1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12 #define EIGEN_SELFADJOINTEIGENSOLVER_H
13 
14 #include "./Tridiagonalization.h"
15 
16 namespace Eigen {
17 
18 template<typename _MatrixType>
19 class GeneralizedSelfAdjointEigenSolver;
20 
21 namespace internal {
22 template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23 }
24 
25 /** \eigenvalues_module \ingroup Eigenvalues_Module
26   *
27   *
28   * \class SelfAdjointEigenSolver
29   *
30   * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
31   *
32   * \tparam _MatrixType the type of the matrix of which we are computing the
33   * eigendecomposition; this is expected to be an instantiation of the Matrix
34   * class template.
35   *
36   * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
37   * matrices, this means that the matrix is symmetric: it equals its
38   * transpose. This class computes the eigenvalues and eigenvectors of a
39   * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
40   * \f$ v \f$ such that \f$ Av = \lambda v \f$.  The eigenvalues of a
41   * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
42   * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
43   * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
44   * matrices, the matrix \f$ V \f$ is always invertible). This is called the
45   * eigendecomposition.
46   *
47   * The algorithm exploits the fact that the matrix is selfadjoint, making it
48   * faster and more accurate than the general purpose eigenvalue algorithms
49   * implemented in EigenSolver and ComplexEigenSolver.
50   *
51   * Only the \b lower \b triangular \b part of the input matrix is referenced.
52   *
53   * Call the function compute() to compute the eigenvalues and eigenvectors of
54   * a given matrix. Alternatively, you can use the
55   * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
56   * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
57   * and eigenvectors are computed, they can be retrieved with the eigenvalues()
58   * and eigenvectors() functions.
59   *
60   * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
61   * contains an example of the typical use of this class.
62   *
63   * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
64   * the likes, see the class GeneralizedSelfAdjointEigenSolver.
65   *
66   * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
67   */
68 template<typename _MatrixType> class SelfAdjointEigenSolver
69 {
70   public:
71 
72     typedef _MatrixType MatrixType;
73     enum {
74       Size = MatrixType::RowsAtCompileTime,
75       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
76       Options = MatrixType::Options,
77       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
78     };
79 
80     /** \brief Scalar type for matrices of type \p _MatrixType. */
81     typedef typename MatrixType::Scalar Scalar;
82     typedef typename MatrixType::Index Index;
83 
84     /** \brief Real scalar type for \p _MatrixType.
85       *
86       * This is just \c Scalar if #Scalar is real (e.g., \c float or
87       * \c double), and the type of the real part of \c Scalar if #Scalar is
88       * complex.
89       */
90     typedef typename NumTraits<Scalar>::Real RealScalar;
91 
92     friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
93 
94     /** \brief Type for vector of eigenvalues as returned by eigenvalues().
95       *
96       * This is a column vector with entries of type #RealScalar.
97       * The length of the vector is the size of \p _MatrixType.
98       */
99     typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
100     typedef Tridiagonalization<MatrixType> TridiagonalizationType;
101 
102     /** \brief Default constructor for fixed-size matrices.
103       *
104       * The default constructor is useful in cases in which the user intends to
105       * perform decompositions via compute(). This constructor
106       * can only be used if \p _MatrixType is a fixed-size matrix; use
107       * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
108       *
109       * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
110       * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
111       */
112     SelfAdjointEigenSolver()
113         : m_eivec(),
114           m_eivalues(),
115           m_subdiag(),
116           m_isInitialized(false)
117     { }
118 
119     /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
120       *
121       * \param [in]  size  Positive integer, size of the matrix whose
122       * eigenvalues and eigenvectors will be computed.
123       *
124       * This constructor is useful for dynamic-size matrices, when the user
125       * intends to perform decompositions via compute(). The \p size
126       * parameter is only used as a hint. It is not an error to give a wrong
127       * \p size, but it may impair performance.
