1; 2; jidctflt.asm - floating-point IDCT (3DNow! & MMX) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; 6; Based on 7; x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a floating-point implementation of the inverse DCT 18; (Discrete Cosine Transform). The following code is based directly on 19; the IJG's original jidctflt.c; see the jidctflt.c for more details. 20; 21; [TAB8] 22 23%include "jsimdext.inc" 24%include "jdct.inc" 25 26; -------------------------------------------------------------------------- 27 SECTION SEG_CONST 28 29 alignz 16 30 global EXTN(jconst_idct_float_3dnow) 31 32EXTN(jconst_idct_float_3dnow): 33 34PD_1_414 times 2 dd 1.414213562373095048801689 35PD_1_847 times 2 dd 1.847759065022573512256366 36PD_1_082 times 2 dd 1.082392200292393968799446 37PD_2_613 times 2 dd 2.613125929752753055713286 38PD_RNDINT_MAGIC times 2 dd 100663296.0 ; (float)(0x00C00000 << 3) 39PB_CENTERJSAMP times 8 db CENTERJSAMPLE 40 41 alignz 16 42 43; -------------------------------------------------------------------------- 44 SECTION SEG_TEXT 45 BITS 32 46; 47; Perform dequantization and inverse DCT on one block of coefficients. 48; 49; GLOBAL(void) 50; jsimd_idct_float_3dnow (void * dct_table, JCOEFPTR coef_block, 51; JSAMPARRAY output_buf, JDIMENSION output_col) 52; 53 54%define dct_table(b) (b)+8 ; void * dct_table 55%define coef_block(b) (b)+12 ; JCOEFPTR coef_block 56%define output_buf(b) (b)+16 ; JSAMPARRAY output_buf 57%define output_col(b) (b)+20 ; JDIMENSION output_col 58 59%define original_ebp ebp+0 60%define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] 61%define WK_NUM 2 62%define workspace wk(0)-DCTSIZE2*SIZEOF_FAST_FLOAT 63 ; FAST_FLOAT workspace[DCTSIZE2] 64 65 align 16 66 global EXTN(jsimd_idct_float_3dnow) 67 68EXTN(jsimd_idct_float_3dnow): 69 push ebp 70 mov eax,esp ; eax = original ebp 71 sub esp, byte 4 72 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits 73 mov [esp],eax 74 mov ebp,esp ; ebp = aligned ebp 75 lea esp, [workspace] 76 push ebx 77; push ecx ; need not be preserved 78; push edx ; need not be preserved 79 push esi 80 push edi 81 82 get_GOT ebx ; get GOT address 83 84 ; ---- Pass 1: process columns from input, store into work array. 85 86; mov eax, [original_ebp] 87 mov edx, POINTER [dct_table(eax)] ; quantptr 88 mov esi, JCOEFPTR [coef_block(eax)] ; inptr 89 lea edi, [workspace] ; FAST_FLOAT * wsptr 90 mov ecx, DCTSIZE/2 ; ctr 91 alignx 16,7 92.columnloop: 93%ifndef NO_ZERO_COLUMN_TEST_FLOAT_3DNOW 94 mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] 95 or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] 96 jnz short .columnDCT 97 98 pushpic ebx ; save GOT address 99 mov ebx, DWORD [DWBLOCK(3,0,esi,SIZEOF_JCOEF)] 100 