1 //===-- sanitizer_stoptheworld_linux_libcdep.cc ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // See sanitizer_stoptheworld.h for details.
11 // This implementation was inspired by Markus Gutschke's linuxthreads.cc.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_platform.h"
16
17 #if SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__) || \
18 defined(__aarch64__) || defined(__powerpc64__))
19
20 #include "sanitizer_stoptheworld.h"
21
22 #include "sanitizer_platform_limits_posix.h"
23 #include "sanitizer_atomic.h"
24
25 #include <errno.h>
26 #include <sched.h> // for CLONE_* definitions
27 #include <stddef.h>
28 #include <sys/prctl.h> // for PR_* definitions
29 #include <sys/ptrace.h> // for PTRACE_* definitions
30 #include <sys/types.h> // for pid_t
31 #include <sys/uio.h> // for iovec
32 #include <elf.h> // for NT_PRSTATUS
33 #if SANITIZER_ANDROID && defined(__arm__)
34 # include <linux/user.h> // for pt_regs
35 #else
36 # ifdef __aarch64__
37 // GLIBC 2.20+ sys/user does not include asm/ptrace.h
38 # include <asm/ptrace.h>
39 # endif
40 # include <sys/user.h> // for user_regs_struct
41 #endif
42 #include <sys/wait.h> // for signal-related stuff
43
44 #ifdef sa_handler
45 # undef sa_handler
46 #endif
47
48 #ifdef sa_sigaction
49 # undef sa_sigaction
50 #endif
51
52 #include "sanitizer_common.h"
53 #include "sanitizer_flags.h"
54 #include "sanitizer_libc.h"
55 #include "sanitizer_linux.h"
56 #include "sanitizer_mutex.h"
57 #include "sanitizer_placement_new.h"
58
59 // This module works by spawning a Linux task which then attaches to every
60 // thread in the caller process with ptrace. This suspends the threads, and
61 // PTRACE_GETREGS can then be used to obtain their register state. The callback
62 // supplied to StopTheWorld() is run in the tracer task while the threads are
63 // suspended.
64 // The tracer task must be placed in a different thread group for ptrace to
65 // work, so it cannot be spawned as a pthread. Instead, we use the low-level
66 // clone() interface (we want to share the address space with the caller
67 // process, so we prefer clone() over fork()).
68 //
69 // We don't use any libc functions, relying instead on direct syscalls. There
70 // are two reasons for this:
71 // 1. calling a library function while threads are suspended could cause a
72 // deadlock, if one of the treads happens to be holding a libc lock;
73 // 2. it's generally not safe to call libc functions from the tracer task,
74 // because clone() does not set up a thread-local storage for it. Any
75 // thread-local variables used by libc will be shared between the tracer task
76 // and the thread which spawned it.
77
78 COMPILER_CHECK(sizeof(SuspendedThreadID) == sizeof(pid_t));
79
80 namespace __sanitizer {
81
82 // Structure for passing arguments into the tracer thread.
83 struct TracerThreadArgument {
84 StopTheWorldCallback callback;
85 void *callback_argument;
86 // The tracer thread waits on this mutex while the parent finishes its
87 // preparations.
88 BlockingMutex mutex;
89 // Tracer thread signals its completion by setting done.
90 atomic_uintptr_t done;
91 uptr parent_pid;
92 };
93
94 // This class handles thread suspending/unsuspending in the tracer thread.
95 class ThreadSuspender {
96 public:
ThreadSuspender(pid_t pid,TracerThreadArgument * arg)97 explicit ThreadSuspender(pid_t pid, TracerThreadArgument *arg)
98 : arg(arg)
99 , pid_(pid) {
100 CHECK_GE(pid, 0);
101 }
102 bool SuspendAllThreads();
103 void ResumeAllThreads();
104 void KillAllThreads();
suspended_threads_list()105 SuspendedThreadsList &suspended_threads_list() {
106 return suspended_threads_list_;
107 }
108 TracerThreadArgument *arg;
109 private:
110 SuspendedThreadsList suspended_threads_list_;
111 pid_t pid_;
112 bool SuspendThread(SuspendedThreadID thread_id);
113 };
114
SuspendThread(SuspendedThreadID tid)115 bool ThreadSuspender::SuspendThread(SuspendedThreadID tid) {
116 // Are we already attached to this thread?
117 // Currently this check takes linear time, however the number of threads is
118 // usually small.