128       *
129       * \sa compute() for an example
130       */
131     SelfAdjointEigenSolver(Index size)
132         : m_eivec(size, size),
133           m_eivalues(size),
134           m_subdiag(size > 1 ? size - 1 : 1),
135           m_isInitialized(false)
136     {}
137 
138     /** \brief Constructor; computes eigendecomposition of given matrix.
139       *
140       * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
141       *    be computed. Only the lower triangular part of the matrix is referenced.
142       * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
143       *
144       * This constructor calls compute(const MatrixType&, int) to compute the
145       * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
146       * \p options equals #ComputeEigenvectors.
147       *
148       * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
149       * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
150       *
151       * \sa compute(const MatrixType&, int)
152       */
153     SelfAdjointEigenSolver(const MatrixType& matrix, int options = ComputeEigenvectors)
154       : m_eivec(matrix.rows(), matrix.cols()),
155         m_eivalues(matrix.cols()),
156         m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
157         m_isInitialized(false)
158     {
159       compute(matrix, options);
160     }
161 
162     /** \brief Computes eigendecomposition of given matrix.
163       *
164       * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
165       *    be computed. Only the lower triangular part of the matrix is referenced.
166       * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
167       * \returns    Reference to \c *this
168       *
169       * This function computes the eigenvalues of \p matrix.  The eigenvalues()
170       * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors,
171       * then the eigenvectors are also computed and can be retrieved by
172       * calling eigenvectors().
173       *
174       * This implementation uses a symmetric QR algorithm. The matrix is first
175       * reduced to tridiagonal form using the Tridiagonalization class. The
176       * tridiagonal matrix is then brought to diagonal form with implicit
177       * symmetric QR steps with Wilkinson shift. Details can be found in
178       * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
179       *
180       * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
181       * are required and \f$ 4n^3/3 \f$ if they are not required.
182       *
183       * This method reuses the memory in the SelfAdjointEigenSolver object that
184       * was allocated when the object was constructed, if the size of the
185       * matrix does not change.
186       *
187       * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
188       * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
189       *
190       * \sa SelfAdjointEigenSolver(const MatrixType&, int)
191       */
192     SelfAdjointEigenSolver& compute(const MatrixType& matrix, int options = ComputeEigenvectors);
193 
194     /** \brief Computes eigendecomposition of given matrix using a direct algorithm
195       *
196       * This is a variant of compute(const MatrixType&, int options) which
197       * directly solves the underlying polynomial equation.
198       *
199       * Currently only 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
200       *
201       * This method is usually significantly faster than the QR algorithm
202       * but it might also be less accurate. It is also worth noting that
203       * for 3x3 matrices it involves trigonometric operations which are
204       * not necessarily available for all scalar types.
205       *
206       * \sa compute(const MatrixType&, int options)
207       */
208     SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
209 
210     /** \brief Returns the eigenvectors of given matrix.
211       *
212       * \returns  A const reference to the matrix whose columns are the eigenvectors.
213       *
214       * \pre The eigenvectors have been computed before.
215       *
216       * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
217       * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
218       * eigenvectors are normalized to have (Euclidean) norm equal to one. If
219       * this object was used to solve the eigenproblem for the selfadjoint
220       * matrix \f$ A \f$, then the matrix returned by this function is the
221       * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
222       *
223       * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
224       * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
225       *
226       * \sa eigenvalues()
227       */
228     const MatrixType& eigenvectors() const
229     {
230       eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
231       eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
232       return m_eivec;
233     }
234 
235     /** \brief Returns the eigenvalues of given matrix.
236       *
237       * \returns A const reference to the column vector containing the eigenvalues.
238       *
239       * \pre The eigenvalues have been computed before.
240       *
241       * The eigenvalues are repeated according to their algebraic multiplicity,
242       * so there are as many eigenvalues as rows in the matrix. The eigenvalues
243       * are sorted in increasing order.
