1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN2_SVD_H
11 #define EIGEN2_SVD_H
12 
13 namespace Eigen {
14 
15 /** \ingroup SVD_Module
16   * \nonstableyet
17   *
18   * \class SVD
19   *
20   * \brief Standard SVD decomposition of a matrix and associated features
21   *
22   * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
23   *
24   * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
25   * with \c M \>= \c N.
26   *
27   *
28   * \sa MatrixBase::SVD()
29   */
30 template<typename MatrixType> class SVD
31 {
32   private:
33     typedef typename MatrixType::Scalar Scalar;
34     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
35 
36     enum {
37       PacketSize = internal::packet_traits<Scalar>::size,
38       AlignmentMask = int(PacketSize)-1,
39       MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
40     };
41 
42     typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
43     typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
44 
45     typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
46     typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
47     typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
48 
49   public:
50 
SVD()51     SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
52 
SVD(const MatrixType & matrix)53     SVD(const MatrixType& matrix)
54       : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())),
55         m_matV(matrix.cols(),matrix.cols()),
56         m_sigma((std::min)(matrix.rows(),matrix.cols()))
57     {
58       compute(matrix);
59     }
60 
61     template<typename OtherDerived, typename ResultType>
62     bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
63 
matrixU()64     const MatrixUType& matrixU() const { return m_matU; }
singularValues()65     const SingularValuesType& singularValues() const { return m_sigma; }
matrixV()66     const MatrixVType& matrixV() const { return m_matV; }
67 
68     void compute(const MatrixType& matrix);
69     SVD& sort();
70 
71     template<typename UnitaryType, typename PositiveType>
72     void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
73     template<typename PositiveType, typename UnitaryType>
74     void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
75     template<typename RotationType, typename ScalingType>
76     void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
77     template<typename ScalingType, typename RotationType>
78     void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
79 
80   protected:
81     /** \internal */
82     MatrixUType m_matU;
83     /** \internal */
84     MatrixVType m_matV;
85     /** \internal */
86     SingularValuesType m_sigma;
87 };
88 
89 /** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
90   *
91   * \note this code has been adapted from JAMA (public domain)
92   */
93 template<typename MatrixType>
compute(const MatrixType & matrix)94 void SVD<MatrixType>::compute(const MatrixType& matrix)
95 {
96   const int m = matrix.rows();
97   const int n = matrix.cols();
98   const int nu = (std::min)(m,n);
99   ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
100   ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");
101 
102   m_matU.resize(m, nu);
103   m_matU.setZero();
104   m_sigma.resize((std::min)(m,n));
105   m_matV.resize(n,n);
106 
107   RowVector e(n);
108   ColVector work(m);
109   MatrixType matA(matrix);
110   const bool wantu = true;
111   const bool wantv = true;
112   int i=0, j=0, k=0;
113 
114   // Reduce A to bidiagonal form, storing the diagonal elements
115   // in s and the super-diagonal elements in e.
116   int nct = (std::min)(m-1,n);
117   int nrt = (std::max)(0,(std::min)(n-2,m));
118   for (k = 0; k < (std::max)(nct,nrt); ++k)
119   {
120     if (k < nct)
121     {
122       // Compute the transformation for the k-th column and
123       // place the k-th diagonal in m_sigma[k].
124       m_sigma[k] = matA.col(k).end(m-k).norm();
125       if (m_sigma[k] != 0.0) // FIXME
126       {
127         if (matA(k,k) < 0.0)
128           m_sigma[k] = -m_sigma[k];
129         matA.col(k).end(m-k) /= m_sigma[k];
130         matA(k,k) += 1.0;
131       }
132       m_sigma[k] = -m_sigma[k];
133     }
134 
135     for (j = k+1; j < n; ++j)
136     {
137       if ((k < nct) && (m_sigma[k] != 0.0))
138       {
139         // Apply the transformation.
140         Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
141         t = -t/matA(k,k);
142         matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
143       }
144 
145       // Place the k-th row of A into e for the
146       // subsequent calculation of the row transformation.
147       e[j] = matA(k,j);
148     }
149 
150     // Place the transformation in U for subsequent back multiplication.
151     if (wantu & (k < nct))
152       m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
153 
154     if (k < nrt)
155     {
156       // Compute the k-th row transformation and place the
157       // k-th super-diagonal in e[k].
