1 /*
2  *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <cmath>
12 #include <cstring>
13 
14 #include "testing/gmock/include/gmock/gmock.h"
15 #include "testing/gtest/include/gtest/gtest.h"
16 #include "webrtc/base/scoped_ptr.h"
17 #include "webrtc/common_audio/include/audio_util.h"
18 #include "webrtc/common_audio/resampler/push_sinc_resampler.h"
19 #include "webrtc/common_audio/resampler/sinusoidal_linear_chirp_source.h"
20 #include "webrtc/system_wrappers/include/tick_util.h"
21 #include "webrtc/typedefs.h"
22 
23 namespace webrtc {
24 namespace {
25 
26 // Almost all conversions have an RMS error of around -14 dbFS.
27 const double kResamplingRMSError = -14.42;
28 
29 // Used to convert errors to dbFS.
30 template <typename T>
DBFS(T x)31 T DBFS(T x) {
32   return 20 * std::log10(x);
33 }
34 
35 }  // namespace
36 
37 class PushSincResamplerTest : public ::testing::TestWithParam<
38     ::testing::tuple<int, int, double, double>> {
39  public:
PushSincResamplerTest()40   PushSincResamplerTest()
41       : input_rate_(::testing::get<0>(GetParam())),
42         output_rate_(::testing::get<1>(GetParam())),
43         rms_error_(::testing::get<2>(GetParam())),
44         low_freq_error_(::testing::get<3>(GetParam())) {
45   }
46 
~PushSincResamplerTest()47   ~PushSincResamplerTest() override {}
48 
49  protected:
50   void ResampleBenchmarkTest(bool int_format);
51   void ResampleTest(bool int_format);
52 
53   int input_rate_;
54   int output_rate_;
55   double rms_error_;
56   double low_freq_error_;
57 };
58 
59 class ZeroSource : public SincResamplerCallback {
60  public:
Run(size_t frames,float * destination)61   void Run(size_t frames, float* destination) {
62     std::memset(destination, 0, sizeof(float) * frames);
63   }
64 };
65 
ResampleBenchmarkTest(bool int_format)66 void PushSincResamplerTest::ResampleBenchmarkTest(bool int_format) {
67   const size_t input_samples = static_cast<size_t>(input_rate_ / 100);
68   const size_t output_samples = static_cast<size_t>(output_rate_ / 100);
69   const int kResampleIterations = 500000;
70 
71   // Source for data to be resampled.
72   ZeroSource resampler_source;
73 
74   rtc::scoped_ptr<float[]> resampled_destination(new float[output_samples]);
75   rtc::scoped_ptr<float[]> source(new float[input_samples]);
76   rtc::scoped_ptr<int16_t[]> source_int(new int16_t[input_samples]);
77   rtc::scoped_ptr<int16_t[]> destination_int(new int16_t[output_samples]);
78 
79   resampler_source.Run(input_samples, source.get());
80   for (size_t i = 0; i < input_samples; ++i) {
81     source_int[i] = static_cast<int16_t>(floor(32767 * source[i] + 0.5));
82   }
83 
84   printf("Benchmarking %d iterations of %d Hz -> %d Hz:\n",
85          kResampleIterations, input_rate_, output_rate_);
86   const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
87   SincResampler sinc_resampler(io_ratio, SincResampler::kDefaultRequestSize,
88                                &resampler_source);
89   TickTime start = TickTime::Now();
90   for (int i = 0; i < kResampleIterations; ++i) {
91     sinc_resampler.Resample(output_samples, resampled_destination.get());
92   }
93   double total_time_sinc_us = (TickTime::Now() - start).Microseconds();
94   printf("SincResampler took %.2f us per frame.\n",
95          total_time_sinc_us / kResampleIterations);
96 
97   PushSincResampler resampler(input_samples, output_samples);
98   start = TickTime::Now();
99   if (int_format) {
100     for (int i = 0; i < kResampleIterations; ++i) {
101       EXPECT_EQ(output_samples,
102                 resampler.Resample(source_int.get(),
103                                    input_samples,
104                                    destination_int.get(),
105                                    output_samples));
106     }
107   } else {
108     for (int i = 0; i < kResampleIterations; ++i) {
109       EXPECT_EQ(output_samples,
110                 resampler.Resample(source.get(),
111                                    input_samples,
112                                    resampled_destination.get(),
113                                    output_samples));
114     }
115   }
116   double total_time_us = (TickTime::Now() - start).Microseconds();
117   printf("PushSincResampler took %.2f us per frame; which is a %.1f%% overhead "
118          "on SincResampler.\n\n", total_time_us / kResampleIterations,
119          (total_time_us - total_time_sinc_us) / total_time_sinc_us * 100);
120 }
121 
122 // Disabled because it takes too long to run routinely. Use for performance
123 // benchmarking when needed.
