1; 2; jfdctfst.asm - fast integer FDCT (SSE2) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; 6; Based on 7; x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a fast, not so accurate integer implementation of 18; the forward DCT (Discrete Cosine Transform). The following code is 19; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c 20; for more details. 21; 22; [TAB8] 23 24%include "jsimdext.inc" 25%include "jdct.inc" 26 27; -------------------------------------------------------------------------- 28 29%define CONST_BITS 8 ; 14 is also OK. 30 31%if CONST_BITS == 8 32F_0_382 equ 98 ; FIX(0.382683433) 33F_0_541 equ 139 ; FIX(0.541196100) 34F_0_707 equ 181 ; FIX(0.707106781) 35F_1_306 equ 334 ; FIX(1.306562965) 36%else 37; NASM cannot do compile-time arithmetic on floating-point constants. 38%define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) 39F_0_382 equ DESCALE( 410903207,30-CONST_BITS) ; FIX(0.382683433) 40F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) 41F_0_707 equ DESCALE( 759250124,30-CONST_BITS) ; FIX(0.707106781) 42F_1_306 equ DESCALE(1402911301,30-CONST_BITS) ; FIX(1.306562965) 43%endif 44 45; -------------------------------------------------------------------------- 46 SECTION SEG_CONST 47 48; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) 49; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) 50 51%define PRE_MULTIPLY_SCALE_BITS 2 52%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) 53 54 alignz 16 55 global EXTN(jconst_fdct_ifast_sse2) 56 57EXTN(jconst_fdct_ifast_sse2): 58 59PW_F0707 times 8 dw F_0_707 << CONST_SHIFT 60PW_F0382 times 8 dw F_0_382 << CONST_SHIFT 61PW_F0541 times 8 dw F_0_541 << CONST_SHIFT 62PW_F1306 times 8 dw F_1_306 << CONST_SHIFT 63 64 alignz 16 65 66; -------------------------------------------------------------------------- 67 SECTION SEG_TEXT 68 BITS 32 69; 70; Perform the forward DCT on one block of samples. 71; 72; GLOBAL(void) 73; jsimd_fdct_ifast_sse2 (DCTELEM * data) 74; 75 76%define data(b) (b)+8 ; DCTELEM * data 77 78%define original_ebp ebp+0 79%define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] 80%define WK_NUM 2 81 82 align 16 83 global EXTN(jsimd_fdct_ifast_sse2) 84 85EXTN(jsimd_fdct_ifast_sse2): 86 push ebp 87 mov eax,esp ; eax = original ebp 88 sub esp, byte 4 89 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits 90 mov [esp],eax 91 mov ebp,esp ; ebp = aligned ebp 92 lea esp, [wk(0)] 93 pushpic ebx 94; push ecx ; unused 95; push edx ; need not be preserved 96; push esi ; unused 97; push edi ; unused 98 99 get_GOT ebx ; get GOT address 100 101 ; ---- Pass 1: process rows. 102 103 mov edx, POINTER [data(eax)] ; (DCTELEM *) 104 105 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)] 106 movdqa xmm1, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)] 107 movdqa xmm2, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)] 108 movdqa xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)] 109 110 ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) 111 ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) 112 113 movdqa xmm4,xmm0 ; transpose coefficients(phase 1) 114 punpcklwd xmm0,xmm1 ; xmm0=(00 10 01 11 02 12 03 13) 115 punpckhwd xmm4,xmm1 ; xmm4=(04 14 05 15 06 16 07 17) 116 movdqa xmm5,xmm2 ; transpose coefficients(phase 1) 117 punpcklwd xmm2,xmm3 ; xmm2=(20 30 21 31 22 32 23 33) 118 punpckhwd xmm5,xmm3 ; xmm5=(24 34 25 35 26 36 27 37) 119 120 movdqa xmm6, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)] 121 movdqa xmm7, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)] 122 movdqa xmm1, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)] 123 