries::const_iterator bs;
4408       for (bs = this->long_branch_stubs_.begin();
4409 	   bs != this->long_branch_stubs_.end();
4410 	   ++bs)
4411 	{
4412 	  p = oview + this->plt_size_ + bs->second;
4413 	  Address loc = this->stub_address() + this->plt_size_ + bs->second;
4414 	  Address delta = bs->first.dest_ - loc;
4415 	  if (delta + (1 << 25) < 2 << 25)
4416 	    write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4417 	  else
4418 	    {
4419 	      Address brlt_addr
4420 		= this->targ_->find_branch_lookup_table(bs->first.dest_);
4421 	      gold_assert(brlt_addr != invalid_address);
4422 	      brlt_addr += this->targ_->brlt_section()->address();
4423 	      Address got_addr = got_os_addr + bs->first.toc_base_off_;
4424 	      Address brltoff = brlt_addr - got_addr;
4425 	      if (ha(brltoff) == 0)
4426 		{
4427 		  write_insn<big_endian>(p, ld_12_2 + l(brltoff)),	p += 4;
4428 		}
4429 	      else
4430 		{
4431 		  write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),	p += 4;
4432 		  write_insn<big_endian>(p, ld_12_12 + l(brltoff)),	p += 4;
4433 		}
4434 	      write_insn<big_endian>(p, mtctr_12),			p += 4;
4435 	      write_insn<big_endian>(p, bctr);
4436 	    }
4437 	}
4438     }
4439   else
4440     {
4441       if (!this->plt_call_stubs_.empty())
4442 	{
4443 	  // The base address of the .plt section.
4444 	  Address plt_base = this->targ_->plt_section()->address();
4445 	  Address iplt_base = invalid_address;
4446 	  // The address of _GLOBAL_OFFSET_TABLE_.
4447 	  Address g_o_t = invalid_address;
4448 
4449 	  // Write out plt call stubs.
4450 	  typename Plt_stub_entries::const_iterator cs;
4451 	  for (cs = this->plt_call_stubs_.begin();
4452 	       cs != this->plt_call_stubs_.end();
4453 	       ++cs)
4454 	    {
4455 	      bool is_iplt;
4456 	      Address plt_addr = this->plt_off(cs, &is_iplt);
4457 	      if (is_iplt)
4458 		{
4459 		  if (iplt_base == invalid_address)
4460 		    iplt_base = this->targ_->iplt_section()->address();
4461 		  plt_addr += iplt_base;
4462 		}
4463 	      else
4464 		plt_addr += plt_base;
4465 
4466 	      p = oview + cs->second;
4467 	      if (parameters->options().output_is_position_independent())
4468 		{
4469 		  Address got_addr;
4470 		  const Powerpc_relobj<size, big_endian>* ppcobj
4471 		    = (static_cast<const Powerpc_relobj<size, big_endian>*>
4472 		       (cs->first.object_));
4473 		  if (ppcobj != NULL && cs->first.addend_ >= 32768)
4474 		    {
4475 		      unsigned int got2 = ppcobj->got2_shndx();
4476 		      got_addr = ppcobj->get_output_section_offset(got2);
4477 		      gold_assert(got_addr != invalid_address);
4478 		      got_addr += (ppcobj->output_section(got2)->address()
4479 				   + cs->first.addend_);
4480 		    }
4481 		  else
4482 		    {
4483 		      if (g_o_t == invalid_address)
4484 			{
4485 			  const Output_data_got_powerpc<size, big_endian>* got
4486 			    = this->targ_->got_section();
4487 			  g_o_t = got->address() + got->g_o_t();
4488 			}
4489 		      got_addr = g_o_t;
4490 		    }
4491 
4492 		  Address off = plt_addr - got_addr;
4493 		  if (ha(off) == 0)
4494 		    {
4495 		      write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4496 		      write_insn<big_endian>(p +  4, mtctr_11);
4497 		      write_insn<big_endian>(p +  8, bctr);
4498 		    }
4499 		  else
4500 		    {
4501 		      write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4502 		      write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4503 		      write_insn<big_endian>(p +  8, mtctr_11);
4504 		      write_insn<big_endian>(p + 12, bctr);
4505 		    }
4506 		}
4507 	      else
4508 		{
4509 		  write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4510 		  write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4511 		  write_insn<big_endian>(p +  8, mtctr_11);
4512 		  write_insn<big_endian>(p + 12, bctr);
4513 		}
4514 	    }
4515 	}
4516 
4517       // Write out long branch stubs.
4518       typename Branch_stub_entries::const_iterator bs;
4519       for (bs = this->long_branch_stubs_.begin();
4520 	   bs != this->long_branch_stubs_.end();
4521 	   ++bs)
4522 	{
4523 	  p = oview + this->plt_size_ + bs->second;
4524 	  Address loc = this->stub_address() + this->plt_size_ + bs->second;
4525 	  Address delta = bs->first.dest_ - loc;
4526 	  if (delta + (1 << 25) < 2 << 25)
4527 	    write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4528 	  else if (!parameters->options().output_is_position_independent())
4529 	    {
4530 	      write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4531 	      write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4532 	      write_insn<big_endian>(p +  8, mtctr_12);
4533 	      write_insn<big_endian>(p + 12, bctr);
4534 	    }
4535 	  else
4536 	    {
4537 	      delta -= 8;
4538 	      write_insn<big_endian>(p +  0, mflr_0);
4539 	      write_insn<big_endian>(p +  4, bcl_20_31);
4540 	      write_insn<big_endian>(p +  8, mflr_12);
4541 	      write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4542 	      write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4543 	      write_insn<big_endian>(p + 20, mtlr_0);
4544 	      write_insn<big_endian>(p + 24, mtctr_12);
4545 	      write_insn<big_endian>(p + 28, bctr);
4546 	    }
4547 	}
4548     }
4549 }
4550 
4551 // Write out .glink.
4552 
4553 template<int size, bool big_endian>
4554 void
do_write(Output_file * of)4555 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4556 {
4557   const section_size_type off = this->offset();
4558   const section_size_type oview_size =
4559     convert_to_section_size_type(this->data_size());
4560   unsigned char* const oview = of->get_output_view(off, oview_size);
4561   unsigned char* p;
4562 
4563   // The base address of the .plt section.
4564   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4565   Address plt_base = this->targ_->plt_section()->address();
4566 
4567   if (size == 64)
4568     {
4569       if (this->end_branch_table_ != 0)
4570 	{
4571 	  // Write pltresolve stub.
4572 	  p = oview;
4573 	  Address after_bcl = this->address() + 16;
4574 	  Address pltoff = plt_base - after_bcl;
4575 
4576 	  elfcpp::Swap<64, big_endian>::writeval(p, pltoff),	p += 8;
4577 
4578 	  if (this->targ_->abiversion() < 2)
4579 	    {
4580 	      write_insn<big_endian>(p, mflr_12),		p += 4;
4581 	      write_insn<big_endian>(p, bcl_20_31),		p += 4;
4582 	      write_insn<big_endian>(p, mflr_11),		p += 4;
4583 	      write_insn<big_endian>(p, ld_2_11 + l(-16)),	p += 4;
4584 	      write_insn<big_endian>(p, mtlr_12),		p += 4;
4585 	      write_insn<big_endian>(p, add_11_2_11),		p += 4;
4586 	      write_insn<big_endian>(p, ld_12_11 + 0),		p += 4;
4587 	      write_insn<big_endian>(p, ld_2_11 + 8),		p += 4;
4588 	      write_insn<big_endian>(p, mtctr_12),		p += 4;
4589 	      write_insn<big_endian>(p, ld_11_11 + 16),		p += 4;
4590 	    }
4591 	  else
4592 	    {
4593 	      write_insn<big_endian>(p, mflr_0),		p += 4;
4594 	      write_insn<big_endian>(p, bcl_20_31),		p += 4;
4595 	      write_insn<big_endian>(p, mflr_11),		p += 4;
4596 	      write_insn<big_endian>(p, ld_2_11 + l(-16)),	p += 4;
4597 	      write_insn<big_endian>(p, mtlr_0),		p += 4;
4598 	      write_insn<big_endian>(p, sub_12_12_11),		p += 4;
4599 	      write_insn<big_endian>(p, add_11_2_11),		p += 4;
4600 	      write_insn<big_endian>(p, addi_0_12 + l(-48)),	p += 4;
4601 	      write_insn<big_endian>(p, ld_12_11 + 0),		p += 4;
4602 	      write_insn<big_endian>(p, srdi_0_0_2),		p += 4;
4603 	      write_insn<big_endian>(p, mtctr_12),		p += 4;
4604 	      write_insn<big_endian>(p, ld_11_11 + 8),		p += 4;
4605 	    }
4606 	  write_insn<big_endian>(p, bctr),			p += 4;
4607 	  while (p < oview + this->pltresolve_size)
4608 	    write_insn<big_endian>(p, nop), p += 4;
4609 
4610 	  // Write lazy link call stubs.
4611 	  uint32_t indx = 0;
4612 	  while (p < oview + this->end_branch_table_)
4613 	    {
4614 	      if (this->targ_->abiversion() < 2)
4615 		{
4616 		  if (indx < 0x8000)
4617 		    {
4618 		      write_insn<big_endian>(p, li_0_0 + indx),		p += 4;
4619 		    }
4620 		  else
4621 		    {
4622 		      write_insn<big_endian>(p, lis_0_0 + hi(indx)),	p += 4;
4623 		      write_insn<big_endian>(p, ori_0_0_0 + l(indx)),	p += 4;
4624 		    }
4625 		}
4626 	      uint32_t branch_off = 8 - (p - oview);
4627 	      write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),	p += 4;
4628 	      indx++;
4629 	    }
4630 	}
4631 
4632       Address plt_base = this->targ_->plt_section()->address();
4633       Address iplt_base = invalid_address;
4634       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4635       Address global_entry_base = this->address() + global_entry_off;
4636       typename Global_entry_stub_entries::const_iterator ge;
4637       for (ge = this->global_entry_stubs_.begin();
4638 	   ge != this->global_entry_stubs_.end();
4639 	   ++ge)
4640 	{
4641 	  p = oview + global_entry_off + ge->second;
4642 	  Address plt_addr = ge->first->plt_offset();
4643 	  if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4644 	      && ge->first->can_use_relative_reloc(false))
4645 	    {
4646 	      if (iplt_base == invalid_address)
4647 		iplt_base = this->targ_->iplt_section()->address();
4648 	      plt_addr += iplt_base;
4649 	    }
4650 	  else
4651 	    plt_addr += plt_base;
4652 	  Address my_addr = global_entry_base + ge->second;
4653 	  Address off = plt_addr - my_addr;
4654 
4655 	  if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4656 	    gold_error(_("%s: linkage table error against `%s'"),
4657 		       ge->first->object()->name().c_str(),
4658 		       ge->first->demangled_name().c_str());
4659 
4660 	  write_insn<big_endian>(p, addis_12_12 + ha(off)),	p += 4;
4661 	  write_insn<big_endian>(p, ld_12_12 + l(off)),		p += 4;
4662 	  write_insn<big_endian>(p, mtctr_12),			p += 4;
4663 	  write_insn<big_endian>(p, bctr);
4664 	}
4665     }
4666   else
4667     {
4668       const Output_data_got_powerpc<size, big_endian>* got
4669 	= this->targ_->got_section();
4670       // The address of _GLOBAL_OFFSET_TABLE_.
4671       Address g_o_t = got->address() + got->g_o_t();
4672 
4673       // Write out pltresolve branch table.
4674       p = oview;
4675       unsigned int the_end = oview_size - this->pltresolve_size;
4676       unsigned char* end_p = oview + the_end;
4677       while (p < end_p - 8 * 4)
4678 	write_insn<big_endian>(p, b + end_p - p), p += 4;
4679       while (p < end_p)
4680 	write_insn<big_endian>(p, nop), p += 4;
4681 
4682       // Write out pltresolve call stub.
4683       if (parameters->options().output_is_position_independent())
4684 	{
4685 	  Address res0_off = 0;
4686 	  Address after_bcl_off = the_end + 12;
4687 	  Address bcl_res0 = after_bcl_off - res0_off;
4688 
4689 	  write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
4690 	  write_insn<big_endian>(p +  4, mflr_0);
4691 	  write_insn<big_endian>(p +  8, bcl_20_31);
4692 	  write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4693 	  write_insn<big_endian>(p + 16, mflr_12);
4694 	  write_insn<big_endian>(p + 20, mtlr_0);
4695 	  write_insn<big_endian>(p + 24, sub_11_11_12);
4696 
4697 	  Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4698 
4699 	  write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4700 	  if (ha(got_bcl) == ha(got_bcl + 4))
4701 	    {
4702 	      write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4703 	      write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4704 	    }
4705 	  else
4706 	    {
4707 	      write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4708 	      write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4709 	    }
4710 	  write_insn<big_endian>(p + 40, mtctr_0);
4711 	  write_insn<big_endian>(p + 44, add_0_11_11);
4712 	  write_insn<big_endian>(p + 48, add_11_0_11);
4713 	  write_insn<big_endian>(p + 52, bctr);
4714 	  write_insn<big_endian>(p + 56, nop);
4715 	  write_insn<big_endian>(p + 60, nop);
4716 	}
4717       else
4718 	{
4719 	  Address res0 = this->address();
4720 
4721 	  write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4722 	  write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4723 	  if (ha(g_o_t + 4) == ha(g_o_t + 8))
4724 	    write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4725 	  else
4726 	    write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4727 	  write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4728 	  write_insn<big_endian>(p + 16, mtctr_0);
4729 	  write_insn<big_endian>(p + 20, add_0_11_11);
4730 	  if (ha(g_o_t + 4) == ha(g_o_t + 8))
4731 	    write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4732 	  else
4733 	    write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4734 	  write_insn<big_endian>(p + 28, add_11_0_11);
4735 	  write_insn<big_endian>(p + 32, bctr);
4736 	  write_insn<big_endian>(p + 36, nop);
4737 	  write_insn<big_endian>(p + 40, nop);
4738 	  write_insn<big_endian>(p + 44, nop);
4739 	  write_insn<big_endian>(p + 48, nop);
4740 	  write_insn<big_endian>(p + 52, nop);
4741 	  write_insn<big_endian>(p + 56, nop);
4742 	  write_insn<big_endian>(p + 60, nop);
4743 	}
4744       p += 64;
4745     }
4746 
4747   of->write_output_view(off, oview_size, oview);
4748 }
4749 
4750 
4751 // A class to handle linker generated save/restore functions.
4752 
4753 template<int size, bool big_endian>
4754 class Output_data_save_res : public Output_section_data_build
4755 {
4756  public:
4757   Output_data_save_res(Symbol_table* symtab);
4758 
4759  protected:
4760   // Write to a map file.
4761   void
do_print_to_mapfile(Mapfile * mapfile) const4762   do_print_to_mapfile(Mapfile* mapfile) const
4763   { mapfile->print_output_data(this, _("** save/restore")); }
4764 
4765   void
4766   do_write(Output_file*);
4767 
4768  private:
4769   // The maximum size of save/restore contents.