TEST_P(PushSincResamplerTest,DISABLED_BenchmarkInt)124 TEST_P(PushSincResamplerTest, DISABLED_BenchmarkInt) {
125   ResampleBenchmarkTest(true);
126 }
127 
TEST_P(PushSincResamplerTest,DISABLED_BenchmarkFloat)128 TEST_P(PushSincResamplerTest, DISABLED_BenchmarkFloat) {
129   ResampleBenchmarkTest(false);
130 }
131 
132 // Tests resampling using a given input and output sample rate.
ResampleTest(bool int_format)133 void PushSincResamplerTest::ResampleTest(bool int_format) {
134   // Make comparisons using one second of data.
135   static const double kTestDurationSecs = 1;
136   // 10 ms blocks.
137   const size_t kNumBlocks = static_cast<size_t>(kTestDurationSecs * 100);
138   const size_t input_block_size = static_cast<size_t>(input_rate_ / 100);
139   const size_t output_block_size = static_cast<size_t>(output_rate_ / 100);
140   const size_t input_samples =
141       static_cast<size_t>(kTestDurationSecs * input_rate_);
142   const size_t output_samples =
143       static_cast<size_t>(kTestDurationSecs * output_rate_);
144 
145   // Nyquist frequency for the input sampling rate.
146   const double input_nyquist_freq = 0.5 * input_rate_;
147 
148   // Source for data to be resampled.
149   SinusoidalLinearChirpSource resampler_source(
150       input_rate_, input_samples, input_nyquist_freq, 0);
151 
152   PushSincResampler resampler(input_block_size, output_block_size);
153 
154   // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
155   // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
156   rtc::scoped_ptr<float[]> resampled_destination(new float[output_samples]);
157   rtc::scoped_ptr<float[]> pure_destination(new float[output_samples]);
158   rtc::scoped_ptr<float[]> source(new float[input_samples]);
159   rtc::scoped_ptr<int16_t[]> source_int(new int16_t[input_block_size]);
160   rtc::scoped_ptr<int16_t[]> destination_int(new int16_t[output_block_size]);
161 
162   // The sinc resampler has an implicit delay of approximately half the kernel
163   // size at the input sample rate. By moving to a push model, this delay
164   // becomes explicit and is managed by zero-stuffing in PushSincResampler. We
165   // deal with it in the test by delaying the "pure" source to match. It must be
166   // checked before the first call to Resample(), because ChunkSize() will
167   // change afterwards.
168   const size_t output_delay_samples = output_block_size -
169       resampler.get_resampler_for_testing()->ChunkSize();
170 
171   // Generate resampled signal.
172   // With the PushSincResampler, we produce the signal block-by-10ms-block
173   // rather than in a single pass, to exercise how it will be used in WebRTC.
174   resampler_source.Run(input_samples, source.get());
175   if (int_format) {
176     for (size_t i = 0; i < kNumBlocks; ++i) {
177       FloatToS16(&source[i * input_block_size], input_block_size,
178                source_int.get());
179       EXPECT_EQ(output_block_size,
180                 resampler.Resample(source_int.get(),
181                                    input_block_size,
182                                    destination_int.get(),
183                                    output_block_size));
184       S16ToFloat(destination_int.get(), output_block_size,
185                &resampled_destination[i * output_block_size]);
186     }
187   } else {
188     for (size_t i = 0; i < kNumBlocks; ++i) {
189       EXPECT_EQ(
190           output_block_size,
191           resampler.Resample(&source[i * input_block_size],
192                              input_block_size,
193                              &resampled_destination[i * output_block_size],
194                              output_block_size));
195     }
196   }
197 
198   // Generate pure signal.
199   SinusoidalLinearChirpSource pure_source(
200       output_rate_, output_samples, input_nyquist_freq, output_delay_samples);
201   pure_source.Run(output_samples, pure_destination.get());
202 
203   // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
204   // we refer to as low and high.
205   static const double kLowFrequencyNyquistRange = 0.7;
206   static const double kHighFrequencyNyquistRange = 0.9;
207 
208   // Calculate Root-Mean-Square-Error and maximum error for the resampling.
209   double sum_of_squares = 0;
210   double low_freq_max_error = 0;
211   double high_freq_max_error = 0;
212   int minimum_rate = std::min(input_rate_, output_rate_);
213   double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
214   double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
215 
216   for (size_t i = 0; i < output_samples; ++i) {
217     double error = fabs(resampled_destination[i] - pure_destination[i]);
218 
219     if (pure_source.Frequency(i) < low_frequency_range) {
220       if (error > low_freq_max_error)
221         low_freq_max_error = error;
222     } else if (pure_source.Frequency(i) < high_frequency_range) {
223       if (error > high_freq_max_error)
224         high_freq_max_error = error;
225     }
226     // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
227 
228     sum_of_squares += error * error;
229   }
230 
231   double rms_error = sqrt(sum_of_squares / output_samples);
232 
233   rms_error = DBFS(rms_error);
234   // In order to keep the thresholds in this test identical to SincResamplerTest
235   // we must account for the quantization error introduced by truncating from
236   // float to int. This happens twice (once at input and once at output) and we
237   // allow for the maximum possible error (1 / 32767) for each step.