244       *
245       * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
246       * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
247       *
248       * \sa eigenvectors(), MatrixBase::eigenvalues()
249       */
250     const RealVectorType& eigenvalues() const
251     {
252       eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
253       return m_eivalues;
254     }
255 
256     /** \brief Computes the positive-definite square root of the matrix.
257       *
258       * \returns the positive-definite square root of the matrix
259       *
260       * \pre The eigenvalues and eigenvectors of a positive-definite matrix
261       * have been computed before.
262       *
263       * The square root of a positive-definite matrix \f$ A \f$ is the
264       * positive-definite matrix whose square equals \f$ A \f$. This function
265       * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
266       * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
267       *
268       * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
269       * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
270       *
271       * \sa operatorInverseSqrt(),
272       *     \ref MatrixFunctions_Module "MatrixFunctions Module"
273       */
274     MatrixType operatorSqrt() const
275     {
276       eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
277       eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
278       return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
279     }
280 
281     /** \brief Computes the inverse square root of the matrix.
282       *
283       * \returns the inverse positive-definite square root of the matrix
284       *
285       * \pre The eigenvalues and eigenvectors of a positive-definite matrix
286       * have been computed before.
287       *
288       * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
289       * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
290       * cheaper than first computing the square root with operatorSqrt() and
291       * then its inverse with MatrixBase::inverse().
292       *
293       * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
294       * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
295       *
296       * \sa operatorSqrt(), MatrixBase::inverse(),
297       *     \ref MatrixFunctions_Module "MatrixFunctions Module"
298       */
299     MatrixType operatorInverseSqrt() const
300     {
301       eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
302       eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
303       return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
304     }
305 
306     /** \brief Reports whether previous computation was successful.
307       *
308       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
309       */
310     ComputationInfo info() const
311     {
312       eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
313       return m_info;
314     }
315 
316     /** \brief Maximum number of iterations.
317       *
318       * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
319       * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
320       */
321     static const int m_maxIterations = 30;
322 
323     #ifdef EIGEN2_SUPPORT
324     SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors)
325       : m_eivec(matrix.rows(), matrix.cols()),
326         m_eivalues(matrix.cols()),
327         m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
328         m_isInitialized(false)
329     {
330       compute(matrix, computeEigenvectors);
331     }
332 
333     SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
334         : m_eivec(matA.cols(), matA.cols()),
335           m_eivalues(matA.cols()),
336           m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1),
337           m_isInitialized(false)
338     {
339       static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
340     }
341 
342     void compute(const MatrixType& matrix, bool computeEigenvectors)
343     {
344       compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
345     }
346 
347     void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
348     {
349       compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
350     }
351     #endif // EIGEN2_SUPPORT
352 
353   protected:
354     static void check_template_parameters()
355     {
356       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
357     }
358 
359     MatrixType m_eivec;
360     RealVectorType m_eivalues;
361     typename TridiagonalizationType::SubDiagonalType m_subdiag;
362     ComputationInfo m_info;
363     bool m_isInitialized;
364     bool m_eigenvectorsOk;
365 };
366 
367 /** \internal
368   *
369   * \eigenvalues_module \ingroup Eigenvalues_Module
370   *
371   * Performs a QR step on a tridiagonal symmetric matrix represented as a
372   * pair of two vectors \a diag and \a subdiag.
373   *
374   * \param matA the input selfadjoint matrix
375   * \param hCoeffs returned Householder coefficients
376   *
377   * For compilation efficiency reasons, this procedure does not use eigen expression
378   * for its arguments.