4770   static const unsigned int savres_max = 218*4;
4771 
4772   void
4773   savres_define(Symbol_table* symtab,
4774 		const char *name,
4775 		unsigned int lo, unsigned int hi,
4776 		unsigned char* write_ent(unsigned char*, int),
4777 		unsigned char* write_tail(unsigned char*, int));
4778 
4779   unsigned char *contents_;
4780 };
4781 
4782 template<bool big_endian>
4783 static unsigned char*
savegpr0(unsigned char * p,int r)4784 savegpr0(unsigned char* p, int r)
4785 {
4786   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4787   write_insn<big_endian>(p, insn);
4788   return p + 4;
4789 }
4790 
4791 template<bool big_endian>
4792 static unsigned char*
savegpr0_tail(unsigned char * p,int r)4793 savegpr0_tail(unsigned char* p, int r)
4794 {
4795   p = savegpr0<big_endian>(p, r);
4796   uint32_t insn = std_0_1 + 16;
4797   write_insn<big_endian>(p, insn);
4798   p = p + 4;
4799   write_insn<big_endian>(p, blr);
4800   return p + 4;
4801 }
4802 
4803 template<bool big_endian>
4804 static unsigned char*
restgpr0(unsigned char * p,int r)4805 restgpr0(unsigned char* p, int r)
4806 {
4807   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4808   write_insn<big_endian>(p, insn);
4809   return p + 4;
4810 }
4811 
4812 template<bool big_endian>
4813 static unsigned char*
restgpr0_tail(unsigned char * p,int r)4814 restgpr0_tail(unsigned char* p, int r)
4815 {
4816   uint32_t insn = ld_0_1 + 16;
4817   write_insn<big_endian>(p, insn);
4818   p = p + 4;
4819   p = restgpr0<big_endian>(p, r);
4820   write_insn<big_endian>(p, mtlr_0);
4821   p = p + 4;
4822   if (r == 29)
4823     {
4824       p = restgpr0<big_endian>(p, 30);
4825       p = restgpr0<big_endian>(p, 31);
4826     }
4827   write_insn<big_endian>(p, blr);
4828   return p + 4;
4829 }
4830 
4831 template<bool big_endian>
4832 static unsigned char*
savegpr1(unsigned char * p,int r)4833 savegpr1(unsigned char* p, int r)
4834 {
4835   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4836   write_insn<big_endian>(p, insn);
4837   return p + 4;
4838 }
4839 
4840 template<bool big_endian>
4841 static unsigned char*
savegpr1_tail(unsigned char * p,int r)4842 savegpr1_tail(unsigned char* p, int r)
4843 {
4844   p = savegpr1<big_endian>(p, r);
4845   write_insn<big_endian>(p, blr);
4846   return p + 4;
4847 }
4848 
4849 template<bool big_endian>
4850 static unsigned char*
restgpr1(unsigned char * p,int r)4851 restgpr1(unsigned char* p, int r)
4852 {
4853   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4854   write_insn<big_endian>(p, insn);
4855   return p + 4;
4856 }
4857 
4858 template<bool big_endian>
4859 static unsigned char*
restgpr1_tail(unsigned char * p,int r)4860 restgpr1_tail(unsigned char* p, int r)
4861 {
4862   p = restgpr1<big_endian>(p, r);
4863   write_insn<big_endian>(p, blr);
4864   return p + 4;
4865 }
4866 
4867 template<bool big_endian>
4868 static unsigned char*
savefpr(unsigned char * p,int r)4869 savefpr(unsigned char* p, int r)
4870 {
4871   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4872   write_insn<big_endian>(p, insn);
4873   return p + 4;
4874 }
4875 
4876 template<bool big_endian>
4877 static unsigned char*
savefpr0_tail(unsigned char * p,int r)4878 savefpr0_tail(unsigned char* p, int r)
4879 {
4880   p = savefpr<big_endian>(p, r);
4881   write_insn<big_endian>(p, std_0_1 + 16);
4882   p = p + 4;
4883   write_insn<big_endian>(p, blr);
4884   return p + 4;
4885 }
4886 
4887 template<bool big_endian>
4888 static unsigned char*
restfpr(unsigned char * p,int r)4889 restfpr(unsigned char* p, int r)
4890 {
4891   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4892   write_insn<big_endian>(p, insn);
4893   return p + 4;
4894 }
4895 
4896 template<bool big_endian>
4897 static unsigned char*
restfpr0_tail(unsigned char * p,int r)4898 restfpr0_tail(unsigned char* p, int r)
4899 {
4900   write_insn<big_endian>(p, ld_0_1 + 16);
4901   p = p + 4;
4902   p = restfpr<big_endian>(p, r);
4903   write_insn<big_endian>(p, mtlr_0);
4904   p = p + 4;
4905   if (r == 29)
4906     {
4907       p = restfpr<big_endian>(p, 30);
4908       p = restfpr<big_endian>(p, 31);
4909     }
4910   write_insn<big_endian>(p, blr);
4911   return p + 4;
4912 }
4913 
4914 template<bool big_endian>
4915 static unsigned char*
savefpr1_tail(unsigned char * p,int r)4916 savefpr1_tail(unsigned char* p, int r)
4917 {
4918   p = savefpr<big_endian>(p, r);
4919   write_insn<big_endian>(p, blr);
4920   return p + 4;
4921 }
4922 
4923 template<bool big_endian>
4924 static unsigned char*
restfpr1_tail(unsigned char * p,int r)4925 restfpr1_tail(unsigned char* p, int r)
4926 {
4927   p = restfpr<big_endian>(p, r);
4928   write_insn<big_endian>(p, blr);
4929   return p + 4;
4930 }
4931 
4932 template<bool big_endian>
4933 static unsigned char*
savevr(unsigned char * p,int r)4934 savevr(unsigned char* p, int r)
4935 {
4936   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4937   write_insn<big_endian>(p, insn);
4938   p = p + 4;
4939   insn = stvx_0_12_0 + (r << 21);
4940   write_insn<big_endian>(p, insn);
4941   return p + 4;
4942 }
4943 
4944 template<bool big_endian>
4945 static unsigned char*
savevr_tail(unsigned char * p,int r)4946 savevr_tail(unsigned char* p, int r)
4947 {
4948   p = savevr<big_endian>(p, r);
4949   write_insn<big_endian>(p, blr);
4950   return p + 4;
4951 }
4952 
4953 template<bool big_endian>
4954 static unsigned char*
restvr(unsigned char * p,int r)4955 restvr(unsigned char* p, int r)
4956 {
4957   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4958   write_insn<big_endian>(p, insn);
4959   p = p + 4;
4960   insn = lvx_0_12_0 + (r << 21);
4961   write_insn<big_endian>(p, insn);
4962   return p + 4;
4963 }
4964 
4965 template<bool big_endian>
4966 static unsigned char*
restvr_tail(unsigned char * p,int r)4967 restvr_tail(unsigned char* p, int r)
4968 {
4969   p = restvr<big_endian>(p, r);
4970   write_insn<big_endian>(p, blr);
4971   return p + 4;
4972 }
4973 
4974 
4975 template<int size, bool big_endian>
Output_data_save_res(Symbol_table * symtab)4976 Output_data_save_res<size, big_endian>::Output_data_save_res(
4977     Symbol_table* symtab)
4978   : Output_section_data_build(4),
4979     contents_(NULL)
4980 {
4981   this->savres_define(symtab,
4982 		      "_savegpr0_", 14, 31,
4983 		      savegpr0<big_endian>, savegpr0_tail<big_endian>);
4984   this->savres_define(symtab,
4985 		      "_restgpr0_", 14, 29,
4986 		      restgpr0<big_endian>, restgpr0_tail<big_endian>);
4987   this->savres_define(symtab,
4988 		      "_restgpr0_", 30, 31,
4989 		      restgpr0<big_endian>, restgpr0_tail<big_endian>);
4990   this->savres_define(symtab,
4991 		      "_savegpr1_", 14, 31,
4992 		      savegpr1<big_endian>, savegpr1_tail<big_endian>);
4993   this->savres_define(symtab,
4994 		      "_restgpr1_", 14, 31,
4995 		      restgpr1<big_endian>, restgpr1_tail<big_endian>);
4996   this->savres_define(symtab,
4997 		      "_savefpr_", 14, 31,
4998 		      savefpr<big_endian>, savefpr0_tail<big_endian>);
4999   this->savres_define(symtab,
5000 		      "_restfpr_", 14, 29,
5001 		      restfpr<big_endian>, restfpr0_tail<big_endian>);
5002   this->savres_define(symtab,
5003 		      "_restfpr_", 30, 31,
5004 		      restfpr<big_endian>, restfpr0_tail<big_endian>);
5005   this->savres_define(symtab,
5006 		      "._savef", 14, 31,
5007 		      savefpr<big_endian>, savefpr1_tail<big_endian>);
5008   this->savres_define(symtab,
5009 		      "._restf", 14, 31,
5010 		      restfpr<big_endian>, restfpr1_tail<big_endian>);
5011   this->savres_define(symtab,
5012 		      "_savevr_", 20, 31,
5013 		      savevr<big_endian>, savevr_tail<big_endian>);
5014   this->savres_define(symtab,
5015 		      "_restvr_", 20, 31,
5016 		      restvr<big_endian>, restvr_tail<big_endian>);
5017 }
5018 
5019 template<int size, bool big_endian>
5020 void
savres_define(Symbol_table * symtab,const char * name,unsigned int lo,unsigned int hi,unsigned char * write_ent (unsigned char *,int),unsigned char * write_tail (unsigned char *,int))5021 Output_data_save_res<size, big_endian>::savres_define(
5022     Symbol_table* symtab,
5023     const char *name,
5024     unsigned int lo, unsigned int hi,
5025     unsigned char* write_ent(unsigned char*, int),
5026     unsigned char* write_tail(unsigned char*, int))
5027 {
5028   size_t len = strlen(name);
5029   bool writing = false;
5030   char sym[16];
5031 
5032   memcpy(sym, name, len);
5033   sym[len + 2] = 0;
5034 
5035   for (unsigned int i = lo; i <= hi; i++)
5036     {
5037       sym[len + 0] = i / 10 + '0';
5038       sym[len + 1] = i % 10 + '0';
5039       Symbol* gsym = symtab->lookup(sym);
5040       bool refd = gsym != NULL && gsym->is_undefined();
5041       writing = writing || refd;
5042       if (writing)
5043 	{
5044 	  if (this->contents_ == NULL)
5045 	    this->contents_ = new unsigned char[this->savres_max];
5046 
5047 	  section_size_type value = this->current_data_size();
5048 	  unsigned char* p = this->contents_ + value;
5049 	  if (i != hi)
5050 	    p = write_ent(p, i);
5051 	  else
5052 	    p = write_tail(p, i);
5053 	  section_size_type cur_size = p - this->contents_;
5054 	  this->set_current_data_size(cur_size);
5055 	  if (refd)
5056 	    symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5057 					  this, value, cur_size - value,
5058 					  elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5059 					  elfcpp::STV_HIDDEN, 0, false, false);
5060 	}
5061     }
5062 }
5063 
5064 // Write out save/restore.
5065 
5066 template<int size, bool big_endian>
5067 void
do_write(Output_file * of)5068 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5069 {
5070   const section_size_type off = this->offset();
5071   const section_size_type oview_size =
5072     convert_to_section_size_type(this->data_size());
5073   unsigned char* const oview = of->get_output_view(off, oview_size);
5074   memcpy(oview, this->contents_, oview_size);
5075   of->write_output_view(off, oview_size, oview);
5076 }
5077 
5078 
5079 // Create the glink section.
5080 
5081 template<int size, bool big_endian>
5082 void
make_glink_section(Layout * layout)5083 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5084 {
5085   if (this->glink_ == NULL)
5086     {
5087       this->glink_ = new Output_data_glink<size, big_endian>(this);
5088       this->glink_->add_eh_frame(layout);
5089       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5090 				      elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5091 				      this->glink_, ORDER_TEXT, false);
5092     }
5093 }
5094 
5095 // Create a PLT entry for a global symbol.
5096 
5097 template<int size, bool big_endian>
5098 void
make_plt_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)5099 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5100 						 Layout* layout,
5101 						 Symbol* gsym)
5102 {
5103   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5104       && gsym->can_use_relative_reloc(false))
5105     {
5106       if (this->iplt_ == NULL)
5107 	this->make_iplt_section(symtab, layout);
5108       this->iplt_->add_ifunc_entry(gsym);
5109     }
5110   else
5111     {
5112       if (this->plt_ == NULL)
5113 	this->make_plt_section(symtab, layout);
5114       this->plt_->add_entry(gsym);
5115     }
5116 }
5117 
5118 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5119 
5120 template<int size, bool big_endian>
5121 void
make_local_ifunc_plt_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int r_sym)5122 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5123     Symbol_table* symtab,
5124     Layout* layout,
5125     Sized_relobj_file<size, big_endian>* relobj,
5126     unsigned int r_sym)
5127 {
5128   if (this->iplt_ == NULL)
5129     this->make_iplt_section(symtab, layout);
5130   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5131 }
5132 
5133 // Return the number of entries in the PLT.
5134 
5135 template<int size, bool big_endian>
5136 unsigned int
plt_entry_count() const5137 Target_powerpc<size, big_endian>::plt_entry_count() const
5138 {
5139   if (this->plt_ == NULL)
5140     return 0;
5141   return this->plt_->entry_count();
5142 }
5143 
5144 // Create a GOT entry for local dynamic __tls_get_addr calls.
5145 
5146 template<int size, bool big_endian>
5147 unsigned int
tlsld_got_offset(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object)5148 Target_powerpc<size, big_endian>::tlsld_got_offset(
5149     Symbol_table* symtab,
5150     Layout* layout,
5151     Sized_relobj_file<size, big_endian>* object)
5152 {
5153   if (this->tlsld_got_offset_ == -1U)
5154     {
5155       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5156       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5157       Output_data_got_powerpc<size, big_endian>* got
5158 	= this->got_section(symtab, layout);
5159       unsigned int got_offset = got->add_constant_pair(0, 0);
5160       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5161 			  got_offset, 0);
5162       this->tlsld_got_offset_ = got_offset;
5163     }
5164   return this->tlsld_got_offset_;
5165 }
5166 
5167 // Get the Reference_flags for a particular relocation.
5168 
5169 template<int size, bool big_endian>
5170 int
get_reference_flags(unsigned int r_type,const Target_powerpc * target)5171 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5172     unsigned int r_type,
5173     const Target_powerpc* target)
5174 {
5175   int ref = 0;
5176 
5177   switch (r_type)
5178     {
5179     case elfcpp::R_POWERPC_NONE:
5180     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5181     case elfcpp::R_POWERPC_GNU_VTENTRY:
5182     case elfcpp::R_PPC64_TOC:
5183       // No symbol reference.
5184       break;
5185 
5186     case elfcpp::R_PPC64_ADDR64:
5187     case elfcpp::R_PPC64_UADDR64:
5188     case elfcpp::R_POWERPC_ADDR32:
5189     case elfcpp::R_POWERPC_UADDR32:
5190     case elfcpp::R_POWERPC_ADDR16:
5191     case elfcpp::R_POWERPC_UADDR16:
5192     case elfcpp::R_POWERPC_ADDR16_LO:
5193     case elfcpp::R_POWERPC_ADDR16_HI:
5194     case elfcpp::R_POWERPC_ADDR16_HA:
5195       ref = Symbol::ABSOLUTE_REF;
5196       break;
5197 
5198     case elfcpp::R_POWERPC_ADDR24:
5199     case elfcpp::R_POWERPC_ADDR14:
5200     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5201     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5202       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5203       break;
5204 
5205     case elfcpp::R_PPC64_REL64:
5206     case elfcpp::R_POWERPC_REL32:
5207     case elfcpp::R_PPC_LOCAL24PC:
5208     case elfcpp::R_POWERPC_REL16:
5209     case elfcpp::R_POWERPC_REL16_LO:
5210     case elfcpp::R_POWERPC_REL16_HI:
5211     case elfcpp::R_POWERPC_REL16_HA:
5212       ref = Symbol::RELATIVE_REF;
5213       break;
5214 
5215     case elfcpp::R_POWERPC_REL24:
5216     case elfcpp::R_PPC_PLTREL24:
5217     case elfcpp::R_POWERPC_REL14:
5218     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5219     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5220       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5221       break;
5222 
5223     case elfcpp::R_POWERPC_GOT16:
5224     case elfcpp::R_POWERPC_GOT16_LO:
5225     case elfcpp::R_POWERPC_GOT16_HI:
5226     case elfcpp::R_POWERPC_GOT16_HA:
5227     case elfcpp::R_PPC64_GOT16_DS:
5228     case elfcpp::R_PPC64_GOT16_LO_DS:
5229     case elfcpp::R_PPC64_TOC16:
5230     case elfcpp::R_PPC64_TOC16_LO:
5231     case elfcpp::R_PPC64_TOC16_HI:
5232     case elfcpp::R_PPC64_TOC16_HA:
5233     case elfcpp::R_PPC64_TOC16_DS:
5234     case elfcpp::R_PPC64_TOC16_LO_DS:
5235       // Absolute in GOT.
5236       ref = Symbol::ABSOLUTE_REF;
5237       break;
5238 
5239     case elfcpp::R_POWERPC_GOT_TPREL16:
5240     case elfcpp::R_POWERPC_TLS:
5241       ref = Symbol::TLS_REF;
5242       break;
5243 
5244     case elfcpp::R_POWERPC_COPY:
5245     case elfcpp::R_POWERPC_GLOB_DAT:
5246     case elfcpp::R_POWERPC_JMP_SLOT:
5247     case elfcpp::R_POWERPC_RELATIVE:
5248     case elfcpp::R_POWERPC_DTPMOD:
5249     default:
5250       // Not expected.  We will give an error later.
5251       break;
5252     }
5253 
5254   if (size == 64 && target->abiversion() < 2)
5255     ref |= Symbol::FUNC_DESC_ABI;
5256   return ref;
5257 }
5258 
5259 // Report an unsupported relocation against a local symbol.
5260 
5261 template<int size, bool big_endian>
5262 void
unsupported_reloc_local(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)5263 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5264     Sized_relobj_file<size, big_endian>* object,
5265     unsigned int r_type)
5266 {
5267   gold_error(_("%s: unsupported reloc %u against local symbol"),
5268 	     object->name().c_str(), r_type);
5269 }
5270 
5271 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5272 // dynamic linker does not support it, issue an error.
5273 
5274 template<int size, bool big_endian>
5275 void
check_non_pic(Relobj * object,unsigned int r_type)5276 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5277 						      unsigned int r_type)
5278 {
5279   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5280 
5281   // These are the relocation types supported by glibc for both 32-bit
5282   // and 64-bit powerpc.
5283   switch (r_type)
5284     {
5285     case elfcpp::R_POWERPC_NONE:
5286     case elfcpp::R_POWERPC_RELATIVE:
5287     case elfcpp::R_POWERPC_GLOB_DAT:
5288     case elfcpp::R_POWERPC_DTPMOD:
5289     case elfcpp::R_POWERPC_DTPREL:
5290     case elfcpp::R_POWERPC_TPREL:
5291     case elfcpp::R_POWERPC_JMP_SLOT:
5292     case elfcpp::R_POWERPC_COPY:
5293     case elfcpp::R_POWERPC_IRELATIVE:
5294     case elfcpp::R_POWERPC_ADDR32:
5295     case elfcpp::R_POWERPC_UADDR32:
5296     case elfcpp::R_POWERPC_ADDR24:
5297     case elfcpp::R_POWERPC_ADDR16:
5298     case elfcpp::R_POWERPC_UADDR16:
5299     case elfcpp::R_POWERPC_ADDR16_LO:
5300     case elfcpp::R_POWERPC_ADDR16_HI:
5301     case elfcpp::R_POWERPC_ADDR16_HA:
5302     case elfcpp::R_POWERPC_ADDR14:
5303     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5304     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5305     case elfcpp::R_POWERPC_REL32:
5306     case elfcpp::R_POWERPC_REL24:
5307     case elfcpp::R_POWERPC_TPREL16:
5308     case elfcpp::R_POWERPC_TPREL16_LO:
5309     case elfcpp::R_POWERPC_TPREL16_HI:
5310     case elfcpp::R_POWERPC_TPREL16_HA:
5311       return;
5312 
5313     default:
5314       break;
5315     }
5316 
5317   if (size == 64)
5318     {
5319       switch (r_type)
5320 	{
5321 	  // These are the relocation types supported only on 64-bit.
5322 	case elfcpp::R_PPC64_ADDR64:
5323 	case elfcpp::R_PPC64_UADDR64:
5324 	case elfcpp::R_PPC64_JMP_IREL:
5325 	case elfcpp::R_PPC64_ADDR16_DS:
5326 	case elfcpp::R_PPC64_ADDR16_LO_DS:
5327 	case elfcpp::R_PPC64_ADDR16_HIGH:
5328 	case elfcpp::R_PPC64_ADDR16_HIGHA:
5329 	case elfcpp::R_PPC64_ADDR16_HIGHER:
5330 	case elfcpp::R_PPC64_ADDR16_HIGHEST:
5331 	case elfcpp::R_PPC64_ADDR16_HIGHERA:
5332 	case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5333 	case elfcpp::R_PPC64_REL64:
5334 	case elfcpp::R_POWERPC_ADDR30:
5335 	case elfcpp::R_PPC64_TPREL16_DS:
5336 	case elfcpp::R_PPC64_TPREL16_LO_DS:
5337 	case elfcpp::R_PPC64_TPREL16_HIGH:
5338 	case elfcpp::R_PPC64_TPREL16_HIGHA:
5339 	case elfcpp::R_PPC64_TPREL16_HIGHER:
5340 	case elfcpp::R_PPC64_TPREL16_HIGHEST:
5341 	case elfcpp::R_PPC64_TPREL16_HIGHERA:
5342 	case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5343 	  return;
5344 
5345 	default:
5346 	  break;
5347 	}
5348     }
5349   else
5350     {
5351       switch (r_type)
5352 	{
5353 	  // These are the relocation types supported only on 32-bit.