238   //
239   // The quantization error is insignificant in the RMS calculation so does not
240   // need to be accounted for there.
241   low_freq_max_error = DBFS(low_freq_max_error - 2.0 / 32767);
242   high_freq_max_error = DBFS(high_freq_max_error - 2.0 / 32767);
243 
244   EXPECT_LE(rms_error, rms_error_);
245   EXPECT_LE(low_freq_max_error, low_freq_error_);
246 
247   // All conversions currently have a high frequency error around -6 dbFS.
248   static const double kHighFrequencyMaxError = -6.02;
249   EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
250 }
251 
TEST_P(PushSincResamplerTest,ResampleInt)252 TEST_P(PushSincResamplerTest, ResampleInt) { ResampleTest(true); }
253 
TEST_P(PushSincResamplerTest,ResampleFloat)254 TEST_P(PushSincResamplerTest, ResampleFloat) { ResampleTest(false); }
255 
256 // Thresholds chosen arbitrarily based on what each resampling reported during
257 // testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
258 INSTANTIATE_TEST_CASE_P(
259     PushSincResamplerTest,
260     PushSincResamplerTest,
261     ::testing::Values(
262         // First run through the rates tested in SincResamplerTest. The
263         // thresholds are identical.
264         //
265         // We don't test rates which fail to provide an integer number of
266         // samples in a 10 ms block (22050 and 11025 Hz). WebRTC doesn't support
267         // these rates in any case (for the same reason).
268 
269         // To 44.1kHz
270         ::testing::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
271         ::testing::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
272         ::testing::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
273         ::testing::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
274         ::testing::make_tuple(48000, 44100, -15.01, -64.04),
275         ::testing::make_tuple(96000, 44100, -18.49, -25.51),
276         ::testing::make_tuple(192000, 44100, -20.50, -13.31),
277 
278         // To 48kHz
279         ::testing::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
280         ::testing::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
281         ::testing::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
282         ::testing::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
283         ::testing::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
284         ::testing::make_tuple(96000, 48000, -18.40, -28.44),
285         ::testing::make_tuple(192000, 48000, -20.43, -14.11),
286 
287         // To 96kHz
288         ::testing::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
289         ::testing::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
290         ::testing::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
291         ::testing::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
292         ::testing::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
293         ::testing::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
294         ::testing::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
295 
296         // To 192kHz
297         ::testing::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
298         ::testing::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
299         ::testing::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
300         ::testing::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
301         ::testing::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
302         ::testing::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
303         ::testing::make_tuple(192000, 192000, kResamplingRMSError, -73.52),
304 
305         // Next run through some additional cases interesting for WebRTC.
306         // We skip some extreme downsampled cases (192 -> {8, 16}, 96 -> 8)
307         // because they violate |kHighFrequencyMaxError|, which is not
308         // unexpected. It's very unlikely that we'll see these conversions in
309         // practice anyway.
310 
311         // To 8 kHz
312         ::testing::make_tuple(8000, 8000, kResamplingRMSError, -75.50),
313         ::testing::make_tuple(16000, 8000, -18.56, -28.79),
314         ::testing::make_tuple(32000, 8000, -20.36, -14.13),
315         ::testing::make_tuple(44100, 8000, -21.00, -11.39),
316         ::testing::make_tuple(48000, 8000, -20.96, -11.04),
317 
318         // To 16 kHz
319         ::testing::make_tuple(8000, 16000, kResamplingRMSError, -70.30),
320         ::testing::make_tuple(16000, 16000, kResamplingRMSError, -75.51),
321         ::testing::make_tuple(32000, 16000, -18.48, -28.59),
322         ::testing::make_tuple(44100, 16000, -19.30, -19.67),
323         ::testing::make_tuple(48000, 16000, -19.81, -18.11),
324         ::testing::make_tuple(96000, 16000, -20.95, -10.96),
325 
326         // To 32 kHz
327         ::testing::make_tuple(8000, 32000, kResamplingRMSError, -70.30),
328         ::testing::make_tuple(16000, 32000, kResamplingRMSError, -75.51),
329         ::testing::make_tuple(32000, 32000, kResamplingRMSError, -75.51),
330         ::testing::make_tuple(44100, 32000, -16.44, -51.10),
331         ::testing::make_tuple(48000, 32000, -16.90, -44.03),
332         ::testing::make_tuple(96000, 32000, -19.61, -18.04),
333         ::testing::make_tuple(192000, 32000, -21.02, -10.94)));
334 
335 }  // namespace webrtc
336