119 if (suspended_threads_list_.Contains(tid))
120 return false;
121 int pterrno;
122 if (internal_iserror(internal_ptrace(PTRACE_ATTACH, tid, nullptr, nullptr),
123 &pterrno)) {
124 // Either the thread is dead, or something prevented us from attaching.
125 // Log this event and move on.
126 VReport(1, "Could not attach to thread %d (errno %d).\n", tid, pterrno);
127 return false;
128 } else {
129 VReport(2, "Attached to thread %d.\n", tid);
130 // The thread is not guaranteed to stop before ptrace returns, so we must
131 // wait on it. Note: if the thread receives a signal concurrently,
132 // we can get notification about the signal before notification about stop.
133 // In such case we need to forward the signal to the thread, otherwise
134 // the signal will be missed (as we do PTRACE_DETACH with arg=0) and
135 // any logic relying on signals will break. After forwarding we need to
136 // continue to wait for stopping, because the thread is not stopped yet.
137 // We do ignore delivery of SIGSTOP, because we want to make stop-the-world
138 // as invisible as possible.
139 for (;;) {
140 int status;
141 uptr waitpid_status;
142 HANDLE_EINTR(waitpid_status, internal_waitpid(tid, &status, __WALL));
143 int wperrno;
144 if (internal_iserror(waitpid_status, &wperrno)) {
145 // Got a ECHILD error. I don't think this situation is possible, but it
146 // doesn't hurt to report it.
147 VReport(1, "Waiting on thread %d failed, detaching (errno %d).\n",
148 tid, wperrno);
149 internal_ptrace(PTRACE_DETACH, tid, nullptr, nullptr);
150 return false;
151 }
152 if (WIFSTOPPED(status) && WSTOPSIG(status) != SIGSTOP) {
153 internal_ptrace(PTRACE_CONT, tid, nullptr,
154 (void*)(uptr)WSTOPSIG(status));
155 continue;
156 }
157 break;
158 }
159 suspended_threads_list_.Append(tid);
160 return true;
161 }
162 }
163
ResumeAllThreads()164 void ThreadSuspender::ResumeAllThreads() {
165 for (uptr i = 0; i < suspended_threads_list_.thread_count(); i++) {
166 pid_t tid = suspended_threads_list_.GetThreadID(i);
167 int pterrno;
168 if (!internal_iserror(internal_ptrace(PTRACE_DETACH, tid, nullptr, nullptr),
169 &pterrno)) {
170 VReport(2, "Detached from thread %d.\n", tid);
171 } else {
172 // Either the thread is dead, or we are already detached.
173 // The latter case is possible, for instance, if this function was called
174 // from a signal handler.
175 VReport(1, "Could not detach from thread %d (errno %d).\n", tid, pterrno);
176 }
177 }
178 }
179
KillAllThreads()180 void ThreadSuspender::KillAllThreads() {
181 for (uptr i = 0; i < suspended_threads_list_.thread_count(); i++)
182 internal_ptrace(PTRACE_KILL, suspended_threads_list_.GetThreadID(i),
183 nullptr, nullptr);
184 }
185
SuspendAllThreads()186 bool ThreadSuspender::SuspendAllThreads() {
187 ThreadLister thread_lister(pid_);
188 bool added_threads;
189 do {
190 // Run through the directory entries once.
191 added_threads = false;
192 pid_t tid = thread_lister.GetNextTID();
193 while (tid >= 0) {
194 if (SuspendThread(tid))
195 added_threads = true;
196 tid = thread_lister.GetNextTID();
197 }
198 if (thread_lister.error()) {
199 // Detach threads and fail.
200 ResumeAllThreads();
201 return false;
202 }
203 thread_lister.Reset();
204 } while (added_threads);
205 return true;
206 }
207
208 // Pointer to the ThreadSuspender instance for use in signal handler.
209 static ThreadSuspender *thread_suspender_instance = nullptr;
210
211 // Synchronous signals that should not be blocked.
212 static const int kSyncSignals[] = { SIGABRT, SIGILL, SIGFPE, SIGSEGV, SIGBUS,
213 SIGXCPU, SIGXFSZ };
214
TracerThreadDieCallback()215 static void TracerThreadDieCallback() {
216 // Generally a call to Die() in the tracer thread should be fatal to the
217 // parent process as well, because they share the address space.
218 // This really only works correctly if all the threads are suspended at this
219 // point. So we correctly handle calls to Die() from within the callback, but
220 // not those that happen before or after the callback. Hopefully there aren't
221 // a lot of opportunities for that to happen...