379   *
380   * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
381   * "implicit symmetric QR step with Wilkinson shift"
382   */
383 namespace internal {
384 template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
385 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
386 }
387 
388 template<typename MatrixType>
389 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
390 ::compute(const MatrixType& matrix, int options)
391 {
392   check_template_parameters();
393 
394   using std::abs;
395   eigen_assert(matrix.cols() == matrix.rows());
396   eigen_assert((options&~(EigVecMask|GenEigMask))==0
397           && (options&EigVecMask)!=EigVecMask
398           && "invalid option parameter");
399   bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
400   Index n = matrix.cols();
401   m_eivalues.resize(n,1);
402 
403   if(n==1)
404   {
405     m_eivalues.coeffRef(0,0) = numext::real(matrix.coeff(0,0));
406     if(computeEigenvectors)
407       m_eivec.setOnes(n,n);
408     m_info = Success;
409     m_isInitialized = true;
410     m_eigenvectorsOk = computeEigenvectors;
411     return *this;
412   }
413 
414   // declare some aliases
415   RealVectorType& diag = m_eivalues;
416   MatrixType& mat = m_eivec;
417 
418   // map the matrix coefficients to [-1:1] to avoid over- and underflow.
419   mat = matrix.template triangularView<Lower>();
420   RealScalar scale = mat.cwiseAbs().maxCoeff();
421   if(scale==RealScalar(0)) scale = RealScalar(1);
422   mat.template triangularView<Lower>() /= scale;
423   m_subdiag.resize(n-1);
424   internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
425 
426   Index end = n-1;
427   Index start = 0;
428   Index iter = 0; // total number of iterations
429 
430   while (end>0)
431   {
432     for (Index i = start; i<end; ++i)
433       if (internal::isMuchSmallerThan(abs(m_subdiag[i]),(abs(diag[i])+abs(diag[i+1]))))
434         m_subdiag[i] = 0;
435 
436     // find the largest unreduced block
437     while (end>0 && m_subdiag[end-1]==0)
438     {
439       end--;
440     }
441     if (end<=0)
442       break;
443 
444     // if we spent too many iterations, we give up
445     iter++;
446     if(iter > m_maxIterations * n) break;
447 
448     start = end - 1;
449     while (start>0 && m_subdiag[start-1]!=0)
450       start--;
451 
452     internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
453   }
454 
455   if (iter <= m_maxIterations * n)
456     m_info = Success;
457   else
458     m_info = NoConvergence;
459 
460   // Sort eigenvalues and corresponding vectors.
461   // TODO make the sort optional ?
462   // TODO use a better sort algorithm !!
463   if (m_info == Success)
464   {
465     for (Index i = 0; i < n-1; ++i)
466     {
467       Index k;
468       m_eivalues.segment(i,n-i).minCoeff(&k);
469       if (k > 0)
470       {
471         std::swap(m_eivalues[i], m_eivalues[k+i]);
472         if(computeEigenvectors)
473           m_eivec.col(i).swap(m_eivec.col(k+i));
474       }
475     }
476   }
477 
478   // scale back the eigen values
479   m_eivalues *= scale;
480 
481   m_isInitialized = true;
482   m_eigenvectorsOk = computeEigenvectors;
483   return *this;
484 }
485 
486 
487 namespace internal {
488 
489 template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
490 {
491   static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
492   { eig.compute(A,options); }
493 };
494 
495 template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
496 {
497   typedef typename SolverType::MatrixType MatrixType;
498   typedef typename SolverType::RealVectorType VectorType;
499   typedef typename SolverType::Scalar Scalar;
500   typedef typename MatrixType::Index Index;
501 
502   /** \internal
503    * Computes the roots of the characteristic polynomial of \a m.
504    * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
505    */
506   static inline void computeRoots(const MatrixType& m, VectorType& roots)
507   {
508     using std::sqrt;
509     using std::atan2;
510     using std::cos;
511     using std::sin;
512     const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0);
513     const Scalar s_sqrt3 = sqrt(Scalar(3.0));
514 
515     // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
516     // eigenvalues are the roots to this equation, all guaranteed to be
517     // real-valued, because the matrix is symmetric.
518     Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
519     Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
520     Scalar c2 = m(0,0) + m(1,1) + m(2,2);
521 
522     // Construct the parameters used in classifying the roots of the equation
523     // and in solving the equation for the roots in closed form.