5354 	  // ??? glibc ld.so doesn't need to support these.
5355 	case elfcpp::R_POWERPC_DTPREL16:
5356 	case elfcpp::R_POWERPC_DTPREL16_LO:
5357 	case elfcpp::R_POWERPC_DTPREL16_HI:
5358 	case elfcpp::R_POWERPC_DTPREL16_HA:
5359 	  return;
5360 
5361 	default:
5362 	  break;
5363 	}
5364     }
5365 
5366   // This prevents us from issuing more than one error per reloc
5367   // section.  But we can still wind up issuing more than one
5368   // error per object file.
5369   if (this->issued_non_pic_error_)
5370     return;
5371   gold_assert(parameters->options().output_is_position_independent());
5372   object->error(_("requires unsupported dynamic reloc; "
5373 		  "recompile with -fPIC"));
5374   this->issued_non_pic_error_ = true;
5375   return;
5376 }
5377 
5378 // Return whether we need to make a PLT entry for a relocation of the
5379 // given type against a STT_GNU_IFUNC symbol.
5380 
5381 template<int size, bool big_endian>
5382 bool
reloc_needs_plt_for_ifunc(Target_powerpc<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int r_type,bool report_err)5383 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5384      Target_powerpc<size, big_endian>* target,
5385      Sized_relobj_file<size, big_endian>* object,
5386      unsigned int r_type,
5387      bool report_err)
5388 {
5389   // In non-pic code any reference will resolve to the plt call stub
5390   // for the ifunc symbol.
5391   if ((size == 32 || target->abiversion() >= 2)
5392       && !parameters->options().output_is_position_independent())
5393     return true;
5394 
5395   switch (r_type)
5396     {
5397     // Word size refs from data sections are OK, but don't need a PLT entry.
5398     case elfcpp::R_POWERPC_ADDR32:
5399     case elfcpp::R_POWERPC_UADDR32:
5400       if (size == 32)
5401 	return false;
5402       break;
5403 
5404     case elfcpp::R_PPC64_ADDR64:
5405     case elfcpp::R_PPC64_UADDR64:
5406       if (size == 64)
5407 	return false;
5408       break;
5409 
5410     // GOT refs are good, but also don't need a PLT entry.
5411     case elfcpp::R_POWERPC_GOT16:
5412     case elfcpp::R_POWERPC_GOT16_LO:
5413     case elfcpp::R_POWERPC_GOT16_HI:
5414     case elfcpp::R_POWERPC_GOT16_HA:
5415     case elfcpp::R_PPC64_GOT16_DS:
5416     case elfcpp::R_PPC64_GOT16_LO_DS:
5417       return false;
5418 
5419     // Function calls are good, and these do need a PLT entry.
5420     case elfcpp::R_POWERPC_ADDR24:
5421     case elfcpp::R_POWERPC_ADDR14:
5422     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5423     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5424     case elfcpp::R_POWERPC_REL24:
5425     case elfcpp::R_PPC_PLTREL24:
5426     case elfcpp::R_POWERPC_REL14:
5427     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5428     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5429       return true;
5430 
5431     default:
5432       break;
5433     }
5434 
5435   // Anything else is a problem.
5436   // If we are building a static executable, the libc startup function
5437   // responsible for applying indirect function relocations is going
5438   // to complain about the reloc type.
5439   // If we are building a dynamic executable, we will have a text
5440   // relocation.  The dynamic loader will set the text segment
5441   // writable and non-executable to apply text relocations.  So we'll
5442   // segfault when trying to run the indirection function to resolve
5443   // the reloc.
5444   if (report_err)
5445     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5446 	       object->name().c_str(), r_type);
5447   return false;
5448 }
5449 
5450 // Scan a relocation for a local symbol.
5451 
5452 template<int size, bool big_endian>
5453 inline void
local(Symbol_table * symtab,Layout * layout,Target_powerpc<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & reloc,unsigned int r_type,const elfcpp::Sym<size,big_endian> & lsym,bool is_discarded)5454 Target_powerpc<size, big_endian>::Scan::local(
5455     Symbol_table* symtab,
5456     Layout* layout,
5457     Target_powerpc<size, big_endian>* target,
5458     Sized_relobj_file<size, big_endian>* object,
5459     unsigned int data_shndx,
5460     Output_section* output_section,
5461     const elfcpp::Rela<size, big_endian>& reloc,
5462     unsigned int r_type,
5463     const elfcpp::Sym<size, big_endian>& lsym,
5464     bool is_discarded)
5465 {
5466   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5467 
5468   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5469       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5470     {
5471       this->expect_tls_get_addr_call();
5472       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5473       if (tls_type != tls::TLSOPT_NONE)
5474 	this->skip_next_tls_get_addr_call();
5475     }
5476   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5477 	   || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5478     {
5479       this->expect_tls_get_addr_call();
5480       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5481       if (tls_type != tls::TLSOPT_NONE)
5482 	this->skip_next_tls_get_addr_call();
5483     }
5484 
5485   Powerpc_relobj<size, big_endian>* ppc_object
5486     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5487 
5488   if (is_discarded)
5489     {
5490       if (size == 64
5491 	  && data_shndx == ppc_object->opd_shndx()
5492 	  && r_type == elfcpp::R_PPC64_ADDR64)
5493 	ppc_object->set_opd_discard(reloc.get_r_offset());
5494       return;
5495     }
5496 
5497   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5498   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5499   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5500     {
5501       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5502       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5503 			  r_type, r_sym, reloc.get_r_addend());
5504       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5505     }
5506 
5507   switch (r_type)
5508     {
5509     case elfcpp::R_POWERPC_NONE:
5510     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5511     case elfcpp::R_POWERPC_GNU_VTENTRY:
5512     case elfcpp::R_PPC64_TOCSAVE:
5513     case elfcpp::R_POWERPC_TLS:
5514       break;
5515 
5516     case elfcpp::R_PPC64_TOC:
5517       {
5518 	Output_data_got_powerpc<size, big_endian>* got
5519 	  = target->got_section(symtab, layout);
5520 	if (parameters->options().output_is_position_independent())
5521 	  {
5522 	    Address off = reloc.get_r_offset();
5523 	    if (size == 64
5524 		&& target->abiversion() < 2
5525 		&& data_shndx == ppc_object->opd_shndx()
5526 		&& ppc_object->get_opd_discard(off - 8))
5527 	      break;
5528 
5529 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5530 	    Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5531 	    rela_dyn->add_output_section_relative(got->output_section(),
5532 						  elfcpp::R_POWERPC_RELATIVE,
5533 						  output_section,
5534 						  object, data_shndx, off,
5535 						  symobj->toc_base_offset());
5536 	  }
5537       }
5538       break;
5539 
5540     case elfcpp::R_PPC64_ADDR64:
5541     case elfcpp::R_PPC64_UADDR64:
5542     case elfcpp::R_POWERPC_ADDR32:
5543     case elfcpp::R_POWERPC_UADDR32:
5544     case elfcpp::R_POWERPC_ADDR24:
5545     case elfcpp::R_POWERPC_ADDR16:
5546     case elfcpp::R_POWERPC_ADDR16_LO:
5547     case elfcpp::R_POWERPC_ADDR16_HI:
5548     case elfcpp::R_POWERPC_ADDR16_HA:
5549     case elfcpp::R_POWERPC_UADDR16:
5550     case elfcpp::R_PPC64_ADDR16_HIGH:
5551     case elfcpp::R_PPC64_ADDR16_HIGHA:
5552     case elfcpp::R_PPC64_ADDR16_HIGHER:
5553     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5554     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5555     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5556     case elfcpp::R_PPC64_ADDR16_DS:
5557     case elfcpp::R_PPC64_ADDR16_LO_DS:
5558     case elfcpp::R_POWERPC_ADDR14:
5559     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5560     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5561       // If building a shared library (or a position-independent
5562       // executable), we need to create a dynamic relocation for
5563       // this location.
5564       if (parameters->options().output_is_position_independent()
5565 	  || (size == 64 && is_ifunc && target->abiversion() < 2))
5566 	{
5567 	  Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5568 							     is_ifunc);
5569 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5570 	  if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5571 	      || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5572 	    {
5573 	      unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5574 				     : elfcpp::R_POWERPC_RELATIVE);
5575 	      rela_dyn->add_local_relative(object, r_sym, dynrel,
5576 					   output_section, data_shndx,
5577 					   reloc.get_r_offset(),
5578 					   reloc.get_r_addend(), false);
5579 	    }
5580 	  else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5581 	    {
5582 	      check_non_pic(object, r_type);
5583 	      rela_dyn->add_local(object, r_sym, r_type, output_section,
5584 				  data_shndx, reloc.get_r_offset(),
5585 				  reloc.get_r_addend());
5586 	    }
5587 	  else
5588 	    {
5589 	      gold_assert(lsym.get_st_value() == 0);
5590 	      unsigned int shndx = lsym.get_st_shndx();
5591 	      bool is_ordinary;
5592 	      shndx = object->adjust_sym_shndx(r_sym, shndx,
5593 					       &is_ordinary);
5594 	      if (!is_ordinary)
5595 		object->error(_("section symbol %u has bad shndx %u"),
5596 			      r_sym, shndx);
5597 	      else
5598 		rela_dyn->add_local_section(object, shndx, r_type,
5599 					    output_section, data_shndx,
5600 					    reloc.get_r_offset());
5601 	    }
5602 	}
5603       break;
5604 
5605     case elfcpp::R_POWERPC_REL24:
5606     case elfcpp::R_PPC_PLTREL24:
5607     case elfcpp::R_PPC_LOCAL24PC:
5608     case elfcpp::R_POWERPC_REL14:
5609     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5610     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5611       if (!is_ifunc)
5612 	target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5613 			    r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5614 			    reloc.get_r_addend());
5615       break;
5616 
5617     case elfcpp::R_PPC64_REL64:
5618     case elfcpp::R_POWERPC_REL32:
5619     case elfcpp::R_POWERPC_REL16:
5620     case elfcpp::R_POWERPC_REL16_LO:
5621     case elfcpp::R_POWERPC_REL16_HI:
5622     case elfcpp::R_POWERPC_REL16_HA:
5623     case elfcpp::R_POWERPC_SECTOFF:
5624     case elfcpp::R_POWERPC_SECTOFF_LO:
5625     case elfcpp::R_POWERPC_SECTOFF_HI:
5626     case elfcpp::R_POWERPC_SECTOFF_HA:
5627     case elfcpp::R_PPC64_SECTOFF_DS:
5628     case elfcpp::R_PPC64_SECTOFF_LO_DS:
5629     case elfcpp::R_POWERPC_TPREL16:
5630     case elfcpp::R_POWERPC_TPREL16_LO:
5631     case elfcpp::R_POWERPC_TPREL16_HI:
5632     case elfcpp::R_POWERPC_TPREL16_HA:
5633     case elfcpp::R_PPC64_TPREL16_DS:
5634     case elfcpp::R_PPC64_TPREL16_LO_DS:
5635     case elfcpp::R_PPC64_TPREL16_HIGH:
5636     case elfcpp::R_PPC64_TPREL16_HIGHA:
5637     case elfcpp::R_PPC64_TPREL16_HIGHER:
5638     case elfcpp::R_PPC64_TPREL16_HIGHERA:
5639     case elfcpp::R_PPC64_TPREL16_HIGHEST:
5640     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5641     case elfcpp::R_POWERPC_DTPREL16:
5642     case elfcpp::R_POWERPC_DTPREL16_LO:
5643     case elfcpp::R_POWERPC_DTPREL16_HI:
5644     case elfcpp::R_POWERPC_DTPREL16_HA:
5645     case elfcpp::R_PPC64_DTPREL16_DS:
5646     case elfcpp::R_PPC64_DTPREL16_LO_DS:
5647     case elfcpp::R_PPC64_DTPREL16_HIGH:
5648     case elfcpp::R_PPC64_DTPREL16_HIGHA:
5649     case elfcpp::R_PPC64_DTPREL16_HIGHER:
5650     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5651     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5652     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5653     case elfcpp::R_PPC64_TLSGD:
5654     case elfcpp::R_PPC64_TLSLD:
5655     case elfcpp::R_PPC64_ADDR64_LOCAL:
5656       break;
5657 
5658     case elfcpp::R_POWERPC_GOT16:
5659     case elfcpp::R_POWERPC_GOT16_LO:
5660     case elfcpp::R_POWERPC_GOT16_HI:
5661     case elfcpp::R_POWERPC_GOT16_HA:
5662     case elfcpp::R_PPC64_GOT16_DS:
5663     case elfcpp::R_PPC64_GOT16_LO_DS:
5664       {
5665 	// The symbol requires a GOT entry.
5666 	Output_data_got_powerpc<size, big_endian>* got
5667 	  = target->got_section(symtab, layout);
5668 	unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5669 
5670 	if (!parameters->options().output_is_position_independent())
5671 	  {
5672 	    if (is_ifunc
5673 		&& (size == 32 || target->abiversion() >= 2))
5674 	      got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5675 	    else
5676 	      got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5677 	  }
5678 	else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5679 	  {
5680 	    // If we are generating a shared object or a pie, this
5681 	    // symbol's GOT entry will be set by a dynamic relocation.
5682 	    unsigned int off;
5683 	    off = got->add_constant(0);
5684 	    object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5685 
5686 	    Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5687 							       is_ifunc);
5688 	    unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5689 				   : elfcpp::R_POWERPC_RELATIVE);
5690 	    rela_dyn->add_local_relative(object, r_sym, dynrel,
5691 					 got, off, 0, false);
5692 	  }
5693       }
5694       break;
5695 
5696     case elfcpp::R_PPC64_TOC16:
5697     case elfcpp::R_PPC64_TOC16_LO:
5698     case elfcpp::R_PPC64_TOC16_HI:
5699     case elfcpp::R_PPC64_TOC16_HA:
5700     case elfcpp::R_PPC64_TOC16_DS:
5701     case elfcpp::R_PPC64_TOC16_LO_DS:
5702       // We need a GOT section.
5703       target->got_section(symtab, layout);
5704       break;
5705 
5706     case elfcpp::R_POWERPC_GOT_TLSGD16:
5707     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5708     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5709     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5710       {
5711 	const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5712 	if (tls_type == tls::TLSOPT_NONE)
5713 	  {
5714 	    Output_data_got_powerpc<size, big_endian>* got
5715 	      = target->got_section(symtab, layout);
5716 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5717 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5718 	    got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5719 				    rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5720 	  }
5721 	else if (tls_type == tls::TLSOPT_TO_LE)
5722 	  {
5723 	    // no GOT relocs needed for Local Exec.
5724 	  }
5725 	else
5726 	  gold_unreachable();
5727       }
5728       break;
5729 
5730     case elfcpp::R_POWERPC_GOT_TLSLD16:
5731     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5732     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5733     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5734       {
5735 	const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5736 	if (tls_type == tls::TLSOPT_NONE)
5737 	  target->tlsld_got_offset(symtab, layout, object);
5738 	else if (tls_type == tls::TLSOPT_TO_LE)
5739 	  {
5740 	    // no GOT relocs needed for Local Exec.
5741 	    if (parameters->options().emit_relocs())
5742 	      {
5743 		Output_section* os = layout->tls_segment()->first_section();
5744 		gold_assert(os != NULL);
5745 		os->set_needs_symtab_index();
5746 	      }
5747 	  }
5748 	else
5749 	  gold_unreachable();
5750       }
5751       break;
5752 
5753     case elfcpp::R_POWERPC_GOT_DTPREL16:
5754     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5755     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5756     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5757       {
5758 	Output_data_got_powerpc<size, big_endian>* got
5759 	  = target->got_section(symtab, layout);
5760 	unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5761 	got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5762       }
5763       break;
5764 
5765     case elfcpp::R_POWERPC_GOT_TPREL16:
5766     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5767     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5768     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5769       {
5770 	const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5771 	if (tls_type == tls::TLSOPT_NONE)
5772 	  {
5773 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5774 	    if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5775 	      {
5776 		Output_data_got_powerpc<size, big_endian>* got
5777 		  = target->got_section(symtab, layout);
5778 		unsigned int off = got->add_constant(0);
5779 		object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5780 
5781 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5782 		rela_dyn->add_symbolless_local_addend(object, r_sym,
5783 						      elfcpp::R_POWERPC_TPREL,
5784 						      got, off, 0);
5785 	      }
5786 	  }
5787 	else if (tls_type == tls::TLSOPT_TO_LE)
5788 	  {
5789 	    // no GOT relocs needed for Local Exec.
5790 	  }
5791 	else
5792 	  gold_unreachable();
5793       }
5794       break;
5795 
5796     default:
5797       unsupported_reloc_local(object, r_type);
5798       break;
5799     }
5800 
5801   switch (r_type)
5802     {
5803     case elfcpp::R_POWERPC_GOT_TLSLD16:
5804     case elfcpp::R_POWERPC_GOT_TLSGD16:
5805     case elfcpp::R_POWERPC_GOT_TPREL16:
5806     case elfcpp::R_POWERPC_GOT_DTPREL16:
5807     case elfcpp::R_POWERPC_GOT16:
5808     case elfcpp::R_PPC64_GOT16_DS:
5809     case elfcpp::R_PPC64_TOC16:
5810     case elfcpp::R_PPC64_TOC16_DS:
5811       ppc_object->set_has_small_toc_reloc();
5812     default:
5813       break;
5814     }
5815 }
5816 
5817 // Report an unsupported relocation against a global symbol.
5818 
5819 template<int size, bool big_endian>
5820 void
unsupported_reloc_global(Sized_relobj_file<size,big_endian> * object,unsigned int r_type,Symbol * gsym)5821 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5822     Sized_relobj_file<size, big_endian>* object,
5823     unsigned int r_type,
5824     Symbol* gsym)
5825 {
5826   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5827 	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
5828 }
5829 
5830 // Scan a relocation for a global symbol.