222 ThreadSuspender *inst = thread_suspender_instance;
223 if (inst && stoptheworld_tracer_pid == internal_getpid()) {
224 inst->KillAllThreads();
225 thread_suspender_instance = nullptr;
226 }
227 }
228
229 // Signal handler to wake up suspended threads when the tracer thread dies.
TracerThreadSignalHandler(int signum,void * siginfo,void * uctx)230 static void TracerThreadSignalHandler(int signum, void *siginfo, void *uctx) {
231 SignalContext ctx = SignalContext::Create(siginfo, uctx);
232 VPrintf(1, "Tracer caught signal %d: addr=0x%zx pc=0x%zx sp=0x%zx\n",
233 signum, ctx.addr, ctx.pc, ctx.sp);
234 ThreadSuspender *inst = thread_suspender_instance;
235 if (inst) {
236 if (signum == SIGABRT)
237 inst->KillAllThreads();
238 else
239 inst->ResumeAllThreads();
240 RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
241 thread_suspender_instance = nullptr;
242 atomic_store(&inst->arg->done, 1, memory_order_relaxed);
243 }
244 internal__exit((signum == SIGABRT) ? 1 : 2);
245 }
246
247 // Size of alternative stack for signal handlers in the tracer thread.
248 static const int kHandlerStackSize = 4096;
249
250 // This function will be run as a cloned task.
TracerThread(void * argument)251 static int TracerThread(void* argument) {
252 TracerThreadArgument *tracer_thread_argument =
253 (TracerThreadArgument *)argument;
254
255 internal_prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
256 // Check if parent is already dead.
257 if (internal_getppid() != tracer_thread_argument->parent_pid)
258 internal__exit(4);
259
260 // Wait for the parent thread to finish preparations.
261 tracer_thread_argument->mutex.Lock();
262 tracer_thread_argument->mutex.Unlock();
263
264 RAW_CHECK(AddDieCallback(TracerThreadDieCallback));
265
266 ThreadSuspender thread_suspender(internal_getppid(), tracer_thread_argument);
267 // Global pointer for the signal handler.
268 thread_suspender_instance = &thread_suspender;
269
270 // Alternate stack for signal handling.
271 InternalScopedBuffer<char> handler_stack_memory(kHandlerStackSize);
272 struct sigaltstack handler_stack;
273 internal_memset(&handler_stack, 0, sizeof(handler_stack));
274 handler_stack.ss_sp = handler_stack_memory.data();
275 handler_stack.ss_size = kHandlerStackSize;
276 internal_sigaltstack(&handler_stack, nullptr);
277
278 // Install our handler for synchronous signals. Other signals should be
279 // blocked by the mask we inherited from the parent thread.
280 for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) {
281 __sanitizer_sigaction act;
282 internal_memset(&act, 0, sizeof(act));
283 act.sigaction = TracerThreadSignalHandler;
284 act.sa_flags = SA_ONSTACK | SA_SIGINFO;
285 internal_sigaction_norestorer(kSyncSignals[i], &act, 0);
286 }
287
288 int exit_code = 0;
289 if (!thread_suspender.SuspendAllThreads()) {
290 VReport(1, "Failed suspending threads.\n");
291 exit_code = 3;
292 } else {
293 tracer_thread_argument->callback(thread_suspender.suspended_threads_list(),
294 tracer_thread_argument->callback_argument);
295 thread_suspender.ResumeAllThreads();
296 exit_code = 0;
297 }
298 RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
299 thread_suspender_instance = nullptr;
300 atomic_store(&tracer_thread_argument->done, 1, memory_order_relaxed);
301 return exit_code;
302 }
303
304 class ScopedStackSpaceWithGuard {
305 public:
ScopedStackSpaceWithGuard(uptr stack_size)306 explicit ScopedStackSpaceWithGuard(uptr stack_size) {
307 stack_size_ = stack_size;
308 guard_size_ = GetPageSizeCached();
309 // FIXME: Omitting MAP_STACK here works in current kernels but might break
310 // in the future.
311 guard_start_ = (uptr)MmapOrDie(stack_size_ + guard_size_,
312 "ScopedStackWithGuard");
313 CHECK(MprotectNoAccess((uptr)guard_start_, guard_size_));
314 }
~ScopedStackSpaceWithGuard()315 ~ScopedStackSpaceWithGuard() {
316 UnmapOrDie((void *)guard_start_, stack_size_ + guard_size_);
317 }
Bottom() const318 void *Bottom() const {
319 return (void *)(guard_start_ + stack_size_ + guard_size_);
320 }
321
322 private:
323 uptr stack_size_;
324 uptr guard_size_;
325 uptr guard_start_;
326 };
327
328 // We have a limitation on the stack frame size, so some stuff had to be moved
329 // into globals.