mov eax, DWORD [DWBLOCK(4,0,esi,SIZEOF_JCOEF)] 101 or ebx, DWORD [DWBLOCK(5,0,esi,SIZEOF_JCOEF)] 102 or eax, DWORD [DWBLOCK(6,0,esi,SIZEOF_JCOEF)] 103 or ebx, DWORD [DWBLOCK(7,0,esi,SIZEOF_JCOEF)] 104 or eax,ebx 105 poppic ebx ; restore GOT address 106 jnz short .columnDCT 107 108 ; -- AC terms all zero 109 110 movd mm0, DWORD [DWBLOCK(0,0,esi,SIZEOF_JCOEF)] 111 112 punpcklwd mm0,mm0 113 psrad mm0,(DWORD_BIT-WORD_BIT) 114 pi2fd mm0,mm0 115 116 pfmul mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 117 118 movq mm1,mm0 119 punpckldq mm0,mm0 120 punpckhdq mm1,mm1 121 122 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], mm0 123 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], mm0 124 movq MMWORD [MMBLOCK(0,2,edi,SIZEOF_FAST_FLOAT)], mm0 125 movq MMWORD [MMBLOCK(0,3,edi,SIZEOF_FAST_FLOAT)], mm0 126 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], mm1 127 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], mm1 128 movq MMWORD [MMBLOCK(1,2,edi,SIZEOF_FAST_FLOAT)], mm1 129 movq MMWORD [MMBLOCK(1,3,edi,SIZEOF_FAST_FLOAT)], mm1 130 jmp near .nextcolumn 131 alignx 16,7 132%endif 133.columnDCT: 134 135 ; -- Even part 136 137 movd mm0, DWORD [DWBLOCK(0,0,esi,SIZEOF_JCOEF)] 138 movd mm1, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] 139 movd mm2, DWORD [DWBLOCK(4,0,esi,SIZEOF_JCOEF)] 140 movd mm3, DWORD [DWBLOCK(6,0,esi,SIZEOF_JCOEF)] 141 142 punpcklwd mm0,mm0 143 punpcklwd mm1,mm1 144 psrad mm0,(DWORD_BIT-WORD_BIT) 145 psrad mm1,(DWORD_BIT-WORD_BIT) 146 pi2fd mm0,mm0 147 pi2fd mm1,mm1 148 149 pfmul mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 150 pfmul mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 151 152 punpcklwd mm2,mm2 153 punpcklwd mm3,mm3 154 psrad mm2,(DWORD_BIT-WORD_BIT) 155 psrad mm3,(DWORD_BIT-WORD_BIT) 156 pi2fd mm2,mm2 157 pi2fd mm3,mm3 158 159 pfmul mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 160 pfmul mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 161 162 movq mm4,mm0 163 movq mm5,mm1 164 pfsub mm0,mm2 ; mm0=tmp11 165 pfsub mm1,mm3 166 pfadd mm4,mm2 ; mm4=tmp10 167 pfadd mm5,mm3 ; mm5=tmp13 168 169 pfmul mm1,[GOTOFF(ebx,PD_1_414)] 170 pfsub mm1,mm5 ; mm1=tmp12 171 172 movq mm6,mm4 173 movq mm7,mm0 174 pfsub mm4,mm5 ; mm4=tmp3 175 pfsub mm0,mm1 ; mm0=tmp2 176 pfadd mm6,mm5 ; mm6=tmp0 177 pfadd mm7,mm1 ; mm7=tmp1 178 179 movq MMWORD [wk(1)], mm4 ; tmp3 180 movq MMWORD [wk(0)], mm0 ; tmp2 181 182 ; -- Odd part 183 184 movd mm2, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] 185 movd mm3, DWORD [DWBLOCK(3,0,esi,SIZEOF_JCOEF)] 186 movd mm5, DWORD [DWBLOCK(5,0,esi,SIZEOF_JCOEF)] 187 movd mm1, DWORD [DWBLOCK(7,0,esi,SIZEOF_JCOEF)] 188 189 punpcklwd mm2,mm2 190 punpcklwd mm3,mm3 191 psrad