5831 
5832 template<int size, bool big_endian>
5833 inline void
global(Symbol_table * symtab,Layout * layout,Target_powerpc<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & reloc,unsigned int r_type,Symbol * gsym)5834 Target_powerpc<size, big_endian>::Scan::global(
5835     Symbol_table* symtab,
5836     Layout* layout,
5837     Target_powerpc<size, big_endian>* target,
5838     Sized_relobj_file<size, big_endian>* object,
5839     unsigned int data_shndx,
5840     Output_section* output_section,
5841     const elfcpp::Rela<size, big_endian>& reloc,
5842     unsigned int r_type,
5843     Symbol* gsym)
5844 {
5845   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5846     return;
5847 
5848   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5849       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5850     {
5851       this->expect_tls_get_addr_call();
5852       const bool final = gsym->final_value_is_known();
5853       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5854       if (tls_type != tls::TLSOPT_NONE)
5855 	this->skip_next_tls_get_addr_call();
5856     }
5857   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5858 	   || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5859     {
5860       this->expect_tls_get_addr_call();
5861       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5862       if (tls_type != tls::TLSOPT_NONE)
5863 	this->skip_next_tls_get_addr_call();
5864     }
5865 
5866   Powerpc_relobj<size, big_endian>* ppc_object
5867     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5868 
5869   // A STT_GNU_IFUNC symbol may require a PLT entry.
5870   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5871   bool pushed_ifunc = false;
5872   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5873     {
5874       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5875 			  r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5876 			  reloc.get_r_addend());
5877       target->make_plt_entry(symtab, layout, gsym);
5878       pushed_ifunc = true;
5879     }
5880 
5881   switch (r_type)
5882     {
5883     case elfcpp::R_POWERPC_NONE:
5884     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5885     case elfcpp::R_POWERPC_GNU_VTENTRY:
5886     case elfcpp::R_PPC_LOCAL24PC:
5887     case elfcpp::R_POWERPC_TLS:
5888       break;
5889 
5890     case elfcpp::R_PPC64_TOC:
5891       {
5892 	Output_data_got_powerpc<size, big_endian>* got
5893 	  = target->got_section(symtab, layout);
5894 	if (parameters->options().output_is_position_independent())
5895 	  {
5896 	    Address off = reloc.get_r_offset();
5897 	    if (size == 64
5898 		&& data_shndx == ppc_object->opd_shndx()
5899 		&& ppc_object->get_opd_discard(off - 8))
5900 	      break;
5901 
5902 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5903 	    Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5904 	    if (data_shndx != ppc_object->opd_shndx())
5905 	      symobj = static_cast
5906 		<Powerpc_relobj<size, big_endian>*>(gsym->object());
5907 	    rela_dyn->add_output_section_relative(got->output_section(),
5908 						  elfcpp::R_POWERPC_RELATIVE,
5909 						  output_section,
5910 						  object, data_shndx, off,
5911 						  symobj->toc_base_offset());
5912 	  }
5913       }
5914       break;
5915 
5916     case elfcpp::R_PPC64_ADDR64:
5917       if (size == 64
5918 	  && target->abiversion() < 2
5919 	  && data_shndx == ppc_object->opd_shndx()
5920 	  && (gsym->is_defined_in_discarded_section()
5921 	      || gsym->object() != object))
5922 	{
5923 	  ppc_object->set_opd_discard(reloc.get_r_offset());
5924 	  break;
5925 	}
5926       // Fall thru
5927     case elfcpp::R_PPC64_UADDR64:
5928     case elfcpp::R_POWERPC_ADDR32:
5929     case elfcpp::R_POWERPC_UADDR32:
5930     case elfcpp::R_POWERPC_ADDR24:
5931     case elfcpp::R_POWERPC_ADDR16:
5932     case elfcpp::R_POWERPC_ADDR16_LO:
5933     case elfcpp::R_POWERPC_ADDR16_HI:
5934     case elfcpp::R_POWERPC_ADDR16_HA:
5935     case elfcpp::R_POWERPC_UADDR16:
5936     case elfcpp::R_PPC64_ADDR16_HIGH:
5937     case elfcpp::R_PPC64_ADDR16_HIGHA:
5938     case elfcpp::R_PPC64_ADDR16_HIGHER:
5939     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5940     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5941     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5942     case elfcpp::R_PPC64_ADDR16_DS:
5943     case elfcpp::R_PPC64_ADDR16_LO_DS:
5944     case elfcpp::R_POWERPC_ADDR14:
5945     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5946     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5947       {
5948 	// Make a PLT entry if necessary.
5949 	if (gsym->needs_plt_entry())
5950 	  {
5951 	    // Since this is not a PC-relative relocation, we may be
5952 	    // taking the address of a function. In that case we need to
5953 	    // set the entry in the dynamic symbol table to the address of
5954 	    // the PLT call stub.
5955 	    bool need_ifunc_plt = false;
5956 	    if ((size == 32 || target->abiversion() >= 2)
5957 		&& gsym->is_from_dynobj()
5958 		&& !parameters->options().output_is_position_independent())
5959 	      {
5960 		gsym->set_needs_dynsym_value();
5961 		need_ifunc_plt = true;
5962 	      }
5963 	    if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5964 	      {
5965 		target->push_branch(ppc_object, data_shndx,
5966 				    reloc.get_r_offset(), r_type,
5967 				    elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5968 				    reloc.get_r_addend());
5969 		target->make_plt_entry(symtab, layout, gsym);
5970 	      }
5971 	  }
5972 	// Make a dynamic relocation if necessary.
5973 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5974 	    || (size == 64 && is_ifunc && target->abiversion() < 2))
5975 	  {
5976 	    if (!parameters->options().output_is_position_independent()
5977 		&& gsym->may_need_copy_reloc())
5978 	      {
5979 		target->copy_reloc(symtab, layout, object,
5980 				   data_shndx, output_section, gsym, reloc);
5981 	      }
5982 	    else if ((((size == 32
5983 			&& r_type == elfcpp::R_POWERPC_ADDR32)
5984 		       || (size == 64
5985 			   && r_type == elfcpp::R_PPC64_ADDR64
5986 			   && target->abiversion() >= 2))
5987 		      && gsym->can_use_relative_reloc(false)
5988 		      && !(gsym->visibility() == elfcpp::STV_PROTECTED
5989 			   && parameters->options().shared()))
5990 		     || (size == 64
5991 			 && r_type == elfcpp::R_PPC64_ADDR64
5992 			 && target->abiversion() < 2
5993 			 && (gsym->can_use_relative_reloc(false)
5994 			     || data_shndx == ppc_object->opd_shndx())))
5995 	      {
5996 		Reloc_section* rela_dyn
5997 		  = target->rela_dyn_section(symtab, layout, is_ifunc);
5998 		unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5999 				       : elfcpp::R_POWERPC_RELATIVE);
6000 		rela_dyn->add_symbolless_global_addend(
6001 		    gsym, dynrel, output_section, object, data_shndx,
6002 		    reloc.get_r_offset(), reloc.get_r_addend());
6003 	      }
6004 	    else
6005 	      {
6006 		Reloc_section* rela_dyn
6007 		  = target->rela_dyn_section(symtab, layout, is_ifunc);
6008 		check_non_pic(object, r_type);
6009 		rela_dyn->add_global(gsym, r_type, output_section,
6010 				     object, data_shndx,
6011 				     reloc.get_r_offset(),
6012 				     reloc.get_r_addend());
6013 	      }
6014 	  }
6015       }
6016       break;
6017 
6018     case elfcpp::R_PPC_PLTREL24:
6019     case elfcpp::R_POWERPC_REL24:
6020       if (!is_ifunc)
6021 	{
6022 	  target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6023 			      r_type,
6024 			      elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6025 			      reloc.get_r_addend());
6026 	  if (gsym->needs_plt_entry()
6027 	      || (!gsym->final_value_is_known()
6028 		  && (gsym->is_undefined()
6029 		      || gsym->is_from_dynobj()
6030 		      || gsym->is_preemptible())))
6031 	    target->make_plt_entry(symtab, layout, gsym);
6032 	}
6033       // Fall thru
6034 
6035     case elfcpp::R_PPC64_REL64:
6036     case elfcpp::R_POWERPC_REL32:
6037       // Make a dynamic relocation if necessary.
6038       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6039 	{
6040 	  if (!parameters->options().output_is_position_independent()
6041 	      && gsym->may_need_copy_reloc())
6042 	    {
6043 	      target->copy_reloc(symtab, layout, object,
6044 				 data_shndx, output_section, gsym,
6045 				 reloc);
6046 	    }
6047 	  else
6048 	    {
6049 	      Reloc_section* rela_dyn
6050 		= target->rela_dyn_section(symtab, layout, is_ifunc);
6051 	      check_non_pic(object, r_type);
6052 	      rela_dyn->add_global(gsym, r_type, output_section, object,
6053 				   data_shndx, reloc.get_r_offset(),
6054 				   reloc.get_r_addend());
6055 	    }
6056 	}
6057       break;
6058 
6059     case elfcpp::R_POWERPC_REL14:
6060     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6061     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6062       if (!is_ifunc)
6063 	target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6064 			    r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6065 			    reloc.get_r_addend());
6066       break;
6067 
6068     case elfcpp::R_POWERPC_REL16:
6069     case elfcpp::R_POWERPC_REL16_LO:
6070     case elfcpp::R_POWERPC_REL16_HI:
6071     case elfcpp::R_POWERPC_REL16_HA:
6072     case elfcpp::R_POWERPC_SECTOFF:
6073     case elfcpp::R_POWERPC_SECTOFF_LO:
6074     case elfcpp::R_POWERPC_SECTOFF_HI:
6075     case elfcpp::R_POWERPC_SECTOFF_HA:
6076     case elfcpp::R_PPC64_SECTOFF_DS:
6077     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6078     case elfcpp::R_POWERPC_TPREL16:
6079     case elfcpp::R_POWERPC_TPREL16_LO:
6080     case elfcpp::R_POWERPC_TPREL16_HI:
6081     case elfcpp::R_POWERPC_TPREL16_HA:
6082     case elfcpp::R_PPC64_TPREL16_DS:
6083     case elfcpp::R_PPC64_TPREL16_LO_DS:
6084     case elfcpp::R_PPC64_TPREL16_HIGH:
6085     case elfcpp::R_PPC64_TPREL16_HIGHA:
6086     case elfcpp::R_PPC64_TPREL16_HIGHER:
6087     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6088     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6089     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6090     case elfcpp::R_POWERPC_DTPREL16:
6091     case elfcpp::R_POWERPC_DTPREL16_LO:
6092     case elfcpp::R_POWERPC_DTPREL16_HI:
6093     case elfcpp::R_POWERPC_DTPREL16_HA:
6094     case elfcpp::R_PPC64_DTPREL16_DS:
6095     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6096     case elfcpp::R_PPC64_DTPREL16_HIGH:
6097     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6098     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6099     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6100     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6101     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6102     case elfcpp::R_PPC64_TLSGD:
6103     case elfcpp::R_PPC64_TLSLD:
6104     case elfcpp::R_PPC64_ADDR64_LOCAL:
6105       break;
6106 
6107     case elfcpp::R_POWERPC_GOT16:
6108     case elfcpp::R_POWERPC_GOT16_LO:
6109     case elfcpp::R_POWERPC_GOT16_HI:
6110     case elfcpp::R_POWERPC_GOT16_HA:
6111     case elfcpp::R_PPC64_GOT16_DS:
6112     case elfcpp::R_PPC64_GOT16_LO_DS:
6113       {
6114 	// The symbol requires a GOT entry.
6115 	Output_data_got_powerpc<size, big_endian>* got;
6116 
6117 	got = target->got_section(symtab, layout);
6118 	if (gsym->final_value_is_known())
6119 	  {
6120 	    if (is_ifunc
6121 		&& (size == 32 || target->abiversion() >= 2))
6122 	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6123 	    else
6124 	      got->add_global(gsym, GOT_TYPE_STANDARD);
6125 	  }
6126 	else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6127 	  {
6128 	    // If we are generating a shared object or a pie, this
6129 	    // symbol's GOT entry will be set by a dynamic relocation.
6130 	    unsigned int off = got->add_constant(0);
6131 	    gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6132 
6133 	    Reloc_section* rela_dyn
6134 	      = target->rela_dyn_section(symtab, layout, is_ifunc);
6135 
6136 	    if (gsym->can_use_relative_reloc(false)
6137 		&& !((size == 32
6138 		      || target->abiversion() >= 2)
6139 		     && gsym->visibility() == elfcpp::STV_PROTECTED
6140 		     && parameters->options().shared()))
6141 	      {
6142 		unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6143 				       : elfcpp::R_POWERPC_RELATIVE);
6144 		rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6145 	      }
6146 	    else
6147 	      {
6148 		unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6149 		rela_dyn->add_global(gsym, dynrel, got, off, 0);
6150 	      }
6151 	  }
6152       }
6153       break;
6154 
6155     case elfcpp::R_PPC64_TOC16:
6156     case elfcpp::R_PPC64_TOC16_LO:
6157     case elfcpp::R_PPC64_TOC16_HI:
6158     case elfcpp::R_PPC64_TOC16_HA:
6159     case elfcpp::R_PPC64_TOC16_DS:
6160     case elfcpp::R_PPC64_TOC16_LO_DS:
6161       // We need a GOT section.
6162       target->got_section(symtab, layout);
6163       break;
6164 
6165     case elfcpp::R_POWERPC_GOT_TLSGD16:
6166     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6167     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6168     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6169       {
6170 	const bool final = gsym->final_value_is_known();
6171 	const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6172 	if (tls_type == tls::TLSOPT_NONE)
6173 	  {
6174 	    Output_data_got_powerpc<size, big_endian>* got
6175 	      = target->got_section(symtab, layout);
6176 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6177 	    got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6178 					  elfcpp::R_POWERPC_DTPMOD,
6179 					  elfcpp::R_POWERPC_DTPREL);
6180 	  }
6181 	else if (tls_type == tls::TLSOPT_TO_IE)
6182 	  {
6183 	    if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6184 	      {
6185 		Output_data_got_powerpc<size, big_endian>* got
6186 		  = target->got_section(symtab, layout);
6187 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6188 		if (gsym->is_undefined()
6189 		    || gsym->is_from_dynobj())
6190 		  {
6191 		    got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6192 					     elfcpp::R_POWERPC_TPREL);
6193 		  }
6194 		else
6195 		  {
6196 		    unsigned int off = got->add_constant(0);
6197 		    gsym->set_got_offset(GOT_TYPE_TPREL, off);
6198 		    unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6199 		    rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6200 							   got, off, 0);
6201 		  }
6202 	      }
6203 	  }
6204 	else if (tls_type == tls::TLSOPT_TO_LE)
6205 	  {
6206 	    // no GOT relocs needed for Local Exec.
6207 	  }
6208 	else
6209 	  gold_unreachable();
6210       }
6211       break;
6212 
6213     case elfcpp::R_POWERPC_GOT_TLSLD16:
6214     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6215     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6216     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6217       {
6218 	const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6219 	if (tls_type == tls::TLSOPT_NONE)
6220 	  target->tlsld_got_offset(symtab, layout, object);
6221 	else if (tls_type == tls::TLSOPT_TO_LE)
6222 	  {
6223 	    // no GOT relocs needed for Local Exec.
6224 	    if (parameters->options().emit_relocs())
6225 	      {
6226 		Output_section* os = layout->tls_segment()->first_section();
6227 		gold_assert(os != NULL);
6228 		os->set_needs_symtab_index();
6229 	      }
6230 	  }
6231 	else
6232 	  gold_unreachable();
6233       }
6234       break;
6235 
6236     case elfcpp::R_POWERPC_GOT_DTPREL16:
6237     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6238     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6239     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6240       {
6241 	Output_data_got_powerpc<size, big_endian>* got
6242 	  = target->got_section(symtab, layout);
6243 	if (!gsym->final_value_is_known()
6244 	    && (gsym->is_from_dynobj()
6245 		|| gsym->is_undefined()
6246 		|| gsym->is_preemptible()))
6247 	  got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6248 				   target->rela_dyn_section(layout),
6249 				   elfcpp::R_POWERPC_DTPREL);
6250 	else
6251 	  got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6252       }
6253       break;
6254 
6255     case elfcpp::R_POWERPC_GOT_TPREL16:
6256     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6257     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6258     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6259       {
6260 	const bool final = gsym->final_value_is_known();
6261 	const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6262 	if (tls_type == tls::TLSOPT_NONE)
6263 	  {
6264 	    if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6265 	      {
6266 		Output_data_got_powerpc<size, big_endian>* got
6267 		  = target->got_section(symtab, layout);
6268 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6269 		if (gsym->is_undefined()
6270 		    || gsym->is_from_dynobj())
6271 		  {
6272 		    got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6273 					     elfcpp::R_POWERPC_TPREL);
6274 		  }
6275 		else
6276 		  {
6277 		    unsigned int off = got->add_constant(0);
6278 		    gsym->set_got_offset(GOT_TYPE_TPREL, off);
6279 		    unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6280 		    rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6281 							   got, off, 0);
6282 		  }
6283 	      }
6284 	  }
6285 	else if (tls_type == tls::TLSOPT_TO_LE)
6286 	  {
6287 	    // no GOT relocs needed for Local Exec.
6288 	  }
6289 	else
6290 	  gold_unreachable();
6291       }
6292       break;
6293 
6294     default:
6295       unsupported_reloc_global(object, r_type, gsym);
6296       break;
6297     }
6298 
6299   switch (r_type)
6300     {
6301     case elfcpp::R_POWERPC_GOT_TLSLD16:
6302     case elfcpp::R_POWERPC_GOT_TLSGD16:
6303     case elfcpp::R_POWERPC_GOT_TPREL16:
6304     case elfcpp::R_POWERPC_GOT_DTPREL16:
6305     case elfcpp::R_POWERPC_GOT16:
6306     case elfcpp::R_PPC64_GOT16_DS:
6307     case elfcpp::R_PPC64_TOC16:
6308     case elfcpp::R_PPC64_TOC16_DS:
6309       ppc_object->set_has_small_toc_reloc();
6310     default:
6311       break;
6312     }
6313 }
6314 
6315 // Process relocations for gc.
