1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 
6 // Declares a Simulator for ARM instructions if we are not generating a native
7 // ARM binary. This Simulator allows us to run and debug ARM code generation on
8 // regular desktop machines.
9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10 // which will start execution in the Simulator or forwards to the real entry
11 // on a ARM HW platform.
12 
13 #ifndef V8_ARM_SIMULATOR_ARM_H_
14 #define V8_ARM_SIMULATOR_ARM_H_
15 
16 #include "src/allocation.h"
17 
18 #if !defined(USE_SIMULATOR)
19 // Running without a simulator on a native arm platform.
20 
21 namespace v8 {
22 namespace internal {
23 
24 // When running without a simulator we call the entry directly.
25 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
26   (entry(p0, p1, p2, p3, p4))
27 
28 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
29                                   void*, int*, int, Address, int, Isolate*);
30 
31 
32 // Call the generated regexp code directly. The code at the entry address
33 // should act as a function matching the type arm_regexp_matcher.
34 // The fifth argument is a dummy that reserves the space used for
35 // the return address added by the ExitFrame in native calls.
36 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
37                                    p7, p8)                                     \
38   (FUNCTION_CAST<arm_regexp_matcher>(entry)(p0, p1, p2, p3, NULL, p4, p5, p6,  \
39                                             p7, p8))
40 
41 // The stack limit beyond which we will throw stack overflow errors in
42 // generated code. Because generated code on arm uses the C stack, we
43 // just use the C stack limit.
44 class SimulatorStack : public v8::internal::AllStatic {
45  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)46   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
47                                             uintptr_t c_limit) {
48     USE(isolate);
49     return c_limit;
50   }
51 
RegisterCTryCatch(v8::internal::Isolate * isolate,uintptr_t try_catch_address)52   static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
53                                             uintptr_t try_catch_address) {
54     USE(isolate);
55     return try_catch_address;
56   }
57 
UnregisterCTryCatch(v8::internal::Isolate * isolate)58   static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
59     USE(isolate);
60   }
61 };
62 
63 }  // namespace internal
64 }  // namespace v8
65 
66 #else  // !defined(USE_SIMULATOR)
67 // Running with a simulator.
68 
69 #include "src/arm/constants-arm.h"
70 #include "src/assembler.h"
71 #include "src/hashmap.h"
72 
73 namespace v8 {
74 namespace internal {
75 
76 class CachePage {
77  public:
78   static const int LINE_VALID = 0;
79   static const int LINE_INVALID = 1;
80 
81   static const int kPageShift = 12;
82   static const int kPageSize = 1 << kPageShift;
83   static const int kPageMask = kPageSize - 1;
84   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
85   static const int kLineLength = 1 << kLineShift;
86   static const int kLineMask = kLineLength - 1;
87 
CachePage()88   CachePage() {
89     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
90   }
91 
ValidityByte(int offset)92   char* ValidityByte(int offset) {
93     return &validity_map_[offset >> kLineShift];
94   }
95 
CachedData(int offset)96   char* CachedData(int offset) {
97     return &data_[offset];
98   }
99 
100  private:
101   char data_[kPageSize];   // The cached data.
102   static const int kValidityMapSize = kPageSize >> kLineShift;
103   char validity_map_[kValidityMapSize];  // One byte per line.
104 };
105 
106 
107 class Simulator {
108  public:
109   friend class ArmDebugger;
110   enum Register {
111     no_reg = -1,
112     r0 = 0, r1, r2, r3, r4, r5, r6, r7,
113     r8, r9, r10, r11, r12, r13, r14, r15,
114     num_registers,
115     sp = 13,
116     lr = 14,
117     pc = 15,
118     s0 = 0, s1, s2, s3, s4, s5, s6, s7,
119     s8, s9, s10, s11, s12, s13, s14, s15,
120     s16, s17, s18, s19, s20, s21, s22, s23,
121     s24, s25, s26, s27, s28, s29, s30, s31,
122     num_s_registers = 32,
123     d0 = 0, d1, d2, d3, d4, d5, d6, d7,
124     d8, d9, d10, d11, d12, d13, d14, d15,
125     d16, d17, d18, d19, d20, d21, d22, d23,
126     d24, d25, d26, d27, d28, d29, d30, d31,
127     num_d_registers = 32,
128     q0 = 0, q1, q2, q3, q4, q5, q6, q7,
129     q8, q9, q10, q11, q12, q13, q14, q15,
130     num_q_registers = 16
131   };
132 
133   explicit Simulator(Isolate* isolate);
134   ~Simulator();
135 
136   // The currently executing Simulator instance. Potentially there can be one
137   // for each native thread.