movdqa xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)] 124 125 ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) 126 ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) 127 128 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) 129 movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) 130 131 movdqa xmm2,xmm6 ; transpose coefficients(phase 1) 132 punpcklwd xmm6,xmm7 ; xmm6=(40 50 41 51 42 52 43 53) 133 punpckhwd xmm2,xmm7 ; xmm2=(44 54 45 55 46 56 47 57) 134 movdqa xmm5,xmm1 ; transpose coefficients(phase 1) 135 punpcklwd xmm1,xmm3 ; xmm1=(60 70 61 71 62 72 63 73) 136 punpckhwd xmm5,xmm3 ; xmm5=(64 74 65 75 66 76 67 77) 137 138 movdqa xmm7,xmm6 ; transpose coefficients(phase 2) 139 punpckldq xmm6,xmm1 ; xmm6=(40 50 60 70 41 51 61 71) 140 punpckhdq xmm7,xmm1 ; xmm7=(42 52 62 72 43 53 63 73) 141 movdqa xmm3,xmm2 ; transpose coefficients(phase 2) 142 punpckldq xmm2,xmm5 ; xmm2=(44 54 64 74 45 55 65 75) 143 punpckhdq xmm3,xmm5 ; xmm3=(46 56 66 76 47 57 67 77) 144 145 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) 146 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) 147 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73) 148 movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75) 149 150 movdqa xmm7,xmm0 ; transpose coefficients(phase 2) 151 punpckldq xmm0,xmm1 ; xmm0=(00 10 20 30 01 11 21 31) 152 punpckhdq xmm7,xmm1 ; xmm7=(02 12 22 32 03 13 23 33) 153 movdqa xmm2,xmm4 ; transpose coefficients(phase 2) 154 punpckldq xmm4,xmm5 ; xmm4=(04 14 24 34 05 15 25 35) 155 punpckhdq xmm2,xmm5 ; xmm2=(06 16 26 36 07 17 27 37) 156 157 movdqa xmm1,xmm0 ; transpose coefficients(phase 3) 158 punpcklqdq xmm0,xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 159 punpckhqdq xmm1,xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 160 movdqa xmm5,xmm2 ; transpose coefficients(phase 3) 161 punpcklqdq xmm2,xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 162 punpckhqdq xmm5,xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 163 164 movdqa xmm6,xmm1 165 movdqa xmm3,xmm0 166 psubw xmm1,xmm2 ; xmm1=data1-data6=tmp6 167 psubw xmm0,xmm5 ; xmm0=data0-data7=tmp7 168 paddw xmm6,xmm2 ; xmm6=data1+data6=tmp1 169 paddw xmm3,xmm5 ; xmm3=data0+data7=tmp0 170 171 movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73) 172 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75) 173 movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 174 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 175 176 movdqa xmm1,xmm7 ; transpose coefficients(phase 3) 177 punpcklqdq xmm7,xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 178 punpckhqdq xmm1,xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 179 movdqa xmm0,xmm4 ; transpose coefficients(phase 3) 180 punpcklqdq xmm4,xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 181 punpckhqdq xmm0,xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 182 183 movdqa xmm2,xmm1 184 movdqa xmm5,xmm7 185 paddw xmm1,xmm4 ; xmm1=data3+data4=tmp3 186 paddw xmm7,xmm0 ; xmm7=data2+data5=tmp2 187 psubw xmm2,xmm4 ; xmm2=data3-data4=tmp4 188 psubw xmm5,xmm0 ; xmm5=data2-data5=tmp5 189 190 ; -- Even part 191 192 movdqa xmm4,xmm3 193 movdqa xmm0,xmm6 194 psubw xmm3,xmm1 ; xmm3=tmp13 195 psubw xmm6,xmm7 ; xmm6=tmp12 196 paddw xmm4,xmm1 ; xmm4=tmp10 197 paddw xmm0,xmm7 ; xmm0=tmp11 198 199 paddw xmm6,xmm3 200 psllw xmm6,PRE_MULTIPLY_SCALE_BITS 201 pmulhw xmm6,[GOTOFF(ebx,PW_F0707)] ; xmm6=z1 202 203 movdqa xmm1,xmm4 204 movdqa xmm7,xmm3 205 psubw xmm4,xmm0 ; xmm4=data4 206 psubw xmm3,xmm6 ; xmm3=data6 207 paddw xmm1,xmm0 ; xmm1=data0 208 paddw xmm7,xmm6 ; xmm7=data2 209 210 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6 