6316 
6317 template<int size, bool big_endian>
6318 void
gc_process_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)6319 Target_powerpc<size, big_endian>::gc_process_relocs(
6320     Symbol_table* symtab,
6321     Layout* layout,
6322     Sized_relobj_file<size, big_endian>* object,
6323     unsigned int data_shndx,
6324     unsigned int,
6325     const unsigned char* prelocs,
6326     size_t reloc_count,
6327     Output_section* output_section,
6328     bool needs_special_offset_handling,
6329     size_t local_symbol_count,
6330     const unsigned char* plocal_symbols)
6331 {
6332   typedef Target_powerpc<size, big_endian> Powerpc;
6333   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6334   Powerpc_relobj<size, big_endian>* ppc_object
6335     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6336   if (size == 64)
6337     ppc_object->set_opd_valid();
6338   if (size == 64 && data_shndx == ppc_object->opd_shndx())
6339     {
6340       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6341       for (p = ppc_object->access_from_map()->begin();
6342 	   p != ppc_object->access_from_map()->end();
6343 	   ++p)
6344 	{
6345 	  Address dst_off = p->first;
6346 	  unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6347 	  typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6348 	  for (s = p->second.begin(); s != p->second.end(); ++s)
6349 	    {
6350 	      Object* src_obj = s->first;
6351 	      unsigned int src_indx = s->second;
6352 	      symtab->gc()->add_reference(src_obj, src_indx,
6353 					  ppc_object, dst_indx);
6354 	    }
6355 	  p->second.clear();
6356 	}
6357       ppc_object->access_from_map()->clear();
6358       ppc_object->process_gc_mark(symtab);
6359       // Don't look at .opd relocs as .opd will reference everything.
6360       return;
6361     }
6362 
6363   gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6364 			  typename Target_powerpc::Relocatable_size_for_reloc>(
6365     symtab,
6366     layout,
6367     this,
6368     object,
6369     data_shndx,
6370     prelocs,
6371     reloc_count,
6372     output_section,
6373     needs_special_offset_handling,
6374     local_symbol_count,
6375     plocal_symbols);
6376 }
6377 
6378 // Handle target specific gc actions when adding a gc reference from
6379 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6380 // and DST_OFF.  For powerpc64, this adds a referenc to the code
6381 // section of a function descriptor.
6382 
6383 template<int size, bool big_endian>
6384 void
do_gc_add_reference(Symbol_table * symtab,Object * src_obj,unsigned int src_shndx,Object * dst_obj,unsigned int dst_shndx,Address dst_off) const6385 Target_powerpc<size, big_endian>::do_gc_add_reference(
6386     Symbol_table* symtab,
6387     Object* src_obj,
6388     unsigned int src_shndx,
6389     Object* dst_obj,
6390     unsigned int dst_shndx,
6391     Address dst_off) const
6392 {
6393   if (size != 64 || dst_obj->is_dynamic())
6394     return;
6395 
6396   Powerpc_relobj<size, big_endian>* ppc_object
6397     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6398   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6399     {
6400       if (ppc_object->opd_valid())
6401 	{
6402 	  dst_shndx = ppc_object->get_opd_ent(dst_off);
6403 	  symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6404 	}
6405       else
6406 	{
6407 	  // If we haven't run scan_opd_relocs, we must delay
6408 	  // processing this function descriptor reference.
6409 	  ppc_object->add_reference(src_obj, src_shndx, dst_off);
6410 	}
6411     }
6412 }
6413 
6414 // Add any special sections for this symbol to the gc work list.
6415 // For powerpc64, this adds the code section of a function
6416 // descriptor.
6417 
6418 template<int size, bool big_endian>
6419 void
do_gc_mark_symbol(Symbol_table * symtab,Symbol * sym) const6420 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6421     Symbol_table* symtab,
6422     Symbol* sym) const
6423 {
6424   if (size == 64)
6425     {
6426       Powerpc_relobj<size, big_endian>* ppc_object
6427 	= static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6428       bool is_ordinary;
6429       unsigned int shndx = sym->shndx(&is_ordinary);
6430       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6431 	{
6432 	  Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6433 	  Address dst_off = gsym->value();
6434 	  if (ppc_object->opd_valid())
6435 	    {
6436 	      unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6437 	      symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6438 	    }
6439 	  else
6440 	    ppc_object->add_gc_mark(dst_off);
6441 	}
6442     }
6443 }
6444 
6445 // For a symbol location in .opd, set LOC to the location of the
6446 // function entry.
6447 
6448 template<int size, bool big_endian>
6449 void
do_function_location(Symbol_location * loc) const6450 Target_powerpc<size, big_endian>::do_function_location(
6451     Symbol_location* loc) const
6452 {
6453   if (size == 64 && loc->shndx != 0)
6454     {
6455       if (loc->object->is_dynamic())
6456 	{
6457 	  Powerpc_dynobj<size, big_endian>* ppc_object
6458 	    = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6459 	  if (loc->shndx == ppc_object->opd_shndx())
6460 	    {
6461 	      Address dest_off;
6462 	      Address off = loc->offset - ppc_object->opd_address();
6463 	      loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6464 	      loc->offset = dest_off;
6465 	    }
6466 	}
6467       else
6468 	{
6469 	  const Powerpc_relobj<size, big_endian>* ppc_object
6470 	    = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6471 	  if (loc->shndx == ppc_object->opd_shndx())
6472 	    {
6473 	      Address dest_off;
6474 	      loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6475 	      loc->offset = dest_off;
6476 	    }
6477 	}
6478     }
6479 }
6480 
6481 // Scan relocations for a section.
6482 
6483 template<int size, bool big_endian>
6484 void
scan_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)6485 Target_powerpc<size, big_endian>::scan_relocs(
6486     Symbol_table* symtab,
6487     Layout* layout,
6488     Sized_relobj_file<size, big_endian>* object,
6489     unsigned int data_shndx,
6490     unsigned int sh_type,
6491     const unsigned char* prelocs,
6492     size_t reloc_count,
6493     Output_section* output_section,
6494     bool needs_special_offset_handling,
6495     size_t local_symbol_count,
6496     const unsigned char* plocal_symbols)
6497 {
6498   typedef Target_powerpc<size, big_endian> Powerpc;
6499   typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6500 
6501   if (sh_type == elfcpp::SHT_REL)
6502     {
6503       gold_error(_("%s: unsupported REL reloc section"),
6504 		 object->name().c_str());
6505       return;
6506     }
6507 
6508   gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6509     symtab,
6510     layout,
6511     this,
6512     object,
6513     data_shndx,
6514     prelocs,
6515     reloc_count,
6516     output_section,
6517     needs_special_offset_handling,
6518     local_symbol_count,
6519     plocal_symbols);
6520 }
6521 
6522 // Functor class for processing the global symbol table.
6523 // Removes symbols defined on discarded opd entries.
6524 
6525 template<bool big_endian>
6526 class Global_symbol_visitor_opd
6527 {
6528  public:
Global_symbol_visitor_opd()6529   Global_symbol_visitor_opd()
6530   { }
6531 
6532   void
operator ()(Sized_symbol<64> * sym)6533   operator()(Sized_symbol<64>* sym)
6534   {
6535     if (sym->has_symtab_index()
6536 	|| sym->source() != Symbol::FROM_OBJECT
6537 	|| !sym->in_real_elf())
6538       return;
6539 
6540     if (sym->object()->is_dynamic())
6541       return;
6542 
6543     Powerpc_relobj<64, big_endian>* symobj
6544       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6545     if (symobj->opd_shndx() == 0)
6546       return;
6547 
6548     bool is_ordinary;
6549     unsigned int shndx = sym->shndx(&is_ordinary);
6550     if (shndx == symobj->opd_shndx()
6551 	&& symobj->get_opd_discard(sym->value()))
6552       {
6553 	sym->set_undefined();
6554 	sym->set_visibility(elfcpp::STV_DEFAULT);
6555 	sym->set_is_defined_in_discarded_section();
6556 	sym->set_symtab_index(-1U);
6557       }
6558   }
6559 };
6560 
6561 template<int size, bool big_endian>
6562 void
define_save_restore_funcs(Layout * layout,Symbol_table * symtab)6563 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6564     Layout* layout,
6565     Symbol_table* symtab)
6566 {
6567   if (size == 64)
6568     {
6569       Output_data_save_res<64, big_endian>* savres
6570 	= new Output_data_save_res<64, big_endian>(symtab);
6571       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6572 				      elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6573 				      savres, ORDER_TEXT, false);
6574     }
6575 }
6576 
6577 // Sort linker created .got section first (for the header), then input
6578 // sections belonging to files using small model code.
6579 
6580 template<bool big_endian>
6581 class Sort_toc_sections
6582 {
6583  public:
6584   bool
operator ()(const Output_section::Input_section & is1,const Output_section::Input_section & is2) const6585   operator()(const Output_section::Input_section& is1,
6586 	     const Output_section::Input_section& is2) const
6587   {
6588     if (!is1.is_input_section() && is2.is_input_section())
6589       return true;
6590     bool small1
6591       = (is1.is_input_section()
6592 	 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6593 	     ->has_small_toc_reloc()));
6594     bool small2
6595       = (is2.is_input_section()
6596 	 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6597 	     ->has_small_toc_reloc()));
6598     return small1 && !small2;
6599   }
6600 };
6601 
6602 // Finalize the sections.
6603 
6604 template<int size, bool big_endian>
6605 void
do_finalize_sections(Layout * layout,const Input_objects *,Symbol_table * symtab)6606 Target_powerpc<size, big_endian>::do_finalize_sections(
6607     Layout* layout,
6608     const Input_objects*,
6609     Symbol_table* symtab)
6610 {
6611   if (parameters->doing_static_link())
6612     {
6613       // At least some versions of glibc elf-init.o have a strong
6614       // reference to __rela_iplt marker syms.  A weak ref would be
6615       // better..
6616       if (this->iplt_ != NULL)
6617 	{
6618 	  Reloc_section* rel = this->iplt_->rel_plt();
6619 	  symtab->define_in_output_data("__rela_iplt_start", NULL,
6620 					Symbol_table::PREDEFINED, rel, 0, 0,
6621 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6622 					elfcpp::STV_HIDDEN, 0, false, true);
6623 	  symtab->define_in_output_data("__rela_iplt_end", NULL,
6624 					Symbol_table::PREDEFINED, rel, 0, 0,
6625 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6626 					elfcpp::STV_HIDDEN, 0, true, true);
6627 	}
6628       else
6629 	{
6630 	  symtab->define_as_constant("__rela_iplt_start", NULL,
6631 				     Symbol_table::PREDEFINED, 0, 0,
6632 				     elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6633 				     elfcpp::STV_HIDDEN, 0, true, false);
6634 	  symtab->define_as_constant("__rela_iplt_end", NULL,
6635 				     Symbol_table::PREDEFINED, 0, 0,
6636 				     elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6637 				     elfcpp::STV_HIDDEN, 0, true, false);
6638 	}
6639     }
6640 
6641   if (size == 64)
6642     {
6643       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6644       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6645 
6646       if (!parameters->options().relocatable())
6647 	{
6648 	  this->define_save_restore_funcs(layout, symtab);
6649 
6650 	  // Annoyingly, we need to make these sections now whether or
6651 	  // not we need them.  If we delay until do_relax then we
6652 	  // need to mess with the relaxation machinery checkpointing.
6653 	  this->got_section(symtab, layout);
6654 	  this->make_brlt_section(layout);
6655 
6656 	  if (parameters->options().toc_sort())
6657 	    {
6658 	      Output_section* os = this->got_->output_section();
6659 	      if (os != NULL && os->input_sections().size() > 1)
6660 		std::stable_sort(os->input_sections().begin(),
6661 				 os->input_sections().end(),
6662 				 Sort_toc_sections<big_endian>());
6663 	    }
6664 	}
6665     }
6666 
6667   // Fill in some more dynamic tags.
6668   Output_data_dynamic* odyn = layout->dynamic_data();
6669   if (odyn != NULL)
6670     {
6671       const Reloc_section* rel_plt = (this->plt_ == NULL
6672 				      ? NULL
6673 				      : this->plt_->rel_plt());
6674       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6675 				      this->rela_dyn_, true, size == 32);
6676 
6677       if (size == 32)
6678 	{
6679 	  if (this->got_ != NULL)
6680 	    {
6681 	      this->got_->finalize_data_size();
6682 	      odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6683 					    this->got_, this->got_->g_o_t());
6684 	    }
6685 	}
6686       else
6687 	{
6688 	  if (this->glink_ != NULL)
6689 	    {
6690 	      this->glink_->finalize_data_size();
6691 	      odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6692 					    this->glink_,
6693 					    (this->glink_->pltresolve_size
6694 					     - 32));
6695 	    }
6696 	}
6697     }
6698 
6699   // Emit any relocs we saved in an attempt to avoid generating COPY
6700   // relocs.
6701   if (this->copy_relocs_.any_saved_relocs())
6702     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6703 }
6704 
6705 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6706 // reloc.
6707 
6708 static bool
ok_lo_toc_insn(uint32_t insn)6709 ok_lo_toc_insn(uint32_t insn)
6710 {
6711   return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6712 	  || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6713 	  || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6714 	  || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6715 	  || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6716 	  || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6717 	  || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6718 	  || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6719 	  || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6720 	  || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6721 	  || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6722 	  || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6723 	  || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6724 	  || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6725 	  || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6726 	      && (insn & 3) != 1)
6727 	  || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6728 	      && ((insn & 3) == 0 || (insn & 3) == 3))
6729 	  || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6730 }
6731 
6732 // Return the value to use for a branch relocation.
6733 
6734 template<int size, bool big_endian>
6735 bool
symval_for_branch(const Symbol_table * symtab,const Sized_symbol<size> * gsym,Powerpc_relobj<size,big_endian> * object,Address * value,unsigned int * dest_shndx)6736 Target_powerpc<size, big_endian>::symval_for_branch(
6737     const Symbol_table* symtab,
6738     const Sized_symbol<size>* gsym,
6739     Powerpc_relobj<size, big_endian>* object,
6740     Address *value,
6741     unsigned int *dest_shndx)
6742 {
6743   if (size == 32 || this->abiversion() >= 2)
6744     gold_unreachable();
6745   *dest_shndx = 0;
6746 
6747   // If the symbol is defined in an opd section, ie. is a function
6748   // descriptor, use the function descriptor code entry address
6749   Powerpc_relobj<size, big_endian>* symobj = object;
6750   if (gsym != NULL
6751       && gsym->source() != Symbol::FROM_OBJECT)
6752     return true;
6753   if (gsym != NULL)
6754     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6755   unsigned int shndx = symobj->opd_shndx();
6756   if (shndx == 0)
6757     return true;
6758   Address opd_addr = symobj->get_output_section_offset(shndx);
6759   if (opd_addr == invalid_address)
6760     return true;
6761   opd_addr += symobj->output_section_address(shndx);
6762   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6763     {
6764       Address sec_off;
6765       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6766       if (symtab->is_section_folded(symobj, *dest_shndx))
6767 	{
6768 	  Section_id folded
6769 	    = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6770 	  symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6771 	  *dest_shndx = folded.second;
6772 	}
6773       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6774       if (sec_addr == invalid_address)
6775         return false;
6776 
6777       sec_addr += symobj->output_section(*dest_shndx)->address();
6778       *value = sec_addr + sec_off;
6779     }
6780   return true;
6781 }
6782 
6783 // Perform a relocation.
6784 
6785 template<int size, bool big_endian>
6786 inline bool
relocate(const Relocate_info<size,big_endian> * relinfo,Target_powerpc * target,Output_section * os,size_t relnum,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,unsigned char * view,Address address,section_size_type view_size)6787 Target_powerpc<size, big_endian>::Relocate::relocate(
6788     const Relocate_info<size, big_endian>* relinfo,
6789     Target_powerpc* target,
6790     Output_section* os,
6791     size_t relnum,
6792     const elfcpp::Rela<size, big_endian>& rela,
6793     unsigned int r_type,
6794     const Sized_symbol<size>* gsym,
6795     const Symbol_value<size>* psymval,
6796     unsigned char* view,
6797     Address address,
6798     section_size_type view_size)
6799 {
6800   if (view == NULL)
6801     return true;
6802 
6803   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6804     {
6805     case Track_tls::NOT_EXPECTED:
6806       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6807 			     _("__tls_get_addr call lacks marker reloc"));
6808       break;
6809     case Track_tls::EXPECTED:
6810       // We have already complained.
6811       break;
6812     case Track_tls::SKIP:
6813       return true;
6814     case Track_tls::NORMAL:
6815       break;
6816     }
6817 
6818   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6819   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6820   Powerpc_relobj<size, big_endian>* const object
6821     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6822   Address value = 0;
6823   bool has_stub_value = false;
6824   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6825   if ((gsym != NULL
6826        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6827        : object->local_has_plt_offset(r_sym))
6828       && (!psymval->is_ifunc_symbol()
6829 	  || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6830     {
6831       if (size == 64
6832 	  && gsym != NULL
6833 	  && target->abiversion() >= 2
6834 	  && !parameters->options().output_is_position_independent()
6835 	  && !is_branch_reloc(r_type))
6836 	{
6837 	  Address off = target->glink_section()->find_global_entry(gsym);
6838 	  if (off != invalid_address)
6839 	    {
6840 	      value = target->glink_section()->global_entry_address() + off;
6841 	      has_stub_value = true;
6842 	    }
6843 	}
6844       else
6845 	{
6846 	  Stub_table<size, big_endian>* stub_table
6847 	    = object->stub_table(relinfo->data_shndx);
6848 	  if (stub_table == NULL)
6849 	    {
6850 	      // This is a ref from a data section to an ifunc symbol.
6851 	      if (target->stub_tables().size() != 0)
6852 		stub_table = target->stub_tables()[0];
6853 	    }
6854 	  if (stub_table != NULL)
6855 	    {
6856 	      Address off;
6857 	      if (gsym != NULL)
6858 		off = stub_table->find_plt_call_entry(object, gsym, r_type,
6859 						      rela.get_r_addend());
6860 	      else
6861 		off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6862 						      rela.get_r_addend());
6863 	      if (off != invalid_address)
6864 		{
6865 		  value = stub_table->stub_address() + off;
6866 		  has_stub_value = true;
6867 		}
6868 	    }
6869 	}
6870       // We don't care too much about bogus debug references to
6871       // non-local functions, but otherwise there had better be a plt
6872       // call stub or global entry stub as appropriate.