330 static __sanitizer_sigset_t blocked_sigset;
331 static __sanitizer_sigset_t old_sigset;
332
333 class StopTheWorldScope {
334 public:
StopTheWorldScope()335 StopTheWorldScope() {
336 // Make this process dumpable. Processes that are not dumpable cannot be
337 // attached to.
338 process_was_dumpable_ = internal_prctl(PR_GET_DUMPABLE, 0, 0, 0, 0);
339 if (!process_was_dumpable_)
340 internal_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
341 }
342
~StopTheWorldScope()343 ~StopTheWorldScope() {
344 // Restore the dumpable flag.
345 if (!process_was_dumpable_)
346 internal_prctl(PR_SET_DUMPABLE, 0, 0, 0, 0);
347 }
348
349 private:
350 int process_was_dumpable_;
351 };
352
353 // When sanitizer output is being redirected to file (i.e. by using log_path),
354 // the tracer should write to the parent's log instead of trying to open a new
355 // file. Alert the logging code to the fact that we have a tracer.
356 struct ScopedSetTracerPID {
ScopedSetTracerPID__sanitizer::ScopedSetTracerPID357 explicit ScopedSetTracerPID(uptr tracer_pid) {
358 stoptheworld_tracer_pid = tracer_pid;
359 stoptheworld_tracer_ppid = internal_getpid();
360 }
~ScopedSetTracerPID__sanitizer::ScopedSetTracerPID361 ~ScopedSetTracerPID() {
362 stoptheworld_tracer_pid = 0;
363 stoptheworld_tracer_ppid = 0;
364 }
365 };
366
StopTheWorld(StopTheWorldCallback callback,void * argument)367 void StopTheWorld(StopTheWorldCallback callback, void *argument) {
368 StopTheWorldScope in_stoptheworld;
369 // Prepare the arguments for TracerThread.
370 struct TracerThreadArgument tracer_thread_argument;
371 tracer_thread_argument.callback = callback;
372 tracer_thread_argument.callback_argument = argument;
373 tracer_thread_argument.parent_pid = internal_getpid();
374 atomic_store(&tracer_thread_argument.done, 0, memory_order_relaxed);
375 const uptr kTracerStackSize = 2 * 1024 * 1024;
376 ScopedStackSpaceWithGuard tracer_stack(kTracerStackSize);
377 // Block the execution of TracerThread until after we have set ptrace
378 // permissions.
379 tracer_thread_argument.mutex.Lock();
380 // Signal handling story.
381 // We don't want async signals to be delivered to the tracer thread,
382 // so we block all async signals before creating the thread. An async signal
383 // handler can temporary modify errno, which is shared with this thread.
384 // We ought to use pthread_sigmask here, because sigprocmask has undefined
385 // behavior in multithreaded programs. However, on linux sigprocmask is
386 // equivalent to pthread_sigmask with the exception that pthread_sigmask
387 // does not allow to block some signals used internally in pthread
388 // implementation. We are fine with blocking them here, we are really not
389 // going to pthread_cancel the thread.
390 // The tracer thread should not raise any synchronous signals. But in case it
391 // does, we setup a special handler for sync signals that properly kills the
392 // parent as well. Note: we don't pass CLONE_SIGHAND to clone, so handlers
393 // in the tracer thread won't interfere with user program. Double note: if a
394 // user does something along the lines of 'kill -11 pid', that can kill the
395 // process even if user setup own handler for SEGV.
396 // Thing to watch out for: this code should not change behavior of user code
397 // in any observable way. In particular it should not override user signal
398 // handlers.
399 internal_sigfillset(&blocked_sigset);
400 for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++)
401 internal_sigdelset(&blocked_sigset, kSyncSignals[i]);
402 int rv = internal_sigprocmask(SIG_BLOCK, &blocked_sigset, &old_sigset);
403 CHECK_EQ(rv, 0);
404 uptr tracer_pid = internal_clone(
405 TracerThread, tracer_stack.Bottom(),
406 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_UNTRACED,
407 &tracer_thread_argument, nullptr /* parent_tidptr */,
408 nullptr /* newtls */, nullptr /* child_tidptr */);
409 internal_sigprocmask(SIG_SETMASK, &old_sigset, 0);
410 int local_errno = 0;
411 if (internal_iserror(tracer_pid, &local_errno)) {
412 VReport(1, "Failed spawning a tracer thread (errno %d).\n", local_errno);
413 tracer_thread_argument.mutex.Unlock();
414 } else {
415 ScopedSetTracerPID scoped_set_tracer_pid(tracer_pid);
416 // On some systems we have to explicitly declare that we want to be traced
417 // by the tracer thread.