211 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7 212 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4 213 movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6 214 215 ; -- Odd part 216 217 paddw xmm2,xmm5 ; xmm2=tmp10 218 paddw xmm5,xmm0 ; xmm5=tmp11 219 paddw xmm0,xmm6 ; xmm0=tmp12, xmm6=tmp7 220 221 psllw xmm2,PRE_MULTIPLY_SCALE_BITS 222 psllw xmm0,PRE_MULTIPLY_SCALE_BITS 223 224 psllw xmm5,PRE_MULTIPLY_SCALE_BITS 225 pmulhw xmm5,[GOTOFF(ebx,PW_F0707)] ; xmm5=z3 226 227 movdqa xmm4,xmm2 ; xmm4=tmp10 228 psubw xmm2,xmm0 229 pmulhw xmm2,[GOTOFF(ebx,PW_F0382)] ; xmm2=z5 230 pmulhw xmm4,[GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) 231 pmulhw xmm0,[GOTOFF(ebx,PW_F1306)] ; xmm0=MULTIPLY(tmp12,FIX_1_306562) 232 paddw xmm4,xmm2 ; xmm4=z2 233 paddw xmm0,xmm2 ; xmm0=z4 234 235 movdqa xmm3,xmm6 236 psubw xmm6,xmm5 ; xmm6=z13 237 paddw xmm3,xmm5 ; xmm3=z11 238 239 movdqa xmm2,xmm6 240 movdqa xmm5,xmm3 241 psubw xmm6,xmm4 ; xmm6=data3 242 psubw xmm3,xmm0 ; xmm3=data7 243 paddw xmm2,xmm4 ; xmm2=data5 244 paddw xmm5,xmm0 ; xmm5=data1 245 246 ; ---- Pass 2: process columns. 247 248; mov edx, POINTER [data(eax)] ; (DCTELEM *) 249 250 ; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72) 251 ; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73) 252 253 movdqa xmm4,xmm1 ; transpose coefficients(phase 1) 254 punpcklwd xmm1,xmm5 ; xmm1=(00 01 10 11 20 21 30 31) 255 punpckhwd xmm4,xmm5 ; xmm4=(40 41 50 51 60 61 70 71) 256 movdqa xmm0,xmm7 ; transpose coefficients(phase 1) 257 punpcklwd xmm7,xmm6 ; xmm7=(02 03 12 13 22 23 32 33) 258 punpckhwd xmm0,xmm6 ; xmm0=(42 43 52 53 62 63 72 73) 259 260 movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4 261 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6 262 263 ; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76) 264 ; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77) 265 266 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33) 267 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73) 268 269 movdqa xmm7,xmm5 ; transpose coefficients(phase 1) 270 punpcklwd xmm5,xmm2 ; xmm5=(04 05 14 15 24 25 34 35) 271 punpckhwd xmm7,xmm2 ; xmm7=(44 45 54 55 64 65 74 75) 272 movdqa xmm0,xmm6 ; transpose coefficients(phase 1) 273 punpcklwd xmm6,xmm3 ; xmm6=(06 07 16 17 26 27 36 37) 274 punpckhwd xmm0,xmm3 ; xmm0=(46 47 56 57 66 67 76 77) 275 276 movdqa xmm2,xmm5 ; transpose coefficients(phase 2) 277 punpckldq xmm5,xmm6 ; xmm5=(04 05 06 07 14 15 16 17) 278 punpckhdq xmm2,xmm6 ; xmm2=(24 25 26 27 34 35 36 37) 279 movdqa xmm3,xmm7 ; transpose coefficients(phase 2) 280 punpckldq xmm7,xmm0 ; xmm7=(44 45 46 47 54 55 56 57) 281 punpckhdq xmm3,xmm0 ; xmm3=(64 65 66 67 74 75 76 77) 282 283 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33) 284 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73) 285 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37) 286 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57) 287 288 movdqa xmm2,xmm1 ; transpose coefficients(phase 2) 289 punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 10 11 12 13) 290 punpckhdq xmm2,xmm6 ; xmm2=(20 21 22 23 30 31 32 33) 291 movdqa xmm7,xmm4 ; transpose coefficients(phase 2) 292 punpckldq xmm4,xmm0 ; xmm4=(40 41 42 43 50 51 52 53) 293 punpckhdq xmm7,xmm0 ; xmm7=(60 61 62 63 70 71 72 73) 294 295 movdqa xmm6,xmm1 ; transpose coefficients(phase 3) 296 punpcklqdq xmm1,xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0 297 punpckhqdq xmm6,xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1 298 movdqa xmm0,xmm7 ; transpose coefficients(phase 3) 299 punpcklqdq xmm7,xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6 