6873       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
6874     }
6875 
6876   if (r_type == elfcpp::R_POWERPC_GOT16
6877       || r_type == elfcpp::R_POWERPC_GOT16_LO
6878       || r_type == elfcpp::R_POWERPC_GOT16_HI
6879       || r_type == elfcpp::R_POWERPC_GOT16_HA
6880       || r_type == elfcpp::R_PPC64_GOT16_DS
6881       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6882     {
6883       if (gsym != NULL)
6884 	{
6885 	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6886 	  value = gsym->got_offset(GOT_TYPE_STANDARD);
6887 	}
6888       else
6889 	{
6890 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6891 	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6892 	  value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6893 	}
6894       value -= target->got_section()->got_base_offset(object);
6895     }
6896   else if (r_type == elfcpp::R_PPC64_TOC)
6897     {
6898       value = (target->got_section()->output_section()->address()
6899 	       + object->toc_base_offset());
6900     }
6901   else if (gsym != NULL
6902 	   && (r_type == elfcpp::R_POWERPC_REL24
6903 	       || r_type == elfcpp::R_PPC_PLTREL24)
6904 	   && has_stub_value)
6905     {
6906       if (size == 64)
6907 	{
6908 	  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6909 	  Valtype* wv = reinterpret_cast<Valtype*>(view);
6910 	  bool can_plt_call = false;
6911 	  if (rela.get_r_offset() + 8 <= view_size)
6912 	    {
6913 	      Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6914 	      Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6915 	      if ((insn & 1) != 0
6916 		  && (insn2 == nop
6917 		      || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6918 		{
6919 		  elfcpp::Swap<32, big_endian>::
6920 		    writeval(wv + 1, ld_2_1 + target->stk_toc());
6921 		  can_plt_call = true;
6922 		}
6923 	    }
6924 	  if (!can_plt_call)
6925 	    {
6926 	      // If we don't have a branch and link followed by a nop,
6927 	      // we can't go via the plt because there is no place to
6928 	      // put a toc restoring instruction.
6929 	      // Unless we know we won't be returning.
6930 	      if (strcmp(gsym->name(), "__libc_start_main") == 0)
6931 		can_plt_call = true;
6932 	    }
6933 	  if (!can_plt_call)
6934 	    {
6935 	      // g++ as of 20130507 emits self-calls without a
6936 	      // following nop.  This is arguably wrong since we have
6937 	      // conflicting information.  On the one hand a global
6938 	      // symbol and on the other a local call sequence, but
6939 	      // don't error for this special case.
6940 	      // It isn't possible to cheaply verify we have exactly
6941 	      // such a call.  Allow all calls to the same section.
6942 	      bool ok = false;
6943 	      Address code = value;
6944 	      if (gsym->source() == Symbol::FROM_OBJECT
6945 		  && gsym->object() == object)
6946 		{
6947 		  unsigned int dest_shndx = 0;
6948 		  if (target->abiversion() < 2)
6949 		    {
6950 		      Address addend = rela.get_r_addend();
6951 		      code = psymval->value(object, addend);
6952 		      target->symval_for_branch(relinfo->symtab, gsym, object,
6953 						&code, &dest_shndx);
6954 		    }
6955 		  bool is_ordinary;
6956 		  if (dest_shndx == 0)
6957 		    dest_shndx = gsym->shndx(&is_ordinary);
6958 		  ok = dest_shndx == relinfo->data_shndx;
6959 		}
6960 	      if (!ok)
6961 		{
6962 		  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6963 					 _("call lacks nop, can't restore toc; "
6964 					   "recompile with -fPIC"));
6965 		  value = code;
6966 		}
6967 	    }
6968 	}
6969     }
6970   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6971 	   || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6972 	   || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6973 	   || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6974     {
6975       // First instruction of a global dynamic sequence, arg setup insn.
6976       const bool final = gsym == NULL || gsym->final_value_is_known();
6977       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6978       enum Got_type got_type = GOT_TYPE_STANDARD;
6979       if (tls_type == tls::TLSOPT_NONE)
6980 	got_type = GOT_TYPE_TLSGD;
6981       else if (tls_type == tls::TLSOPT_TO_IE)
6982 	got_type = GOT_TYPE_TPREL;
6983       if (got_type != GOT_TYPE_STANDARD)
6984 	{
6985 	  if (gsym != NULL)
6986 	    {
6987 	      gold_assert(gsym->has_got_offset(got_type));
6988 	      value = gsym->got_offset(got_type);
6989 	    }
6990 	  else
6991 	    {
6992 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6993 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
6994 	      value = object->local_got_offset(r_sym, got_type);
6995 	    }
6996 	  value -= target->got_section()->got_base_offset(object);
6997 	}
6998       if (tls_type == tls::TLSOPT_TO_IE)
6999 	{
7000 	  if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7001 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7002 	    {
7003 	      Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7004 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7005 	      insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7006 	      if (size == 32)
7007 		insn |= 32 << 26; // lwz
7008 	      else
7009 		insn |= 58 << 26; // ld
7010 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7011 	    }
7012 	  r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7013 		     - elfcpp::R_POWERPC_GOT_TLSGD16);
7014 	}
7015       else if (tls_type == tls::TLSOPT_TO_LE)
7016 	{
7017 	  if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7018 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7019 	    {
7020 	      Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7021 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7022 	      insn &= (1 << 26) - (1 << 21); // extract rt
7023 	      if (size == 32)
7024 		insn |= addis_0_2;
7025 	      else
7026 		insn |= addis_0_13;
7027 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7028 	      r_type = elfcpp::R_POWERPC_TPREL16_HA;
7029 	      value = psymval->value(object, rela.get_r_addend());
7030 	    }
7031 	  else
7032 	    {
7033 	      Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7034 	      Insn insn = nop;
7035 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7036 	      r_type = elfcpp::R_POWERPC_NONE;
7037 	    }
7038 	}
7039     }
7040   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7041 	   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7042 	   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7043 	   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7044     {
7045       // First instruction of a local dynamic sequence, arg setup insn.
7046       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7047       if (tls_type == tls::TLSOPT_NONE)
7048 	{
7049 	  value = target->tlsld_got_offset();
7050 	  value -= target->got_section()->got_base_offset(object);
7051 	}
7052       else
7053 	{
7054 	  gold_assert(tls_type == tls::TLSOPT_TO_LE);
7055 	  if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7056 	      || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7057 	    {
7058 	      Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7059 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7060 	      insn &= (1 << 26) - (1 << 21); // extract rt
7061 	      if (size == 32)
7062 		insn = addis_0_2;
7063 	      else
7064 		insn |= addis_0_13;
7065 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7066 	      r_type = elfcpp::R_POWERPC_TPREL16_HA;
7067 	      value = dtp_offset;
7068 	    }
7069 	  else
7070 	    {
7071 	      Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7072 	      Insn insn = nop;
7073 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7074 	      r_type = elfcpp::R_POWERPC_NONE;
7075 	    }
7076 	}
7077     }
7078   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7079 	   || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7080 	   || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7081 	   || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7082     {
7083       // Accesses relative to a local dynamic sequence address,
7084       // no optimisation here.
7085       if (gsym != NULL)
7086 	{
7087 	  gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7088 	  value = gsym->got_offset(GOT_TYPE_DTPREL);
7089 	}
7090       else
7091 	{
7092 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7093 	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7094 	  value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7095 	}
7096       value -= target->got_section()->got_base_offset(object);
7097     }
7098   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7099 	   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7100 	   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7101 	   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7102     {
7103       // First instruction of initial exec sequence.
7104       const bool final = gsym == NULL || gsym->final_value_is_known();
7105       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7106       if (tls_type == tls::TLSOPT_NONE)
7107 	{
7108 	  if (gsym != NULL)
7109 	    {
7110 	      gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7111 	      value = gsym->got_offset(GOT_TYPE_TPREL);
7112 	    }
7113 	  else
7114 	    {
7115 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7116 	      gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7117 	      value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7118 	    }
7119 	  value -= target->got_section()->got_base_offset(object);
7120 	}
7121       else
7122 	{
7123 	  gold_assert(tls_type == tls::TLSOPT_TO_LE);
7124 	  if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7125 	      || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7126 	    {
7127 	      Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7128 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7129 	      insn &= (1 << 26) - (1 << 21); // extract rt from ld
7130 	      if (size == 32)
7131 		insn |= addis_0_2;
7132 	      else
7133 		insn |= addis_0_13;
7134 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7135 	      r_type = elfcpp::R_POWERPC_TPREL16_HA;
7136 	      value = psymval->value(object, rela.get_r_addend());
7137 	    }
7138 	  else
7139 	    {
7140 	      Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7141 	      Insn insn = nop;
7142 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7143 	      r_type = elfcpp::R_POWERPC_NONE;
7144 	    }
7145 	}
7146     }
7147   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7148 	   || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7149     {
7150       // Second instruction of a global dynamic sequence,
7151       // the __tls_get_addr call
7152       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7153       const bool final = gsym == NULL || gsym->final_value_is_known();
7154       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7155       if (tls_type != tls::TLSOPT_NONE)
7156 	{
7157 	  if (tls_type == tls::TLSOPT_TO_IE)
7158 	    {
7159 	      Insn* iview = reinterpret_cast<Insn*>(view);
7160 	      Insn insn = add_3_3_13;
7161 	      if (size == 32)
7162 		insn = add_3_3_2;
7163 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7164 	      r_type = elfcpp::R_POWERPC_NONE;
7165 	    }
7166 	  else
7167 	    {
7168 	      Insn* iview = reinterpret_cast<Insn*>(view);
7169 	      Insn insn = addi_3_3;
7170 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7171 	      r_type = elfcpp::R_POWERPC_TPREL16_LO;
7172 	      view += 2 * big_endian;
7173 	      value = psymval->value(object, rela.get_r_addend());
7174 	    }
7175 	  this->skip_next_tls_get_addr_call();
7176 	}
7177     }
7178   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7179 	   || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7180     {
7181       // Second instruction of a local dynamic sequence,
7182       // the __tls_get_addr call
7183       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7184       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7185       if (tls_type == tls::TLSOPT_TO_LE)
7186 	{
7187 	  Insn* iview = reinterpret_cast<Insn*>(view);
7188 	  Insn insn = addi_3_3;
7189 	  elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7190 	  this->skip_next_tls_get_addr_call();
7191 	  r_type = elfcpp::R_POWERPC_TPREL16_LO;
7192 	  view += 2 * big_endian;
7193 	  value = dtp_offset;
7194 	}
7195     }
7196   else if (r_type == elfcpp::R_POWERPC_TLS)
7197     {
7198       // Second instruction of an initial exec sequence
7199       const bool final = gsym == NULL || gsym->final_value_is_known();
7200       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7201       if (tls_type == tls::TLSOPT_TO_LE)
7202 	{
7203 	  Insn* iview = reinterpret_cast<Insn*>(view);
7204 	  Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7205 	  unsigned int reg = size == 32 ? 2 : 13;
7206 	  insn = at_tls_transform(insn, reg);
7207 	  gold_assert(insn != 0);
7208 	  elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7209 	  r_type = elfcpp::R_POWERPC_TPREL16_LO;
7210 	  view += 2 * big_endian;
7211 	  value = psymval->value(object, rela.get_r_addend());
7212 	}
7213     }
7214   else if (!has_stub_value)
7215     {
7216       Address addend = 0;
7217       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7218 	addend = rela.get_r_addend();
7219       value = psymval->value(object, addend);
7220       if (size == 64 && is_branch_reloc(r_type))
7221 	{
7222 	  if (target->abiversion() >= 2)
7223 	    {
7224 	      if (gsym != NULL)
7225 		value += object->ppc64_local_entry_offset(gsym);
7226 	      else
7227 		value += object->ppc64_local_entry_offset(r_sym);
7228 	    }
7229 	  else
7230 	    {
7231 	      unsigned int dest_shndx;
7232 	      target->symval_for_branch(relinfo->symtab, gsym, object,
7233 					&value, &dest_shndx);
7234 	    }
7235 	}
7236       Address max_branch_offset = max_branch_delta(r_type);
7237       if (max_branch_offset != 0
7238 	  && value - address + max_branch_offset >= 2 * max_branch_offset)
7239 	{
7240 	  Stub_table<size, big_endian>* stub_table
7241 	    = object->stub_table(relinfo->data_shndx);
7242 	  if (stub_table != NULL)
7243 	    {
7244 	      Address off = stub_table->find_long_branch_entry(object, value);
7245 	      if (off != invalid_address)
7246 		{
7247 		  value = (stub_table->stub_address() + stub_table->plt_size()
7248 			   + off);
7249 		  has_stub_value = true;
7250 		}
7251 	    }
7252 	}
7253     }
7254 
7255   switch (r_type)
7256     {
7257     case elfcpp::R_PPC64_REL64:
7258     case elfcpp::R_POWERPC_REL32:
7259     case elfcpp::R_POWERPC_REL24:
7260     case elfcpp::R_PPC_PLTREL24:
7261     case elfcpp::R_PPC_LOCAL24PC:
7262     case elfcpp::R_POWERPC_REL16:
7263     case elfcpp::R_POWERPC_REL16_LO:
7264     case elfcpp::R_POWERPC_REL16_HI:
7265     case elfcpp::R_POWERPC_REL16_HA:
7266     case elfcpp::R_POWERPC_REL14:
7267     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7268     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7269       value -= address;
7270       break;
7271 
7272     case elfcpp::R_PPC64_TOC16:
7273     case elfcpp::R_PPC64_TOC16_LO:
7274     case elfcpp::R_PPC64_TOC16_HI:
7275     case elfcpp::R_PPC64_TOC16_HA:
7276     case elfcpp::R_PPC64_TOC16_DS:
7277     case elfcpp::R_PPC64_TOC16_LO_DS:
7278       // Subtract the TOC base address.
7279       value -= (target->got_section()->output_section()->address()
7280 		+ object->toc_base_offset());
7281       break;
7282 
7283     case elfcpp::R_POWERPC_SECTOFF:
7284     case elfcpp::R_POWERPC_SECTOFF_LO:
7285     case elfcpp::R_POWERPC_SECTOFF_HI:
7286     case elfcpp::R_POWERPC_SECTOFF_HA:
7287     case elfcpp::R_PPC64_SECTOFF_DS:
7288     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7289       if (os != NULL)
7290 	value -= os->address();
7291       break;
7292 
7293     case elfcpp::R_PPC64_TPREL16_DS:
7294     case elfcpp::R_PPC64_TPREL16_LO_DS:
7295     case elfcpp::R_PPC64_TPREL16_HIGH:
7296     case elfcpp::R_PPC64_TPREL16_HIGHA:
7297       if (size != 64)
7298 	// R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7299 	break;
7300     case elfcpp::R_POWERPC_TPREL16:
7301     case elfcpp::R_POWERPC_TPREL16_LO:
7302     case elfcpp::R_POWERPC_TPREL16_HI:
7303     case elfcpp::R_POWERPC_TPREL16_HA:
7304     case elfcpp::R_POWERPC_TPREL:
7305     case elfcpp::R_PPC64_TPREL16_HIGHER:
7306     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7307     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7308     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7309       // tls symbol values are relative to tls_segment()->vaddr()
7310       value -= tp_offset;
7311       break;
7312 
7313     case elfcpp::R_PPC64_DTPREL16_DS:
7314     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7315     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7316     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7317     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7318     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7319       if (size != 64)
7320 	// R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7321 	// R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7322 	break;
7323     case elfcpp::R_POWERPC_DTPREL16:
7324     case elfcpp::R_POWERPC_DTPREL16_LO:
7325     case elfcpp::R_POWERPC_DTPREL16_HI:
7326     case elfcpp::R_POWERPC_DTPREL16_HA:
7327     case elfcpp::R_POWERPC_DTPREL:
7328     case elfcpp::R_PPC64_DTPREL16_HIGH:
7329     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7330       // tls symbol values are relative to tls_segment()->vaddr()
7331       value -= dtp_offset;
7332       break;
7333 
7334     case elfcpp::R_PPC64_ADDR64_LOCAL:
7335       if (gsym != NULL)
7336 	value += object->ppc64_local_entry_offset(gsym);
7337       else
7338 	value += object->ppc64_local_entry_offset(r_sym);
7339       break;
7340 
7341     default:
7342       break;
7343     }
7344 
7345   Insn branch_bit = 0;
7346   switch (r_type)
7347     {
7348     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7349     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7350       branch_bit = 1 << 21;
7351     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7352     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7353       {
7354 	Insn* iview = reinterpret_cast<Insn*>(view);
7355 	Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7356 	insn &= ~(1 << 21);
7357 	insn |= branch_bit;
7358 	if (this->is_isa_v2)
7359 	  {
7360 	    // Set 'a' bit.  This is 0b00010 in BO field for branch
7361 	    // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7362 	    // for branch on CTR insns (BO == 1a00t or 1a01t).
7363 	    if ((insn & (0x14 << 21)) == (0x04 << 21))
7364 	      insn |= 0x02 << 21;
7365 	    else if ((insn & (0x14 << 21)) == (0x10 << 21))
7366 	      insn |= 0x08 << 21;
7367 	    else
7368 	      break;
7369 	  }
7370 	else
7371 	  {
7372 	    // Invert 'y' bit if not the default.
7373 	    if (static_cast<Signed_address>(value) < 0)
7374 	      insn ^= 1 << 21;
7375 	  }
7376 	elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7377       }
7378       break;
7379 
7380     default:
7381       break;
7382     }
7383 
7384   if (size == 64)
7385     {
7386       // Multi-instruction sequences that access the TOC can be
7387       // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7388       // to             nop;           addi rb,r2,x;
7389       switch (r_type)
7390 	{
7391 	default:
7392 	  break;
7393 
7394 	case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7395 	case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7396 	case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7397 	case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7398 	case elfcpp::R_POWERPC_GOT16_HA:
7399 	case elfcpp::R_PPC64_TOC16_HA:
7400 	  if (parameters->options().toc_optimize())
7401 	    {
7402 	      Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7403 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7404 	      if ((insn & ((0x3f << 26) | 0x1f << 16))
7405 		  != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7406 		gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7407 				       _("toc optimization is not supported "
7408 					 "for %#08x instruction"), insn);
7409 	      else if (value + 0x8000 < 0x10000)
7410 		{
7411 		  elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7412 		  return true;
7413 		}
7414 	    }
7415 	  break;
7416 
7417 	case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7418 	case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7419 	case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7420 	case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7421 	case elfcpp::R_POWERPC_GOT16_LO:
7422 	case elfcpp::R_PPC64_GOT16_LO_DS:
7423 	case elfcpp::R_PPC64_TOC16_LO:
7424 	case elfcpp::R_PPC64_TOC16_LO_DS:
7425 	  if (parameters->options().toc_optimize())
7426 	    {
7427 	      Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7428 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7429 	      if (!ok_lo_toc_insn(insn))
7430 		gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7431 				       _("toc optimization is not supported "
7432 					 "for %#08x instruction"), insn);
7433 	      else if (value + 0x8000 < 0x10000)
7434 		{
7435 		  if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7436 		    {
7437 		      // Transform addic to addi when we change reg.