524     Scalar c2_over_3 = c2*s_inv3;
525     Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
526     if(a_over_3<Scalar(0))
527       a_over_3 = Scalar(0);
528 
529     Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
530 
531     Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
532     if(q<Scalar(0))
533       q = Scalar(0);
534 
535     // Compute the eigenvalues by solving for the roots of the polynomial.
536     Scalar rho = sqrt(a_over_3);
537     Scalar theta = atan2(sqrt(q),half_b)*s_inv3;  // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
538     Scalar cos_theta = cos(theta);
539     Scalar sin_theta = sin(theta);
540     // roots are already sorted, since cos is monotonically decreasing on [0, pi]
541     roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
542     roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
543     roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
544   }
545 
546   static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
547   {
548     using std::abs;
549     Index i0;
550     // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
551     mat.diagonal().cwiseAbs().maxCoeff(&i0);
552     // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
553     // so let's save it:
554     representative = mat.col(i0);
555     Scalar n0, n1;
556     VectorType c0, c1;
557     n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
558     n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
559     if(n0>n1) res = c0/std::sqrt(n0);
560     else      res = c1/std::sqrt(n1);
561 
562     return true;
563   }
564 
565   static inline void run(SolverType& solver, const MatrixType& mat, int options)
566   {
567     eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
568     eigen_assert((options&~(EigVecMask|GenEigMask))==0
569             && (options&EigVecMask)!=EigVecMask
570             && "invalid option parameter");
571     bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
572 
573     MatrixType& eivecs = solver.m_eivec;
574     VectorType& eivals = solver.m_eivalues;
575 
576     // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
577     Scalar shift = mat.trace() / Scalar(3);
578     // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
579     MatrixType scaledMat = mat.template selfadjointView<Lower>();
580     scaledMat.diagonal().array() -= shift;
581     Scalar scale = scaledMat.cwiseAbs().maxCoeff();
582     if(scale > 0) scaledMat /= scale;   // TODO for scale==0 we could save the remaining operations
583 
584     // compute the eigenvalues
585     computeRoots(scaledMat,eivals);
586 
587     // compute the eigenvectors
588     if(computeEigenvectors)
589     {
590       if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
591       {
592         // All three eigenvalues are numerically the same
593         eivecs.setIdentity();
594       }
595       else
596       {
597         MatrixType tmp;
598         tmp = scaledMat;
599 
600         // Compute the eigenvector of the most distinct eigenvalue
601         Scalar d0 = eivals(2) - eivals(1);
602         Scalar d1 = eivals(1) - eivals(0);
603         Index k(0), l(2);
604         if(d0 > d1)
605         {
606           std::swap(k,l);
607           d0 = d1;
608         }
609 
610         // Compute the eigenvector of index k
611         {
612           tmp.diagonal().array () -= eivals(k);
613           // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
614           extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
615         }
616 
617         // Compute eigenvector of index l
618         if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
619         {
620           // If d0 is too small, then the two other eigenvalues are numerically the same,
621           // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
622           eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
623           eivecs.col(l).normalize();
624         }
625         else
626         {
627           tmp = scaledMat;
628           tmp.diagonal().array () -= eivals(l);
629 
630           VectorType dummy;
631           extract_kernel(tmp, eivecs.col(l), dummy);
632         }
633 
634         // Compute last eigenvector from the other two
635         eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
636       }
637     }
638 
639     // Rescale back to the original size.