138   static Simulator* current(v8::internal::Isolate* isolate);
139 
140   // Accessors for register state. Reading the pc value adheres to the ARM
141   // architecture specification and is off by a 8 from the currently executing
142   // instruction.
143   void set_register(int reg, int32_t value);
144   int32_t get_register(int reg) const;
145   double get_double_from_register_pair(int reg);
146   void set_register_pair_from_double(int reg, double* value);
147   void set_dw_register(int dreg, const int* dbl);
148 
149   // Support for VFP.
150   void get_d_register(int dreg, uint64_t* value);
151   void set_d_register(int dreg, const uint64_t* value);
152   void get_d_register(int dreg, uint32_t* value);
153   void set_d_register(int dreg, const uint32_t* value);
154   void get_q_register(int qreg, uint64_t* value);
155   void set_q_register(int qreg, const uint64_t* value);
156   void get_q_register(int qreg, uint32_t* value);
157   void set_q_register(int qreg, const uint32_t* value);
158 
159   void set_s_register(int reg, unsigned int value);
160   unsigned int get_s_register(int reg) const;
161 
set_d_register_from_double(int dreg,const double & dbl)162   void set_d_register_from_double(int dreg, const double& dbl) {
163     SetVFPRegister<double, 2>(dreg, dbl);
164   }
165 
get_double_from_d_register(int dreg)166   double get_double_from_d_register(int dreg) {
167     return GetFromVFPRegister<double, 2>(dreg);
168   }
169 
set_s_register_from_float(int sreg,const float flt)170   void set_s_register_from_float(int sreg, const float flt) {
171     SetVFPRegister<float, 1>(sreg, flt);
172   }
173 
get_float_from_s_register(int sreg)174   float get_float_from_s_register(int sreg) {
175     return GetFromVFPRegister<float, 1>(sreg);
176   }
177 
set_s_register_from_sinteger(int sreg,const int sint)178   void set_s_register_from_sinteger(int sreg, const int sint) {
179     SetVFPRegister<int, 1>(sreg, sint);
180   }
181 
get_sinteger_from_s_register(int sreg)182   int get_sinteger_from_s_register(int sreg) {
183     return GetFromVFPRegister<int, 1>(sreg);
184   }
185 
186   // Special case of set_register and get_register to access the raw PC value.
187   void set_pc(int32_t value);
188   int32_t get_pc() const;
189 
get_sp()190   Address get_sp() const {
191     return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
192   }
193 
194   // Accessor to the internal simulator stack area.
195   uintptr_t StackLimit(uintptr_t c_limit) const;
196 
197   // Executes ARM instructions until the PC reaches end_sim_pc.
198   void Execute();
199 
200   // Call on program start.
201   static void Initialize(Isolate* isolate);
202 
203   static void TearDown(HashMap* i_cache, Redirection* first);
204 
205   // V8 generally calls into generated JS code with 5 parameters and into
206   // generated RegExp code with 7 parameters. This is a convenience function,
207   // which sets up the simulator state and grabs the result on return.
208   int32_t Call(byte* entry, int argument_count, ...);
209   // Alternative: call a 2-argument double function.
210   void CallFP(byte* entry, double d0, double d1);
211   int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
212   double CallFPReturnsDouble(byte* entry, double d0, double d1);
213 
214   // Push an address onto the JS stack.
215   uintptr_t PushAddress(uintptr_t address);
216 
217   // Pop an address from the JS stack.
218   uintptr_t PopAddress();
219 
220   // Debugger input.
221   void set_last_debugger_input(char* input);
last_debugger_input()222   char* last_debugger_input() { return last_debugger_input_; }
223 
224   // ICache checking.
225   static void FlushICache(v8::internal::HashMap* i_cache, void* start,
226                           size_t size);
227 
228   // Returns true if pc register contains one of the 'special_values' defined
229   // below (bad_lr, end_sim_pc).
230   bool has_bad_pc() const;
231 
232   // EABI variant for double arguments in use.
use_eabi_hardfloat()233   bool use_eabi_hardfloat() {
234 #if USE_EABI_HARDFLOAT
235     return true;
236 #else
237     return false;
238 #endif
239   }
240 
241  private:
242   enum special_values {
243     // Known bad pc value to ensure that the simulator does not execute
244     // without being properly setup.