7438 		      insn &= ~((0x3f << 26) | (0x1f << 16));
7439 		      insn |= (14u << 26) | (2 << 16);
7440 		    }
7441 		  else
7442 		    {
7443 		      insn &= ~(0x1f << 16);
7444 		      insn |= 2 << 16;
7445 		    }
7446 		  elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7447 		}
7448 	    }
7449 	  break;
7450 	}
7451     }
7452 
7453   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7454   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7455   switch (r_type)
7456     {
7457     case elfcpp::R_POWERPC_ADDR32:
7458     case elfcpp::R_POWERPC_UADDR32:
7459       if (size == 64)
7460 	overflow = Reloc::CHECK_BITFIELD;
7461       break;
7462 
7463     case elfcpp::R_POWERPC_REL32:
7464       if (size == 64)
7465 	overflow = Reloc::CHECK_SIGNED;
7466       break;
7467 
7468     case elfcpp::R_POWERPC_UADDR16:
7469       overflow = Reloc::CHECK_BITFIELD;
7470       break;
7471 
7472     case elfcpp::R_POWERPC_ADDR16:
7473       // We really should have three separate relocations,
7474       // one for 16-bit data, one for insns with 16-bit signed fields,
7475       // and one for insns with 16-bit unsigned fields.
7476       overflow = Reloc::CHECK_BITFIELD;
7477       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7478 	overflow = Reloc::CHECK_LOW_INSN;
7479       break;
7480 
7481     case elfcpp::R_POWERPC_ADDR16_HI:
7482     case elfcpp::R_POWERPC_ADDR16_HA:
7483     case elfcpp::R_POWERPC_GOT16_HI:
7484     case elfcpp::R_POWERPC_GOT16_HA:
7485     case elfcpp::R_POWERPC_PLT16_HI:
7486     case elfcpp::R_POWERPC_PLT16_HA:
7487     case elfcpp::R_POWERPC_SECTOFF_HI:
7488     case elfcpp::R_POWERPC_SECTOFF_HA:
7489     case elfcpp::R_PPC64_TOC16_HI:
7490     case elfcpp::R_PPC64_TOC16_HA:
7491     case elfcpp::R_PPC64_PLTGOT16_HI:
7492     case elfcpp::R_PPC64_PLTGOT16_HA:
7493     case elfcpp::R_POWERPC_TPREL16_HI:
7494     case elfcpp::R_POWERPC_TPREL16_HA:
7495     case elfcpp::R_POWERPC_DTPREL16_HI:
7496     case elfcpp::R_POWERPC_DTPREL16_HA:
7497     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7498     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7499     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7500     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7501     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7502     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7503     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7504     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7505     case elfcpp::R_POWERPC_REL16_HI:
7506     case elfcpp::R_POWERPC_REL16_HA:
7507       if (size != 32)
7508 	overflow = Reloc::CHECK_HIGH_INSN;
7509       break;
7510 
7511     case elfcpp::R_POWERPC_REL16:
7512     case elfcpp::R_PPC64_TOC16:
7513     case elfcpp::R_POWERPC_GOT16:
7514     case elfcpp::R_POWERPC_SECTOFF:
7515     case elfcpp::R_POWERPC_TPREL16:
7516     case elfcpp::R_POWERPC_DTPREL16:
7517     case elfcpp::R_POWERPC_GOT_TLSGD16:
7518     case elfcpp::R_POWERPC_GOT_TLSLD16:
7519     case elfcpp::R_POWERPC_GOT_TPREL16:
7520     case elfcpp::R_POWERPC_GOT_DTPREL16:
7521       overflow = Reloc::CHECK_LOW_INSN;
7522       break;
7523 
7524     case elfcpp::R_POWERPC_ADDR24:
7525     case elfcpp::R_POWERPC_ADDR14:
7526     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7527     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7528     case elfcpp::R_PPC64_ADDR16_DS:
7529     case elfcpp::R_POWERPC_REL24:
7530     case elfcpp::R_PPC_PLTREL24:
7531     case elfcpp::R_PPC_LOCAL24PC:
7532     case elfcpp::R_PPC64_TPREL16_DS:
7533     case elfcpp::R_PPC64_DTPREL16_DS:
7534     case elfcpp::R_PPC64_TOC16_DS:
7535     case elfcpp::R_PPC64_GOT16_DS:
7536     case elfcpp::R_PPC64_SECTOFF_DS:
7537     case elfcpp::R_POWERPC_REL14:
7538     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7539     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7540       overflow = Reloc::CHECK_SIGNED;
7541       break;
7542     }
7543 
7544   if (overflow == Reloc::CHECK_LOW_INSN
7545       || overflow == Reloc::CHECK_HIGH_INSN)
7546     {
7547       Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7548       Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7549 
7550       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7551 	overflow = Reloc::CHECK_BITFIELD;
7552       else if (overflow == Reloc::CHECK_LOW_INSN
7553 	       ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7554 		  || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7555 		  || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7556 	       : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7557 		  || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7558 		  || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7559 	overflow = Reloc::CHECK_UNSIGNED;
7560       else
7561 	overflow = Reloc::CHECK_SIGNED;
7562     }
7563 
7564   typename Powerpc_relocate_functions<size, big_endian>::Status status
7565     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7566   switch (r_type)
7567     {
7568     case elfcpp::R_POWERPC_NONE:
7569     case elfcpp::R_POWERPC_TLS:
7570     case elfcpp::R_POWERPC_GNU_VTINHERIT:
7571     case elfcpp::R_POWERPC_GNU_VTENTRY:
7572       break;
7573 
7574     case elfcpp::R_PPC64_ADDR64:
7575     case elfcpp::R_PPC64_REL64:
7576     case elfcpp::R_PPC64_TOC:
7577     case elfcpp::R_PPC64_ADDR64_LOCAL:
7578       Reloc::addr64(view, value);
7579       break;
7580 
7581     case elfcpp::R_POWERPC_TPREL:
7582     case elfcpp::R_POWERPC_DTPREL:
7583       if (size == 64)
7584 	Reloc::addr64(view, value);
7585       else
7586 	status = Reloc::addr32(view, value, overflow);
7587       break;
7588 
7589     case elfcpp::R_PPC64_UADDR64:
7590       Reloc::addr64_u(view, value);
7591       break;
7592 
7593     case elfcpp::R_POWERPC_ADDR32:
7594       status = Reloc::addr32(view, value, overflow);
7595       break;
7596 
7597     case elfcpp::R_POWERPC_REL32:
7598     case elfcpp::R_POWERPC_UADDR32:
7599       status = Reloc::addr32_u(view, value, overflow);
7600       break;
7601 
7602     case elfcpp::R_POWERPC_ADDR24:
7603     case elfcpp::R_POWERPC_REL24:
7604     case elfcpp::R_PPC_PLTREL24:
7605     case elfcpp::R_PPC_LOCAL24PC:
7606       status = Reloc::addr24(view, value, overflow);
7607       break;
7608 
7609     case elfcpp::R_POWERPC_GOT_DTPREL16:
7610     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7611       if (size == 64)
7612 	{
7613 	  status = Reloc::addr16_ds(view, value, overflow);
7614 	  break;
7615 	}
7616     case elfcpp::R_POWERPC_ADDR16:
7617     case elfcpp::R_POWERPC_REL16:
7618     case elfcpp::R_PPC64_TOC16:
7619     case elfcpp::R_POWERPC_GOT16:
7620     case elfcpp::R_POWERPC_SECTOFF:
7621     case elfcpp::R_POWERPC_TPREL16:
7622     case elfcpp::R_POWERPC_DTPREL16:
7623     case elfcpp::R_POWERPC_GOT_TLSGD16:
7624     case elfcpp::R_POWERPC_GOT_TLSLD16:
7625     case elfcpp::R_POWERPC_GOT_TPREL16:
7626     case elfcpp::R_POWERPC_ADDR16_LO:
7627     case elfcpp::R_POWERPC_REL16_LO:
7628     case elfcpp::R_PPC64_TOC16_LO:
7629     case elfcpp::R_POWERPC_GOT16_LO:
7630     case elfcpp::R_POWERPC_SECTOFF_LO:
7631     case elfcpp::R_POWERPC_TPREL16_LO:
7632     case elfcpp::R_POWERPC_DTPREL16_LO:
7633     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7634     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7635     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7636       status = Reloc::addr16(view, value, overflow);
7637       break;
7638 
7639     case elfcpp::R_POWERPC_UADDR16:
7640       status = Reloc::addr16_u(view, value, overflow);
7641       break;
7642 
7643     case elfcpp::R_PPC64_ADDR16_HIGH:
7644     case elfcpp::R_PPC64_TPREL16_HIGH:
7645     case elfcpp::R_PPC64_DTPREL16_HIGH:
7646       if (size == 32)
7647 	// R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7648 	goto unsupp;
7649     case elfcpp::R_POWERPC_ADDR16_HI:
7650     case elfcpp::R_POWERPC_REL16_HI:
7651     case elfcpp::R_PPC64_TOC16_HI:
7652     case elfcpp::R_POWERPC_GOT16_HI:
7653     case elfcpp::R_POWERPC_SECTOFF_HI:
7654     case elfcpp::R_POWERPC_TPREL16_HI:
7655     case elfcpp::R_POWERPC_DTPREL16_HI:
7656     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7657     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7658     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7659     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7660       Reloc::addr16_hi(view, value);
7661       break;
7662 
7663     case elfcpp::R_PPC64_ADDR16_HIGHA:
7664     case elfcpp::R_PPC64_TPREL16_HIGHA:
7665     case elfcpp::R_PPC64_DTPREL16_HIGHA:
7666       if (size == 32)
7667 	// R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7668 	goto unsupp;
7669     case elfcpp::R_POWERPC_ADDR16_HA:
7670     case elfcpp::R_POWERPC_REL16_HA:
7671     case elfcpp::R_PPC64_TOC16_HA:
7672     case elfcpp::R_POWERPC_GOT16_HA:
7673     case elfcpp::R_POWERPC_SECTOFF_HA:
7674     case elfcpp::R_POWERPC_TPREL16_HA:
7675     case elfcpp::R_POWERPC_DTPREL16_HA:
7676     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7677     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7678     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7679     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7680       Reloc::addr16_ha(view, value);
7681       break;
7682 
7683     case elfcpp::R_PPC64_DTPREL16_HIGHER:
7684       if (size == 32)
7685 	// R_PPC_EMB_NADDR16_LO
7686 	goto unsupp;
7687     case elfcpp::R_PPC64_ADDR16_HIGHER:
7688     case elfcpp::R_PPC64_TPREL16_HIGHER:
7689       Reloc::addr16_hi2(view, value);
7690       break;
7691 
7692     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7693       if (size == 32)
7694 	// R_PPC_EMB_NADDR16_HI
7695 	goto unsupp;
7696     case elfcpp::R_PPC64_ADDR16_HIGHERA:
7697     case elfcpp::R_PPC64_TPREL16_HIGHERA:
7698       Reloc::addr16_ha2(view, value);
7699       break;
7700 
7701     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7702       if (size == 32)
7703 	// R_PPC_EMB_NADDR16_HA
7704 	goto unsupp;
7705     case elfcpp::R_PPC64_ADDR16_HIGHEST:
7706     case elfcpp::R_PPC64_TPREL16_HIGHEST:
7707       Reloc::addr16_hi3(view, value);
7708       break;
7709 
7710     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7711       if (size == 32)
7712 	// R_PPC_EMB_SDAI16
7713 	goto unsupp;
7714     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7715     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7716       Reloc::addr16_ha3(view, value);
7717       break;
7718 
7719     case elfcpp::R_PPC64_DTPREL16_DS:
7720     case elfcpp::R_PPC64_DTPREL16_LO_DS:
7721       if (size == 32)
7722 	// R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7723 	goto unsupp;
7724     case elfcpp::R_PPC64_TPREL16_DS:
7725     case elfcpp::R_PPC64_TPREL16_LO_DS:
7726       if (size == 32)
7727 	// R_PPC_TLSGD, R_PPC_TLSLD
7728 	break;
7729     case elfcpp::R_PPC64_ADDR16_DS:
7730     case elfcpp::R_PPC64_ADDR16_LO_DS:
7731     case elfcpp::R_PPC64_TOC16_DS:
7732     case elfcpp::R_PPC64_TOC16_LO_DS:
7733     case elfcpp::R_PPC64_GOT16_DS:
7734     case elfcpp::R_PPC64_GOT16_LO_DS:
7735     case elfcpp::R_PPC64_SECTOFF_DS:
7736     case elfcpp::R_PPC64_SECTOFF_LO_DS:
7737       status = Reloc::addr16_ds(view, value, overflow);
7738       break;
7739 
7740     case elfcpp::R_POWERPC_ADDR14:
7741     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7742     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7743     case elfcpp::R_POWERPC_REL14:
7744     case elfcpp::R_POWERPC_REL14_BRTAKEN:
7745     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7746       status = Reloc::addr14(view, value, overflow);
7747       break;
7748 
7749     case elfcpp::R_POWERPC_COPY:
7750     case elfcpp::R_POWERPC_GLOB_DAT:
7751     case elfcpp::R_POWERPC_JMP_SLOT:
7752     case elfcpp::R_POWERPC_RELATIVE:
7753     case elfcpp::R_POWERPC_DTPMOD:
7754     case elfcpp::R_PPC64_JMP_IREL:
7755     case elfcpp::R_POWERPC_IRELATIVE:
7756       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7757 			     _("unexpected reloc %u in object file"),
7758 			     r_type);
7759       break;
7760 
7761     case elfcpp::R_PPC_EMB_SDA21:
7762       if (size == 32)
7763 	goto unsupp;
7764       else
7765 	{
7766 	  // R_PPC64_TOCSAVE.  For the time being this can be ignored.
7767 	}
7768       break;
7769 
7770     case elfcpp::R_PPC_EMB_SDA2I16:
7771     case elfcpp::R_PPC_EMB_SDA2REL:
7772       if (size == 32)
7773 	goto unsupp;
7774       // R_PPC64_TLSGD, R_PPC64_TLSLD
7775       break;
7776 
7777     case elfcpp::R_POWERPC_PLT32:
7778     case elfcpp::R_POWERPC_PLTREL32:
7779     case elfcpp::R_POWERPC_PLT16_LO:
7780     case elfcpp::R_POWERPC_PLT16_HI:
7781     case elfcpp::R_POWERPC_PLT16_HA:
7782     case elfcpp::R_PPC_SDAREL16:
7783     case elfcpp::R_POWERPC_ADDR30:
7784     case elfcpp::R_PPC64_PLT64:
7785     case elfcpp::R_PPC64_PLTREL64:
7786     case elfcpp::R_PPC64_PLTGOT16:
7787     case elfcpp::R_PPC64_PLTGOT16_LO:
7788     case elfcpp::R_PPC64_PLTGOT16_HI:
7789     case elfcpp::R_PPC64_PLTGOT16_HA:
7790     case elfcpp::R_PPC64_PLT16_LO_DS:
7791     case elfcpp::R_PPC64_PLTGOT16_DS:
7792     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7793     case elfcpp::R_PPC_EMB_RELSDA:
7794     case elfcpp::R_PPC_TOC16:
7795     default:
7796     unsupp:
7797       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7798 			     _("unsupported reloc %u"),
7799 			     r_type);
7800       break;
7801     }
7802   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7803       && (has_stub_value
7804 	  || !(gsym != NULL
7805 	       && gsym->is_weak_undefined()
7806 	       && is_branch_reloc(r_type))))
7807     {
7808       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7809 			     _("relocation overflow"));
7810       if (has_stub_value)
7811 	gold_info(_("try relinking with a smaller --stub-group-size"));
7812     }
7813 
7814   return true;
7815 }
7816 
7817 // Relocate section data.
7818 
7819 template<int size, bool big_endian>
7820 void
relocate_section(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,unsigned char * view,Address address,section_size_type view_size,const Reloc_symbol_changes * reloc_symbol_changes)7821 Target_powerpc<size, big_endian>::relocate_section(
7822     const Relocate_info<size, big_endian>* relinfo,
7823     unsigned int sh_type,
7824     const unsigned char* prelocs,
7825     size_t reloc_count,
7826     Output_section* output_section,
7827     bool needs_special_offset_handling,
7828     unsigned char* view,
7829     Address address,
7830     section_size_type view_size,
7831     const Reloc_symbol_changes* reloc_symbol_changes)
7832 {
7833   typedef Target_powerpc<size, big_endian> Powerpc;
7834   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7835   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7836     Powerpc_comdat_behavior;
7837 
7838   gold_assert(sh_type == elfcpp::SHT_RELA);
7839 
7840   gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7841 			 Powerpc_relocate, Powerpc_comdat_behavior>(
7842     relinfo,
7843     this,
7844     prelocs,
7845     reloc_count,
7846     output_section,
7847     needs_special_offset_handling,
7848     view,
7849     address,
7850     view_size,
7851     reloc_symbol_changes);
7852 }
7853 
7854 class Powerpc_scan_relocatable_reloc
7855 {
7856 public:
7857   // Return the strategy to use for a local symbol which is not a
7858   // section symbol, given the relocation type.
7859   inline Relocatable_relocs::Reloc_strategy
local_non_section_strategy(unsigned int r_type,Relobj *,unsigned int r_sym)7860   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7861   {
7862     if (r_type == 0 && r_sym == 0)
7863       return Relocatable_relocs::RELOC_DISCARD;
7864     return Relocatable_relocs::RELOC_COPY;
7865   }
7866 
7867   // Return the strategy to use for a local symbol which is a section
7868   // symbol, given the relocation type.