640     eivals *= scale;
641     eivals.array() += shift;
642 
643     solver.m_info = Success;
644     solver.m_isInitialized = true;
645     solver.m_eigenvectorsOk = computeEigenvectors;
646   }
647 };
648 
649 // 2x2 direct eigenvalues decomposition, code from Hauke Heibel
650 template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2,false>
651 {
652   typedef typename SolverType::MatrixType MatrixType;
653   typedef typename SolverType::RealVectorType VectorType;
654   typedef typename SolverType::Scalar Scalar;
655 
656   static inline void computeRoots(const MatrixType& m, VectorType& roots)
657   {
658     using std::sqrt;
659     const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
660     const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
661     roots(0) = t1 - t0;
662     roots(1) = t1 + t0;
663   }
664 
665   static inline void run(SolverType& solver, const MatrixType& mat, int options)
666   {
667     using std::sqrt;
668     using std::abs;
669 
670     eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
671     eigen_assert((options&~(EigVecMask|GenEigMask))==0
672             && (options&EigVecMask)!=EigVecMask
673             && "invalid option parameter");
674     bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
675 
676     MatrixType& eivecs = solver.m_eivec;
677     VectorType& eivals = solver.m_eivalues;
678 
679     // map the matrix coefficients to [-1:1] to avoid over- and underflow.
680     Scalar scale = mat.cwiseAbs().maxCoeff();
681     scale = (std::max)(scale,Scalar(1));
682     MatrixType scaledMat = mat / scale;
683 
684     // Compute the eigenvalues
685     computeRoots(scaledMat,eivals);
686 
687     // compute the eigen vectors
688     if(computeEigenvectors)
689     {
690       if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
691       {
692         eivecs.setIdentity();
693       }
694       else
695       {
696         scaledMat.diagonal().array () -= eivals(1);
697         Scalar a2 = numext::abs2(scaledMat(0,0));
698         Scalar c2 = numext::abs2(scaledMat(1,1));
699         Scalar b2 = numext::abs2(scaledMat(1,0));
700         if(a2>c2)
701         {
702           eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
703           eivecs.col(1) /= sqrt(a2+b2);
704         }
705         else
706         {
707           eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
708           eivecs.col(1) /= sqrt(c2+b2);
709         }
710 
711         eivecs.col(0) << eivecs.col(1).unitOrthogonal();
712       }
713     }
714 
715     // Rescale back to the original size.
716     eivals *= scale;
717 
718     solver.m_info = Success;
719     solver.m_isInitialized = true;
720     solver.m_eigenvectorsOk = computeEigenvectors;
721   }
722 };
723 
724 }
725 
726 template<typename MatrixType>
727 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
728 ::computeDirect(const MatrixType& matrix, int options)
729 {
730   internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
731   return *this;
732 }
733 
734 namespace internal {
735 template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
736 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
737 {
738   using std::abs;
739   RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
740   RealScalar e = subdiag[end-1];
741   // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
742   // underflow thus leading to inf/NaN values when using the following commented code:
743 //   RealScalar e2 = numext::abs2(subdiag[end-1]);
744 //   RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
745   // This explain the following, somewhat more complicated, version:
746   RealScalar mu = diag[end];
747   if(td==0)
748     mu -= abs(e);
749   else
750   {
751     RealScalar e2 = numext::abs2(subdiag[end-1]);
752     RealScalar h = numext::hypot(td,e);
753     if(e2==0)  mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h);
754     else       mu -= e2 / (td + (td>0 ? h : -h));
755   }
756 
757   RealScalar x = diag[start] - mu;
758   RealScalar z = subdiag[start];
759   for (Index k = start; k < end; ++k)
760   {
761     JacobiRotation<RealScalar> rot;
762     rot.makeGivens(x, z);
763 
764     // do T = G' T G
765     RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
766     RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
767 
768     diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
769     diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
770     subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
771 
772 
773     if (k > start)
774       subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
775 
776     x = subdiag[k];
777 
778     if (k < end - 1)
779     {
780       z = -rot.s() * subdiag[k+1];
781       subdiag[k + 1] = rot.c() * subdiag[k+1];
782     }
783 
784     // apply the givens rotation to the unit matrix Q = Q * G
785     if (matrixQ)
786     {
787       // FIXME if StorageOrder == RowMajor this operation is not very efficient
788       Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
789       q.applyOnTheRight(k,k+1,rot);
790     }
791   }
792 }
793 
794 } // end namespace internal
795 
796 } // end namespace Eigen
797 
798 #endif // EIGEN_SELFADJOINTEIGENSOLVER_H
799