245     bad_lr = -1,
246     // A pc value used to signal the simulator to stop execution.  Generally
247     // the lr is set to this value on transition from native C code to
248     // simulated execution, so that the simulator can "return" to the native
249     // C code.
250     end_sim_pc = -2
251   };
252 
253   // Unsupported instructions use Format to print an error and stop execution.
254   void Format(Instruction* instr, const char* format);
255 
256   // Checks if the current instruction should be executed based on its
257   // condition bits.
258   inline bool ConditionallyExecute(Instruction* instr);
259 
260   // Helper functions to set the conditional flags in the architecture state.
261   void SetNZFlags(int32_t val);
262   void SetCFlag(bool val);
263   void SetVFlag(bool val);
264   bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
265   bool BorrowFrom(int32_t left, int32_t right);
266   bool OverflowFrom(int32_t alu_out,
267                     int32_t left,
268                     int32_t right,
269                     bool addition);
270 
GetCarry()271   inline int GetCarry() {
272     return c_flag_ ? 1 : 0;
273   }
274 
275   // Support for VFP.
276   void Compute_FPSCR_Flags(float val1, float val2);
277   void Compute_FPSCR_Flags(double val1, double val2);
278   void Copy_FPSCR_to_APSR();
279   inline float canonicalizeNaN(float value);
280   inline double canonicalizeNaN(double value);
281 
282   // Helper functions to decode common "addressing" modes
283   int32_t GetShiftRm(Instruction* instr, bool* carry_out);
284   int32_t GetImm(Instruction* instr, bool* carry_out);
285   int32_t ProcessPU(Instruction* instr,
286                     int num_regs,
287                     int operand_size,
288                     intptr_t* start_address,
289                     intptr_t* end_address);
290   void HandleRList(Instruction* instr, bool load);
291   void HandleVList(Instruction* inst);
292   void SoftwareInterrupt(Instruction* instr);
293 
294   // Stop helper functions.
295   inline bool isStopInstruction(Instruction* instr);
296   inline bool isWatchedStop(uint32_t bkpt_code);
297   inline bool isEnabledStop(uint32_t bkpt_code);
298   inline void EnableStop(uint32_t bkpt_code);
299   inline void DisableStop(uint32_t bkpt_code);
300   inline void IncreaseStopCounter(uint32_t bkpt_code);
301   void PrintStopInfo(uint32_t code);
302 
303   // Read and write memory.
304   inline uint8_t ReadBU(int32_t addr);
305   inline int8_t ReadB(int32_t addr);
306   inline void WriteB(int32_t addr, uint8_t value);
307   inline void WriteB(int32_t addr, int8_t value);
308 
309   inline uint16_t ReadHU(int32_t addr, Instruction* instr);
310   inline int16_t ReadH(int32_t addr, Instruction* instr);
311   // Note: Overloaded on the sign of the value.
312   inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
313   inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
314 
315   inline int ReadW(int32_t addr, Instruction* instr);
316   inline void WriteW(int32_t addr, int value, Instruction* instr);
317 
318   int32_t* ReadDW(int32_t addr);
319   void WriteDW(int32_t addr, int32_t value1, int32_t value2);
320 
321   // Executing is handled based on the instruction type.
322   // Both type 0 and type 1 rolled into one.
323   void DecodeType01(Instruction* instr);
324   void DecodeType2(Instruction* instr);
325   void DecodeType3(Instruction* instr);
326   void DecodeType4(Instruction* instr);
327   void DecodeType5(Instruction* instr);
328   void DecodeType6(Instruction* instr);
329   void DecodeType7(Instruction* instr);
330 
331   // Support for VFP.
332   void DecodeTypeVFP(Instruction* instr);
333   void DecodeType6CoprocessorIns(Instruction* instr);
334   void DecodeSpecialCondition(Instruction* instr);
335 
336   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
337   void DecodeVCMP(Instruction* instr);
338   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
339   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
340 
341   // Executes one instruction.
342   void InstructionDecode(Instruction* instr);
343 
344   // ICache.
345   static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
346   static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
347                            int size);
348   static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
349 
350   // Runtime call support.
351   static void* RedirectExternalReference(
352       Isolate* isolate, void* external_function,
353       v8::internal::ExternalReference::Type type);
354 
355   // Handle arguments and return value for runtime FP functions.