mm2,(DWORD_BIT-WORD_BIT) 192 psrad mm3,(DWORD_BIT-WORD_BIT) 193 pi2fd mm2,mm2 194 pi2fd mm3,mm3 195 196 pfmul mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 197 pfmul mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 198 199 punpcklwd mm5,mm5 200 punpcklwd mm1,mm1 201 psrad mm5,(DWORD_BIT-WORD_BIT) 202 psrad mm1,(DWORD_BIT-WORD_BIT) 203 pi2fd mm5,mm5 204 pi2fd mm1,mm1 205 206 pfmul mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 207 pfmul mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 208 209 movq mm4,mm2 210 movq mm0,mm5 211 pfadd mm2,mm1 ; mm2=z11 212 pfadd mm5,mm3 ; mm5=z13 213 pfsub mm4,mm1 ; mm4=z12 214 pfsub mm0,mm3 ; mm0=z10 215 216 movq mm1,mm2 217 pfsub mm2,mm5 218 pfadd mm1,mm5 ; mm1=tmp7 219 220 pfmul mm2,[GOTOFF(ebx,PD_1_414)] ; mm2=tmp11 221 222 movq mm3,mm0 223 pfadd mm0,mm4 224 pfmul mm0,[GOTOFF(ebx,PD_1_847)] ; mm0=z5 225 pfmul mm3,[GOTOFF(ebx,PD_2_613)] ; mm3=(z10 * 2.613125930) 226 pfmul mm4,[GOTOFF(ebx,PD_1_082)] ; mm4=(z12 * 1.082392200) 227 pfsubr mm3,mm0 ; mm3=tmp12 228 pfsub mm4,mm0 ; mm4=tmp10 229 230 ; -- Final output stage 231 232 pfsub mm3,mm1 ; mm3=tmp6 233 movq mm5,mm6 234 movq mm0,mm7 235 pfadd mm6,mm1 ; mm6=data0=(00 01) 236 pfadd mm7,mm3 ; mm7=data1=(10 11) 237 pfsub mm5,mm1 ; mm5=data7=(70 71) 238 pfsub mm0,mm3 ; mm0=data6=(60 61) 239 pfsub mm2,mm3 ; mm2=tmp5 240 241 movq mm1,mm6 ; transpose coefficients 242 punpckldq mm6,mm7 ; mm6=(00 10) 243 punpckhdq mm1,mm7 ; mm1=(01 11) 244 movq mm3,mm0 ; transpose coefficients 245 punpckldq mm0,mm5 ; mm0=(60 70) 246 punpckhdq mm3,mm5 ; mm3=(61 71) 247 248 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], mm6 249 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], mm1 250 movq MMWORD [MMBLOCK(0,3,edi,SIZEOF_FAST_FLOAT)], mm0 251 movq MMWORD [MMBLOCK(1,3,edi,SIZEOF_FAST_FLOAT)], mm3 252 253 movq mm7, MMWORD [wk(0)] ; mm7=tmp2 254 movq mm5, MMWORD [wk(1)] ; mm5=tmp3 255 256 pfadd mm4,mm2 ; mm4=tmp4 257 movq mm6,mm7 258 movq mm1,mm5 259 pfadd mm7,mm2 ; mm7=data2=(20 21) 260 pfadd mm5,mm4 ; mm5=data4=(40 41) 261 pfsub mm6,mm2 ; mm6=data5=(50 51) 262 pfsub mm1,mm4 ; mm1=data3=(30 31) 263 264 movq mm0,mm7 ; transpose coefficients 265 punpckldq mm7,mm1 ; mm7=(20 30) 266 punpckhdq mm0,mm1 ; mm0=(21 31) 267 movq mm3,mm5 ; transpose coefficients 268 punpckldq mm5,mm6 ; mm5=(40 50) 269 punpckhdq mm3,mm6 ; mm3=(41 51) 270 271 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], mm7 272 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], mm0 273 movq MMWORD [MMBLOCK(0,2,edi,SIZEOF_FAST_FLOAT)], mm5 274 movq MMWORD [MMBLOCK(1,2,edi,SIZEOF_FAST_FLOAT)], mm3 275 276.nextcolumn: 277 add esi, byte 2*SIZEOF_JCOEF ; coef_block 278 add edx, byte 2*SIZEOF_FLOAT_MULT_TYPE ; quantptr 279 add