158       e[k] = e.end(n-k-1).norm();
159       if (e[k] != 0.0)
160       {
161           if (e[k+1] < 0.0)
162             e[k] = -e[k];
163           e.end(n-k-1) /= e[k];
164           e[k+1] += 1.0;
165       }
166       e[k] = -e[k];
167       if ((k+1 < m) & (e[k] != 0.0))
168       {
169         // Apply the transformation.
170         work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
171         for (j = k+1; j < n; ++j)
172           matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
173       }
174 
175       // Place the transformation in V for subsequent back multiplication.
176       if (wantv)
177         m_matV.col(k).end(n-k-1) = e.end(n-k-1);
178     }
179   }
180 
181 
182   // Set up the final bidiagonal matrix or order p.
183   int p = (std::min)(n,m+1);
184   if (nct < n)
185     m_sigma[nct] = matA(nct,nct);
186   if (m < p)
187     m_sigma[p-1] = 0.0;
188   if (nrt+1 < p)
189     e[nrt] = matA(nrt,p-1);
190   e[p-1] = 0.0;
191 
192   // If required, generate U.
193   if (wantu)
194   {
195     for (j = nct; j < nu; ++j)
196     {
197       m_matU.col(j).setZero();
198       m_matU(j,j) = 1.0;
199     }
200     for (k = nct-1; k >= 0; k--)
201     {
202       if (m_sigma[k] != 0.0)
203       {
204         for (j = k+1; j < nu; ++j)
205         {
206           Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
207           t = -t/m_matU(k,k);
208           m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
209         }
210         m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
211         m_matU(k,k) = Scalar(1) + m_matU(k,k);
212         if (k-1>0)
213           m_matU.col(k).start(k-1).setZero();
214       }
215       else
216       {
217         m_matU.col(k).setZero();
218         m_matU(k,k) = 1.0;
219       }
220     }
221   }
222 
223   // If required, generate V.
224   if (wantv)
225   {
226     for (k = n-1; k >= 0; k--)
227     {
228       if ((k < nrt) & (e[k] != 0.0))
229       {
230         for (j = k+1; j < nu; ++j)
231         {
232           Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
233           t = -t/m_matV(k+1,k);
234           m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
235         }
236       }
237       m_matV.col(k).setZero();
238       m_matV(k,k) = 1.0;
239     }
240   }
241 
242   // Main iteration loop for the singular values.
243   int pp = p-1;
244   int iter = 0;
245   Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
246   while (p > 0)
247   {
248     int k=0;
249     int kase=0;
250 
251     // Here is where a test for too many iterations would go.
252 
253     // This section of the program inspects for
254     // negligible elements in the s and e arrays.  On
255     // completion the variables kase and k are set as follows.
256 
257     // kase = 1     if s(p) and e[k-1] are negligible and k<p
258     // kase = 2     if s(k) is negligible and k<p
259     // kase = 3     if e[k-1] is negligible, k<p, and
260     //              s(k), ..., s(p) are not negligible (qr step).
261     // kase = 4     if e(p-1) is negligible (convergence).
262 
263     for (k = p-2; k >= -1; --k)
264     {
265       if (k == -1)
266           break;
267       if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
268       {
269           e[k] = 0.0;
270           break;
271       }
272     }
273     if (k == p-2)
274     {
275       kase = 4;
276     }
277     else
278     {
279       int ks;
280       for (ks = p-1; ks >= k; --ks)
281       {
282         if (ks == k)
283           break;
284         Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
285         if (ei_abs(m_sigma[ks]) <= eps*t)
286         {
287           m_sigma[ks] = 0.0;
288           break;
289         }
290       }
291       if (ks == k)
292       {
293         kase = 3;
294       }
295       else if (ks == p-1)
296       {
297         kase = 1;
298       }
299       else
300       {
301         kase = 2;
302         k = ks;
303       }
304     }
305     ++k;
306 
307     // Perform the task indicated by kase.
308     switch (kase)
309     {
310 
311       // Deflate negligible s(p).
312       case 1:
313       {
314         Scalar f(e[p-2]);
315         e[p-2] = 0.0;
316         for (j = p-2; j >= k; --j)
317         {
318           Scalar t(numext::hypot(m_sigma[j],f));
319           Scalar cs(m_sigma[j]/t);
320           Scalar sn(f/t);
321           m_sigma[j] = t;
322           if (j != k)
323           {
324             f = -sn*e[j-1];
325             e[j-1] = cs*e[j-1];
326           }
327           if (wantv)
328           {
329             for (i = 0; i < n; ++i)
330             {
331               t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
332               m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
333               m_matV(i,j) = t;
334             }
335           }
336         }
337       }
338       break;
339 
340       // Split at negligible s(k).