7869   inline Relocatable_relocs::Reloc_strategy
local_section_strategy(unsigned int,Relobj *)7870   local_section_strategy(unsigned int, Relobj*)
7871   {
7872     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7873   }
7874 
7875   // Return the strategy to use for a global symbol, given the
7876   // relocation type, the object, and the symbol index.
7877   inline Relocatable_relocs::Reloc_strategy
global_strategy(unsigned int r_type,Relobj *,unsigned int)7878   global_strategy(unsigned int r_type, Relobj*, unsigned int)
7879   {
7880     if (r_type == elfcpp::R_PPC_PLTREL24)
7881       return Relocatable_relocs::RELOC_SPECIAL;
7882     return Relocatable_relocs::RELOC_COPY;
7883   }
7884 };
7885 
7886 // Scan the relocs during a relocatable link.
7887 
7888 template<int size, bool big_endian>
7889 void
scan_relocatable_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols,Relocatable_relocs * rr)7890 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7891     Symbol_table* symtab,
7892     Layout* layout,
7893     Sized_relobj_file<size, big_endian>* object,
7894     unsigned int data_shndx,
7895     unsigned int sh_type,
7896     const unsigned char* prelocs,
7897     size_t reloc_count,
7898     Output_section* output_section,
7899     bool needs_special_offset_handling,
7900     size_t local_symbol_count,
7901     const unsigned char* plocal_symbols,
7902     Relocatable_relocs* rr)
7903 {
7904   gold_assert(sh_type == elfcpp::SHT_RELA);
7905 
7906   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7907 				Powerpc_scan_relocatable_reloc>(
7908     symtab,
7909     layout,
7910     object,
7911     data_shndx,
7912     prelocs,
7913     reloc_count,
7914     output_section,
7915     needs_special_offset_handling,
7916     local_symbol_count,
7917     plocal_symbols,
7918     rr);
7919 }
7920 
7921 // Emit relocations for a section.
7922 // This is a modified version of the function by the same name in
7923 // target-reloc.h.  Using relocate_special_relocatable for
7924 // R_PPC_PLTREL24 would require duplication of the entire body of the
7925 // loop, so we may as well duplicate the whole thing.
7926 
7927 template<int size, bool big_endian>
7928 void
relocate_relocs(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,const Relocatable_relocs * rr,unsigned char *,Address view_address,section_size_type,unsigned char * reloc_view,section_size_type reloc_view_size)7929 Target_powerpc<size, big_endian>::relocate_relocs(
7930     const Relocate_info<size, big_endian>* relinfo,
7931     unsigned int sh_type,
7932     const unsigned char* prelocs,
7933     size_t reloc_count,
7934     Output_section* output_section,
7935     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7936     const Relocatable_relocs* rr,
7937     unsigned char*,
7938     Address view_address,
7939     section_size_type,
7940     unsigned char* reloc_view,
7941     section_size_type reloc_view_size)
7942 {
7943   gold_assert(sh_type == elfcpp::SHT_RELA);
7944 
7945   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7946     Reltype;
7947   typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7948     Reltype_write;
7949   const int reloc_size
7950     = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7951 
7952   Powerpc_relobj<size, big_endian>* const object
7953     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7954   const unsigned int local_count = object->local_symbol_count();
7955   unsigned int got2_shndx = object->got2_shndx();
7956   Address got2_addend = 0;
7957   if (got2_shndx != 0)
7958     {
7959       got2_addend = object->get_output_section_offset(got2_shndx);
7960       gold_assert(got2_addend != invalid_address);
7961     }
7962 
7963   unsigned char* pwrite = reloc_view;
7964   bool zap_next = false;
7965   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7966     {
7967       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7968       if (strategy == Relocatable_relocs::RELOC_DISCARD)
7969 	continue;
7970 
7971       Reltype reloc(prelocs);
7972       Reltype_write reloc_write(pwrite);
7973 
7974       Address offset = reloc.get_r_offset();
7975       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7976       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7977       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7978       const unsigned int orig_r_sym = r_sym;
7979       typename elfcpp::Elf_types<size>::Elf_Swxword addend
7980 	= reloc.get_r_addend();
7981       const Symbol* gsym = NULL;
7982 
7983       if (zap_next)
7984 	{
7985 	  // We could arrange to discard these and other relocs for
7986 	  // tls optimised sequences in the strategy methods, but for
7987 	  // now do as BFD ld does.
7988 	  r_type = elfcpp::R_POWERPC_NONE;
7989 	  zap_next = false;
7990 	}
7991 
7992       // Get the new symbol index.
7993       if (r_sym < local_count)
7994 	{
7995 	  switch (strategy)
7996 	    {
7997 	    case Relocatable_relocs::RELOC_COPY:
7998 	    case Relocatable_relocs::RELOC_SPECIAL:
7999 	      if (r_sym != 0)
8000 		{
8001 		  r_sym = object->symtab_index(r_sym);
8002 		  gold_assert(r_sym != -1U);
8003 		}
8004 	      break;
8005 
8006 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8007 	      {
8008 		// We are adjusting a section symbol.  We need to find
8009 		// the symbol table index of the section symbol for
8010 		// the output section corresponding to input section
8011 		// in which this symbol is defined.
8012 		gold_assert(r_sym < local_count);
8013 		bool is_ordinary;
8014 		unsigned int shndx =
8015 		  object->local_symbol_input_shndx(r_sym, &is_ordinary);
8016 		gold_assert(is_ordinary);
8017 		Output_section* os = object->output_section(shndx);
8018 		gold_assert(os != NULL);
8019 		gold_assert(os->needs_symtab_index());
8020 		r_sym = os->symtab_index();
8021 	      }
8022 	      break;
8023 
8024 	    default:
8025 	      gold_unreachable();
8026 	    }
8027 	}
8028       else
8029 	{
8030 	  gsym = object->global_symbol(r_sym);
8031 	  gold_assert(gsym != NULL);
8032 	  if (gsym->is_forwarder())
8033 	    gsym = relinfo->symtab->resolve_forwards(gsym);
8034 
8035 	  gold_assert(gsym->has_symtab_index());
8036 	  r_sym = gsym->symtab_index();
8037 	}
8038 
8039       // Get the new offset--the location in the output section where
8040       // this relocation should be applied.
8041       if (static_cast<Address>(offset_in_output_section) != invalid_address)
8042 	offset += offset_in_output_section;
8043       else
8044 	{
8045 	  section_offset_type sot_offset =
8046 	    convert_types<section_offset_type, Address>(offset);
8047 	  section_offset_type new_sot_offset =
8048 	    output_section->output_offset(object, relinfo->data_shndx,
8049 					  sot_offset);
8050 	  gold_assert(new_sot_offset != -1);
8051 	  offset = new_sot_offset;
8052 	}
8053 
8054       // In an object file, r_offset is an offset within the section.
8055       // In an executable or dynamic object, generated by
8056       // --emit-relocs, r_offset is an absolute address.
8057       if (!parameters->options().relocatable())
8058 	{
8059 	  offset += view_address;
8060 	  if (static_cast<Address>(offset_in_output_section) != invalid_address)
8061 	    offset -= offset_in_output_section;
8062 	}
8063 
8064       // Handle the reloc addend based on the strategy.
8065       if (strategy == Relocatable_relocs::RELOC_COPY)
8066 	;
8067       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8068 	{
8069 	  const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8070 	  addend = psymval->value(object, addend);
8071 	}
8072       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8073 	{
8074 	  if (addend >= 32768)
8075 	    addend += got2_addend;
8076 	}
8077       else
8078 	gold_unreachable();
8079 
8080       if (!parameters->options().relocatable())
8081 	{
8082 	  if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8083 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8084 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8085 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8086 	    {
8087 	      // First instruction of a global dynamic sequence,
8088 	      // arg setup insn.
8089 	      const bool final = gsym == NULL || gsym->final_value_is_known();
8090 	      switch (this->optimize_tls_gd(final))
8091 		{
8092 		case tls::TLSOPT_TO_IE:
8093 		  r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8094 			     - elfcpp::R_POWERPC_GOT_TLSGD16);
8095 		  break;
8096 		case tls::TLSOPT_TO_LE:
8097 		  if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8098 		      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8099 		    r_type = elfcpp::R_POWERPC_TPREL16_HA;
8100 		  else
8101 		    {
8102 		      r_type = elfcpp::R_POWERPC_NONE;
8103 		      offset -= 2 * big_endian;
8104 		    }
8105 		  break;
8106 		default:
8107 		  break;
8108 		}
8109 	    }
8110 	  else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8111 		   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8112 		   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8113 		   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8114 	    {
8115 	      // First instruction of a local dynamic sequence,
8116 	      // arg setup insn.
8117 	      if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8118 		{
8119 		  if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8120 		      || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8121 		    {
8122 		      r_type = elfcpp::R_POWERPC_TPREL16_HA;
8123 		      const Output_section* os = relinfo->layout->tls_segment()
8124 			->first_section();
8125 		      gold_assert(os != NULL);
8126 		      gold_assert(os->needs_symtab_index());
8127 		      r_sym = os->symtab_index();
8128 		      addend = dtp_offset;
8129 		    }
8130 		  else
8131 		    {
8132 		      r_type = elfcpp::R_POWERPC_NONE;
8133 		      offset -= 2 * big_endian;
8134 		    }
8135 		}
8136 	    }
8137 	  else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8138 		   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8139 		   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8140 		   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8141 	    {
8142 	      // First instruction of initial exec sequence.
8143 	      const bool final = gsym == NULL || gsym->final_value_is_known();
8144 	      if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8145 		{
8146 		  if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8147 		      || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8148 		    r_type = elfcpp::R_POWERPC_TPREL16_HA;
8149 		  else
8150 		    {
8151 		      r_type = elfcpp::R_POWERPC_NONE;
8152 		      offset -= 2 * big_endian;
8153 		    }
8154 		}
8155 	    }
8156 	  else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8157 		   || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8158 	    {
8159 	      // Second instruction of a global dynamic sequence,
8160 	      // the __tls_get_addr call
8161 	      const bool final = gsym == NULL || gsym->final_value_is_known();
8162 	      switch (this->optimize_tls_gd(final))
8163 		{
8164 		case tls::TLSOPT_TO_IE:
8165 		  r_type = elfcpp::R_POWERPC_NONE;
8166 		  zap_next = true;
8167 		  break;
8168 		case tls::TLSOPT_TO_LE:
8169 		  r_type = elfcpp::R_POWERPC_TPREL16_LO;
8170 		  offset += 2 * big_endian;
8171 		  zap_next = true;
8172 		  break;
8173 		default:
8174 		  break;
8175 		}
8176 	    }
8177 	  else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8178 		   || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8179 	    {
8180 	      // Second instruction of a local dynamic sequence,
8181 	      // the __tls_get_addr call
8182 	      if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8183 		{
8184 		  const Output_section* os = relinfo->layout->tls_segment()
8185 		    ->first_section();
8186 		  gold_assert(os != NULL);
8187 		  gold_assert(os->needs_symtab_index());
8188 		  r_sym = os->symtab_index();
8189 		  addend = dtp_offset;
8190 		  r_type = elfcpp::R_POWERPC_TPREL16_LO;
8191 		  offset += 2 * big_endian;
8192 		  zap_next = true;
8193 		}
8194 	    }
8195 	  else if (r_type == elfcpp::R_POWERPC_TLS)
8196 	    {
8197 	      // Second instruction of an initial exec sequence
8198 	      const bool final = gsym == NULL || gsym->final_value_is_known();
8199 	      if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8200 		{
8201 		  r_type = elfcpp::R_POWERPC_TPREL16_LO;
8202 		  offset += 2 * big_endian;
8203 		}
8204 	    }
8205 	}
8206 
8207       reloc_write.put_r_offset(offset);
8208       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8209       reloc_write.put_r_addend(addend);
8210 
8211       pwrite += reloc_size;
8212     }
8213 
8214   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8215 	      == reloc_view_size);
8216 }
8217 
8218 // Return the value to use for a dynamic symbol which requires special
8219 // treatment.  This is how we support equality comparisons of function
8220 // pointers across shared library boundaries, as described in the
8221 // processor specific ABI supplement.
8222 
8223 template<int size, bool big_endian>
8224 uint64_t
do_dynsym_value(const Symbol * gsym) const8225 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8226 {
8227   if (size == 32)
8228     {
8229       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8230       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8231 	   p != this->stub_tables_.end();
8232 	   ++p)
8233 	{
8234 	  Address off = (*p)->find_plt_call_entry(gsym);
8235 	  if (off != invalid_address)
8236 	    return (*p)->stub_address() + off;
8237 	}
8238     }
8239   else if (this->abiversion() >= 2)
8240     {
8241       Address off = this->glink_section()->find_global_entry(gsym);
8242       if (off != invalid_address)
8243 	return this->glink_section()->global_entry_address() + off;
8244     }
8245   gold_unreachable();
8246 }
8247 
8248 // Return the PLT address to use for a local symbol.
8249 template<int size, bool big_endian>
8250 uint64_t
do_plt_address_for_local(const Relobj * object,unsigned int symndx) const8251 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8252     const Relobj* object,
8253     unsigned int symndx) const
8254 {
8255   if (size == 32)
8256     {
8257       const Sized_relobj<size, big_endian>* relobj
8258 	= static_cast<const Sized_relobj<size, big_endian>*>(object);
8259       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8260 	   p != this->stub_tables_.end();
8261 	   ++p)
8262 	{
8263 	  Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8264 						  symndx);
8265 	  if (off != invalid_address)
8266 	    return (*p)->stub_address() + off;
8267 	}
8268     }
8269   gold_unreachable();
8270 }
8271 
8272 // Return the PLT address to use for a global symbol.
8273 template<int size, bool big_endian>
8274 uint64_t
do_plt_address_for_global(const Symbol * gsym) const8275 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8276     const Symbol* gsym) const
8277 {
8278   if (size == 32)
8279     {
8280       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8281 	   p != this->stub_tables_.end();
8282 	   ++p)
8283 	{
8284 	  Address off = (*p)->find_plt_call_entry(gsym);
8285 	  if (off != invalid_address)
8286 	    return (*p)->stub_address() + off;
8287 	}
8288     }
8289   else if (this->abiversion() >= 2)
8290     {
8291       Address off = this->glink_section()->find_global_entry(gsym);
8292       if (off != invalid_address)
8293 	return this->glink_section()->global_entry_address() + off;
8294     }
8295   gold_unreachable();
8296 }
8297 
8298 // Return the offset to use for the GOT_INDX'th got entry which is
8299 // for a local tls symbol specified by OBJECT, SYMNDX.
8300 template<int size, bool big_endian>
8301 int64_t
do_tls_offset_for_local(const Relobj * object,unsigned int symndx,unsigned int got_indx) const8302 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8303     const Relobj* object,
8304     unsigned int symndx,
8305     unsigned int got_indx) const
8306 {
8307   const Powerpc_relobj<size, big_endian>* ppc_object
8308     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8309   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8310     {
8311       for (Got_type got_type = GOT_TYPE_TLSGD;
8312 	   got_type <= GOT_TYPE_TPREL;
8313 	   got_type = Got_type(got_type + 1))
8314 	if (ppc_object->local_has_got_offset(symndx, got_type))
8315 	  {
8316 	    unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8317 	    if (got_type == GOT_TYPE_TLSGD)
8318 	      off += size / 8;
8319 	    if (off == got_indx * (size / 8))
8320 	      {
8321 		if (got_type == GOT_TYPE_TPREL)
8322 		  return -tp_offset;
8323 		else
8324 		  return -dtp_offset;
8325 	      }
8326 	  }
8327     }
8328   gold_unreachable();
8329 }
8330 
8331 // Return the offset to use for the GOT_INDX'th got entry which is
8332 // for global tls symbol GSYM.
8333 template<int size, bool big_endian>
8334 int64_t
do_tls_offset_for_global(Symbol * gsym,unsigned int got_indx) const8335 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8336     Symbol* gsym,
8337     unsigned int got_indx) const
8338 {
8339   if (gsym->type() == elfcpp::STT_TLS)
8340     {
8341       for (Got_type got_type = GOT_TYPE_TLSGD;
8342 	   got_type <= GOT_TYPE_TPREL;
8343 	   got_type = Got_type(got_type + 1))
8344 	if (gsym->has_got_offset(got_type))
8345 	  {
8346 	    unsigned int off = gsym->got_offset(got_type);
8347 	    if (got_type == GOT_TYPE_TLSGD)
8348 	      off += size / 8;
8349 	    if (off == got_indx * (size / 8))
8350 	      {
8351 		if (got_type == GOT_TYPE_TPREL)
8352 		  return -tp_offset;
8353 		else
8354 		  return -dtp_offset;
8355 	      }
8356 	  }
8357     }
8358   gold_unreachable();
8359 }
8360 
8361 // The selector for powerpc object files.
8362 
8363 template<int size, bool big_endian>
8364 class Target_selector_powerpc : public Target_selector
8365 {
8366 public:
Target_selector_powerpc()8367   Target_selector_powerpc()
8368     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8369 		      size, big_endian,
8370 		      (size == 64
8371 		       ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8372 		       : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8373 		      (size == 64
8374 		       ? (big_endian ? "elf64ppc" : "elf64lppc")
8375 		       : (big_endian ? "elf32ppc" : "elf32lppc")))
8376   { }
8377 
8378   virtual Target*
do_instantiate_target()8379   do_instantiate_target()
8380   { return new Target_powerpc<size, big_endian>(); }
8381 };
8382 
8383 Target_selector_powerpc<32, true> target_selector_ppc32;
8384 Target_selector_powerpc<32, false> target_selector_ppc32le;
8385 Target_selector_powerpc<64, true> target_selector_ppc64;
8386 Target_selector_powerpc<64, false> target_selector_ppc64le;
8387 
8388 // Instantiate these constants for -O0
8389 template<int size, bool big_endian>
8390 const int Output_data_glink<size, big_endian>::pltresolve_size;
8391 template<int size, bool big_endian>
8392 const typename Output_data_glink<size, big_endian>::Address
8393   Output_data_glink<size, big_endian>::invalid_address;
8394 template<int size, bool big_endian>
8395 const typename Stub_table<size, big_endian>::Address
8396   Stub_table<size, big_endian>::invalid_address;
8397 template<int size, bool big_endian>
8398 const typename Target_powerpc<size, big_endian>::Address
8399   Target_powerpc<size, big_endian>::invalid_address;
8400 
8401 } // End anonymous namespace.
8402