418 #ifdef PR_SET_PTRACER
419 internal_prctl(PR_SET_PTRACER, tracer_pid, 0, 0, 0);
420 #endif
421 // Allow the tracer thread to start.
422 tracer_thread_argument.mutex.Unlock();
423 // NOTE: errno is shared between this thread and the tracer thread.
424 // internal_waitpid() may call syscall() which can access/spoil errno,
425 // so we can't call it now. Instead we for the tracer thread to finish using
426 // the spin loop below. Man page for sched_yield() says "In the Linux
427 // implementation, sched_yield() always succeeds", so let's hope it does not
428 // spoil errno. Note that this spin loop runs only for brief periods before
429 // the tracer thread has suspended us and when it starts unblocking threads.
430 while (atomic_load(&tracer_thread_argument.done, memory_order_relaxed) == 0)
431 sched_yield();
432 // Now the tracer thread is about to exit and does not touch errno,
433 // wait for it.
434 for (;;) {
435 uptr waitpid_status = internal_waitpid(tracer_pid, nullptr, __WALL);
436 if (!internal_iserror(waitpid_status, &local_errno))
437 break;
438 if (local_errno == EINTR)
439 continue;
440 VReport(1, "Waiting on the tracer thread failed (errno %d).\n",
441 local_errno);
442 break;
443 }
444 }
445 }
446
447 // Platform-specific methods from SuspendedThreadsList.
448 #if SANITIZER_ANDROID && defined(__arm__)
449 typedef pt_regs regs_struct;
450 #define REG_SP ARM_sp
451
452 #elif SANITIZER_LINUX && defined(__arm__)
453 typedef user_regs regs_struct;
454 #define REG_SP uregs[13]
455
456 #elif defined(__i386__) || defined(__x86_64__)
457 typedef user_regs_struct regs_struct;
458 #if defined(__i386__)
459 #define REG_SP esp
460 #else
461 #define REG_SP rsp
462 #endif
463
464 #elif defined(__powerpc__) || defined(__powerpc64__)
465 typedef pt_regs regs_struct;
466 #define REG_SP gpr[PT_R1]
467
468 #elif defined(__mips__)
469 typedef struct user regs_struct;
470 #define REG_SP regs[EF_REG29]
471
472 #elif defined(__aarch64__)
473 typedef struct user_pt_regs regs_struct;
474 #define REG_SP sp
475 #define ARCH_IOVEC_FOR_GETREGSET
476
477 #else
478 #error "Unsupported architecture"
479 #endif // SANITIZER_ANDROID && defined(__arm__)
480
GetRegistersAndSP(uptr index,uptr * buffer,uptr * sp) const481 int SuspendedThreadsList::GetRegistersAndSP(uptr index,
482 uptr *buffer,
483 uptr *sp) const {
484 pid_t tid = GetThreadID(index);
485 regs_struct regs;
486 int pterrno;
487 #ifdef ARCH_IOVEC_FOR_GETREGSET
488 struct iovec regset_io;
489 regset_io.iov_base = ®s;
490 regset_io.iov_len = sizeof(regs_struct);
491 bool isErr = internal_iserror(internal_ptrace(PTRACE_GETREGSET, tid,
492 (void*)NT_PRSTATUS, (void*)®set_io),
493 &pterrno);
494 #else
495 bool isErr = internal_iserror(internal_ptrace(PTRACE_GETREGS, tid, nullptr,
496 ®s), &pterrno);
497 #endif
498 if (isErr) {
499 VReport(1, "Could not get registers from thread %d (errno %d).\n", tid,
500 pterrno);
501 return -1;
502 }
503
504 *sp = regs.REG_SP;
505 internal_memcpy(buffer, ®s, sizeof(regs));
506 return 0;
507 }
508
RegisterCount()509 uptr SuspendedThreadsList::RegisterCount() {
510 return sizeof(regs_struct) / sizeof(uptr);
511 }
512 } // namespace __sanitizer
513
514 #endif // SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__)
515 // || defined(__aarch64__) || defined(__powerpc64__)
516