341       case 2:
342       {
343         Scalar f(e[k-1]);
344         e[k-1] = 0.0;
345         for (j = k; j < p; ++j)
346         {
347           Scalar t(numext::hypot(m_sigma[j],f));
348           Scalar cs( m_sigma[j]/t);
349           Scalar sn(f/t);
350           m_sigma[j] = t;
351           f = -sn*e[j];
352           e[j] = cs*e[j];
353           if (wantu)
354           {
355             for (i = 0; i < m; ++i)
356             {
357               t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
358               m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
359               m_matU(i,j) = t;
360             }
361           }
362         }
363       }
364       break;
365 
366       // Perform one qr step.
367       case 3:
368       {
369         // Calculate the shift.
370         Scalar scale = (std::max)((std::max)((std::max)((std::max)(
371                         ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
372                         ei_abs(m_sigma[k])),ei_abs(e[k]));
373         Scalar sp = m_sigma[p-1]/scale;
374         Scalar spm1 = m_sigma[p-2]/scale;
375         Scalar epm1 = e[p-2]/scale;
376         Scalar sk = m_sigma[k]/scale;
377         Scalar ek = e[k]/scale;
378         Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
379         Scalar c = (sp*epm1)*(sp*epm1);
380         Scalar shift(0);
381         if ((b != 0.0) || (c != 0.0))
382         {
383           shift = ei_sqrt(b*b + c);
384           if (b < 0.0)
385             shift = -shift;
386           shift = c/(b + shift);
387         }
388         Scalar f = (sk + sp)*(sk - sp) + shift;
389         Scalar g = sk*ek;
390 
391         // Chase zeros.
392 
393         for (j = k; j < p-1; ++j)
394         {
395           Scalar t = numext::hypot(f,g);
396           Scalar cs = f/t;
397           Scalar sn = g/t;
398           if (j != k)
399             e[j-1] = t;
400           f = cs*m_sigma[j] + sn*e[j];
401           e[j] = cs*e[j] - sn*m_sigma[j];
402           g = sn*m_sigma[j+1];
403           m_sigma[j+1] = cs*m_sigma[j+1];
404           if (wantv)
405           {
406             for (i = 0; i < n; ++i)
407             {
408               t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
409               m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
410               m_matV(i,j) = t;
411             }
412           }
413           t = numext::hypot(f,g);
414           cs = f/t;
415           sn = g/t;
416           m_sigma[j] = t;
417           f = cs*e[j] + sn*m_sigma[j+1];
418           m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
419           g = sn*e[j+1];
420           e[j+1] = cs*e[j+1];
421           if (wantu && (j < m-1))
422           {
423             for (i = 0; i < m; ++i)
424             {
425               t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
426               m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
427               m_matU(i,j) = t;
428             }
429           }
430         }
431         e[p-2] = f;
432         iter = iter + 1;
433       }
434       break;
435 
436       // Convergence.
437       case 4:
438       {
439         // Make the singular values positive.
440         if (m_sigma[k] <= 0.0)
441         {
442           m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
443           if (wantv)
444             m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
445         }
446 
447         // Order the singular values.
448         while (k < pp)
449         {
450           if (m_sigma[k] >= m_sigma[k+1])
451             break;
452           Scalar t = m_sigma[k];
453           m_sigma[k] = m_sigma[k+1];
454           m_sigma[k+1] = t;
455           if (wantv && (k < n-1))
456             m_matV.col(k).swap(m_matV.col(k+1));
457           if (wantu && (k < m-1))
458             m_matU.col(k).swap(m_matU.col(k+1));
459           ++k;
460         }
461         iter = 0;
462         p--;
463       }
464       break;
465     } // end big switch
466   } // end iterations
467 }
468 
469 template<typename MatrixType>
sort()470 SVD<MatrixType>& SVD<MatrixType>::sort()
471 {
472   int mu = m_matU.rows();
473   int mv = m_matV.rows();
474   int n  = m_matU.cols();
475 
476   for (int i=0; i<n; ++i)
477   {
478     int  k = i;
479     Scalar p = m_sigma.coeff(i);
480 
481     for (int j=i+1; j<n; ++j)
482     {
483       if (m_sigma.coeff(j) > p)
484       {
485         k = j;
486         p = m_sigma.coeff(j);
487       }
488     }
489     if (k != i)
490     {
491       m_sigma.coeffRef(k) = m_sigma.coeff(i);  // i.e.