edi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr 280 dec ecx ; ctr 281 jnz near .columnloop 282 283 ; -- Prefetch the next coefficient block 284 285 prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] 286 prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] 287 prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] 288 prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] 289 290 ; ---- Pass 2: process rows from work array, store into output array. 291 292 mov eax, [original_ebp] 293 lea esi, [workspace] ; FAST_FLOAT * wsptr 294 mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) 295 mov eax, JDIMENSION [output_col(eax)] 296 mov ecx, DCTSIZE/2 ; ctr 297 alignx 16,7 298.rowloop: 299 300 ; -- Even part 301 302 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] 303 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)] 304 movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)] 305 movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)] 306 307 movq mm4,mm0 308 movq mm5,mm1 309 pfsub mm0,mm2 ; mm0=tmp11 310 pfsub mm1,mm3 311 pfadd mm4,mm2 ; mm4=tmp10 312 pfadd mm5,mm3 ; mm5=tmp13 313 314 pfmul mm1,[GOTOFF(ebx,PD_1_414)] 315 pfsub mm1,mm5 ; mm1=tmp12 316 317 movq mm6,mm4 318 movq mm7,mm0 319 pfsub mm4,mm5 ; mm4=tmp3 320 pfsub mm0,mm1 ; mm0=tmp2 321 pfadd mm6,mm5 ; mm6=tmp0 322 pfadd mm7,mm1 ; mm7=tmp1 323 324 movq MMWORD [wk(1)], mm4 ; tmp3 325 movq MMWORD [wk(0)], mm0 ; tmp2 326 327 ; -- Odd part 328 329 movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] 330 movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)] 331 movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)] 332 movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)] 333 334 movq mm4,mm2 335 movq mm0,mm5 336 pfadd mm2,mm1 ; mm2=z11 337 pfadd mm5,mm3 ; mm5=z13 338 pfsub mm4,mm1 ; mm4=z12 339 pfsub mm0,mm3 ; mm0=z10 340 341 movq mm1,mm2 342 pfsub mm2,mm5 343 pfadd mm1,mm5 ; mm1=tmp7 344 345 pfmul mm2,[GOTOFF(ebx,PD_1_414)] ; mm2=tmp11 346 347 movq mm3,mm0 348 pfadd mm0,mm4 349 pfmul mm0,[GOTOFF(ebx,PD_1_847)] ; mm0=z5 350 pfmul mm3,[GOTOFF(ebx,PD_2_613)] ; mm3=(z10 * 2.613125930) 351 pfmul mm4,[GOTOFF(ebx,PD_1_082)] ; mm4=(z12 * 1.082392200) 352 pfsubr mm3,mm0 ; mm3=tmp12 353 pfsub mm4,mm0 ; mm4=tmp10 354 355 ; -- Final output stage 356 357 pfsub mm3,mm1 ; mm3=tmp6 358 movq mm5,mm6 359 movq mm0,mm7 360 pfadd mm6,mm1 ; mm6=data0=(00 10) 361 pfadd mm7,mm3 ; mm7=data1=(01 11) 362 pfsub mm5,mm1 ; mm5=data7=(07 17) 363 pfsub mm0,mm3 ; mm0=data6=(06 16) 364 pfsub mm2,mm3 ; mm2=tmp5 365 366 movq mm1,[GOTOFF(ebx,PD_RNDINT_MAGIC)] ; mm1=[PD_RNDINT_MAGIC] 367 pcmpeqd mm3,mm3 368 psrld mm3,WORD_BIT ; mm3={0xFFFF 0x0000 0xFFFF 0x0000} 369 370 pfadd mm6,mm1 ; mm6=roundint(data0/8)=(00 ** 10 **) 371 pfadd mm7,mm1 ; mm7=roundint(data1/8)=(01 ** 11 **) 372 pfadd mm0,mm1 ; mm0=roundint(data6/8)=(06 ** 16 **) 373 pfadd mm5,mm1 ; mm5=roundint(data7/8)=(07 ** 17 **) 374 375 pand mm6,mm3 ; mm6=(00 -- 10 --) 376 pslld mm7,WORD_BIT ; mm7=(-- 01 -- 11) 377 pand mm0,mm3 ; mm0=(06 -- 16 --) 378 pslld mm5,WORD_BIT ; mm5=(-- 07 -- 17) 379 por mm6,mm7 ; mm6=(00 01 10 11) 380 por mm0,mm5 ; mm0=(06 07 16 17) 381 382 movq mm1, MMWORD [wk(0)] ; mm1=tmp2 383 movq mm3, MMWORD [wk(1)] ; mm3=tmp3 384 385 pfadd mm4,mm2 ; mm4=tmp4 386 movq mm7,mm1 387 movq mm5,mm3 388 pfadd mm1,mm2 ; mm1=data2=(02 12) 389 pfadd mm3,mm4 ; mm3=data4=(04 14) 390 pfsub mm7,mm2 ; mm7=data5=(05 15) 391 pfsub mm5,mm4 ; mm5=data3=(03 13) 392 393 movq mm2,[GOTOFF(ebx,PD_RNDINT_MAGIC)] ; mm2=[PD_RNDINT_MAGIC] 394 pcmpeqd mm4,mm4 395 psrld mm4,WORD_BIT ; mm4={0xFFFF 0x0000 0xFFFF 0x0000} 396 397 pfadd mm3,mm2 ; mm3=roundint(data4/8)=(04 ** 14 **) 398 pfadd mm7,mm2 ; mm7=roundint(data5/8)=(05 ** 15 **) 399 pfadd mm1,mm2 ; mm1=roundint(data2/8)=(02 ** 12 **) 400 pfadd mm5,mm2 ; mm5=roundint(data3/8)=(03 ** 13 **) 401 402 pand mm3,mm4 ; mm3=(04 -- 14 --) 403 pslld mm7,WORD_BIT ; mm7=(-- 05 -- 15) 404 pand mm1,mm4 ; mm1=(02 -- 12 --) 405 pslld mm5,WORD_BIT ; mm5=(-- 03 -- 13) 406 por mm3,mm7 ; mm3=(04 05 14 15) 407 por mm1,mm5 ; mm1=(02 03 12 13) 408 409 movq mm2,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm2=[PB_CENTERJSAMP] 410 411 packsswb mm6,mm3 ; mm6=(00 01 10 11 04 05 14 15) 412 packsswb mm1,mm0 ; mm1=(02 03 12 13 06 07 16 17) 413 paddb mm6,mm2 414 paddb mm1,mm2 415 416 movq mm4,mm6 ; transpose coefficients(phase 2) 417 punpcklwd mm6,mm1 ; mm6=(00 01 02 03 10 11 12 13) 418 punpckhwd mm4,mm1 ; mm4=(04 05 06 07 14 15 16 17) 419 420 movq mm7,mm6 ; transpose coefficients(phase 3) 421 punpckldq mm6,mm4 ; mm6=(00 01 02 03 04 05 06 07) 422 punpckhdq mm7,mm4 ; mm7=(10 11 12 13 14 15 16 17) 423 424 pushpic ebx ; save GOT address 425 426 mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] 427 mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] 428 movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6 429 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7 430 431 poppic ebx ; restore GOT address 432 433 add esi, byte 2*SIZEOF_FAST_FLOAT ; wsptr 434 add edi, byte 2*SIZEOF_JSAMPROW 435 dec ecx ; ctr 436 jnz near .rowloop 437 438 femms ; empty MMX/3DNow! state 439 440 pop edi 441 pop esi 442; pop edx ; need not be preserved 443; pop ecx ; need not be preserved 444 pop ebx 445 mov esp,ebp ; esp <- aligned ebp 446 pop esp ; esp <- original ebp 447 pop ebp 448 ret 449 450; For some reason, the OS X linker does not honor the request to align the 451; segment unless we do this. 452 align 16 453