356   void GetFpArgs(double* x, double* y, int32_t* z);
357   void SetFpResult(const double& result);
358   void TrashCallerSaveRegisters();
359 
360   template<class ReturnType, int register_size>
361       ReturnType GetFromVFPRegister(int reg_index);
362 
363   template<class InputType, int register_size>
364       void SetVFPRegister(int reg_index, const InputType& value);
365 
366   void CallInternal(byte* entry);
367 
368   // Architecture state.
369   // Saturating instructions require a Q flag to indicate saturation.
370   // There is currently no way to read the CPSR directly, and thus read the Q
371   // flag, so this is left unimplemented.
372   int32_t registers_[16];
373   bool n_flag_;
374   bool z_flag_;
375   bool c_flag_;
376   bool v_flag_;
377 
378   // VFP architecture state.
379   unsigned int vfp_registers_[num_d_registers * 2];
380   bool n_flag_FPSCR_;
381   bool z_flag_FPSCR_;
382   bool c_flag_FPSCR_;
383   bool v_flag_FPSCR_;
384 
385   // VFP rounding mode. See ARM DDI 0406B Page A2-29.
386   VFPRoundingMode FPSCR_rounding_mode_;
387   bool FPSCR_default_NaN_mode_;
388 
389   // VFP FP exception flags architecture state.
390   bool inv_op_vfp_flag_;
391   bool div_zero_vfp_flag_;
392   bool overflow_vfp_flag_;
393   bool underflow_vfp_flag_;
394   bool inexact_vfp_flag_;
395 
396   // Simulator support.
397   char* stack_;
398   bool pc_modified_;
399   int icount_;
400 
401   // Debugger input.
402   char* last_debugger_input_;
403 
404   // Icache simulation
405   v8::internal::HashMap* i_cache_;
406 
407   // Registered breakpoints.
408   Instruction* break_pc_;
409   Instr break_instr_;
410 
411   v8::internal::Isolate* isolate_;
412 
413   // A stop is watched if its code is less than kNumOfWatchedStops.
414   // Only watched stops support enabling/disabling and the counter feature.
415   static const uint32_t kNumOfWatchedStops = 256;
416 
417   // Breakpoint is disabled if bit 31 is set.
418   static const uint32_t kStopDisabledBit = 1 << 31;
419 
420   // A stop is enabled, meaning the simulator will stop when meeting the
421   // instruction, if bit 31 of watched_stops_[code].count is unset.
422   // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
423   // the breakpoint was hit or gone through.
424   struct StopCountAndDesc {
425     uint32_t count;
426     char* desc;
427   };
428   StopCountAndDesc watched_stops_[kNumOfWatchedStops];
429 };
430 
431 
432 // When running with the simulator transition into simulated execution at this
433 // point.
434 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
435   reinterpret_cast<Object*>(Simulator::current(isolate)->Call(  \
436       FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
437 
438 #define CALL_GENERATED_FP_INT(isolate, entry, p0, p1) \
439   Simulator::current(isolate)->CallFPReturnsInt(FUNCTION_ADDR(entry), p0, p1)
440 
441 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
442                                    p7, p8)                                     \
443   Simulator::current(isolate)                                                  \
444       ->Call(entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
445 
446 
447 // The simulator has its own stack. Thus it has a different stack limit from
448 // the C-based native code.  The JS-based limit normally points near the end of
449 // the simulator stack.  When the C-based limit is exhausted we reflect that by
450 // lowering the JS-based limit as well, to make stack checks trigger.
451 class SimulatorStack : public v8::internal::AllStatic {
452  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)453   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
454                                             uintptr_t c_limit) {
455     return Simulator::current(isolate)->StackLimit(c_limit);
456   }
457 
RegisterCTryCatch(v8::internal::Isolate * isolate,uintptr_t try_catch_address)458   static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
459                                             uintptr_t try_catch_address) {
460     Simulator* sim = Simulator::current(isolate);
461     return sim->PushAddress(try_catch_address);
462   }
463 
UnregisterCTryCatch(v8::internal::Isolate * isolate)464   static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
465     Simulator::current(isolate)->PopAddress();
466   }
467 };
468 
469 }  // namespace internal
470 }  // namespace v8
471 
472 #endif  // !defined(USE_SIMULATOR)
473 #endif  // V8_ARM_SIMULATOR_ARM_H_
474