492       m_sigma.coeffRef(i) = p;                 // swaps the i-th and the k-th elements
493 
494       int j = mu;
495       for(int s=0; j!=0; ++s, --j)
496         std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
497 
498       j = mv;
499       for (int s=0; j!=0; ++s, --j)
500         std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
501     }
502   }
503   return *this;
504 }
505 
506 /** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
507   * The parts of the solution corresponding to zero singular values are ignored.
508   *
509   * \sa MatrixBase::svd(), LU::solve(), LLT::solve()
510   */
511 template<typename MatrixType>
512 template<typename OtherDerived, typename ResultType>
solve(const MatrixBase<OtherDerived> & b,ResultType * result)513 bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
514 {
515   ei_assert(b.rows() == m_matU.rows());
516 
517   Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
518   for (int j=0; j<b.cols(); ++j)
519   {
520     Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
521 
522     for (int i = 0; i <m_matU.cols(); ++i)
523     {
524       Scalar si = m_sigma.coeff(i);
525       if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
526         aux.coeffRef(i) = 0;
527       else
528         aux.coeffRef(i) /= si;
529     }
530 
531     result->col(j) = m_matV * aux;
532   }
533   return true;
534 }
535 
536 /** Computes the polar decomposition of the matrix, as a product unitary x positive.
537   *
538   * If either pointer is zero, the corresponding computation is skipped.
539   *
540   * Only for square matrices.
541   *
542   * \sa computePositiveUnitary(), computeRotationScaling()
543   */
544 template<typename MatrixType>
545 template<typename UnitaryType, typename PositiveType>
computeUnitaryPositive(UnitaryType * unitary,PositiveType * positive)546 void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
547                                              PositiveType *positive) const
548 {
549   ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
550   if(unitary) *unitary = m_matU * m_matV.adjoint();
551   if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
552 }
553 
554 /** Computes the polar decomposition of the matrix, as a product positive x unitary.
555   *
556   * If either pointer is zero, the corresponding computation is skipped.
557   *
558   * Only for square matrices.
559   *
560   * \sa computeUnitaryPositive(), computeRotationScaling()
561   */
562 template<typename MatrixType>
563 template<typename UnitaryType, typename PositiveType>
computePositiveUnitary(UnitaryType * positive,PositiveType * unitary)564 void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
565                                              PositiveType *unitary) const
566 {
567   ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
568   if(unitary) *unitary = m_matU * m_matV.adjoint();
569   if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
570 }
571 
572 /** decomposes the matrix as a product rotation x scaling, the scaling being
573   * not necessarily positive.
574   *
575   * If either pointer is zero, the corresponding computation is skipped.
576   *
577   * This method requires the Geometry module.
578   *
579   * \sa computeScalingRotation(), computeUnitaryPositive()
580   */
581 template<typename MatrixType>
582 template<typename RotationType, typename ScalingType>
computeRotationScaling(RotationType * rotation,ScalingType * scaling)583 void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
584 {
585   ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
586   Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
587   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
588   sv.coeffRef(0) *= x;
589   if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
590   if(rotation)
591   {
592     MatrixType m(m_matU);
593     m.col(0) /= x;
594     rotation->lazyAssign(m * m_matV.adjoint());
595   }
596 }
597 
598 /** decomposes the matrix as a product scaling x rotation, the scaling being
599   * not necessarily positive.
600   *
601   * If either pointer is zero, the corresponding computation is skipped.
602   *
603   * This method requires the Geometry module.
604   *
605   * \sa computeRotationScaling(), computeUnitaryPositive()
606   */
607 template<typename MatrixType>
608 template<typename ScalingType, typename RotationType>
computeScalingRotation(ScalingType * scaling,RotationType * rotation)609 void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
610 {
611   ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
612   Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
613   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
614   sv.coeffRef(0) *= x;
615   if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
616   if(rotation)
617   {
618     MatrixType m(m_matU);
619     m.col(0) /= x;
620     rotation->lazyAssign(m * m_matV.adjoint());
621   }
622 }
623 
624 
625 /** \svd_module
626   * \returns the SVD decomposition of \c *this
627   */
628 template<typename Derived>
629 inline SVD<typename MatrixBase<Derived>::PlainObject>
svd()630 MatrixBase<Derived>::svd() const
631 {
632   return SVD<PlainObject>(derived());
633 }
634 
635 } // end namespace Eigen
636 
637 #endif // EIGEN2_SVD_H
638