300 punpckhqdq xmm0,xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7 301 302 movdqa xmm5,xmm6 303 movdqa xmm3,xmm1 304 psubw xmm6,xmm7 ; xmm6=data1-data6=tmp6 305 psubw xmm1,xmm0 ; xmm1=data0-data7=tmp7 306 paddw xmm5,xmm7 ; xmm5=data1+data6=tmp1 307 paddw xmm3,xmm0 ; xmm3=data0+data7=tmp0 308 309 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37) 310 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57) 311 movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6 312 movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7 313 314 movdqa xmm6,xmm2 ; transpose coefficients(phase 3) 315 punpcklqdq xmm2,xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2 316 punpckhqdq xmm6,xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3 317 movdqa xmm1,xmm4 ; transpose coefficients(phase 3) 318 punpcklqdq xmm4,xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4 319 punpckhqdq xmm1,xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5 320 321 movdqa xmm7,xmm6 322 movdqa xmm0,xmm2 323 paddw xmm6,xmm4 ; xmm6=data3+data4=tmp3 324 paddw xmm2,xmm1 ; xmm2=data2+data5=tmp2 325 psubw xmm7,xmm4 ; xmm7=data3-data4=tmp4 326 psubw xmm0,xmm1 ; xmm0=data2-data5=tmp5 327 328 ; -- Even part 329 330 movdqa xmm4,xmm3 331 movdqa xmm1,xmm5 332 psubw xmm3,xmm6 ; xmm3=tmp13 333 psubw xmm5,xmm2 ; xmm5=tmp12 334 paddw xmm4,xmm6 ; xmm4=tmp10 335 paddw xmm1,xmm2 ; xmm1=tmp11 336 337 paddw xmm5,xmm3 338 psllw xmm5,PRE_MULTIPLY_SCALE_BITS 339 pmulhw xmm5,[GOTOFF(ebx,PW_F0707)] ; xmm5=z1 340 341 movdqa xmm6,xmm4 342 movdqa xmm2,xmm3 343 psubw xmm4,xmm1 ; xmm4=data4 344 psubw xmm3,xmm5 ; xmm3=data6 345 paddw xmm6,xmm1 ; xmm6=data0 346 paddw xmm2,xmm5 ; xmm2=data2 347 348 movdqa XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], xmm4 349 movdqa XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], xmm3 350 movdqa XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], xmm6 351 movdqa XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], xmm2 352 353 ; -- Odd part 354 355 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6 356 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 357 358 paddw xmm7,xmm0 ; xmm7=tmp10 359 paddw xmm0,xmm1 ; xmm0=tmp11 360 paddw xmm1,xmm5 ; xmm1=tmp12, xmm5=tmp7 361 362 psllw xmm7,PRE_MULTIPLY_SCALE_BITS 363 psllw xmm1,PRE_MULTIPLY_SCALE_BITS 364 365 psllw xmm0,PRE_MULTIPLY_SCALE_BITS 366 pmulhw xmm0,[GOTOFF(ebx,PW_F0707)] ; xmm0=z3 367 368 movdqa xmm4,xmm7 ; xmm4=tmp10 369 psubw xmm7,xmm1 370 pmulhw xmm7,[GOTOFF(ebx,PW_F0382)] ; xmm7=z5 371 pmulhw xmm4,[GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) 372 pmulhw xmm1,[GOTOFF(ebx,PW_F1306)] ; xmm1=MULTIPLY(tmp12,FIX_1_306562) 373 paddw xmm4,xmm7 ; xmm4=z2 374 paddw xmm1,xmm7 ; xmm1=z4 375 376 movdqa xmm3,xmm5 377 psubw xmm5,xmm0 ; xmm5=z13 378 paddw xmm3,xmm0 ; xmm3=z11 379 380 movdqa xmm6,xmm5 381 movdqa xmm2,xmm3 382 psubw xmm5,xmm4 ; xmm5=data3 383 psubw xmm3,xmm1 ; xmm3=data7 384 paddw xmm6,xmm4 ; xmm6=data5 385 paddw xmm2,xmm1 ; xmm2=data1 386 387 movdqa XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)], xmm5 388 movdqa XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)], xmm3 389 movdqa XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)], xmm6 390 movdqa XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)], xmm2 391 392; pop edi ; unused 393; pop esi ; unused 394; pop edx ; need not be preserved 395; pop ecx ; unused 396 poppic ebx 397 mov esp,ebp ; esp <- aligned ebp 398 pop esp ; esp <- original ebp 399 pop ebp 400 ret 401 402; For some reason, the OS X linker does not honor the request to align the 403; segment unless we do this. 404 align 16 405